
RC25589 (WAT1601-089) January 26, 2016
Mathematics

Research Division
Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

IBM Research Report

Recursion Graphs: Consistent Inference for Cyclic
Noisy-Logical Graphs

David W. Buchanan
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598 USA

Recursion graphs: consistent inference for cyclic
noisy-logical graphs

David W. Buchanan
IBM Research

dbuchan@us.ibm.com

Abstract

Directed, cyclic graphs occur in many applications of graphical models where
feedback loops are not desired. For instance, consider a relational resource that
potentially contains meaningful directed cycles, such as a knowledge base or so-
cial network. We may wish to convert such a resource into probabilistic graphical
model. Many existing methods for performing such a conversion either lose po-
tentially important information, or are not guaranteed to have a consistent joint
distribution. Other solutions are not tractable for some applications. This paper
introduces a new semantics, recursion graphs, that do not lose information, and
have a consistent joint distribution, while they are tractable in more situations. In
these graphs, nodes keep track of their “reasons,” so that no node can be an indi-
rect reason for itself. In addition to the main consistency result, some preliminary
empirical results are shown. In these experiments, recursion graphs significantly
outperform alternatives.

1 Introduction

Graphical models are widely used in artificial intelligence, in areas from causal inference to social
network analysis. Consider a case in which we must infer the marginal probabilities of unknown
variables given known values of some set of other variables (“inference”). The resources at hand
include a set of relations between these variables (a “relational resource”) that can be interpreted as
a directed graphical model. Such resources might include a social network, a set of structured links
between entities in a recommendation system, or a graph constructed from knowledge. A potential
problem is that relational resource might not respect the formal requirements of the graphical model
we wish to use. For instance, the resource might contain directed cycles, and the edges in the cycles
might carry important information, but we might wish to use a Bayesian network or some other
formalism that requires an acyclic graph. The simplest such case occurs when for some pair of
nodes, a relation exists in each direction with a different strength.

An example graph that has this property is shown in Figure 1a: If Alice tells us that she saw someone
wearing a raincoat (abbreviated as “A”), it is a reason to think, with strength 0.8, that someone is
wearing a raincoat (“R”). Similarly, Bob’s report (“B”) can be a reason to think someone is carrying
an umbrella (“U”). If someone is wearing a raincoat, this is a reason to think that people are carrying
umbrellas, and vice versa. Consider for the sake of argument that the relation from raincoats to
umbrellas is stronger (0.9) than the relation from umbrellas to raincoats (0.4). That is, if we know
someone is wearing a raincoat, this is a strong reason to think that someone is carrying an umbrella.
But if we know that someone is carrying an umbrella, this is a relatively weak reason to think that
someone is wearing a raincoat. (This might occur if only stronger rain made some people put on
raincoats). Finally, the fact that someone is wearing a raincoat is a reason to think that there will be
coats on the hooks (“H”), with strength 0.8, and if someone is carrying an umbrella, this is a reason
to think that there will be umbrellas in the umbrella stand (“S”) with strength 0.8.

1

Figure 1: Example graphs illustrating the feedback problem and some existing solutions. A cyclic
solution is shown in (a), and an approach that adds knowledge is shown in (b). Solutions that subtract
knowledge include using an undirected model (c) and “combing” the graph (d).

It is intuitive to read certain properties from this graph: A provides strong support for H, and B pro-
vides strong support for S. Additionally, A provides good support for S, while B provides relatively
weak but nonzero support for H. However, these intuitions do not work out mathematically unless
we can find a coherent formalization of the graph as it is drawn. The directed cycle in the graph
between R and U creates a formal problem. This is because, to paraphrase Friedman et al., [1], it
is incoherent for a node to influence its own value. With the cycle present, U can provide support
for R, and this very support can be used to support U in turn. Intuitively, it is obvious that such a
feedback loop is not desired in this case: belief in raincoats should not reinforce itself. But it is not
obvious how to formalize the graph so that such a feedback loop does not occur. We will call this the
“feedback problem”: Given a relational resource that potentially contains directed cycles, describe
a procedure for building from the relational resource a graphical model over which we can perform
probabilistic inference that captures the intuitions described above. We will call such a procedure a
“semantics.”

1.1 Existing solutions

One solution to the feedback problem is to use a semantics that constructs a fundamentally different
graph. For instance, common sense tells us that rain is a common cause of both umbrellas and
raincoats; we could construct an acyclic graph such that each was diagnostic of rain. (See Figure
1b) There exists some set of conditional probabilities for Figure 1b that could capture the conditions
expressed above. Though such solutions exist in principle, it is not clear how to construct them in
general, especially if knowledge is limited. This paper will take a different approach, tackling the
practical problem directly: Given a potentially cyclic, noisy graph, and imperfect knowledge, we
wish to directly make use of the graph without losing or adding important information. In other
words, while restructuring the graph is allowed, we will assume we cannot add new knowledge to
the graph.

Given such a constraint, another approach is to make a formal model that directly corresponds to
the relational resource, then minimally modify the graph such that it is formally coherent. In other
words, we can subtract information from the graph. For instance, we could construct a symmetric
Markov random field in which the edge represents the compatibility between the values of the two
nodes, but direction is not meaningful. Inference over such a graph tries to satisfy the constraint
that nodes with strong compatibility take the same value. For every directed edge in Figure 1a, we
can construct a undirected edge whose strength is a function of the edges between the two nodes.
If there are multiple such edges, we combine them using some function (e.g., the maximum). See
Figure 1c for an example. Note that no matter what combination function we use, we lose important
properties: The graph becomes completely symmetric with respect to Alice and Bob. We lose the
property that Alice tells us more about umbrellas in stands than Bob tells us about raincoats on
hooks.

Another approach is to treat the network as directed, but orient edges such that cycles no longer
exist. An example is shown in Figure 1d. In these graphs we must lose important properties as
well: either Alice has no influence on umbrellas, or Bob has no influence on raincoats. This type
of solution can be called a “combing” solution, because the cycles can be seen as “tangles” in the
graph that are resolved by modifying the graph.

2

Yet another approach is to abandon the idea of a formally coherent representation, and use the graph
as it is. That is, treat the graph as a Bayesian network and run inference despite the cycles. This
is a version of an approach outlined by Heckerman et al. [2]. Some inference techniques, such
as Markov chain Monte Carlo (MCMC) sampling, allow us to run inference despite not meeting
the acyclicity condition of Bayesian networks. As Heckerman et al. [2] show, such inference can
perform well in practice, for at least some applications. In the case of the raincoats example, we
would accept that the values of R and U would be higher, in practice, than our intuition tells us. We
would also accept that the graph was not guaranteed to specify a consistent joint distribution.

Finally, we could abandon using graphical models, and instead use a more expressive semantics
such as a probabilistic logic. For instance, ProbLog [3] allows for directed cycles in sets of prob-
abilistic implication rules. The rules specify a distribution over proofs; feedback is prevented by
ensuring that each grounded proof is itself acyclic. While this can be a good solution in some con-
texts, the richer language of probabilistic logic comes with a higher computational cost that can be
prohibitive in other contexts. In particular, grounding out each proof can cause an explosion in the
number of variables to be considered. In the application described in section 3 we attempted to use
probabilistic logics but ran out of memory on the majority of tasks. The solution we present in this
paper represents a novel location on the spectrum of complexity/expressiveness tradeoffs: Rather
than beginning with a fully expressive probabilistic logic, we begin with a simpler graphical model
and add just the complexity needed to solve the feedback problem.

A note about feedback: This paper addresses problems that arise from applications (like the raincoats
example) where feedback is not intuitively desired. In some applications, feedback is desired: For
instance, obesity causes sedentary lifestyle, which causes obesity. Working from graphs where
feedback is desired is another problem addressed by different research [4, 5].

Existing solutions to the feedback problem are unsatisfying on at least some applications: they are
either impractical (e.g., changing the graph with new knowledge), formally incoherent (e.g., run in-
ference anyway), too computationally expensive for some applications (e.g., probabilistic logic), or
lose potentially important information (e.g., Markov random fields, combing). This paper proposes
a novel solution to the feedback problem that has none of these problems. It allows us to directly
construct from the relational resource a graphical model that has directed cycles, but is also proba-
bilistically valid. We call it a “recursion graph.” The core idea is that nodes keep track of the reason
they are in a particular state, where reasons can be traced recursively through the graph. Keeping
track of reasons allows us to prevent nodes from being reasons for themselves, without needing to
eliminate cycles. The machinery for doing so will be presented in detail in the next section, which
will also show that recursion graphs have a consistent joint distribution. The last section shows that
recursion graphs outperform the other solutions just outlined, on a real world application.

2 Formal specification

2.1 Acyclic noisy-logical graphs

The formal specification of recursion graphs will be clearest if we begin by specifying acyclic noisy-
logical graphs in the same way. The present formulation is a simplified version of the graphs pre-
sented by Yuille and Lu [6]. In an acyclic noisy-logical graph, nodes can be in one of two states, on
and off, sometimes referred to as “active” and “inactive” respectively. Intuitively, a node is active if
it has an active generative parent whose edge fires, and zero active inhibitory parents whose edges
fire, and off otherwise. Formally, a graph consists of a set of nodes, for instance x, and a set of
directed edges, for instance xy (an edge from x to y). We assume that there is at most one directed
edge between each ordered pair of nodes. That is, there can be an edge from xy and a distinct
edge yx, but not two distinct edges xy. The same effects as achieved by multiple edges between
an ordered pair, can be achieved by combining the strengths of the edges. We use X to mean the
random variable that x is active, (0 if it is active, 1 if it is not) and P (X) to represent the probability
it is active. Each directed edge xy has a strength sxy between 0 and 1, and a valence, gxy either
generative (gxy = 1) or inhibitory (gxy = 0). An edge “fires” with probability equal to its strength.
A node’s parents Rx head the incoming edges. We denote all generative parents of x with Rg

x, and
all inhibitory parents with Rh

x. Each node x has some “background” probability of being in the
active state spontaneously. This is equivalent to having a generative edge from a special parent that

3

is always on (“the background”) with strength equal to the background probability. Equations below
will assume background is captured this way.

We will look at probabilistic inference as inferring marginal probabilities over “worlds.” A world
is an assignment of values to variables. The probability of a variable being in a particular state
is the sum of the probabilities of all the worlds in which it is in that state. A semantics assigns
a probability to each world. Looking at inference in this way allows us to apply techniques such
as MCMC sampling. In a semantics with a consistent distribution, the probabilities of all worlds
sum to one. It is well known that Bayesian networks, including acyclic noisy-logical graphs, are
consistent. One way to see the consistency of noisy-logical graphs using a perspective we will call
“edge worlds.” An edge world O is an assignment of values to each edge variable Oxy . Each edge
can be either open, Oxy = 1, or closed, Oxy = 0. The probability of an edge-world is given by:

P (O) =
∏

Oxy∈O

{
sxy, if Oxy = 1

1− sxy, if Oxy = 0
(1)

It is easy to see that the distribution over edge worlds is consistent. It is equivalent to the distribution
over flipping a coin with bias sxy for each edge xy, which is trivially consistent. Edge worlds can
be used to determine activation worlds, which are used to determine the marginal probability of a
node being in the active state. (The term “worlds” used unqualified refers to activation worlds.) A
node is active in a given world if it has at least one active generative parent whose edge fires, and
zero active inhibitory parents whose edges fire. Formally:

X =

⊕
y∈Rg

x

OyxY

1− ⊕
z∈Rh

x

OzxZ

 (2)

Where we introduce notation for the noisy-OR function:
⊕

x1, ...xj = 1−
∏

i=1:j (1− xi). Given
any edge world, the activation state of any given node can be determined using Equation 2. If the
activation states of parents are needed, apply Equation 2 recursively. Note that multiple edge worlds
can correspond to the same activation world. For instance, edges whose head nodes are not active
are irrelevant with respect to activation worlds. Because edge worlds are consistent, and every edge
world uniquely determines an activation world, acyclic noisy-logical graphs are consistent.

2.2 Cyclic noisy-logical graphs

Noisy-logical graphs where directed cycles are allowed, we will call cyclic noisy-logical graphs.
The presence of directed cycles undermines the consistency arguments given above. In particular,
these arguments rely on the guarantee that no node is its own ancestor. If such a guarantee were not
present, then applying Equation 2 could lead to an infinite recursion loop. For instance, consider
Figure 1a. Imagine a world in which only the edges ru and ur are open. The activation state of R
is not clearly defined by Equation 2, because R’s state depends on the state of U , which depends in
turn on R. The procedure goes on forever. Spirtes [4] has described such graphs as “non-recursive.”

2.3 Recursion graphs

To specify recursion graphs, we add to cyclic noisy-logical graphs in such a way that cycles are
allowed, but consistency is restored. In a recursion graph, nodes are not just on or off: They are on
or off for zero or more reasons, where a reason is a node in the graph. One node, the “background”
is special in that it is always on for no reason. Other nodes are on if they have at least one generative
reason and zero inhibitory reasons, and off otherwise. If the edge xy is generative (gxy = 1), then x
can be a generative reason for y, and if the edge is inhibitory (gxy = 0), then x can be an inhibitory
reason for y.

We trace reasons in order to enforce the key concept of eligibility: A node x can only be a reason
for y if the edge xy exists, and x is eligible to be a reason for y. A node x is eligible to be a reason
for another node y if and only if either x is the background, or x has at least one generative reason
that is eligible to be a reason for y, and zero inhibitory reasons that are eligible to be a reason for y.

4

Crucially, nodes are not eligible to be a reason for themselves. This prevents feedback and leads to
consistency, as we will see below.

Some properties of recursion graphs are worth noting at this stage. First, while node states can be
categorized into “on” and “off,” the nodes in the graph are not strictly speaking binary. Rather, if
a node has k incoming edges, it has at least 2k possible states. This is one state for every possible
combination of reasons. Nodes with deeper ancestors have even more possible states. In practice,
the extra states are not a significant problem because most of these states can be collapsed, especially
with respect to another node. We define the variable X[A], to mean that X is eligible to be a reason
for the set of nodes A (0 if eligibile, 1 if not). The boldface indicates a set. Adding to a set is
represented with a comma: X[A, B] means that X is eligible to be a reason for the new set that
includes everything in A, and also B.

Recursion graphs, like other noisy-logical graphs, can be viewed in terms of edge worlds. (See
equation 1). Recall that edge worlds are consistent; if we can define a procedure for generating an
activation world for each edge world, then recursion graphs are consistent as well. In cyclic noisy-
logical graphs, such a procedure can encounter a recursion loop. In a recursion graph, eligibility
allows us to define a such a procedure that will not encounter a recursion loop, even in a graph with
directed cycles. For each node, we can recursively trace reasons back to the background, abandoning
paths that go through x. The recursion stops when we either reach the background (this means x is
eligible) or have abandoned all paths (which means x is not eligible). Formally:

X[A] =

⊕
y∈Rg

x

OyxY [A, X]

1− ⊕
z∈Rh

x

OzxZ[A, X]

 (3)

With the special cases that X[A] = 1 for all A if X is the background, and if X is not the background,
then X[Y] = 0 if X ∈ A. To determine whether a node is active, ask whether it is eligible to be a
reason for the empty set, i.e. X = X[]. Then recursively apply Equation 3 as the activation states
of parents are needed. We can prove that this process terminates without encountering an infinite
recursion loop: At each step of recursion, the set of nodes for which we are checking eligibility
strictly increases. Infinite recursion implies that this set can be arbitrarily large. But, if the set of
reasons already contains X, then we return 0 and do not recurse further. Thus the size of the list of
reasons is limited by the number of nodes in the graph. If the graph is finite, then the size of the list
is bounded, but an infinite recursion loop would require it to be unbounded. Therefore the process is
guaranteed to terminate for a finite graph. We have defined a procedure that uniquely determines an
activation world for each edge world, and edge worlds are consistent. Therefore, recursion graphs
are consistent.

2.4 Acyclic expansions of a recursion graph

Another approach to showing the consistency of recursion graphs would have been to expand the
recursion graph into an acyclic noisy-logical Bayesian network. We sketch this process here pri-
marily to illustrate the often prohibitive complexity of the expansion. Expansion is not part of any
algroithm necessary for using recursion graphs. The overall apporach is to take each recursion graph
node, which is set-valued, and create a binary-valued node for each set of descendants for which it
might be eligible. One way to do this is to apply equation 3 to each node, and ensure the existence
of a binary valued node for each list of reasons that is generated. The process continues recursively
until every possible chain of reasons has been exhausted. While it may be true that such a graph ex-
ists for every recursion graph, it is easy to see that the complexity will increase steeply with the size
and connectivity of the recursion graph. For a complete graph, the number of nodes in the expansion
increases exponentially with the number of nodes in the recursion graph. We found the construction
of such graphs to be intractable in practice on our application: Our hardware ran out of memory.
We suspect that this is related to the reason why ProbLog ran out of memory on our application: It,
like most probabilistic logics, begins by “grounding out” the logical rules into a graph that can be
many times larger than the number of rules. When working with recursion graphs, there is no need
to ground out or expand the graph: Using MCMC, we can directly sample the set-valued state of
each node. By directly representing the chains of reasons, we avoid the need for an expansion or
grounding out of the graph.

5

Figure 2: All non-zero likelihood worlds for a simplified example. Every edge has a strength of 0.8.
Dark-bordered nodes and edges are active, while gray-bordered edges and nodes are inactive.

2.5 Working through an example

We will use a simplified example to work through how recursion graphs solve the feedback problem.
See Figure 2. In this graph, X has background probability 1.0, and each edge has a strength of 0.8.
All nodes other than X have zero background probability. If we are focused on Z, the path to and
from W is irrelevant; it could be pruned away and should not affect inference. The path says that Z
is a reason to think W, and W is a reason to think Z. Intuitively, the marginal probability of Z should
simply be 0.8 × 0.8 = 0.64. We will call this property of graphs “the pruning property”: Adding
a cyclic path that leads only to and from a node but does not connect it to the background, should
not affect its marginal probability. We will see that the pruning property holds in a recursion graphs
semantics, but not in a cyclic semantics.

In practice, for efficient sampling and likelihood calculations, we will operate at the level of reason
worlds, which are between edge and activation worlds. In a reason world, N, an edge is active if its
head is eligible and it is open, i.e. Nxy = OxyX[Y] We can generate reason worlds for a recursion
and cyclic semantics as follows: Initialize all edges to random states. Determine activation of each
node using equation 3. At each step of sampling, choose a node at random. For each incoming edge
of this node, if the head is active, then re-sample whether the edge is active, changing the activation
state of the node as appropriate. The likelihood of each reason world is the sum of the edge worlds
that ground it. This can be found with the following product:

P (N) =
∏

Nxy∈N

0, if X[Y] = 0 and Nxy = 1

1, if X[Y] = 0 and Nxy = 0

sxy, if X[Y] = 1 and Nxy = 1

1− sxy, if X[Y] = 1 and Nxy = 0

(4)

That is, for every edge, if it is active, first check if its head is eligible to be a reason for its tail.
If it is not eligible, return zero likelihood. If it is eligible, multiply by the edge’s strength if it is
active, and by one minus the edge’s strength if it is not active. Using the above procedure and
likelihood equation, it is straightforward to construct a sampling procedure (for instance, Gibbs or
Metropolis-Hastings sampling). We can define a cyclic semantics using a similar procedure, but
omitting reason-checking and asserting every node as eligible to be a reason for every other node
(i.e., X[Y]=X for all X and Y). In a cyclic semantics, this procedure will not be sampling over a
consistent joint distribution, but will nonetheless output a result.

The likelihoods of each non-zero likelihood activation world for each semantics are shown in Figure
2. This figure shows both activation and reason worlds, because for this example, each valid activa-
tion world has exactly one valid reason world that grounds it in the recursion semantics. Recall that
for each node, its marginal probability is the sum of the likelihood of worlds in which it is active,

6

divided by the total likelihood of all worlds.1 For the node Z, this number is 0.64 in recursion graphs,
but 0.7074 in the cyclic semantics (violating the pruning property). This is largely because of world
(e), which has zero likelihood in the recursive semantics but nonzero likelihood in the cyclic seman-
tics. The recursion graph semantics assigns zero likelihood to world (e), because W and Z are not
eligible to be reasons for each other.

3 Experimental test

Previous sections have shown that recursion graphs present a solution to the feedback problem, and
have useful formal properties, such as consistency. These are the main points of the paper. It remains
to be seen whether they yield practical results on a real-world data set. One such result is presented
here. It is understood that more results are needed before a strong argument could be made about
the superiority of recursion graphs in general. This paper makes a weaker argument: that recursion
graphs show potential promise because of positive results on at least one application, in addition to
their other useful properties.

3.1 Inputs

The algorithm, and all baseline algorithms, were applied to the same graphs from a real-world
application. See [7] for details on the system that generated the graphs. Beginning with 1484
multiple-choice medical test-preparation questions, the system automatically identified a subset of
411 questions as involving medical diagnosis. The system takes a text question as input. It creates
a node in a graphical model for each candidate answer, and an node for each sentence and key term
in the question. Then a series of relation generators are run on the graph, potentially generating
new nodes, and also potentially new relations between nodes. Most edges come from a relation
generator that runs a probabilistic question answering system. The result is a directed graphical
model, with a weight for each directed edge. Most graphs have hundreds of nodes and thousands of
edges. Because many relation generators create edges in both directions, most nodes participate in
some directed cycle. The problem that inference must address is: given the graph, infer a confidence
for each candidate answer. For each graph, exactly one answer is correct.

3.2 Baselines

This section begins by describing exactly how recursion graphs were deployed, and then defines
each baseline by its differences. Inference takes a graph as input, and begins by collapsing all
redundant edges: All directed edges in the same direction and valence are collapsed by taking the
maximum of all the weights. If multiple edges of different valences exist, the edge with the lower
weight is deleted. Inference uses Metropolis-Hastings sampling as described in the previous section.
We use equation 4 for the likelihoods. This procedure does not differ for any baseline, except for
the differences described explicitly below.

The cyclic baseline was intended to represent the strategy under which we accept that the graphs
have cycles, and run MCMC inference, despite the fact that it leads to feedback and to a possibly
inconsistent joint distribution. This idea can be credited to Heckerman et al. [2]. This was run in an
identical way to recursion graphs, except that we turned reason checking off. (Reasons were always
eligible). Reason checking took up between 5 to 10 per cent of the processing time on most graphs.
This serves as a rough estimate of the computational cost of using recursion graphs versus a cyclic
semantics.

The feedforward baseline was intended to represent the “combing” strategy, in which we strategi-
cally orient edges to eliminate cycles. Under this baseline, we create the graph as above. Then for
every pair ab that contains an edge ab, and an edge ba, we merge them in to one edge ab whose
strength is the higher of the two strengths. After this, we “comb” the graph: Orient each edge in
the graph such that there are no cycles, and each edge is oriented, if possible, so that belief flows
from the background to a candidate node. Inference operates just as in the recursion graph baseline.

1Note that the marginal probabilities sum to one for the recursion graph semantics, but not for the cyclic
semantics. This is not a calculation error; it is a side effect of the fact that the cyclic semantics does not specify
a consistent joint distribution.

7

Accuracy Earnings Mean
Fraction Gap

Recursion 0.623** 0.246** 0.112
Cyclic 0.599 0.197 0.086
Feedforward 0.591 0.182 0.104
Undirected 0.387 -0.226 0.004

Table 1: Results from experimental test. Bold indicates highest number on that metric. Two asterisks
indicates a statistically significant difference (p < 0.05) from the next-highest baseline on that
metric. For mean gap, asterisks are not shown because recursion was not significantly higher than
feedforward. Recursion was, however, significantly higher than cyclic.

Because the combed graph has no cycles, reasons are irrelevant: nodes are always eligible to be
reasons for their children.

The undirected baseline used a symmetric Markov random field. This is similar to the feedforward
baseline in that all edges between a and b, in any direction, are merged to a single weight w. During
inference, the weight is treated as a compatibility function: the likelihood of the nodes taking the
same value is (1.0) while the likelihood of them taking different values is (1 − w). Each node is
treated as having an equal prior probability of being on or off.

As mentioned previously, we also attempted to run ProbLog on our data set, but ProbLog ran out
of memory on a large majority of questions, so results cannot be shown. This may be due to the
problem of attempting to ground out the recursion graph into an acyclic representation.

3.3 Results

Results are shown in Table 1. The accuracy of an algorithm is the proportion of questions on
which the highest confidence answer is the correct answer: right/(right + wrong). There was
a tie on one question; all baselines returned the same answer for this question. The remaining
metrics address the efficacy of confidence estimation. Earnings fraction addresses the idea that
high confidence in incorrect answers should be penalized. It considers only those questions on
which the highest confidence was above 50 per cent. Earnings fraction among these questions is
(right − wrong)/(right + wrong). Gap reflects the average difference between the top right
answer and the top wrong answer (negative if the top wrong answer had higher confidence). Sig-
nificance was calculated using Fisher randomization. As can be seen in Table 1, recursion graphs
significantly outperform the next-best baseline (cyclic graphs) on all metrics.

4 Discussion and further work

Recursion graphs present an efficient solution to the feedback problem: given graphs with directed
cycles, recursion graphs allow us to preserve the information contained in the cycles without un-
intended feedback loops. We have also seen that recursion graphs have some desirable properties:
Formally, they can be shown to have a consistent joint distribution. Practically, we can operate
directly on the cyclic representation without having to ground the graph out into an acyclic form,
making some applications newly tractable. Empirically, they perform better on at least one appli-
cation. While they added a small computational cost, we believe this may be an attractive tradeoff
given other benefits. Thus recursion graphs open up the possibility of directly using a cyclic graph
in an application that encounters the feedback problem, with the confidence that we are standing on
a solid formal foundation, and the possibility of better performance.

An obvious area for further work is to deploy recursion graphs in other applications that encounter
the feedback problem. In preparing this paper, it was difficult to find established data sets that
directly represented the feedback problem. After all, it is widely known that graphs with directed
cycles are not formally valid for inference in graphical models, which may explain why few have
made such graphs available. Thus a “chicken and egg” problem exists with respect to the literature.
It is hoped that the formal and empirical results presented here will encourage others to try recursion
graphs on applications that show the feedback problem.

8

References

[1] Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic relational
models. In IJCAI, volume 99, pages 1300–1309, 1999.

[2] David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Rounthwaite, and
Carl Kadie. Dependency networks for inference, collaborative filtering, and data visualization.
The Journal of Machine Learning Research, 1:49–75, 2001.

[3] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A probabilistic prolog and its
application in link discovery. In IJCAI, volume 7, pages 2462–2467, 2007.

[4] Peter Spirtes. Directed cyclic graphical representations of feedback models. In Proceedings
of the Eleventh conference on Uncertainty in artificial intelligence, pages 491–498. Morgan
Kaufmann Publishers Inc., 1995.

[5] Alexander L Tulupyev and Sergey I Nikolenko. Directed cycles in bayesian belief networks:
probabilistic semantics and consistency checking complexity. In MICAI 2005: Advances in
Artificial Intelligence, pages 214–223. Springer, 2005.

[6] Alan L Yuille and Hongjing Lu. The noisy-logical distribution and its application to causal
inference. In NIPS, 2007.

[7] Adam Lally, Sugato Bachi, Michael A Barborak, David W Buchanan, Jennifer Chu-Carroll,
David A Ferrucci, Michael R Glass, Aditya Kalyanpur, Erik T Mueller, J William Murdock,
et al. Watsonpaths: Scenario-based question answering and inference over unstructured infor-
mation. Technical report, Technical Report Research Report RC25489, IBM Research, 2014.

9

	Introduction
	Existing solutions

	Formal specification
	Acyclic noisy-logical graphs
	Cyclic noisy-logical graphs
	Recursion graphs
	Acyclic expansions of a recursion graph
	Working through an example

	Experimental test
	Inputs
	Baselines
	Results

	Discussion and further work

