
RC25591 (WAT1602-016) February 15, 2016
Computer Science

Research Division
Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

IBM Research Report

City-Wide Traffic Flow Estimation from Limited Number of
Low Quality Cameras

Tsuyoshi Idé1, Takayuki Katsuki2,
Tetsuro Morimura2, Robert Morris1

1IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598 USA

2IBM Research - Tokyo
IBM Japan, Ltd.

19-21, Hakozaki-cho, Nihombashi, Chuoh-ku
Tokyo 103-8501, Japan



1

City-Wide Traffic Flow Estimation from Limited
Number of Low Quality Cameras
Tsuyoshi Idé, Takayuki Katsuki, Tetsuro Morimura, and Robert Morris

Abstract—We propose a new approach to intelligent trans-
portation systems for developing countries. Our system consists of
two major components: (1) Web-camera-based traffic monitoring
and (2) network flow estimation. The traffic monitoring module
features a new algorithm for computing the vehicle count from
very low-resolution webcam images. To reduce the cost of camera-
wise collection of labeled (i.e. manually counted) images, we
develop a novel unsupervised learning approach. The network
flow estimation module features a traffic flow estimation algo-
rithm formalized as an inverse Markov chain problem, which
finds the entire flow matrix from partial observations using an
information-theoretic criterion. Using real webcams deployed in
Nairobi, Kenya, we demonstrate the utility of our approach.

I. INTRODUCTION

TRAFFIC congestion is a major problem in the urban
regions of most developing countries, where mismatches

are found between rapidly growing economies and the mu-
nicipal infrastructures. Intelligent transportation systems (ITS)
provide a basic framework for traffic management. Unlike
urban areas in relatively mature countries, cities with rapid
economic growth require a lightweight ITS to adapt to the
dynamically changing environment.

What we are interested in here is a “Frugal” approach [1]
to ITS. Instead of relying heavily on expensive infrastruc-
tures such as an inductive-loop sensor system covering an
entire city area for traffic monitoring, we wish to develop
an ITS that is easy to deploy, has a minimum entry cost,
and offers good enough functionalities. As an alternative
to the existing full-scale systems, we focus on a webcam-
based monitoring approach. Webcam-based traffic surveillance
through Web browsers is already available in many cities in
developing countries. For instance, in Nairobi City, Kenya,
AccessKenya.com [2] runs a Web site to provide near real-time
information on the traffic at major locations. Although just
looking at the webcam images through Web browsers is useful
enough for personal use, it is not the case for traffic authorities.
For the purpose of city planning and traffic optimization, we
need to extract key information of traffic flow from webcam
images for the entire city. This is indeed the main topic of this
paper.

To make camera-based traffic monitoring truly useful, a lot
of research has been made to date. Examples include vehicle
recognition for traffic volume estimation [3], [4], [5], [6] and
regression modeling for vehicle counting [7], [8]. Also, origin-
destination (OD) matrix estimation algorithms [9], [10], [11],
[12] are often combined with traffic estimation methods since
the number of cameras is always limited [13] (See Section IV
for details of related work). Although these pieces of work
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Fig. 2. Network flow inference problem.

made significant contributions to several individual technical
issues, major challenges still remain as summarized below.

The first challenge is how to handle very low-resolution
images (see Fig. 1 for examples). Due to cost and antitheft
concerns, special-purpose close-view cameras are not suitable
in most developing countries. The use of general-purpose
cameras without purpose-built lighting facilities makes hardly
useful standard object recognition technologies such as those
used in number plate recognition [6], [14].

The second challenge is how to eliminate the time-
consuming step of camera-wise calibration in the image
processing. Most of the recent studies on video-based ITS
focus on calibration algorithms when surveillance cameras
do not allow calibration on the hardware side [3], [4], [5],
[6]. In either case, however, as long as vehicle recognition is
performed on images, camera-wise fine adjustments based on
the geometric configuration of cameras and roads are required.
Although the use of regression models [7], [8] reduces the
burden, a fair amount of labeled training data (i.e. manually
counted or recognized images) is still required.

The third challenge is how to derive city-wide information
from a limited number of webcams (see Fig.2). In particu-
lar, what-if simulation for optimized city planning calls for
estimating the traffic volume in every single link of the road
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Fig. 3. Vehicle counting from low-resolution images. The symbol R and N
denote the real and natural numbers (non-negative integers), respectively.

network. This task is similar to network tomography for the
OD matrix [3], [4], [5], [6], but differs in that we need to
infer the traffic volume at all of the links instead of just the
origin-destination flows.

We tackle these challenges using novel machine learning
techniques. Our technical contributions are as follows:
• We developed a novel algorithm for fully calibration-free

vehicle counting. One prominent feature of our method
(see Section II) is that it requires neither camera-wise
calibration nor labeled data generation.

• We developed a new inference algorithm on road net-
works to estimate the traffic volume at arbitrary links
without direct observation by webcams. We formalize
the problem as an inverse Markov chain problem, and
leverage a mathematical technique of regularization (see
Section III).

These methods are validated with real webcam traffic images
in Nairobi, Kenya, as elaborated in Section V.

These methods are already outlined in a preliminary version
of this paper [15]. This paper significantly expands it by adding
algorithmic and experimental details, based on our companion
papers [16], [17] that focus more on theoretical aspects of
the vehicle counting and the network inference problems,
respectively.

II. CALIBRATION-FREE VEHICLE COUNTING

This section presents an approach to calibration-free low-
resolution image analysis for vehicle counting. The approach
consists of two major steps (Fig. 3). The first step is to extract
a feature value from raw images, as discussed in Section II-A.
The second step is to estimate the count of vehicles contained
in the region of interest of images, as discussed in Section II-B
and on. Since the webcams are analyzed independently, we
focus on a single webcam in the rest of this section.

A. Feature extraction
Let N be the number of training images for one camera we

are focusing on. Assume that all the images have the same M
pixels, and each of the pixels takes an integer from the 256
luminance levels. Our data set is represented as

D = {z(n) ∈ {0, 1, 2, . . . , 255}M | n = 1, . . . , N}. (1)

For each image, as preprocess, we subtract the median over the
M pixels to normalize the variation of overall luminance. This
is useful to handle the variation e.g. between nighttime and
daytime. The goal of feature selection is to extract a feature
x ∈ R from a raw image z ∈ {0, . . . , 255}M such that x
corresponds to a rough estimate of the count of vehicles.

As indicated in Fig. 3, our approach first convert the original
image into a binarized image. Once binarization is done, the
feature x is computed as the ratio of white pixels to the total
number of pixels:

x =
1

M

M∑
i=1

I(zi ≥ k∗), (2)

where k∗ is the threshold for binarization to be determined
from the data, and I(·) is the indicator function that gives 1
when the argument is true, and 0 otherwise.

Figure 4 shows an example of the distribution of pixel values
of the training set, where the vertical bar separates the black
(called class 1) from the white (class 2) pixels. Let k be the
value of the threshold. To find the optimal value k = k∗,
we follow Otsu’s method [18]. The idea is to maximize the
statistical variance between the two classes. If we think of
Fig. 4 as a probability distribution, the probability of the l-th
luminance level is given by

pl ≡
1

MN

N∑
n=1

M∑
i=1

I(z
(n)
i = l). (3)

Based on this, the total mean luminance is given by

¯̀≡
255∑
l=0

pll. (4)

Similarly, the mean luminance for the class 1 and class 2 is
given by

`1(k) ≡ 1

P1(k)

k−1∑
l=0

pll, `2(k) ≡ 1

P2(k)

255∑
l=k

pll, (5)

where P1(k) ≡
∑k−1
l=0 pl and P2(k) ≡

∑255
l=k pl. Obviously,

these are functions of the threshold k. Now the optimal thresh-
old k∗ is determined by solving the following optimization
problem

k∗ = arg max
k

{[
`1(k)− ¯̀

]2
P1(k) +

[
`2(k)− ¯̀

]2
P2(k)

}
.

(6)
This can be simply solved by evaluating the objective function
for all the 256 different values, and pick one giving the
maximum. Once k∗ is obtained, Eq. (2) gives the feature for
any image taken with the camera of interest.

B. Probabilistic counting framework

Given the optimized threshold k∗, the training data D is
now converted into

D′ = {x(n) ∈ R | n = 1, . . . , N}. (7)

In practice, it is recommended to further standardize the
feature as x(n) ← x(n)/maxn′ x(n

′) before model fitting. As
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Fig. 4. Example of Luminance distribution.

discussed in Introduction, in the city-wide traffic monitoring
scenario using low-resolution cameras, collecting labeled im-
ages (i.e. manually counted images) for each of the cameras
is quite costly. Here we propose fully unsupervised approach
to vehicle counting.

The vehicle counting part in Fig. 3 consists of two sub-
steps. First, we find the predictive distribution for the feature,
x, in the form of an infinite Gaussian mixture model

p(x | D′) =

∞∑
d=0

πd(x) N
(
x
∣∣m>φd, σ2

d

)
, (8)

where d denotes the number of vehicles, > is the transpose,
and

φd ≡
(

1
d

)
. (9)

The parameters πd,m, σ2
d are learned from the data, as

explained later. For the explicit definition of the Gaussian
distribution N (· | ·, ·), see Appendix. Second, we associate
an observation x = x′ with one mixture component via

d′ = arg max
d

{
πd(x

′) N
(
x′
∣∣m>φd, σ2

d

)}
. (10)

The next section explains how to find the distribution (8).

C. Observation model and prior distributions

Although the vehicle counting approach outlined above may
look like a simple density estimation problem, there are a
couple of challenges we have to tackle. The first challenge is
to handle the interchangeability of cluster labels. The second
challenge is to handle the unbounded nature of the count.

To address these two challenges, we introduce a Bayesian
density estimation model [16]. We first define the observation
process by

p(x | h,θ, λ) ≡
∞∏
d=0

N (x | θ>φd, λ−1)hd , (11)

where h is an infinite dimensional indicator vector all of whose
entries are 0 except for only one entry that is 1. The key idea
is to suppress the interchangeability in different d’s by setting
the following form of prior distribution for h:

p(h | v) ≡
∞∏
d=0

{
vd

d−1∏
k=0

(1− vk)

}hd
, (12)

p(v) ≡
∞∏
d=0

Beta(vd | 1, β), (13)

where β is a hyper-parameter treated as a given constant
and Beta is the beta distribution (see Appendix). These
distributions are commonly called the stick-breaking process
(SBP). As clearly indicated in the definition, the SBP prior is
not symmetric in the cluster index d, and naturally introduces
the order in the components.

For the other parameters θ, λ, we set conjugate priors as

p(θ |m0,Σ0) ≡ N (θ |m0,Σ0), (14)
p(λ | a0, b0) ≡ Gam(λ | a0, b0), (15)

where m0,Σ0, a0, b0 are hyper-parameters treated as given
constants, and Gam is the gamma distribution (see Appendix).

D. Variational Bayes solution

To derive the predictive distribution Eq. (8), we need to find
the posterior distributions for h,θ, λ,v. This can be systemat-
ically done via the variational Bayes (VB) algorithm [19]. The
VB approach approximately finds the posterior distribution in
a factorized form:

ppost.(H,θ, λ,v) = q(H)q(θ)q(λ)q(v), (16)

where we used the same symbol q to represent different
distributions for simplicity of notation.

The VB algorithm starts with writing down the complete
likelihood as

P (D′,H,θ, λ,v) ≡
N∏
n=1

p(x(n) | h(n),θ, λ)p(h(n) | v)

× p(θ |m0,Σ0)p(λ | a0, b0)p(v), (17)

where H represents {h(1), . . . ,h(N)}. The main result of the
VB algorithm is that the posterior distributions are given by
the following simultaneous equations:

ln q(H) = const.+ 〈lnP (D′,H,θ, λ,v)〉θ,λ,v , (18)

ln q(θ) = const.+ 〈lnP (D′,H,θ, λ,v)〉H,λ,v , (19)

ln q(λ) = const.+ 〈lnP (D′,H,θ, λ,v)〉H,θ,v , (20)

ln q(v) = const.+ 〈lnP (D′,H,θ, λ,v)〉H,θ,λ , (21)

where 〈·〉∗ represents the expectation w.r.t. the random vari-
ables ∗. By simply expanding the lnP term, we can easily see
that the posterior distributions take the following forms:

q(H) =

N∏
n=1

∞∏
d=0

{
π
(n)
d

}h(n)
d

, (22)

q(θ) = N (θ |m,Σ), (23)
q(λ) = Gam(λ | a, b), (24)

q(v) =

∞∏
d=0

Beta(vd | αd, βd), (25)

where π(n)
d ,m,Σ, a, b, αd, βd are unknown parameters to be

determined.
To find these parameters, first we assume that q(H) is given.

Using well-known properties of the Gaussian, gamma, and
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beta distributions such as 〈θ〉θ = m and 〈λ〉λ = a
b , we easily

see that the parameters satisfy the following relations:

Nd =

N∑
n=1

π
(n)
d , x̄d =

N∑
n=1

π
(n)
d x(n), (26)

∆d(x
(n)) = (x(n) − φ>dm)2 + φ>d Σφd, (27)

a = a0 +
N

2
, (28)

b = b0 +
1

2

N∑
n=1

∞∑
d=0

π
(n)
d ∆d(x

(n)), (29)

Σ = [Σ−10 +
a

b

∞∑
d=0

Ndφdφ
>
d ]−1, (30)

m = Σ−1[Σ−10 m0 +
a

b

∞∑
d=0

x̄dφd], (31)

αd = 1 +Nd, βd = β +

∞∑
k=d+1

Nk. (32)

To compute {π(n)
d }, we assume in turn that q(θ), q(λ)

and q(v) are given. Expanding the lnP term and taking
expectation w.r.t. these variables, we have

lnπ
(n)
d =

d−1∑
k=1

[ψ(βk)− ψ(αk + βk)]

+ ψ(αd)− ψ(αd + βd)−
a

2b
∆d(x

(n)), (33)

π
(n)
d ←

π
(n)
d∑∞

l=0 π
(n)
l

, (34)

where ψ(·) is the di-gamma function. This follows from a
well-known formula [20]∫

dvd Beta(vd|αd, βd) ln vd = ψ(αd)− ψ(αd + βd). (35)

Equations (26)-(32) and (33)-(34) are iteratively computed
until convergence.

E. Deriving predictive distribution

Now we are ready to derive the predictive distribution (8).
By definition, it is formally written as

p(x | D′) =
∑
h

∫
dθ

∫
dλ p(x | h,θ, λ)q(h)q(θ)q(λ).

One problem here is that there is no explicit expression for
the posterior q(h) for an arbitrary value of x. For this, we use
the following approximation. Imagine we had an augmented
data set D′ ∪ x, and we got a posterior on this N + 1 data as

ppost.(h,H,Ψ | D′, x) = p(h,H | Ψ,D′, x) p(Ψ | D′, x),
(36)

where Ψ collectively represents θ, λ,v. Equation (22) suggests
that p(h,H|Ψ,D′, x) should be factorized as

p(h,H | Ψ,D′, x) = p(h | Ψ,D′, x) p(H | Ψ,D′, x)

= p(h | Ψ, x) p(H | Ψ,D′). (37)

The second line follows from the fact that the dependency of
π
(n)
d on D′ is only through Ψ except for x(n). In Eq. (36),

we can approximate as p(Ψ | D′, x) ≈ p(Ψ | D′) as long as
N � 1, so that Ψ in p(h | Ψ, x) can be thought of the one
learned from the original N sample data D′. Therefore, we
conclude that the posterior distribution of h is the categorical
distribution whose d-th probability mass is given by

lnπd(x) =

d−1∑
k=1

[ψ(βk)− ψ(αk + βk)]

+ ψ(αd)− ψ(αd + βd)−
a

2b
∆d(x), (38)

πd(x)← πd(x)∑∞
l=0 πl(x)

. (39)

Using this approximation, we get

p(x | D′) ≈
∞∑
d=0

πd(x)

∫
dθ N (θ|m,Σ)

×
√
a

b
S
(√

a

b
(x− θ>φd)

∣∣∣∣ 2a)
≈
∞∑
d=0

πd(x) N
(
x

∣∣∣∣m>φd, b

a− 1
+ φ>d Σφd

)
,

(40)

where S is Student’s t-distribution (see Appendix). The last
expression of Eq. (40) follows from the fact that the t
distribution is approximated by Gaussian when the degrees
of freedom is large. In this case, a is a large number on the
order of N (see Eq. (28)), and this approximation is almost
always justified.

Equation (40) also shows that the variance σ2
d in Eq. (8) is

given by

σ2
d =

b

a− 1
+ φ>d Σφd. (41)

Since Σ is positive semidefinite, we see that σ2
d monotonically

increases as d = 0, 1, 2, . . ..
To implement the algorithm, we specify the maximum num-

ber of vehicles, D, which should be large enough depending
the range of the count expected. Algorithm 1 summarizes the
probabilistic vehicle counting algorithm.

III. NETWORK FLOW ESTIMATION

Using Algorithm 1, we can estimate the vehicle count at any
instant. However, this is only for the locations where webcams
exist. Since the number of cameras is always much smaller
than the number of links in the road network, we need a
technology for extrapolation to monitor and manage the traffic
over an entire city. Our goal is to estimate the traffic volume
at arbitrary links of the network, given the observed traffic
volume at a limited number of the links, as illustrated in Fig. 2.

A. Inverse Markov chain problem

We formalize this problem as an inverse Markov chain
problem: Given the traffic volume at a limited number of the
links, find the Markov transition probability p(i|j), which is



5

Algorithm 1 Unsupervised counting.
I. Predictive distribution.
Input: Hyper-parameters m0,Σ0, a0, b0, β. Maximum
count D.
Algorithm:
Initialize as π(n)

d = 1
D ,m = m0,Σ = Σ0.

repeat
Compute Eqs. (26)-(32) for {∆d, a, b,Σ,m, αd, βd}.
Compute Eqs. (33)-(34) for {π(n)

d }.
until Convergence.
Insert converged parameters into Eq. (38)-(40).
Return: Predictive distribution p(x | D′).

II. Counting.
Input: Predictive distribution. New observation x′.
Algorithm:
Solve Eq. (10).
Return: Count d′.

defined as the transition probability from an arbitrary link j
to another arbitrary link i.

Assume the Markov chain is irreducible meaning that com-
pletely isolated areas are not included in the map and any link
is reachable from another link. Any irreducible Markov chain
has a stationary distribution. Let the stationary distribution of
this Markov chain be s(i), i = 1, . . . , L, where L denotes
the total number of links in the network. Our fundamental
assumption is that the observed traffic volume is proportional
to s(i) up to a measurement error:

y(i) = cs(i), ∀i ∈ C, (42)

where C is the set of links directly monitored by webcams, y(i)
denotes the observed traffic volume for the i-th link (typically
estimated from the approach in the previous section), and c
is an unknown constant to be determined. Obviously, p and s
satisfy

s(i) =

L∑
j=1

p(i | j)s(j) (43)

which is also the definition of the stationary state probability.
In the matrix form, this equation is written as Ps = s in
the obvious notation. This means that the stationary state is
computed as the eigenvector of P having the eigenvalue of 1.

Here is the high-level procedure of the traffic flow esti-
mation problem. Starting from Eq. (42), which holds only at
the links having observed data, we solve the inverse Markov
chain problem to get p(i|j) for arbitrary pairs of links. Then
we re-compute s using Eq. (43), which is done though eigen-
decomposition of the probability matrix P, to recover the
traffic volume at arbitrary links with and without observed
data.

B. Parameterizing the transition model

We parameterize the probability distribution p(i|j) as

p(i|j) = (1− γ)q(i | j ; u) + γr(i; w) (44)

where γ is called the restart probability (assumed to be a
fixed parameter), and u and w are the model parameters to be
learned. In this decomposition, r is interpreted as the initial
probability distribution over the links, while q is interpreted
as the “partial” transition probability distribution. This type of
decomposition is natural for traffic analysis on road networks
since it is consistent with a typical data generation process
in traffic simulation. Specifically, when we generate traffic
data using a multi-agent simulator [21], we first generate the
starting locations and then generates paths according to a given
transition rule.

For r and q, we use the following particular forms:

r(i; w) ∝ exp(wi) (45)
q(i | j ; u) ∝ I(i ∼ j) exp[g(u)] (46)

g(u) ≡ ui,j + u0 cos(i|j) + u1htype(i) (47)

where i ∼ j represents that the i-th link is directly connected
to the j-th link, and I(·) is the indicator function. Notice that
the transition probability between unconnected links is zero by
definition. Unlike the conventional approach, which imposes
the traffic conservation constraint directly on the flow itself,
we take account of the conservation law probabilistically.
Once the transition probability is found, the normalization
condition of the transition probability automatically guarantees
the conservation law in the expectation.

In Eq. (47), cos(i|j) is the cosine of the geometric angle
between the i-th and j-th links. For example, if the j-th link
points in the opposite direction to the i-th link, cos(i|j) = −1
and the transition probability between them is down-weighted.
If they point in the same direction, then that transition should
occur more often. The term ui,j is a correction term to the
cosine similarity, which is expected to play a minor role
(initialized to zero in optimization). We believe that this is a
generally acceptable model, but the term ui,j+u0 cos(i|j) can
be replaced with another link-link similarity if more detailed
knowledge is available.

The last term of Eq. (47) captures the variability in the road
type. Specifically, the function type(i) returns the road type
index for the i-th link. Based on the link attributes available
in a digital road map, we define 14 road types including
motorway, trunk, primary, secondary, etc., as listed in Table I
(see Section V-B), and each of them are weighted differently
with ht (t = 1, . . . , 14).

Combining Eqs. (44)-(46), we obtain the stationary dis-
tribution s(i) as a function of the model parameters w =
[w0, . . . , wL]> and u = [u0, u1, u1,1, . . . , uL,L]>, where ui,j’s
for unconnected pairs are omitted. Optimal model parameters
are those that minimize the discrepancies between the left
and right hand sides of Eq. (42). The key question is how
to measure the discrepancy, which will be discussed in the
next subsection.

C. Designing the objective function

Now that we have introduced s(i) as a probability dis-
tribution, Eq. (42) can be viewed as a relationship between
two distributions. The most natural discrepancy measure for
distributions is the Kullback-Leibler (KL) divergence [22],
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which has been used in a number of traffic estimation prob-
lems [23], [24], [25]. The KL divergence can be interpreted
as the expectation of information loss. Let us define ρ(i) by

ρ(i) ≡ ln
cs(i)

y(i)
. (48)

Then ρ(i) represents the local information loss at link i. Since
we are interested in the stationary state, the information loss
on the network should be as uniform as possible. If there is
a large loss at a particular link, it will be dissipated through
the transition process. With this intuition in mind, we define
the error function to be minimized as the variance of the
information loss:

L(u,w) ≡ 1

|C|
∑
i∈C

[ρ(i)− ρ̄]
2
, (49)

where |C| is the number of links directly monitored by the
webcams, and ρ̄ is the mean of the information loss defined
by

ρ̄ ≡ 1

|C|
∑
i∈C

ρ(i). (50)

Using the definition of ρ, we obtain the final expression of the
error function as

L(u,w) =
1

2|C|2
∑
i,j∈C

[
ln
cs(i | u,w)

y(i)
− ln

cs(j | u,w)

y(j)

]2
(51)

after some algebra, where we explicitly represented the de-
pendency on the model parameters u and w in s(i) and s(j).
We see that the unknown c is canceled in this objective.

In addition, we impose an elastic net type regularization [26]
on the model parameters:

R1(u,w) ≡ |u0|+ |u1|+
∑
i∼j
|ui,j |+

L∑
i=1

|wi| (52)

R2(u,w) ≡ u02 + u1
2 +

∑
i∼j

ui,j
2 +

L∑
i=1

wi
2. (53)

By putting all together, the final objective function to be
minimized is given by

Q(u,w) ≡ L(u,w) + λ1R1(u,w) + λ2R2(u,w), (54)

where the new parameters λ1 and λ2 control the tradeoff be-
tween the error function and the regularization terms, and are
determined through cross validation. As previously mentioned,
the flow conservation constraint is probabilistically considered
in our model.

D. Solving the optimization problem

The objective function Q(u,w) can be minimized with the
gradient method. We developed an efficient algorithm based
on the notion of natural gradient [27], but details are omitted
here due to space limitations. For the details of the gradient
method, see a companion paper [17].

Once the minimizer u∗,w∗ of Q(u,w) is found, one can
determine an optimal c (denoted by c∗) by solving the least
squares problem:

c∗ = arg min
c

∑
j∈C

[y(j)− cs(j | u∗,w∗)]2 (55)

to get the solution

c∗ =

[∑
i∈C

s(i | u∗,w∗)2
]−1∑

j∈C
y(j)s(j | u∗,w∗). (56)

Finally, the network inference algorithm is summarized as
follows:

Algorithm 2 Inverse Markov network traffic inference.

Input: Observed traffic flows {y(i) | i ∈ C}. Restart
probability γ. Regularization parameters λ1, λ2.
Algorithm:
• (u∗,w∗) = arg minu,wQ(u,w).
• Find the transition probability matrix P using Eq. (44).
• Find the stationary distribution s by solving Ps = s.
• Compute c∗ using Eq. (56).
• Compute ŷ = c∗s.

Return: Estimated traffic flow {ŷ(j) | ∀j}.

IV. RELATED WORK

This section reviews related work with an emphasis on the
task of image-based traffic estimation and network-wide traffic
estimation.

A. Image-based traffic estimation

In transportation research, the cost issue of ITS deployment
is one of the major recent concerns. Replacing the traditional
data acquisition infrastructures with alternative methods is
a common approach. Mainly two alternative methods have
been studied to date: GPS (global positioning system) and
surveillance cameras.

The use of surveillance cameras can viewed as the main-
stream of lightweight ITS development. One of the pioneering
work is a webcam-based ITS proposed by Santini [13], which
attempts to solve the OD matrix estimation problem based on
partial observation given by image analysis. Although it shares
the main motivation with ours, it is unable to estimate the
traffic volume at arbitrary links. Yu et al. [28] presents another
early study on a lightweight ITS using network-connected
cameras. The advantage of webcams in terms of deployment
costs is also described by Huck et al. [29] based on their own
implementation.

Although camera images provide rich enough information
for traffic monitoring, one of the major problems with the
use of general-purpose cameras is the lack of capability of
calibration. Cathey and Dailey [3] proposed a sophisticated
algorithm to estimate traffic speed based on cross-correlation
without calibrations on the camera side. Tian et al. [5] and
Buch et al. [6] describe how to enable vehicle recognition
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Fig. 5. Examples of original webcam images. From left to right, Nationkimathi, Westistg, Ukulima, Haileselasie, and Harambeetaifa, in Nairobi City [2].

from low-resolution images. Robert [4] attempts to enhance
the accuracy of vehicle recognition by incorporating machine
learning algorithms such as support vector machines. Once
vehicle recognition is done, the task of vehicle counting is
trivial.

As discussed in Introduction, object recognition from low-
quality images is a challenging task in general. One seri-
ous bottleneck in practice is the cost of preparing properly
labeled images. Although a recently proposed regression-
based approach [7] removed the image recognition step and
reduced the task to supervised learning, a fair amount of
manually labeled training data is still required. From this
perspective, a congestion prediction approach proposed by
Porikli and Xiaokun [30] is quite interesting. They trained
a hidden Markov model with unlabeled data, and associated
the learned state sequence with a decision rule for congestion.
The input feature is automatically generated via the discrete
cosine transform. Although their problem clearly differs from
ours, they share the same spirit with us.

B. Network-wide traffic estimation

Once link-wise traffic estimation is done at the links being
monitored, the next task is to extrapolate the observation to
the entire network. Since the advent of a seminal work by
Zuylen and Willumsen [9], the task of network-level traffic
estimation from limited observations has attracted a lot of
attention. Most of the previous efforts have focused on the
task of origin-destination (OD) matrix estimation [10], [11],
where the following two approaches have been mainly studied.

The first approach is to minimize an error function between
observed and estimated traffic volumes while satisfying flow
conservation conditions. Recent work includes Shao et al. [12],
which estimates the OD matrix from partial observations under
dynamic traffic variations. Hu et al. [31] addressed essentially
the same task but in a different context of sensor fusion.
Although our approach shares some of the ideas with these, it
can be clearly distinguished from them in that our goal is not
to estimate the OD matrix but the traffic volume at arbitrary
links. Also, from a mathematical perspective, we leverage the
regularization theory developed in machine learning. In partic-
ular, we leverage the elastic net regularization [26] to achieve
both the sparsity and numerical stability at the same time.
We also use a novel cost function inspired by an information-
theoretic interpretation. Menon et al. [25] recently introduced
an interesting algorithm for sparse OD matrix estimation using
an L1 regularization technique. Their problem as well as the
optimization strategy differs from ours as clearly represented

by the fact that the “seed” OD matrix is not available in our
problem.

The other major approach is to use Bayesian network, where
graphical Gaussian models (GGMs) [32] are commonly used.
For instance, Zhang et al. [33] used GGMs for short-term
traffic forecasting. Sun et al. [34] extended the model to
include multiple Gaussian components although the resulting
probabilistic model is no longer a Bayesian network. Chen
et al. [35] introduced an approach to estimate the OD matrix
or the link traffic matrix based on the explicit expression of
the conditional distribution of GGMs. Zhu et al. [36] also
used a GGM for the network sensor location problem, where
a loss function based on the trace of the covariance matrix
is proposed. Although these approaches are built upon the
well-grounded theory of GGMs, and thus easier to analyze,
one of the practical disadvantages is the scalability. For large
networks, the global Gaussian assumption is hard to apply.
Also, it is well known that the naive use of GGMs faces a
serious computational issue in high-dimensional systems [37].
Thanks to a carefully designed regularization term and the
natural gradient algorithm [27], [17], our method easily scales
to networks of thousands of links. In the next section, we will
show experimental results on a real road network in Nairobi,
Kenya.

V. EXPERIMENTS

We prototyped a traffic monitoring system using existing
webcams in Nairobi, provided by AccessKenya.com [2]. In
the downtown area of Nairobi, there are 1 497 links, while
only 52 links are monitored by the webcams (about 3.5%).

A. Vehicle counting

Figure 5 shows images from the webcams at five major
locations being monitored. As seen, the webcams are typically
mounted on buildings. We see that they are quite far from the
roads. Although the original size of the images are 640×480,
the number of pixels in the region of interest is just several
hundred as suggested by Fig. 3.

For those locations, we generated N = 100 images by
randomly picking still images at different times over several
days. We use the relative mean absolute error (RMAE) for
performance comparison:

RMAE =
1

100

100∑
n=1

∣∣∣d(n)true − d
(n)
estimate

∣∣∣
d
(n)
true + 1

. (57)
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Fig. 6. Comparison of the relative mean absolute error (RMAE).

Here dtrue is the ground truth count, which was manually
prepared spending several person-day workloads. We use the
leave-one-out cross validation scheme to compute RMAE.

We compared our unsupervised approach with supervised
alternatives. We used linear regression methods of least
squares linear regression (LS), least absolute values (LAV),
and MM estimator (MM). See [38] for details of these
algorithms. To train those, we used the true count labels
in addition to the vehicle-pixel-area feature, and hence the
comparison is extremely preferable to the alternatives. We did
not use nonlinear regression methods such as Gaussian process
regression [7], because our preliminary experiments showed
that the vehicle pixel area feature is mostly linearly correlated
with the count.

We also compared with a widely used object recognition
approach by Viola and Jones (VJ) [39]. To make it work,
we gave several hundred manually labeled images from the
webcams in our setting in addition to 2 000 labeled images
with positive (vehicle) and negative (non-vehicle) labels from
general image databases containing vehicles [40], [41], [42],
[43]. Thus in terms of the cost to prepare the training data,
the following inequality holds:

(proposed method) ≪ (LS,LAV,MM)� VJ. (58)

We remind the reader again that the proposed method does
not need any labeled data for training.

Figure 6 shows RMAE values, where the error bars repre-
sent the standard deviation. The initial parameters are m0 =
(−1, 0.3)>,Σ0 = 1010I2, a0 = 1, b0 = 1010, and D = 100,
where I2 is the two-dimensional identity matrix. Regarding
β, we put a non-informative hyper-prior on it for numerical
stability. This leads to a slight modification of the VB updating
equations. For the details, see our companion paper [16]. The
proposed VB algorithm took only a few seconds on a moderate
laptop computer. The time complexity is O(N). The figure
shows that proposed method is comparable to or even better
than the supervised alternatives in terms of the error as well
as robustness. In particular, when the resolution of images
very low as is the case in Nationkimathi, our method clearly
outperforms the supervised alternatives.

Figure 7 shows the predictive distribution for the images
of Nationkimathi. To plot this, we used the sample average

Fig. 7. Averaged predictive distribution at Nationkimathi.
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Fig. 8. Comparison of RMAE in the network flow.

for the mixture weight as π̄d ≡ 1
N

∑N
n=1 πd(x

(n)) to see the
general traffic status of this location. We see that in most of
time the count is zero there, while d = 5 seems to be another
commonly observed situation.

B. Network inference

Using the estimated traffic volume using the vehicle count-
ing algorithm, we estimated city-wide traffic volume at arbi-
trary links by solving the inverse Markov chain problem. In the
Nairobi data, |C| = 52 links are monitored by the webcams,
while the total number of links is L =1 497.

For our approach, we fixed λ1 = 1, and initialized as w =
0, u0 = u1 = 1, ui,j = 0. For the road-type weight h, we
used the values listed in Table I multiplied by ln[1 + NL],
NL being the number of lanes of the road. For λ2 and γ, we
used cross-validation to choose the values. Thanks to the L1

regularizer, more than 70% of the entries of w,u became zero
after optimization.

We compared our method with Nadaraya-Watson kernel
regression (NWKR), where the flow of an arbitrary link is
estimated simply as a linear combination of the observed
values, and the coefficients (kernel functions) are computed

TABLE I
ROAD TYPE WEIGHT (h) FOR EQ. (47).

motorway 1.5 secondary 0.3
motorway link 1.3 secondary link 0.1
trunk 1.1 tertiary −0.1
trunk link 0.9 tertiary link −0.3
primary 0.7 unclassified −0.5
primary link 0.5 other −0.7
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(a) Original measurements 

(b) Estimated traffic 

Fig. 9. Network flow estimation results in downtown Nairobi.

based on the number of hops from the i-th to the j-th links,
N(j|i), in the road network [44]:

sNWKR(j) =

∑|C|
i=1 e−αN(j|i)y(i)∑|C|
i=1 e−αN(j|i)

,

where α is the parameter to be determined using cross vali-
dation.

Figure 8 shows the results. To compare between estimation
and observation, we used leave-one-out cross validation over
the 52 observed links. In these figure, the 45◦ line represents
perfect agreement. As seen, our method gives much better
agreement than NWKR. The figures also show values of
RMAE. In terms of RMAE, our method is about twice better
than the alternative.

Figure 9 compares the original and estimated traffic in
color in downtown Nairobi. The red and yellow roads are
most congested, while the traffic on the blue roads is flowing
smoothly. In Nairobi, traffic congestion in the downtown is
a serious social problem, as pointed out by a local traffic
survey report [45]. The most congested road highlighted with
the arrow was in fact consistent to the survey.

VI. CONCLUSION

We have proposed a new approach to ITS. Our system
consists of two major functionalities: (1) webcam-based traffic

monitoring and (2) city-wide network flow estimation. The
traffic monitoring module features a new algorithm for com-
puting the vehicle counts from very low-resolution webcam
images. The major feature is that it does not require any
labeled (i.e. manually counted or recognized) images. For the
network flow estimation module, we formalize the problem as
an inverse Markov chain problem, and reduce it to a regular-
ized optimization problem. Using real webcams deployed in
Nairobi, Kenya, we demonstrated the practical utility of our
approach.

APPENDIX A
PROBABILITY DISTRIBUTIONS

The definition of the gamma, beta, Gaussian, and Student’s
t distributions is given as follows:

Gam(λ | a, b) ≡ ba

Γ(a)
λa−1e−bλ,

Beta(v | α, β) ≡ Γ(α+ β)

Γ(α)Γ(β)
vα−1(1− v)β−1,

N (θ |m,Σ) ≡ |Σ|
− 1

2

(2π)
W
2

exp

{
−1

2
(x−m)>Σ−1(x−m)

}
,

S(z | ν) =
Γ(ν+1

2 )
√
πνΓ(ν2 )

(
1 +

z2

ν

)− ν+1
2

,

where Γ(·) is the gamma function and W is the dimensionality
of θ.
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Markov chain with partial observations,” in Advances in Neural Infor-
mation Processing Systems, 2013, pp. 1655–1663.

[18] N. Otsu, “A threshold selection method from gray-level histogram,”
IEEE Transactions on Systems, Man and Cybernetics, vol. 9, pp. 62–66,
1979.

[19] C. M. Bishop, Pattern Recognition and Machine Learning. Springer-
Verlag, 2006.

[20] Wikipedia, “https://en.wikipedia.org/wiki/Beta distribution.”
[21] T. Osogami, T. Imamichi, H. Mizuta, T. Suzumura, and T. Idé, “Toward
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