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Abstract. We present a Branch-and-Cut algorithm for a class of nonlinear chance-constrained
mathematical optimization problems with a finite number of scenarios. Unsatisfied scenarios can
enter a recovery mode. This class corresponds to problems that can be reformulated as determinis-
tic convex mixed-integer nonlinear programming problems with indicator variables and continuous
scenario variables, but the size of the reformulation is large and quickly becomes impractical as
the number of scenarios grows. The Branch-and-Cut algorithm is based on an implicit Benders
decomposition scheme, where we generate cutting planes as outer approximation cuts from the pro-
jection of the feasible region on suitable subspaces. The size of the master problem in our scheme
is much smaller than the deterministic reformulation of the chance-constrained problem. We apply
the Branch-and-Cut algorithm to the mid-term hydro scheduling problem, for which we propose a
chance-constrained formulation. A computational study using data from ten hydroplants in Greece
shows that the proposed methodology solves instances orders of magnitude faster than applying a
general-purpose solver for convex mixed-integer nonlinear programming problems to the deterministic
reformulation, and scales much better with the number of scenarios.

Key words. Mixed-integer nonlinear programming, Chance-constrained programming, Outer
approximation, Hydro scheduling.
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1. Introduction. Mathematical programming is an invaluable tool for optimal
decision-making that was initially developed in a deterministic setting. However,
early studies on problems with probabilistic (i.e., nondeterministic) constraints have
appeared since the late 50s, see, e.g., [Charnes et al., 1958, Prekopa, 1970]. In a prob-
lem with probabilistic constraints, the formulation involves a (vector-valued) random
variable that parametrizes the feasible region of the problem; the decision maker spec-
ifies a probability α, and the solution to the problem must optimize a given objective
function subject to being inside the feasible region for a set of realizations of the
random variable that occurs with probability at least 1 − α. The interpretation is
that a solution that does not belong to the feasible region is undesirable, and we want
this event to happen with a probability at most α. This type of problem is called
a chance-constrained mathematical programming problem in the literature [Charnes
et al., 1958].

Without loss of generality, a chance-constrained mathematical program can be
expressed as

(CCP) max{cx : Pr(x ∈ Cx(w)) ≥ 1− α, x ∈ X},

where w is a random variable, Cx(w) is a set that depends on the realization of w
(the set of probabilistic constraints), and X is a set that is described by deterministic
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constraints [Prekopa, 1970]. We use the subscript Cx to emphasize the fact that,
given w, Cx(w) is described in terms of the x variables only; this notation will be
useful in subsequent parts of the paper. A considerable simplification of the problem
is that in which Cx(w) is described by a set of constraints and Pr(x ∈ Cx(w)) takes
into account the violation of constraints one at a time, instead of considering the joint
probability of x ∈ Cx(w), which is more difficult. Chance-constrained mathematical
programming problems find applications in many different contexts, see, e.g., [Tanner
et al., 2008, Watanabe and Ellis, 1993]. The formulation (CCP) allows for two-stage
problems with recourse actions, because the sets Cx(w) can be the projection of
higher-dimensional sets. This paper discusses the case where recourse actions are
allowed and we are interested in the joint probability of x ∈ Cx(w).

A generalization of (CCP) is that in which unsatisfied scenarios can enter a recov-
ery mode: in this case, whenever x 6∈ Cx(w), a cost that depends on the magnitude of
the infeasibility has to be paid. The interpretation of such a model is that the normal
mode of operation is when x ∈ Cx(w), and we want this to happen with probability at
least 1−α, but whenever we fall outside this situation we are interested in minimizing
the cost associated with recovering a normal mode of operation. This problem has
been studied in Liu et al. [2014], where a cost for the normal mode of operation is also
considered. If we denote by ϕ(x,w) the objective function contribution of satisfied
scenarios, and by ϕ̄(x,w) the objective function contribution of unsatisfied scenarios,
we obtain the following formulation:

max{cx + Pr(x ∈ Cx(w))E[ϕ(x,w)|x ∈ Cx(w)] +

Pr(x 6∈ Cx(w))E[ϕ̄(x,w)|x 6∈ Cx(w)] :(CCPR-OBJ)

Pr(x ∈ Cx(w)) ≥ 1− α, x ∈ X}.

For example, in an energy scheduling problem such as the one discussed later in
this paper, the recovery mode could represent the situation in which the production
quotas set by the government are not met, or the user demand is not satisfied. In
these cases, the system operator may have to meet the requirements buying energy
from a third-party producer, which should only happen with low probability and
would have an associated cost. The methodology discussed in this paper applies to
Equation (CCPR-OBJ) and therefore to (CCP), which is a special case.

If uncertainty affects only the right-hand side values of the system of inequalities
that defines the feasible region, under certain assumptions it is possible to derive a
tractable reformulation of (CCP), e.g., [Charnes and Cooper, 1963, Lejeune, 2012]. A
more general case is considered when the uncertainty can affect all parts of the system
of inequalities describing Cx(w). Under this more general setting, we need additional
assumptions to deal with (CCPR-OBJ). In particular, assume that

(A1) the sample space, denoted as Ω, is discrete and finite, and in particular Ω =
{wi : i = 1, . . . , k}.

We should note that the assumption of discrete and finite sample space, while re-
strictive, includes a large number of practically relevant situations: typically, fore-
casts of future events cannot be too detailed and a general distribution can be trun-
cated and discretized if necessary. Furthermore, even in the case that discretiza-
tion and truncation cannot be applied, one can typically obtain good solutions and
approximation bounds for a problem that requires general distributions via sample-
average approximation [Luedtke and Ahmed, 2008]. From now on, we indeed assume
Ω = {wi : i = 1, . . . , k}. The realizations w1, . . . , wk are typically called scenarios.
Let pi = Pr(w = wi). We can then introduce indicator variables zi for each set
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Cx(wi), and write (CCPR-OBJ) in the following equivalent form:

max cx+ Pr(x ∈ Cx(w))E[ϕ(x,w)|x ∈ Cx(w)]
Pr(x 6∈ Cx(w))E[ϕ̄(x,w)|x 6∈ Cx(w)]

s.t.: x ∈ X
i = 1, . . . , k zi = 0 ⇔ x ∈ Cx(wi)∑k

i=1 pizi ≤ α
i = 1, . . . , k zi ∈ {0, 1}.

To simplify this problem, we make an additional assumption:
(A2) ϕ(x,wi) ≥ ϕ̄(x,wi) ∀x ∈ X, i = 1, . . . , k.

This implies that whenever x ∈ Cx(wi), the normal mode objective function contri-
bution ϕ(x,wi) is to be preferred to the recovery mode contribution ϕ̄(x,wi). The
assumption is verified e.g., whenever ϕ represents a nonegative revenue and ϕ̄ rep-
resents a cost, i.e., a nonpositive value. Assumption (A2) ensures that we do not
have to worry about two-stage consistency [Takriti and Ahmed, 2004]. Given (A2),
we can replace zi = 0 ⇔ x ∈ Cx(wi) with zi = 0 ⇒ x ∈ Cx(wi). To bring the
problem to a standard form that simplifies our exposition, let n be the dimension of
x in (CCPR-OBJ); augment the vector x with two continuous variables per scenario,
say xn+i and xn+k+i for scenario i = 1, . . . , k, and augment c with two copies of
the vector (p1, . . . , pk). Then, without loss of generality we can assume that Cx(wi)
subsumes the constraints xn+i ≤ ϕ((x1, . . . , xn), wi), xn+k+i ≤ 0, and introduce the
set C̄x(wi) := {x ∈ Rn+2k : xn+i ≤ 0, xn+k+i ≤ ϕ̄((x1, . . . , xn), wi)}. It is then easy
to see that (CCPR-OBJ) can be written as follows:

(CCPR)

max cx
s.t.: x ∈ X

i = 1, . . . , k zi = 0 ⇒ x ∈ Cx(wi)
i = 1, . . . , k zi = 1 ⇒ x ∈ C̄x(wi)∑k

i=1 pizi ≤ α
i = 1, . . . , k zi ∈ {0, 1},

where the vectors x, c of (CCPR-OBJ) can be recovered as the first n components of
x and c above.

Our third and final assumption allows us to obtain a deterministic reformulation
of (CCPR), using integer programming techniques. Precisely,

(A3) all the Cx(wi)’s and C̄x(wi)’s share the same recession cone.
The reformulation is accomplished by defining a problem with all the constraints of
each of the Cx(wi) and C̄x(wi), and using a binary variable zi for each wi to ac-
tivate/deactivate the corresponding constraints via big-M coefficients. Assumption
(A3) is necessary because the recession cone of the deterministic equivalent formu-
lation is the intersection of the recession cones of all Cx(wi), C̄x(wi), i = 1, . . . , k,
whereas the recession cone of (CCPR) is the union of the intersection of the recession
cones of only some of these sets, which may not be the same unless all sets have the
same recession cone (see [Jeroslow, 1987]).

Unsurprisingly, the size of the problems obtained with the indicator-variable refor-
mulation is unmanageable in most practically relevant situations, and moreover, the
relaxations of mathematical programs with this type of indicator variables tend to be
very weak, leading to poor performance of solution methods (see, e.g., [Bonami et al.,
2015]). However, under relatively mild assumptions it is possible to perform implicit
solution of the reformulated problem. The idea is to keep the indicator variables, but
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avoid the classical on/off reformulation of the constraints that involve them. Then, a
Branch-and-Cut algorithm [Padberg and Rinaldi, 1991] can be applied to the problem

maxx,z{cx : x ∈ X, z ∈ {0, 1}k,
∑k
i=1 pizi ≤ α}. This problem is called a master prob-

lem. Whenever the solution of the master problem x̂ does not satisfy the constraints
of (CCPR), cuts are generated for the sets Cx(wi) and C̄x(wi), depending on the val-
ues of the indicator variables. The cuts are then added to the master problem. This
basic idea yields an exact algorithm for (CCPR), and it has been successfully applied
to different types of problem [Luedtke, 2014, Liu et al., 2014]. However, the literature
mainly focuses on the case where all of the constraints are linear and all the original
variables are continuous. While there are a few studies on linear problems with integer
variables and certain classes of integer two-stage problems, e.g., [Song et al., 2014,
Gade et al., 2014], they are limited to specific problem structures, thus, the meth-
ods proposed cannot be applied in general. The classical decomposition approach for
two-stage nonlinear problems is generalized Benders decomposition [Geoffrion, 1972],
but it has the drawback of requiring separability and/or knowledge of the problem
structure to be practically viable; for these reasons, to the best of our knowledge it
has not been embedded in an automated, general-purpose (i.e., problem-independent)
decomposition scheme for this class of problems so far.

In this paper we consider the case where the sets Cx(wi), C̄x(wi) are nonlinear
convex, and propose a finitely convergent Branch-and-Cut algorithm. The cutting
planes that we generate can be obtained as outer approximation cuts [Duran and
Grossmann, 1986] and are therefore linear, as opposed to the generalized Benders cuts
of Geoffrion [1972], which can be nonlinear in general. Our cut generation algorithm
is much simpler than the generalized Benders procedure: it has fewer assumptions,
in particular it does not require separability of the first and second stage variables
or knowledge of the gradients, and it can be automated. The main application stud-
ied in this paper is the scheduling of a hydro valley in a mid-term horizon [Baslis
and Bakirtzis, 2011, Carpentier et al., 2012, Kelman, 1998]. We propose a chance-
constrained quantile optimization model for this problem that is equivalent to the
minimization of the Value-at-Risk (see, e.g., [McNeil et al., 2015]), and perform a
case study on the scheduling of a 10-plant hydro valley in Greece, using a mix of
historical and realistically-generated data. In addition, we consider a problem formu-
lation with step price functions that involves binary variables in the sets Cx(wi), and
apply the Branch-and-Cut algorithm both to solve the continuous relaxation, and to
generate primal bounds as a heuristic. Computational experiments show that our
approach is able to solve large instances obtained from data of Baslis and Bakirtzis
[2011] very effectively, with speedups that are often of several orders of magnitude.
We remark that our formulation of the hydro scheduling problem is an instance of
(CCP) rather than the more general (CCPR) because we do not take into account
recovery costs. However, the algorithm that we propose allows taking recovery costs
into account.

This paper has therefore the following contributions. First, we propose a Branch-
and-Cut algorithm for the nonlinear convex (CCPR), which is a generalization of
(CCP), and show that it finitely converges under mild assumptions. Despite its con-
ceptual simplicity, our algorithm extends the approach of Liu et al. [2014] in two
ways: assumption (A2) of Liu et al. [2014] and Luedtke [2014], imposing polyhedral-
ity of the scenario problems, is replaced by the weaker assumption of nonlinear convex
scenario problems, and assumption (B2) of Liu et al. [2014], imposing relatively com-
plete recourse on the recovery scenario problems, is dropped. On the other hand, Liu
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et al. [2014] do not impose (A2) of the present paper, but for this reason they have
to consider a threshold policy to determine when to operate the recovery mode, see
[Liu et al., 2014, Sect. 2.2.2]; their threshold policy can in principle be applied to our
formulation, but our assumption (A2) allows easier treatment and is often verified in
practice, when constraint violations incur a heavy cost. Second, we show that the
outer approximation cuts that we use are a linearization of generalized Benders cuts
from a particular choice of dual variables, but they yield several advantages over gen-
eralized Benders cuts. Third, we provide an extensive computational evaluation on
an important energy scheduling problem, showing the practical effectiveness of our
approach and its scalability with respect to the number of scenarios.

This paper is organized as follows. Section 2 describes the decomposition ap-
proach with the associated Branch-and-Cut algorithm, discussing separating inequal-
ities and their properties. Section 3 formalizes a mathematical model for the hydro
scheduling problem. Section 4 contains a computational evaluation of several algo-
rithms on instances of increasing difficulty derived from our case study, and discusses
the numerical results. Finally, some conclusions are drawn in Section 5.

2. Decomposition algorithm for (CCPR). Under assumptions (A1)-(A3),
we discussed in Section 1 how to obtain a deterministic equivalent formulation for
(CCPR) using binary variables. We now introduce this mathematical model for the
linear case, to explain the basic ideas and notation before transitioning to the nonlinear
convex case, which is the focus of this paper.

In terms of notation, we denote by x the decision variables of (CCPR), by yi the
recourse variables for scenario wi, by ȳi the recovery variables for scenario wi (i.e.,
variables that are used to model the set C̄x(wi)), and by z binary variables with the
property that zi = 0 ⇒ x ∈ Cx(wi), zi = 1 ⇒ x ∈ C̄x(wi). Let X = {x : Ax ≤ b},
Cx(wi) = {x : ∃yi Aix + Hiyi ≤ bi}, C̄x(wi) = {x : ∃ȳi Āix + H̄iyi ≤ b̄i}. Here
and throughout the paper, integrality requirements on the set X can be handled
in a straightforward manner within the same framework at the cost of additional
computational complexity, bur our discussion refers to the case where all variables
are continuous. Then, (CCPR) can be formulated as follows:

(1)

max cx
s.t.: Ax ≤ b

A1x + H1y1 ≤ b1 +M1z1

Ā1x + H̄1ȳ1 ≤ b̄1 + M̄1(1− z1)
...

. . .
...

Akx + Hkyk ≤ bk +Mkzk
Ākx + H̄kȳk ≤ b̄k + M̄k(1− zk)

p1z1 + . . . + pkzk ≤ α
z1 . . . zk, ∈ {0, 1}.

In this formulation, M i is a vector of large enough constants that is able to deactivate
the set of constraints Aix+Hiyi whenever zi = 1, and M̄ i is a vector of large enough
constants to deactivate Āix + H̄iȳi whenever zi = 0; the existence of such vectors is
guaranteed by assumption (A2). The joint chance constraint

∑k
i=1 pizi ≤ α ensures

that the probability associated with unsatisfied scenarios is smaller than α. The for-
mulation (1) is a two-stage problem with recourse where there is no objective function
contribution associated with the recourse variables, therefore the second-stage prob-
lems are feasibility problems. Our discussion in Section 1 shows how (CCPR-OBJ)



6 A. LODI, E. MALAGUTI, G. NANNICINI, D. THOMOPULOS

can be brought to this form, enlarging the vector of first-stage variables x if necessary.
Problem (1) is a mixed-integer linear programming problem (MILP) that naturally
leads to a Benders decomposition algorithm, and this is the approach followed, e.g.,
by Liu et al. [2014] for (CCPR), and Luedtke [2014] for (CCP).

This paper studies the case where the scenario subproblems are general convex
set, described as Cx(wi) = {x : ∃yi gij(x, yi) ≤ 0, j = 1, . . . ,mi}, and C̄x(wi) =

{x : ∃ȳi ḡij(x, ȳi) ≤ 0, j = 1, . . . , m̄i}. For all i, we write the vector functions

gi(x, yi) = (gi1(x, yi), . . . , gimi
(x, yi))T , ḡi(x, yi) = (ḡi1(x, ȳi), . . . , ḡim̄i

(x, ȳi))T . For
ease of notation we keep the assumption that X = {x : Ax ≤ b}, but this does not
affect our development and the generalization to the case where X is a general convex
set, possibly with integrality requirements, is straightforward. If all the Cx(wi) have
the same recession cone, we can write a MINLP model for (CCP) as follows:

(2)

max cx
s.t.: Ax ≤ b

g1(x, y1) ≤ M1z1

ḡ1(x, ȳ1) ≤ M̄1(1− z1)
...

. . .
...

gk(x, yk) ≤ Mkzk
ḡk(x, ȳk) ≤ M̄k(1− zk)

p1z1 + . . . + pkzk ≤ α
z1 . . . zk, ∈ {0, 1}.

Assuming the functions gij , ḡ
i
j are convex, (2) is a convex MINLP in the sense that it

has a convex continuous relaxation.

2.1. Overview of the approach. Solving directly the MINLP model (2) can
be impractical, therefore we follow a decomposition approach whereby we define a
master problem with the constraints defining x ∈ X, and 2k scenario subproblems,
one for each normal mode scenario and one for each recovery mode scenario, involving
scenario-dependent constraints. Let Cx,y(wi) be the feasible region of a normal mode
scenario, and define Cx(wi) = ProjxCx,y(wi). So, x̂ is feasible for scenario i if x̂ ∈
Cx(wi). Similarly, we denote by Cx,y(wi) the feasible region of a recovery mode
scenario, and define C̄x(wi) = ProjxC̄x,y(wi). Since Cx(wi), C̄x(wi) have the same
structure, from now on our discussion focuses on the sets Cx(wi)’s, but clearly it also
applies to the C̄x(wi)’s.

The basic idea we exploit is to generate solutions for the master, and if they
are not feasible for enough scenarios to satisfy the joint chance constraint, we cut
them off. This is essentially a Benders decomposition approach applied to (2). In
the linear case (1), the solution to the master problem can be cut off by means of
textbook Benders cuts. In the nonlinear case (2), we can use generalized Benders
cuts. This paper advocates a particular choice of outer approximation cuts, that are
linearizations of Benders cuts and present several advantages: this will be the subject
of Section 2.2; the relationship with generalized Benders decomposition [Geoffrion,
1972] is discussed in Section 2.4.

Instead of applying a pure Benders decomposition approach to (2), we use a
Branch-and-Cut approach adapted from Luedtke [2014], where the linear case is con-
sidered and therefore applies to (1) rather than (2). However, the steps of the algo-
rithm remain the same, as this is essentially implicit Benders decomposition: we do
not solve the master problem to (integral) optimality, but apply Branch and Cut and
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separate Benders cuts at every node with an integral solution. The algorithm uses
a separation routine for the scenario subproblems, combined with the variables z. A
basic version of the algorithm is given by Algorithm 1.

Algorithm 1 Decomposition Algorithm

1: Define a master problem of the form

(3)

max cx
s.t.: Ax ≤ b∑k

i=1 pizi ≤ α
z ∈ {0, 1}k


2: repeat
3: Perform Branch and Bound on (3)
4: At every node of the tree with solution (x̂, ẑ), ẑ ∈ {0, 1}k, do the following:
5: for i = 1, . . . , k do
6: for ẑi = 0 and x̂ 6∈ Cx(wi) do
7: separate x̂ from Cx(wi) via an inequality γx ≤ βi
8: add inequality γx ≤ βi +Mzi to the master problem (3)
9: end for

10: for ẑi = 1 and x̂ 6∈ C̄x(wi) do
11: separate x̂ from C̄x(wi) via an inequality γx ≤ βi
12: add inequality γx ≤ βi +M(1− zi) to the master problem (3)
13: end for
14: end for
15: If (x̂, ẑ) is still feasible, update incumbent (lower bound).
16: until no more nodes to be explored

It is not difficult to see that this algorithm can be applied even if the sets Cx(wi)
are nonlinear provided that we have access to a separation routine, although termi-
nation is in general not guaranteed. We remark that we could employ a nonlinear
separating inequality rather than a hyperplane in step 7 of Algorithm 1, as is done
in generalized Benders decomposition [Geoffrion, 1972]. However, linear inequalities
have several computational advantages, and allow for an easy lifting procedure of the
coefficients on the z variables following Luedtke [2014]. We will revisit this topic in
Section 2.4 from a theoretical point of view, whereas a discussion of lifting on the z
variables is given in Section 4.1; notice that lifting does not affect the general scheme
of the algorithm.

Algorithm 1 has some similarities with the LP/NLP-BB approach of Abhishek
et al. [2010] and the Hybrid approach of Bonami et al. [2008], in the sense that
all these methodologies involve a Branch-and-Cut algorithm where additional outer
approximation inequalities are computed at nodes of the tree with integer solution.
However, a fundamental difference exists: the algorithms of Bonami et al. [2008],
Abhishek et al. [2010] as applied to (2) would work with a relaxation of the feasible
region that includes all the decision variables, using NLP subproblems to construct
outer approximation cuts fixing the integer variables. In the case of Algorithm 1,
the master contains a subset of decision variables and is not aware of the recourse
variables yi or the recovery variables ȳi. Therefore, we work on a projection of the
feasible region of (2), and some integer and continuous variables (z and x) are fixed
to obtain outer approximation cuts. It can be easily seen that the sequence of points
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x2

Cx,y(w)

x̂ProjxCx,y(w)

y

x1

arg min
(x,y)∈Cx,y(w)

‖(x̂, 0)− (x, y)‖x

Fig. 1. Separating hyperplane.

generated by the algorithm is not necessarily the same.

2.2. Separation algorithm. In this section we provide a separation algorithm
for step 7 of Algorithm 1 in the setting of this paper, i.e., convex scenario problems.
The same development applies to step 11. For ease of notation, we drop the depen-
dence on w and refer to Cx,y, Cx as the subproblems associated with a particular
realization of w, i.e., a scenario. Therefore, for a given scenario i, we can write

(4) Cx,y = {(x, y) : gj(x, y) ≤ 0, j = 1, . . . , d}

where gj(x, y) is convex for all j. (Note that for scenario i, system (4) would have
been Cx,y(wi) = {(x, yi) : gij(x, y

i) ≤ 0, j = 1, . . . ,mi}, i.e., d = mi.) Given a solution
for the master problem x̂, we need to answer the question: does there exist ŷ such
that (x̂, ŷ) ∈ Cx,y? If such ŷ does not exist, we must find a separating hyperplane:
this is the purpose of the separation routine.

Notice that the master problem involves the x variables only. For this reason, the
separation routine must find a cut in the x space. One approach to do so is given
by generalized Benders decomposition [Geoffrion, 1972]. Here we advocate a simpler
approach that allows computation of a separating hyperplane under mild conditions;
we discuss its relationship with generalized Benders decomposition in Section 2.4.

Define the problem

(PROJ) min
(x,y)∈Cx,y

1

2
‖x− x̂‖2x,

where by ‖ · ‖x we denote the Euclidean distance in the x space only. If x̂ 6∈ Cx, the
optimal value of (PROJ) must be strictly greater than 0.

Theorem 1. Let Cx,y be a closed set such that Cx = ProjxCx,y is convex, and
x̂ 6∈ Cx. Let (x̄, ȳ) be the optimal solution to (PROJ), `∗ > 0 the optimal objective
function value. Then, the hyperplane

(x̂− x̄)T (x− x̄) ≤ 0
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separates x̂ from Cx. This hyperplane is the deepest valid cut that separates x̂ from
Cx, if depth is computed in `2-norm.

Proof. Proof. Because Cx,y is closed, Cx is closed, and convex by assumption.
Therefore, there exists a unique vector v that minimizes ‖v − x̂‖ over all v ∈ Cx. By
definition of (PROJ), v = x̄. Then, we can apply the projection theorem (see, e.g.,
[Bertsekas, 1999, Prop. B.11 (b)]) to obtain

(x̂− x̄)T (x− x̄) ≤ 0 ∀x ∈ Cx.

Hence, this hyperplane is valid for Cx, and it separates x̂ because ‖x̂− x̄‖2 = `∗ > 0
by hypothesis. To show that it is the deepest valid cut, notice that distx(x̂, x̄) = 2`∗.
Any cut that cuts x̂ by more than 2`∗ in Euclidean distance computed in the x space
would cut x̄ off, forsaking validity.

A sketch of the main elements of Theorem 1 can be found in Fig. 1. It is evident
that the inequalities described in Theorem 1 are outer approximation cuts. Outer
approximation was introduced by Duran and Grossmann [1986] and has proven to be
an extremely useful tool in mixed-integer convex programming [Bonami et al., 2008,
2009, Fletcher and Leyffer, 1994]. Outer approximation is used to separate a point not
belonging to a convex set from the convex set itself, and typically the point and the
set live in the same space. In this paper, we apply outer approximation to separate a
point from the projection of a set on a lower-dimensional space, and we do not have
an explicit description of such projection: for this reason, to obtain the separating
inequality we perform an optimization in the higher-dimensional space, and the result
is the outer approximation cut that would have been obtained if we had the explicit
description of the projection.

The only assumption in Theorem 1 is that Cx,y projects to a closed convex set:
we do not even require constraint qualification (see Prop. 3 for a more precise charac-
terization of the separating inequality when constraint qualification holds). However,
to find the hyperplane we must be able to solve (PROJ), which is an optimization
problem over Cx,y: the difficulty of separation depends on the difficulty of optimizing
over Cx,y. In particular, since we assume that Cx,y is described as a set of (contin-
uous) nonlinear convex constraints, the separation can be carried out in polynomial
time.

2.3. Termination of the Branch-and-Cut algorithm. We now show that
Algorithm 1, combined with the separation routine that generates the cut (x̂−x̄)T (x−
x̄) ≤ 0 as in Theorem 1, terminates under mild assumptions.

Theorem [Kelley, 1960, Sec. 2] considers a continuous convex function G(x) de-
fined on a compact convex set X such that, at every point x̂ ∈ X, there exists an
extreme support y = p(x, x̂) to the graph of G(x) whose gradient is bounded by a
constant. Given a cost vector c, if x̂h defines a sequence of points such that cx̂h =
min{cx|x ∈ Xh}, h = 0, 1, . . . , where X0 = X and Xh = Xh−1 ∪ {x|p(x, x̂h−1) ≤ 0},
then the sequence {x̂h} contains a subsequence that converges to a point ξ in X with
G(ξ) ≤ 0.

We are ready to prove the following theorem.

Theorem 2. Consider a problem of the form

(CCP) max{cx : Pr(x ∈ Cx(w)) ≥ 1− α, x ∈ X},

where X is compact, Cx(w) is a closed and convex set for all w = w1, . . . , wk, and
assumptions (A1)-(A3) are satisfied. Assume further that we have an algorithm to
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solve (PROJ) to optimality. Then, given any εc > 0, if an optimal solution x∗ to
(CCP) exists, Algorithm 1 finds a solution x̃ with ‖x∗− x̃‖ ≤ εc after a finite number
of iterations.

Proof. Proof. Because the number of binary variables zi is k <∞, a Branch-and-
Bound algorithm on zi trivially processes a finite number of values for the z variables.
It is obvious that the LP relaxation of the master problem (3) is a relaxation of
(CCPR), because all inequalities added to the problem are valid. Therefore, we must
show that lower bounds are computed correctly, i.e., whenever a feasible solution is
found by the algorithm, it is εc-feasible for (CCPR). Notice that a solution (x̂, ẑ)
is considered feasible by Algorithm 1 only if ẑ is binary, and x̂ is not cutoff after
looping through all the scenario subproblems. Hence, we must show that after a
finite number of separation rounds for a given value of ẑ, the solution to the master
problem x̂ belongs to Cx(wi) (or is εc-close) for all i such that ẑi = 0, and belongs
to C̄x(wi) for all i such that ẑi = 1. This ensures that for every value of ẑ ∈ {0, 1}k,
a finite number of iterations is necessary, therefore the overall algorithm terminates.
The latter statement is true in the setting of Luedtke [2014] because Cx,y(wi) is a
polyhedron, and the paper considers only inequalities corresponding to extreme points
of the Benders cut generating problem, which are in finite number. In the context of
the present paper, it must be proven.

For this, it is sufficient to show that for every Cx(wi) and every C̄x(wi) satisfying
the assumptions, the separation routine of Theorem 1 requires a finite number of
inequalities for εc-convergence. This ensures finite εc-convergence to the intersection
of Cx(wi) for all i such that ẑi = 0 and all C̄x(wi) for all i such that ẑ = 1. For
ease of notation, we drop wi and discuss a generic set Cx,y with projection Cx, as the
argument is the same for all Cx(wi) and C̄x(wi).

We now apply the convergence result of Theorem [Kelley, 1960, Sec. 2] as follows.
Let X be the set defined by feasible region of the master problem, and define G(x) =
minx̃∈Cx

‖x − x̃‖, i.e., as the distance function from the convex set Cx. Therefore,
G(x) is convex. By convexity, an extreme support of G(x) exists at each point of X,
and, by the definition of G(x), its gradient is bounded. We have G(x) = 0⇔ x ∈ Cx,
G(x) > 0 ⇔ x /∈ Cx. Given x̂ ∈ X, x̂ /∈ Cx, define x̄ = arg minx̃∈Cx ‖x̂ − x̃‖, so that
G(x̂) = ‖x̂− x̄‖. An extreme support y = p(x, x̂) to G(x) at x̂ is

y = G(x̂) +∇TG(x̂)(x− x̂) = ‖x̂− x̄‖+
(x̂− x̄)

‖x̂− x̄‖
(x− x̂).

Then, since x̂ = x̄+ x̂− x̄, the expression p(x, x̂) ≤ 0 reads as

(x̂− x̄)(x− x̄) ≤ 0,

which is exactly the condition we use to (iteratively) separate x̂. By Theorem [Kelley,
1960, Sec. 2], we can define a sequence of x̂h converging to a point ξ in X, G(ξ) ≤ 0,
i.e., ξ ∈ Cx. By definition of convergence, for every εc, there exists an integer v such
that after v inequalities, ‖x̂− ξ‖ ≤ εc. This concludes the proof.

2.4. Comparison with generalized Benders cuts. This section investigates
the relationship between the separation approach we advocate and generalized Ben-
ders decomposition [Geoffrion, 1972], which applies to the same class of problems
studied in this paper, namely those that can be formulated as (2). Here we only
discuss the case where the second-stage problems are feasibility problems, following
our formulation in Section 1. The result in Geoffrion [1972] assumes that a “dual ade-
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quate” algorithm to solve the scenario subproblems is available, that is, if the problem
is infeasible a dual certificate of infeasibility can be computed. In its computational
considerations it remarks that “it appears necessary” to assume additional properties
on the structure of the problem, namely, that the function

L(x, λ) = min
y∈Cx,y

λT g(x, y)

can be easily computed for all x ∈ X,λ ∈ Rm, λ ≥ 0. In particular this means that we
should be able to find an analytical expression for such function. This can be done in
some specific situations, for example if the nonlinear functions are separable in x and
y (see, e.g., [Bloom, 1983, França and Luna, 1982]), but may be difficult in general if
the solution to the minimization problem over y depends on x. Even when that is the
case, one issue remains: in the approach of Geoffrion [1972] these functions are the
Benders cut added to the master problem, and they have the form of the constraints
g(x, y). If the g(x, y) are nonlinear, we are left in the unfortunate situation of possibly
adding nonlinear constraints to the master problem. The nonlinear cuts could be
stronger than linear inequalities, but are computationally less attractive and would
not allow us to use the existing well-developed machinery for linear inequalities, such
as mixing techniques [Günlük and Pochet, 2001]. Of course, one could simply linearize
a generalized Benders cut: we show that this is in fact exactly what is happening.

Proposition 3. Assume that constraint qualification conditions are met, and let
(x̄, ȳ) be the optimal solution to (PROJ), µ be the corresponding KKT multipliers.
Then, the cut

(x̂− x̄)T (x− x̄) ≤ 0

is the linearization of a generalized Benders cut obtained from x̂ with multipliers µ.

Proof. Proof. A generalized Benders cut has the form L(x, λ) ≤ 0, where L(x, λ) =
miny∈Cx,y

λT g(x, y) and λ is a nonegative vector such that miny∈Cx,y
λT g(x̂, y) > 0;

see [Geoffrion, 1972]. By construction, the hyperplane
(∑

j∈I µj∇gj(x̄, ȳ)
)

((x, y) −
(x̄, ȳ)) = (x̂−x̄)T (x−x̄) ≤ 0 is supporting for

∑
j∈I µjgj(x, y) at (x̄, ȳ), so

∑
j∈I µjgj(x, y) ≥

(x̂ − x̄)T (x − x̄) for all (x, y) ∈ Cx,y because the left-hand side expression is convex.
It follows that

min
y

∑
j∈I

µjgj(x̂, y) ≥ (x̂− x̄)T (x̂− x̄) = `∗ > 0.

This shows that the multipliers µ yield a violated generalized Benders cut. Further-
more,

∑
j∈I µjgj(x̄, y) ≥ (x̂ − x̄)T (x̄ − x̄) = 0 for all y, and

∑
j∈I µjgj(x̄, ȳ) = 0

by complementary slackness, hence ȳ = arg miny
∑
j∈I µjgj(x̄, y). It follows that

(x̂− x̄)T (x− x̄) is the tangent plane to L(x, µ) at the point x̄.

The fact that outer approximation cuts are linearizations of generalized Benders
cuts is well known: since every nonnegative combination of the constraints gj can be
considered a generalized Benders cuts, every valid linear inequality for Cx is a lin-
earization of a generalized Benders cuts. [Abhishek et al., 2010, Sect. 3.1] remarks that
aggregating linearizations to the constraints using optimal dual multipliers simplifies
the cut, and the unfixed variables disappear from the cut expression.

It is important to remark that our way of generating cuts is conceptually sim-
pler than applying generalized Benders decomposition, and it has some clear ad-
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vantages. In fact, let λ ≥ 0 be any vector of dual variables that gives rise to a
violated generalized Benders cut, i.e., miny∈Cx,y

λT g(x̂, y) > 0. Since the expression
miny∈Cx,y

λT g(x̂, y) ≤ 0 is convex, any tangent hyperplane is a valid inequality. The
approach of Geoffrion [1972] requires the dual variables λ only, but in order to com-
pute a tangent hyperplane, we additionally need a point about which the linearization
is obtained. To this end, Abhishek et al. [2010] propose a hierarchy of points, where
the weakest one is analogous to the ECP method [Westerlund et al., 1998] and does
not require solving a subproblem, while the strongest one obtains the point by solving
the NLP relaxation of the current node. Notice that in our context, because no value
for y is initially known, it seems that solving an NLP subproblem to generate the
point is a better approach. Furthermore, if the point about which the linearization is
generated does not belong to Cx,y the tangent hyperplane may not be supporting for
Cx, hence it would be dominated by some other valid inequality.

In principle, our projection approach to generate a separating inequality can also
be applied in the case where Cx,y is a polyhedron, and it yields violated Benders cuts
from a particular choice of dual variables. The most commonly approach used in the
literature is instead to obtain the dual variables by minimizing the largest constraint
violation, which corresponds to a specific truncation of the unbounded dual rays (see
Fischetti et al. [2010]). The standard approach guarantees that all the inequalities
are generated from extreme points of the dual polyhedron, whereas our projection
approach may construct a Benders cut from dual variables that are not extreme,
in which case the cut would not be extreme either, i.e., it could be obtained as a
combination of extreme Benders cuts.

3. (CCP) for mid-term hydro scheduling. We apply the decomposition al-
gorithm for nonlinear chance-constrained problem of Section 2 to the hydro scheduling
problem that we describe next. Our formulation is an instance of (CCP), which is a
special case of (CCPR).

A central problem in power generation systems is that of optimally planning
resource utilization in the mid and long term and in the presence of uncertainty.
Hydro power production networks usually consist of several reservoir systems, often
interconnected, which are operated on a yearly basis: it is common to have seasonal
cycles for demand and inflows, which can be out of phase by a few months, i.e., inflow
peaks typically precede demand peaks.

The mid-term hydro scheduling problem refers to the problem of planning pro-
duction over a period of several months. To be effective, such planning must take
into account uncertainty affecting rainfall, energy price and demand, as well as the
complex and nonlinear power production functions. A commonly used approach in
practice is to rely on deterministic optimization tools and on the experience of domain
experts to deal with the uncertainty, because of the sheer difficulty of incorporating
uncertainty into the model. Many deterministic approaches can be found in the lit-
erature, e.g., [Carneiro et al., 1990]. More recently, methodologies that can take into
account the uncertainty in the model have appeared, such as [Baslis and Bakirtzis,
2011, Carpentier et al., 2012, Kelman, 1998]. We are not aware of previous work that
employs a chance-constrained formulation for the mid-term hydro scheduling prob-
lem, although there has been work on the related unit commitment problem, e.g.,
[van Ackooij, 2014, Wang et al., 2012]. Even in the case of unit commitment, chance-
constrained optimization approaches are the least commonly used in the literature,
due to their difficulty [Tahanan et al., 2015, Sect. 4.4].

The problem studied in this paper can be described as follows: there are n hy-
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droplants, each one associated with a reservoir. The water in each reservoir can be
used to obtain energy through the power plant. Our goal is to define a mid-term pro-
duction plan, that is, how much water to release in each period from each reservoir,
over a time horizon of several months, in order to maximize a profit function. The
profit depends on the amount of energy obtained and on the market price, assuming
that the amount of energy sold influences the final price. In each time period, the total
quantity of water in the reservoirs must satisfy some lower and upper bounds. All the
water that is not released in period t is available at t + 1, in addition to the natural
water inflow from rivers, precipitations and seasonal snow melting. The definition of
a production plan faces two sources of uncertainty, namely: the natural water inflow,
and the energy price on the market.

3.1. Choice of the objective function. When the problem takes into account
a long time span, the decision maker is typically interested in the optimal present-time
(i.e., first stage) decisions: future decisions can be adjusted depending on the evolution
of the market and the context. Consequently, we consider a problem formulation with
recourse, where in our case, the recourse actions are simply all the decision taken at
time periods t > 1.

It is important to remark that the profit for the generating company is a function
of the first-stage decisions and the scenario, i.e., the realization of w. Thus, in order
to formulate the objective function of the problem, we must decide what measure
of profit we are interested in. Widely used choices when optimizing an uncertain
profit are the expected profit and the worst-case profit. Our approach draws from
the financial risk management literature: we use a measure of profit related to the
well-known Value-at-Risk [McNeil et al., 2015], which allows the decision maker to
determine the trade-off between risk and returns. In particular, given 0 ≤ α < 1, our
objective function is the maximization of the α-quantile of the profit. We now show
how this relates to Value-at-Risk.

Let ϕ(x,wi) be the profit that can be obtained in scenario wi with first-stage
decision variables x; notice that given x and wi, the value of ϕ(x,wi) can be computed
by solving a deterministic optimization problem. Define the random variable ϕx : Ω→
R, ϕx(w) = ϕ(x,w). Since ϕx is a random variable that measures the profit, we define
the loss as Lx = −ϕx. The α-Value-at-Risk is defined as

VaRα(Lx) = inf{` ∈ R : Pr(Lx > `) ≤ 1− α}.

It is easy to show via algebraic manipulations that

min
x

VaR1−α(Lx) = max
x

sup{q ∈ R : Pr(ϕx ≥ q) ≥ 1− α} = max
x

Qα(ϕx),

where Qα is the α-quantile. In other words, our choice of objective function, i.e.,
maximizing the α-quantile of the profit, is equivalent to minimizing the (1−α)-Value-
at-Risk of the loss. We remark that our decomposition scheme can also be applied
to the case in which the objective function contains a penalization for not satisfying
some of the scenario constraints (e.g., not meeting a production quota), but we did
not pursue further study of this type of objective function.

3.2. Optimization model. We consider a multi-period planning problem with
T periods (indexed by t = 1, . . . , T ), where all information regarding period 1 is
deterministically known, while the remaining periods are subject to uncertainty. We
consider uncertainty with respect to inflows and energy market prices, and we model
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the uncertainty by defining a finite number of inflow and energy market scenarios, each
one with an associated probability of realization. Our objective in a deterministic
setting would be to maximize the profit obtained by selling energy on the energy
market. Electrical energy is obtained by transforming the potential energy of the
water when, during each period, the water is released from the reservoirs. There
are n reservoirs in total, indexed by h = 1, . . . , n. We denote by xth the amount of
water released in period t from reservoir h, and by wth the water level of reservoir
h at the end of the period (w0h is a parameter denoting the initial water level).
Parameter fth denotes the natural water inflow in period t at reservoir h. The water
released from reservoir h is transformed into an amount of energy that depends on
a nonlinear function gh(w, x). Energy obtained this way, denoted as eth for period t
and reservoir h, is sold on the market; since hydro power production has in general a
large capacity, we assume to influence the market price, according to a price function
πt(·) that depends on the total amount of electrical energy we sell at period t, namely,
et =

∑n
h=1 eth. In the deterministic setting, the hydro scheduling problem described

above is modeled by the following nonlinear programming problem:

max

T∑
t=1

πt(et)et(5a)

s.t.:w(t−1)h − xth + fth ≥ wth t = 1, . . . , T, h = 1, . . . , n(5b)

0 ≤ xth ≤ uth t = 1, . . . , T, h = 1, . . . , n(5c)

qth ≤ wth ≤ Qth t = 1, . . . , T, h = 1, . . . , n(5d)

eth ≤ gh(wth, xth) t = 1, . . . , T, h = 1, . . . , n(5e)

dt ≤ et ≤ mt t = 1, . . . , T(5f)

et =

n∑
h=1

eth t = 1, . . . , T.(5g)

The objective function (5a) maximizes the profit obtained by selling the transformed
energy. Constraint (5b) is an inventory constraint that defines the water balance
between consecutive periods: since water can be released without obtaining energy
(spillage), we have an inequality. Constraints (5c) and (5d) impose lower and upper
bounds on the quantity of water used for transforming energy and on the water levels
in the reservoirs, respectively. Constraints (5e) define the relation between the released
water and the obtained electrical energy at a specific plant h. Finally, (5f) defines
lower and upper bounds on the amount of obtained electrical energy. Notice that the
above problem is convex assuming that gh is concave.

To model uncertainty, Baslis and Bakirtzis [2011] assume that forecasts for aggre-
gated demand and precipitations are available as discrete random variables. The op-
timization occurs over a relatively long period of time (i.e., twelve months), therefore
it would be unrealistic to assume temporal independence of demand and precipita-
tions, and the assumption in [Baslis and Bakirtzis, 2011] is that the realization of the
random variables at any time period depends on the realization in the previous time
period. We follow the approach of Baslis and Bakirtzis [2011]. This yields a scenario
tree, where a scenario is a realization of the random parameters over the entire time
period, i.e., a sample path. A scenario tree starts from the root node at the first
period and, for each possible realization of the random parameters, branches into a
node at the next period. The branching continues up to the leaves of the tree, whose
number corresponds to the number of scenarios k.



NONLINEAR CHANCE-CONSTRAINED PROBLEMS APPL. TO HYDRO SCHEDULING15

3.3. Decomposition. We decompose the problem into a master problem and
k scenario subproblems. Each scenario subproblem i includes decision variables xiht,
and has a feasible region defined by (5b) – (5f). In addition, we link the profit in each
scenario to an overall measure of profit in the master problem by introducing a master
variable ψ that is maximized, and defining the following additional constraints:

(6) ψ ≤
T∑
t=1

πit(et)et i = 1, . . . , k.

Hence, a specific scenario is satisfied given the decision variables in the master (energy
obtained in the first time period, and measure of profit ψ) if not only constraints (5b)
– (5f) can be satisfied for subsequent time periods, but also the total profit for the
scenario is not smaller than ψ. Since the master maximizes the profit that can be
obtained by satisfying a subset of scenarios having associated probability not smaller
than 1− α, this is equivalent to optimizing the α-quantile of the profit.

Following Baslis and Bakirtzis [2011], we assume that all scenarios have an asso-
ciated probability of 1/k (modifying the formulation to allow for nonuniform scenario
probabilities is straightforward), and the joint chance constraints are equivalent to
imposing that at least k − p scenarios are satisfied, where p = bαkc. Nonanticipa-
tivity constraints are enforced by the master, guaranteeing that for all t, decisions
up to period t are the same for all sample paths that are identical up to t. Given
two scenario indices i and r, define τ(i, r) as the largest time period index such that
the sample path realizations of scenarios i and r are identical up to it. We can then
write the initial master problem (before addition of outer approximation cuts) as the
following MILP:

maxψ(7a)

s.t.:
∑

i=1,...,k

zi ≤ p,(7b)

xith = xrth,i = 1, . . . , k − 1, r = i+ 1, . . . , k, t ≤ τ(i, r), h = 1, . . . , n(7c)

0 ≤ xith ≤ utht = 1, . . . , T − 1, i = 1, . . . , k, h = 1, . . . , n(7d)

zi ∈ {0, 1},i = 1, . . . , k(7e)

where (7b) is the joint probability constraint, constraints (7c) express nonanticipa-
tivity, constraints (7d) impose bounds on the quantity of water released. We remark
that in practice we do not explicitly write constraints (7c), because we keep only one
copy of the x variables for all sample paths identical up to a given period, implicitly
performing the substitution. This is conceptually equivalent and reduces the size of
the problem.

3.3.1. Electricity generation function. The transformation of the water po-
tential energy into electrical energy is described in terms of a nonlinear power function
vh(w, ẋ) that depends on the water flow and water level w at reservoir h. We assume
that the water flow and level are constant within each time period, and that the
amount of electrical energy obtained during a given period is directly proportional to
the length of the period θt. Hence, we can write

(8) gh(wth, xth) = vh(wth, xth/θt)θt.

Several alternatives are proposed in the literature regarding the shape of vh(w, ẋ),
see e.g., [Bacaud et al., 2001, Salam et al., 1998, Chang and Chen, 1998]. These
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alternatives depend on the characteristics of each power plant and typically must be
experimentally evaluated.

The most common power functions consider power as a quadratic expression of
the flow, as vh = ρ(x/θt)

2 + νx/θt + σ, where the values of the coefficients ρ, ν, and
σ, when specified, accurately describe the characteristics of several real-world plants.
The value of these parameters is not a constant, but it is instead read or interpolated
from a table, and depends on the water level w (see, e.g., [Ruz̆ić et al., 1996]). Instead
of interpolating the values from a table, since the value of the parameters ρ, ν, σ is
approximately linear in the water level w [Salam et al., 1998], we define the power
function as

(9) vh(w, x) = (w + η)(ρ(x/θt)
2 + νx/θt + σ),

where η is then a fourth parameter to be experimentally tuned.

3.3.2. Demand and price function. Obtained electrical energy can be sold
on the electricity market at the market price; since we are considering a hydro power
producer with a large capacity, the producer influences the market price, i.e., the mar-
ket price depends on the amount of energy that it sells. We consider two alternatives
to describe the price-quantity relation: a simple relationship is obtained by linearizing
the step (staircase) price-quantity functions of Baslis and Bakirtzis [2011]. A finer
description of the market effect of a large power producer can be obtained by using
nonincreasing step functions, as in Baslis and Bakirtzis [2011]. However, modeling a
step function requires binary variables in the scenario subproblems. In this case, the
decomposition method we propose can only be applied to solve the continuous relax-
ation of the problem, and we additionally need a way to construct primal bounds:
this will be discussed in Section 4.3. We now provide more details on the two above
alternatives for the cost function.

• Using a linear price-quantity function, the profit-quantity relation in equation
(5a) is expressed by a quadratic function of the energy, that is (recall that
et =

∑n
h=1 eth)

(10) πt(et)et = (π1tet + π0t)et.

• Using a step price-quantity function with two steps, the profit-quantity rela-
tion in equation (5a) is expressed by

πt(et)et ≤ π1tett = 1, . . . , T(11a)

πt(et)et ≤ π2tet + (π1t − π2t)m1tytt = 1, . . . , T(11b)

et ≤ m1tyt +m2t(1− yt)t = 1, . . . , T(11c)

yt ∈ {0, 1},t = 1, . . . , T(11d)

where m1t is the maximum amount of energy that can be sold at price π1t in
period t, m2t (> m1t) is the maximum (overall) amount of energy that can
be sold at price π2t (< π1t) in period t, and yt is a binary variable indicating
whether the amount of sold energy is ≤ m1t (yt = 1) or > m1t (yt = 0).

3.4. Data. The computational evaluation presented in this paper considers a
case study based on the data from Baslis and Bakirtzis [2011], that describe a hydro
system configuration comprising 10 major hydroplants of the Greek power system, for
a production capacity of 2720 MW. As in [Baslis and Bakirtzis, 2011], we consider a
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three period configuration covering 12 months. The choice of the time periods is based
on the Greek hydrological and load demand patterns, where high inflows are observed
in winter and spring, and a load peak is observed in summer: the first period is the
month of October, the second period goes from November to February, and the third
period from March to September. Inflows and demand curves are computed based
on historical data; we refer the reader to [Baslis and Bakirtzis, 2011] for details. The
first time period is deterministic, as previously mentioned; a scenario tree comprising
90 scenarios is obtained by considering 5 inflow realizations coupled with 3 demand
realizations at the second time period, and 3 inflow realizations coupled with 2 demand
realizations at the third time period.

4. Computational experiments. In this section we report on the experimental
results obtained by the described Branch-and-Cut algorithm when solving decompos-
able chance-constrained problems, where the subproblems are continuous and convex.
We first test the algorithm on the instances discussed in Sect. 3 using the first formula-
tion for the price function presented in Section 3.3.2, yielding a quadratic relationship
between profit and sold energy described by (10); since we are not aware of any
specialized solution method for the class of problems that we consider, we compare
the algorithm performance with the direct solution of the large MINLP (2) using a
general-purpose solver for convex MINLPs. Subsequently, in Section 4.3 we discuss
our computational experience on the instances with the step price function formula-
tion (11a)-(11c), for which we apply our approach to solve the continuous relaxation
of the problem and to construct feasible integer solutions. The objective of these
experiments is twofold: on the one hand, they are intended to assess the algorithmic
performance of the method we propose; on the other hand, they allow us to evaluate
our modeling approach for mid-term hydro scheduling problems, determining the size
of the instances that can successfully be dealt with, and highlighting the trade-off
between profit and robustness of the solution.

4.1. Implementation details. We implemented the Branch-and-Cut algorithm
within the IBM ILOG CPLEX 12.6 MILP solver, and solved the convex subproblems
with IPOPT 3.12 using the interface provided by BONMIN. In our implementation,
CPLEX manages the branching tree of the master problem, and returns the control
to a user-written callback function when the solution associated with a tree node is
integer feasible.

Within the callback function, we define a separation problem (PROJ) for those
scenarios i having associated variable zi = 0, i.e., the scenarios whose constraints must
be satisfied. Problems (PROJ) are then solved by IPOPT. If the optimal solution of
problem (PROJ) has strictly positive value for some scenario j, that is, the current
master solution x̂ violates the constraints of scenario j, then we derive a (single) valid
cut γx ≤ βj separating x̂ from the feasible region of scenario j, as explained in Section
2.2.

Then, we consider adding the obtained cut to the master problem in two alter-
native ways:
big M The cut is directly added to the master problem in the form γx ≤ βj +Mzj .

We compute the value for the M coefficient as: M =
∑
l:γl>0 γlul−βj , where

l denotes the index of the x variables in the cut and ul is the associated upper
bound in the master problem;

lifted The cut is lifted by computing valid coefficients for the zi variables correspond-
ing to other scenarios, i.e., i 6= j, as suggested by Luedtke [2014].

In the second case, for every i we first compute the coefficient βi making the
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inequality valid for the corresponding scenario wi, solving the optimization problem

(12) βi = max{γx|x ∈ X ∩ Cx(wi)}.

Assuming the βi values, i = 1, . . . , k, are sorted by non-decreasing order, we consider
the first p+1 scenarios (recall p = bαkc), and we obtain the following valid inequalities
(see [Luedtke, 2014, Lemma 1]):

(13) γx+ (βi − βp+1)zi ≤ βi, i = 1, . . . , p.

From this basic set of inequalities, one could obtain stronger star inequalities (see
[Atamtürk et al., 2000]). The basic idea is that, given an ordered subset T =
{t1, t2, . . . , tl} of {1, . . . , p}, one can derive the following star inequality, where βtl+1

=
βp+1 (see [Luedtke, 2014] for further details):

(14) γx+

l∑
i=1

(βti − βti+1
))zi ≤ βt1 .

Since the star inequalities (14) are in exponential number, they need to be separated.
Separation can be performed by solving a longest path problem in an acyclic digraph.
However, since we are separating integer solutions in the z variables, the most violated
inequality by a solution (x̂, z) is exactly the inequality (13) associated with the first
ti in the ordering such that zti = 0. Thus, in our implementation we add precisely
inequalities (13).

Notice that since – in our specific application – separation for C̄x(wi) is not
necessary to ensure correctness of the Branch-and-Cut algorithm, it is sufficient to
find one violated scenario i having associated variable zi = 0, and to add the cut
obtained by solving (PROJ) to the master problem: alternatively, all scenarios having
associated variable zi = 0 are satisfied, and the node does not have to be processed
further. In our implementation we considered the following alternatives to determine
how and when to perform separation:
sepAll Separation is performed at integer solutions for each scenario i having asso-

ciated variable zi = 0;
sepGroup Scenarios are partitioned in subsets, where each subset includes those

scenarios of the scenario tree having a common ancestor at the second time
period (i.e., the corresponding sample paths are equal up to that point in
time). Separation is performed at integer solutions for each group, until a
violated scenario i in the group having associated variable zi = 0 is found.

The rationale for sepGroup is that scenarios in the same group have common deci-
sion variables at the second time period, hence a cut for one of these scenarios might
change the primal solution for all scenarios in the same group. We tested two addi-
tional strategies that turned out to have poor computational performance. Hence, we
describe them briefly below, but we will not report the corresponding results. Namely:
sep1 Separation is performed at integer solutions until the first violated scenario i

having associated variable zi = 0 is found.
sepFrac We attempt to separate cuts at fractional solutions using one of the other

strategies mentioned above.
Both sep1 and sepFrac were ineffective for the same reason: these two strategies
increase the number of separation rounds, and, as it will be shown in the next section,
the vast majority of the CPU time is already spent in solving the nonlinear separation
subproblems, therefore increasing the number of separation rounds is an issue.



NONLINEAR CHANCE-CONSTRAINED PROBLEMS APPL. TO HYDRO SCHEDULING19

Nodes Time
B&C algorithm B&B Sep. CPU [s] % NLP NLP solved Added cuts
sepAll-bigM 30.4 4.2 121.1 99.5 8,228.0 1,384.2
sepGroup-bigM 28.9 4.0 154.5 99.5 10,504.2 1,346.9
sepAll-lifted 10.3 2.7 1,251.1 100.0 (8,309.6) 102,529.3 1,409.1
sepGroup-lifted 13.3 2.7 1,098.2 100.0 (9,829.5) 87,653.6 1,188.3

Table 1
Performance summary for the four main variants of the B&C algorithm.

Concerning the large MINLP (2), it is tackled through BONMIN, with IPOPT
3.12 as embedded nonlinear solver. For each constraint of the MINLP formulation to
be activated/deactivated by the associated z variable, we compute the smallest value
of the M coefficient using the bounds on the x variables and the maximum profit that
can be obtained in the scenarios by releasing the associated water quantities.

4.2. Computational performance with linear price function. The data
from Baslis and Bakirtzis [2011] includes 10 hydroplants and a scenario tree with
90 equiprobable scenarios. From this data, we construct 5 smaller configurations
with a number of plants chosen from the set {1, 2, 5, 7, 10}. For each configuration,
we can specify the robustness of the solution: we consider values of the probability
α starting from α = 0.5 and decreasing by 0.1 down to α = 0.1 (the computed
solution must satisfy scenarios with associated probability of at least 1 − α). In the
discussion about the performance of the hydroplants in Section 4.4 we additionally
report results for α = 0.05, but they are not included here as they do not provide
further insight. Moreover, for 5 and 10 hydroplants and all values of α, we considered
four simplified scenario trees that contain 30, 48, 60 or 72 scenarios. We therefore
obtain 65 instances of varying difficulty. All experiments are performed on a single
node of a cluster containing machines equipped with an Intel Xeon E3-1220 processor
clocked at 3.10 GHz and 8 GB RAM.

In Table 1 we report the main indicators to evaluate the performance of the four
variants of the Branch-and-Cut algorithm that are obtained by combining the separa-
tion procedures sepAll and sepGroup with the bigM and lifted procedures to add
cuts to the master problem. More specifically, the table reports average values of the
total number of Branch-and-Bound nodes (second column), number of Branch-and-
Bound nodes at which separation is performed (third column), total computing time
and fraction of time spent in the nonlinear separation subproblems (fourth and fifth
column respectively), number of nonlinear programs solved (sixth column), number of
cuts added to the master problem (seventh column). For the bigM case, the number
of NLPs solved is the same as the number of iterations of the separation procedure.
For the lifted case, the number in brackets in the seventh column is the number
of nonlinear programs solved to prove a given scenario is satisfied or derive the cut
(iterations of the separation procedure), and the number of NLPs solved includes the
NLPs to lift the cut.

All versions of the B&C algorithm solve all tested instances in less than 2 hours
of computing time per instance. The sepAll-bigM variant is the fastest version on
average, and we take it as our reference. Table 1 shows that the number of Branch-
and-Bound nodes is very small on average (about 30), and almost all the computing
time is spent in solving NLPs (on average, 8,228 NLPs per instance). Most of the
separation iterations occur at the root node of the Branch-and-Cut algorithm (approx-
imately 3/4 on average). We observe that many separation rounds are performed at
each node where separation occurs. In the majority of the cases, when several mixed-
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integer solutions are produced at the same node each new mixed-integer solution
differs from the previous one only in its continuous components. Only occasionally a
new mixed-integer solution has different values for the z variables, unless of course the
separation is performed at different nodes of the Branch-and-Bound tree. This be-
havior can be explained by recalling that the master problem (7a)-(7e) is not aware of
the nonlinear dynamics of the scenario subproblems, therefore a good approximation
must be constructed by means of several linear cuts, even when the integer variables
are fixed. Results with sepGroup-bigM are similar, with a small increase in the
number of NLPs solved, and a corresponding increase of computing time.

Concerning the lifted cuts, we note that given a cut γx ≤ βi obtained for some
scenario i, computing the lifting is computationally expensive due to the solution of
several additional NLPs. This additional effort would be justified only if lifted cuts
were able to significantly reduce the number of cut separation iterations with respect
to bigM cuts. Table 1 shows that this is not the case: although the number of
Branch-and-Bound nodes is reduced, the average number of separation iterations is
of similar magnitude. As a consequence, sepAll-lifted and sepGroup-lifted solve
many more NLPs and the CPU time increases accordingly. The ineffectiveness of
lifted cuts can be explained in connection to the specific structure of the scenario tree
we consider: when solving the optimization problem (12) for a given scenario i and
a given hyperplane γx, only a subset of the variables with nonzero coefficient in γ
appears in nontrivial constraints (i.e., not bound constraints) for scenario i. Hence,
the lifting procedure is rarely able to produce stronger cuts. The same observation
on the weak computational performance of the mixing inequalities generated by an
analogous lifting procedure is reported in [Qiu et al., 2014], where a chance-constrained
formulation is studied as well.

The computational performance of BONMIN’s NLP-based Branch-and-Bound
algorithm, applied directly to the MINLP (2), are also evaluated on all 65 problem
instances. The time limit for BONMIN is set to 10 hours. In Figure 2 we report the
performance profile for the sepAll-bigM Branch-and-Cut algorithm and BONMIN,
for the whole set of instances. The Branch-and-Cut algorithm can solve all instances,
while BONMIN’s Branch-and-Bound algorithm hits the time limit in 7 cases. In ad-
dition, the profiles clearly show the significantly better performance of the proposed
approach compared to the direct solution of the large MINLP (2). Before reporting de-
tailed computational results comparing the two approaches, we remark that we tried
to solve the MINLP (2) with additional solvers based on other solution methods,
namely, the BONMIN Outer Approximation algorithm, the BONMIN hybrid algo-
rithm and the FilMINT Branch-and-Cut algorithm. None of the mentioned solvers
could consistently handle the MINLP (2), and all solvers were plagued by severe nu-
merical issues; as a consequence, they could correctly solve only small instances or
instances with simplified nonlinear functions, and we decided to exclude them from
our evaluation.

In Table 2 we report detailed results for a subset of instances of increasing com-
plexity, comparing sepAll-bigM with BONMIN Branch and Bound. All instances
in the table have 90 scenarios. The table reports the number of hydroplants and the
level of risk α in the first two columns. Subsequent columns report the results ob-
tained by the Branch-and-Cut algorithm, as in Table 1. The last two columns report
the performance of BONMIN Branch-and-Bound algorithm, indicating the total CPU
time and the number of Branch-and-Bound nodes. The Branch-and-Cut algorithm
solves all instances in less than 10 minutes each, and in a very limited number of
Branch-and-Bound nodes. Instances with a smaller number of hydroplants appear



NONLINEAR CHANCE-CONSTRAINED PROBLEMS APPL. TO HYDRO SCHEDULING21

1 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

100

Normalized time τ

P
er

c.
 o

f 
in

st
an

ce
s

Branch-and-Cut
MINLP Bonmin

Fig. 2. Performance profiles for 65 instances (linear price function).

Branch and Cut BONMIN

B&B Sep. % time NLP Added
Plants α nodes nodes Time (s) NLP solved cuts Time (s) Nodes
1 0.1 31 5 22.3 100.0 2,520 228 155.6 365
1 0.2 9 3 26.5 100.0 3,114 289 2,775.4 14,173
1 0.3 21 4 23.0 99.9 2,799 304 2,291.6 12,955
1 0.4 14 4 20.9 99.9 2,845 327 4,331.8 26,144
1 0.5 16 3 15.7 99.8 2,160 273 3,691.6 22,856
2 0.1 16 5 27.0 99.9 2,844 395 1,836.7 2,606
2 0.2 1 1 16.0 99.7 1,746 339 14,279.8 24,749
2 0.3 31 3 27.1 99.7 2,925 418 14,961.3 29,606
2 0.4 35 4 32.4 99.8 3,514 482 6,326.3 20,554
2 0.5 7 2 8.1 99.8 990 329 7,996.1 27,761
5 0.1 12 2 98.6 99.9 7,887 1,315 2,471.5 3,060
5 0.2 34 5 82.3 99.7 6,720 1,258 5,331.1 6,255
5 0.3 17 3 93.6 99.8 7,676 1,339 13,086.6 17,800
5 0.4 63 7 89.1 99.6 7,380 1,338 9,376.6 11,745
5 0.5 27 5 88.7 99.7 7,427 1,325 8,011.3 10,742
7 0.1 9 3 205.3 99.8 14,883 2,021 9,554.3 7,001
7 0.2 36 3 136.7 99.7 9,977 1,803 7,107.8 6,338
7 0.3 47 6 180.3 99.6 13,201 2,424 5,776.8 4,445
7 0.4 115 6 131.8 99.1 9,052 1,605 16,619.1 13,397
7 0.5 74 9 175.1 99.5 11,783 1,785 7,520.0 6,159
10 0.1 45 7 237.6 99.6 14,375 2,295 4,520.6 2,189
10 0.2 33 4 200.9 99.6 11,822 2,062 9,186.7 4,811
10 0.3 29 5 383.6 99.6 23,904 3,602 14,136.2 6,380
10 0.4 131 9 429.7 99.1 26,668 3,845 13,818.4 7,035
10 0.5 94 8 414.2 99.2 26,280 3,821 T.L. 17,077

Table 2
Comparison between sepAll-bigM and BONMIN Branch and Bound on configurations of 1, 2,

5, 7, and 10 hydroplants and 90 scenarios (linear price function).

easier for the Branch-and-Cut algorithm, while the level of risk α has little effect
on the solution time. Solution via BONMIN Branch-and-Bound algorithm takes a
much larger number of nodes and computing time (two orders of magnitude larger
on average). Very few instances are solved to optimality within 1 hour of computing
time.

Similar considerations can be drawn from Table 3, where all the instances are for
the 10 hydroplants configuration, and different number of scenarios, as reported in
the first column. In addition, the table clearly shows that reducing the number of
scenarios makes the problem easier, for both the Branch-and-Cut algorithm and the
BONMIN Branch-and-Bound algorithm.
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Branch and Cut BONMIN

B&B Sep. % time NLP Added
# scen. α nodes nodes Time (s) NLP solved cuts Time (s) Nodes
30 0.1 1 1 74.9 99.7 4,506 780 27.2 7
30 0.2 2 2 23.5 99.7 1,470 512 39.7 34
30 0.3 1 1 34.7 99.6 2,171 666 85.0 117
30 0.4 15 3 55.0 99.7 3,396 788 60.1 85
30 0.5 1 1 24.9 99.8 1,425 409 36.0 30
48 0.1 30 3 115.1 99.7 6,643 1,378 868.9 347
48 0.2 29 5 187.3 99.5 11,278 2,121 6,286.4 2,029
48 0.3 38 7 266.5 99.5 16,702 2,642 2,301.4 1,169
48 0.4 14 3 190.4 99.6 11,304 1,615 5,785.1 2,907
48 0.5 19 3 71.0 99.5 4,283 974 52.6 1
60 0.1 1 1 215.4 99.7 12,992 1,956 1,299.7 615
60 0.2 11 3 209.1 99.6 13,091 2,182 1,472.1 891
60 0.3 31 5 377.1 99.4 22,024 3,408 1,111.1 746
60 0.4 106 8 294.9 99.4 18,419 2,659 1,155.8 769
60 0.5 39 6 127.7 99.4 7,923 1,869 406.7 329
72 0.1 3 2 183.8 99.6 11,181 2,399 7,896.0 2,692
72 0.2 29 4 221.9 99.4 13,700 2,698 T.L. 8,575
72 0.3 48 7 284.4 99.5 17,814 2,942 T.L. 11,505
72 0.4 112 8 458.5 99.1 28,658 3,905 T.L. 10,471
72 0.5 161 11 260.1 99.0 16,522 2,844 4,421.3 2,860
90 0.1 45 7 237.6 99.6 14,375 2,295 4,520.6 2,189
90 0.2 33 4 200.9 99.6 11,822 2,062 9,186.7 4,811
90 0.3 29 5 383.6 99.6 23,904 3,602 14,136.2 6,380
90 0.4 131 9 429.7 99.1 26,668 3,845 13,818.4 7,035
90 0.5 94 8 414.2 99.2 26,280 3,821 T.L. 17,077

Table 3
Comparison between sepAll-bigM and BONMIN Branch and Bound on configurations with 10

hydroplants and 30, 48, 60, 72, and 90 scenarios (linear price function).

4.3. Computational performance with step price function. The step price
function modeled in (11a)–(11d) requires binary variables, yielding sets Cx(wi) that
are nonconvex (because of the integrality constraints). However, the continuous relax-
ation of (11a)–(11d) is convex, therefore we can apply our decomposition method to
solve the continuous relaxation of the chance-constrained problem. Such a relaxation
yields dual, i.e., upper, bounds. Our heuristic approach to generate primal bounds
is as follows. First, we apply the Branch-and-Cut algorithm to solve the continuous
relaxation of the chance-constrained problem to optimality, and obtain an exact dual
bound. Then we restart the Branch-and-Cut algorithm, keeping the pool of gener-
ated cuts, and enforcing integrality requirements for scenario subproblems in the cut
generation process, i.e., when solving (PROJ). This way, the Branch-and-Cut algo-
rithm tries to converge to an integer solution, although not necessarily an optimal
one. In our experiments this approach always yields a primal bound that matches the
dual bound, therefore proving that we have found an optimal solution. Notice that
our approach is in general not guaranteed to find primal bounds matching the dual
bound or even any integer solution, but the following two features of our application
may explain why we find optimal integer solutions with such ease after solving the
continuous relaxation:

• In each scenario subproblem, when the quantity of energy sold in period t falls
in the first step of the step price function (larger price for a limited amount
of energy), integrality of the associated yt variable is automatically attained
because of the objective function’s direction, i.e., profit maximization;

• In the master problem, the maximization of a quantile of the profit implies
that the objective function value is given by the minimum profit among sat-
isfied scenarios. The scenario attaining minimum profit is likely to involve a
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Branch and Cut MINLP

B&B Sep. % time MINLP Added
Plants α nodes nodes Time (s) MINLP solved cuts Time (s) Nodes
1 0.1 17 6 24.0 100.0 2529 208 184.4 262
1 0.2 12 5 54.1 100.0 3780 289 283.0 552
1 0.3 25 7 61.1 99.9 4149 319 1,863.4 7,202
1 0.4 30 7 32.0 100.0 3042 340 13,844.6 50,827
1 0.5 2 2 48.2 99.9 3510 315 1,724.7 6,402
2 0.1 42 6 44.7 99.9 4068 430 11,184.3 14,579
2 0.2 19 6 80.1 99.9 4932 459 t.l. 44,120
2 0.3 28 7 67.6 99.9 6102 544 t.l. 48,410
2 0.4 145 15 80.9 99.8 5424 509 t.l. 43,913
2 0.5 2 2 51.4 100.0 3669 463 2,144.2 3,537
5 0.1 10 4 203.5 100.0 11975 1373 7,272.0 5,097
5 0.2 17 6 171.2 99.9 9612 1314 13,161.5 11,400
5 0.3 33 7 206.8 99.9 12414 1546 t.l. 30,940
5 0.4 74 9 204.5 99.8 9630 1535 t.l. 23,131
5 0.5 43 8 132.0 99.9 6684 1350 3,277.8 3,232
7 0.1 26 5 155.7 99.8 7470 1633 8,531.0 4,400
7 0.2 64 9 301.8 99.9 14972 2076 23,673.6 12,202
7 0.3 61 8 356.8 99.8 15826 2232 t.l. 19,806
7 0.4 46 7 267.6 99.9 12491 2008 9,765.6 7,094
7 0.5 100 13 227.9 99.7 11050 1896 3,731.0 2,572
10 0.1 19 4 266.0 99.8 12165 2144 5,890.2 2,226
10 0.2 56 7 476.0 99.7 20477 2796 t.l. 14,775
10 0.3 113 10 622.2 99.3 29469 4041 t.l. 14,027
10 0.4 340 20 903.3 99.2 35838 4793 t.l. 13,922
10 0.5 106 12 647.9 99.3 25136 3933 t.l. 15,833

Table 4
Comparison between sepAll-bigM and BONMIN Branch and Bound on configurations of 1, 2,

5, 7, and 10 hydroplants and 90 scenarios (step price function).

limited amount of water flow, thus a limited energy production that falls in
the first step of the step price function. Not only such a scenario may have an
integral solution to the continuous relaxation, but we may also expect binding
cuts in the master problem to be obtained from scenarios where integrality
constraints are satisfied.

We remark that if the scheme described above fails to produce a feasible integer so-
lution, such a solution for each scenario subproblem can be obtained by rounding
yt to 1 whenever yt > 0 in the solution to its continuous relaxation, and recomput-
ing the corresponding profit, which will in general be lowered. However, this was
never necessary in our experiments, and the suggested procedure has the advantage
of producing (possibly invalid) cuts that describe the production-profit relation to
better inform the master problem. Results for the integer case and a comparison with
the BONMIN Branch-and-Bound performance are reported in Tables 4 and 5. The
columns associated with the Branch-and-Cut algorithm include the dual and primal
bounds computation. On average, computing the dual bound takes 39.5% of the
computing time, and generates 78.6% of the cuts. BONMIN times out on the major-
ity of the instances, and is up to two orders of magnitude slower than our approach
on the instances that it can solve. This is evident from the performance profile in
Figure 3. Summarizing, on the formulation with a step price function that includes
binary variables in the scenario subproblems we are able to find provably optimal
integer solutions on all instances whereas BONMIN solves less than a half within the
time limit, and the solution speed is up to two orders of magnitude faster. However,
it is important to note that in general our approach can only solve the continuous
relaxation of the problem to optimality and may not be able to find a primal bound
matching the dual bound.
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Branch and Cut MINLP

B&B Sep. % time MINLP Added
# scen. α nodes nodes Time (s) MINLP solved cuts Time (s) Nodes
30 0.1 2 2 38.4 100.0 1788 419 272.2 195
30 0.2 10 4 131.1 99.8 3993 1065 218.2 268
30 0.3 21 6 168.8 99.9 4392 1038 2,139.5 3,602
30 0.4 18 4 248.3 99.7 8543 1541 2,713.2 4,137
30 0.5 8 6 109.0 99.9 3300 865 228.1 229
48 0.1 31 5 494.9 99.7 14482 2319 10,709.1 6,724
48 0.2 42 6 396.7 99.6 17485 2625 t.l. 16,838
48 0.3 60 11 679.4 99.5 29203 3747 t.l. 23,453
48 0.4 73 11 422.8 99.5 21396 2753 t.l. 21,517
48 0.5 8 3 105.0 99.8 3143 897 508.7 372
60 0.1 4 3 220.2 99.9 10424 1789 4,508.2 3,000
60 0.2 39 7 475.3 99.7 22994 3588 t.l. 23,961
60 0.3 93 10 708.1 99.4 27992 4096 t.l. 23,582
60 0.4 165 17 660.2 99.3 27661 3696 t.l. 20,994
60 0.5 78 8 132.5 99.8 8515 1631 t.l. 23,648
72 0.1 39 7 311.9 99.8 16260 2884 t.l. 9,584
72 0.2 118 11 663.9 99.4 34044 4450 t.l. 8,920
72 0.3 137 12 814.7 99.4 27280 3881 t.l. 10,680
72 0.4 135 12 701.5 99.5 26291 3466 t.l. 12,087
72 0.5 179 15 655.2 99.3 25632 3844 t.l. 20,070
90 0.1 19 4 266.0 99.8 12165 2144 5,890.2 2,226
90 0.2 56 7 476.0 99.7 20477 2796 t.l. 14,775
90 0.3 113 10 622.2 99.3 29469 4041 t.l. 14,027
90 0.4 340 20 903.3 99.2 35838 4793 t.l. 13,922
90 0.5 106 12 647.9 99.3 25136 3933 t.l. 15,833

Table 5
Comparison between sepAll-bigM and BONMIN Branch and Bound on configurations with 10

hydroplants and 30, 48, 60, 72, and 90 scenarios (step price function).

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90

100

Normalized time τ

P
e
r
c
. 
o
f 
in
s
t
a
n
c
e
s

 

 

Branch-and-Cut

MINLP Bonmin

Fig. 3. Performance profiles for 65 instances (step price function).

4.4. The effect of α on the profit. We now discuss the trade-off between
profit and risk allowed by our chance-constrained formulation for the mid-term hydro
scheduling problem. The results discussed here are obtained with the linear price
function, see Sect. 3.3.2. Figure 4 shows, for several configurations of the system (1 to
10 hydroplants), the objective function value (quantile of the profit) of the solutions
as a function of the level of risk α, restricted to the case of 90 scenarios. This allows
the decision maker to easily evaluate not only the (minimum) profit they can obtain
for a specified value of the risk, but also what profit they could expect by accepting
a larger or smaller uncertainty. Of course, the objective function value obtained with
a given α corresponds to the minimum profit that can be achieved with probability
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α E[ϕ] σ
0.00 561.0 198.9
0.05 595.3 203.1
0.10 600.3 211.5
0.20 588.3 252.5
0.30 594.0 257.4
0.40 582.6 257.7
0.50 518.7 330.1

Table 6
Expected profit in eM (second column) and standard deviation (third column) for different

values of α.
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Fig. 4. Trade-off between profit in eM and level of risk: the x-axis reports the risk level α, and
the y-axis the corresponding objective function value.

1−α, but the solution may be infeasible with probability α. In this section, α = 0.05
is included in the comparison besides the α values tested above.

Once the problem is optimally solved for a specific level of risk α, the decision
maker can also evaluate the distribution of the profits associated with the different
scenarios. Indeed, a solution to the master problem specifies a value for the flow
variables: this allows us to compute the associated profit for all satisfied scenarios,
and also for those unsatisfied scenarios for which the flow variables define a physi-
cally feasible solution (i.e., those scenarios for which the water balance constraints
are satisfied, but constraints (6) are not). Figure 5 depicts the inverse distribution
function of the profit for the case of 10 hydroplants. We remark that here, and in the
computation of expected profits below, we are assuming that the profit is zero when-
ever a solution violates the water conservation constraints. The solution obtained
with α = 0 (all scenarios are satisfied) achieved a profit that is consistently below
the other solutions, except for scenarios when the other solutions are infeasible. As
expected, there is a spike in each curve when the value on the x-axis corresponds to
the level of risk α being optimized. It is interesting to note that even a risk-averse
solution (α = 0.05) achieves a profit that is relatively similar to the least risk-averse
solution (α = 0.5), although in the most favorable scenarios (right part of the graph),
α = 0.5 typically yields better profit than α = 0.05. On the other hand, for the most
unfavorable scenarios, up to a cumulative probability of almost 0.5, the solutions with
α = 0.05 and α = 0.1 perform much better than with α = 0.5. Solutions obtained
with α ∈ {0.2, 0.3, 0.4} are similar to each other, and they all perform worse than
α = 0.1 for a cumulative probability of up to 0.2, as expected, but perform better
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Fig. 5. Inverse distribution function of the profit.

in the most favorable scenarios, achieving approximately 50M higher profit in some
cases. Table 6 reports the expected profit and the standard deviation of the solu-
tions corresponding to the tested values of α. We can see that relaxing some of the
constraints with small probability (≤ 0.05) yields an increase of the expected profit
by 6.1% as compared to the solution with α = 0, although unsurprisingly this comes
at the cost of a slightly larger standard deviation. The highest expected profit is
achieved with α = 0.1, where the increase is of 7% as compared to α = 0. Allowing
constraint violations with higher probability produces infeasible solutions in a larger
number of scenarios, and the corresponding lack of profit decreases the expected gain.
When α is very large (α = 0.5), the solution obtained is infeasible for many scenarios,
leading to an expected profit almost 10% lower than the conservative solution with
α = 0.

Summarizing, our computational experiments indicate that introducing a moder-
ate amount of flexibility in the formulation, namely by allowing some constraints to
be violated with small probability (0.05 or 0.1), can increase the expected profit by a
significant amount. However, there are diminishing returns of increasing α, and when
the allowed probability of violating the constraints becomes too large, the resulting
trade-off between risk and rewards seems to be unfavorable, yielding a considerable
drop in the expected profit.

5. Conclusions. We have proposed a Branch-and-Cut algorithm for a class of
nonlinear chance-constrained mathematical optimization problems with a finite num-
ber of scenarios. The algorithm is based on an implicit Benders decomposition scheme,
where we generate cutting planes as outer approximation constraints from the pro-
jection of the feasible region on suitable subspaces.

The algorithm has been theoretically analyzed and computationally evaluated on
a mid-term hydro scheduling problem by using data from ten hydroplants in Greece.
We have shown that the proposed methodology is capable of solving instances orders
of magnitude faster than applying a general-purpose solver for convex mixed-integer
nonlinear programming problems to the deterministic reformulation, and scales much
better with the number of scenarios.

From the economical standpoint, our numerical experiments have shown that the
introduction of a small amount of flexibility in the formulation, by allowing constraints
to be violated with a joint probability ≤ 5%, increases the expected profit by 6.1%
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on our dataset.
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stochastic optimal power management: A disaggregated approach using precondi-
tioners. Computational Optimization ans Applications, 20(3):227–244, 2001.

G.C. Baslis and G.A. Bakirtzis. Mid-term stochastic scheduling of a price-maker
hydro producer with pumped storage. IEEE Transactions on Power Systems, 26
(4):1856–1865, 2011.

D.P. Bertsekas. Nonlinear Programming, 2nd Edition. Athena Scientific, Belmont,
MA, 1999.

J.A. Bloom. Solving an electricity generating capacity expansion planning problem
by generalized Benders’ decomposition. Operations Research, 31(1):84–100, 1983.

P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuéjols, I.E. Grossmann, C.D. Laird,
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