
RC25602 (WAT1604-080) April 25, 2016
Mathematics

Research Division
Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

IBM Research Report

Optimization over Structured Subsets of Positive Semidefinite
Matrices via Column Generation

Amir Ali Ahmadi1, Sanjeeb Dash2, Georgina Hall1

1Princeton University

2IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598 USA

Optimization over Structured Subsets of
Positive Semidefinite Matrices via Column Generation

Amir Ali Ahmadi∗

Princeton, ORFE
a a a@princeton.edu

Sanjeeb Dash
IBM Research

sanjeebd@us.ibm.com

Georgina Hall∗

Princeton, ORFE
gh4@princeton.edu

March 8, 2016

Abstract

We develop algorithms to construct inner approximations of the cone of positive semidefinite matri-
ces via linear programming and second order cone programming. Starting with an initial linear algebraic
approximation suggested recently by Ahmadi and Majumdar, we describe an iterative process through
which our approximation is improved at every step. This is done using ideas from column generation
in large-scale linear programming. We then apply these techniques to approximate the sum of squares
cone in a nonconvex polynomial optimization setting, and the copositive cone for a discrete optimization
problem.

1 Introduction

Semidefinite programming is a powerful tool in optimization that is used in many different contexts, perhaps
most notably to obtain strong bounds on discrete optimization problems or nonconvex polynomial programs.
One difficulty in applying semidefinite programming is that state-of-the-art general-purpose solvers often
cannot solve very large instances reliably and in a reasonable amount of time. As a result, at relatively
large scales, one has to resort either to specialized solution techniques and algorithms that employ problem
structure, or to easier optimization problems that lead to weaker bounds. We will focus on the latter approach
in this paper.

At a high level, our goal is to not solve semidefinite programs (SDPs) to optimality, but rather replace
them with cheaper conic relaxations—linear and second order cone relaxations to be precise—that return
useful bounds quickly. Throughout the paper, we will aim to find lower bounds (for minimization prob-
lems); i.e., bounds that certify the distance of a candidate solution to optimality. Fast, good-quality lower
bounds are especially important in the context of branch-and-bound schemes, where one needs to strike a
delicate balance between the time spent on bounding and the time spent on branching, in order to keep the
overall solution time low. Currently, in commercial integer programming solvers, almost all lower bounding
approaches using branch-and-bound schemes exclusively produce linear inequalities. Even though semidef-
inite cuts are known to be stronger, they are often too expensive to be used even at the root node of a

∗Amir Ali Ahmadi and Georgina Hall are partially supported by the Young Investigator Award of the AFOSR and the CAREER
Award of the NSF.

1

branch-and-bound tree. Because of this, many high-performance solvers, e.g., IBM ILOG CPLEX [16] and
Gurobi [1], do not even provide an SDP solver and instead solely work with LP and SOCP relaxations. Our
goal in this paper is to offer some tools that exploit the power of SDP-based cuts, while staying entirely
in the realm of LP and SOCP. We apply these tools to classical problems in both nonconvex polynomial
optimization and discrete optimization.

Techniques that provide lower bounds on minimization problems are precisely those that certify non-
negativity of objective functions on feasible sets. To see this, note that a scalar γ is a lower bound on the
minimum value of a function f : Rn → R on a set K ⊆ Rn, if and only if f(x)− γ ≥ 0 for all x ∈ K. As
most discrete optimization problems (including those in the complexity class NP) can be written as polyno-
mial optimization problems, the problem of certifying nonnegativity of polynomial functions, either globally
or on basic semialgebraic sets, is a fundamental one. A polynomial p(x) := p(x1, . . . , xn) is said to be non-
negative, if p(x) ≥ 0 for all x ∈ Rn. Unfortunately, even in this unconstrained setting, the problem of testing
nonnegativity of a polynomial p is NP-hard even when its degree equals four. This is an immediate corollary
of the fact that checking if a symmetric matrix M is copositive—i.e., if xTMx ≥ 0, ∀x ≥ 0—is NP-hard.1

Indeed, M is copositive if and only if the homogeneous quartic polynomial p(x) =
∑

i,jMijx
2
ix

2
j is non-

negative.
Despite this computational complexity barrier, there has been great success in using sum of squares

(SOS) programming [35], [25], [33] to obtain certificates of nonnegativity of polynomials in practical set-
tings. It is known from Artin’s solution [7] to Hilbert’s 17th problem that a polynomial p(x) is nonnegative
if and only if

p(x) =

∑t
i=1 q

2
i (x)∑r

i=1 g
2
i (x)

⇔ (

r∑
i=1

g2i (x))p(x) =

t∑
i=1

q2i (x) (1)

for some polynomials q1, . . . , qt, g1, . . . , gr. When p is a quadratic polynomial, then the polynomials gi are
not needed and the polynomials qi can be assumed to be linear functions. In this case, by writing p(x) as

p(x) =

(
1

x

)T
Q

(
1

x

)
,

where Q is an (n+ 1)× (n+ 1) symmetric matrix, checking nonnegativity of p(x) reduces to checking the
nonnegativity of the eigenvalues of Q; i.e., checking if Q is positive semidefinite.

More generally, if the degrees of qi and gi are fixed in (1), then checking for a representation of p of
the form in (1) reduces to solving an SDP, whose size depends on the dimension of x, and the degrees
of p, qi and gi [35]. This insight has led to significant progress in certifying nonnegativity of polynomials
arising in many areas. In practice, the “first level” of the SOS hierarchy is often the one used, where the
polynomials gi are left out and one simply checks if p is a sum of squares of other polynomials. In this case
already, because of the numerical difficulty of solving large SDPs, the polynomials that can be certified to
be nonnegative usually do not have very high degrees or very many variables. For example, finding a sum of
squares certificate that a given quartic polynomial over n variables is nonnegative requires solving an SDP
involving roughly O(n4) constraints and a positive semidefinite matrix variable of size O(n2) × O(n2).
Even for a handful of or a dozen variables, the underlying semidefinite constraints prove to be expensive.
Indeed, in the absence of additional structure, most examples in the literature have less than 10 variables.

1Weak NP-hardness of testing matrix copositivity is originally proven by Murty and Kabadi [32]; its strong NP-hardness is
apparent from the work of de Klerk and Pasechnik [18].

2

Recently other systematic approaches to certifying nonnegativity of polynomials have been proposed
which lead to less expensive optimization problems than semidefinite programming problems. In particu-
lar, Ahmadi and Majumdar [4], [3] introduce “DSOS and SDSOS” optimization techniques, which replace
semidefinite programs arising in the nonnegativity certification problem by linear programs and second-
order cone programs. Instead of optimizing over the cone of sum of squares polynomials, the authors
optimize over two subsets which they call “diagonally dominant sum of squares” and “scaled diagonally
dominant sum of squares” polynomials (see Section 2.1 for formal definitions). In the language of semidef-
inite programming, this translates to solving optimization problems over the cone of diagonally dominant
matrices and scaled diagonally dominant matrices. These can be done by LP and SOCP respectively. The
authors have had notable success with these techniques in different applications. For instance, they are able
to run these relaxations for polynomial optimization problems of degree 4 in 70 variables in the order of a
few minutes. They have also used their techniques to push the size limits of some SOS problems in controls;
examples include stabilizing a model of a humanoid robot with 30 state variables and 14 control inputs [29],
or exploring the real-time applications of SOS techniques in problems such as collision-free autonomous
motion planning [5].

Motivated by these results, our goal in this paper is to start with DSOS and SDSOS techniques and
improve on them. By exploiting ideas from column generation in large-scale linear programming, and by
appropriately interpreting the DSOS and SDSOS constraints, we produce several iterative LP and SOCP-
based algorithms that improve the quality of the bounds obtained from the DSOS and SDSOS relaxations.
Geometrically, this amounts to optimizing over structured subsets of sum of squares polynomials that are
larger than the sets of diagonally dominant or scaled diagonally dominant sum of squares polynomials. For
semidefinite programming, this is equivalent to optimizing over structured subsets of the cone of positive
semidefinite matrices. An important distinction to make between the DSOS/SDSOS/SOS approaches and
our approach, is that our approximations iteratively get larger in the direction of the given objective function,
unlike the DSOS, SDSOS, and SOS approaches which all try to inner approximate the set of nonnegative
polynomials irrespective of any particular direction.

In related literature, Krishnan and Mitchell use linear programming techniques to approximately solve
SDPs by taking a semi-infinite LP representation of the SDP and applying column generation [24]. In
addition, Kim and Kojima solve second order cone relaxations of SDPs which are closely related to the dual
of an SDSOS program in the case of quadratic programming [23]; see Section 3 for further discussion of
these two papers.

The organization of the rest of the paper is as follows. In the next section, we review relevant notation,
and discuss the prior literature on DSOS and SDSOS programming. In Section 3, we give a high-level
overview of our column generation approaches in the context of a general SDP. In Section 4, we describe
an application of our ideas to nonconvex polynomial optimization and present computational experiments
with certain column generation implementations. In Section 5, we apply our column generation approach
to approximate a copositive program arising from a specific discrete optimization application (namely the
stable set problem). All the work in these sections can be viewed as providing techniques to optimize over
subsets of positive semidefinite matrices. We then conclude in Section 6 with some future directions, and
discuss ideas for column generation which allow one to go beyond subsets of positive semidefinite matrices
in the case of polynomial and copositive optimization.

3

2 Preliminaries

Let us first introduce some notation on matrices. We denote the set of real symmetric n × n matrices by
Sn. Given two matrices A and B in Sn, we denote their matrix inner product by A · B :=

∑
i,j AijBij =

Trace(AB). The set of symmetric matrices with nonnegative entries is denoted byNn. A symmetric matrix
A is positive semidefinite (psd) if xTAx ≥ 0 for all x ∈ Rn; this will be denoted by the standard notation
A � 0, and our notation for the set of n× n psd matrices is Pn. A matrix A is copositive if xTAx ≥ 0 for
all x ≥ 0. The set of copositive matrices is denoted by Cn. All three sets Nn, Pn, Cn are convex cones and
we have the obvious inclusion Nn + Pn ⊆ Cn. This inclusion is strict if n ≥ 5 [14], [13]. For a cone K of
matrices in Sn, we define its dual cone K∗ as {Y ∈ Sn : Y ·X ≥ 0, ∀X ∈ K}.

For a vector variable x ∈ Rn and a vector q ∈ Zn+, let a monomial in x be denoted as xq := Πn
i=1x

qi
i ,

and let its degree be
∑n

i=1 qi. A polynomial is said to be homogeneous or a form if all of its monomials
have the same degree. A form p(x) in n variables is nonnegative if p(x) ≥ 0 for all x ∈ Rn, or equivalently
for all x on the unit sphere in Rn. The set of nonnegative (or positive semidefinite) forms in n variables
and degree d is denoted by PSDn,d. A form p(x) is a sum of squares (sos) if it can be written as p(x) =∑r

i=1 q
2
i (x) for some forms q1, . . . , qr. The set of sos forms in n variables and degree d is a cone denoted

by SOSn,d. We have the obvious inclusion SOSn,d ⊆ PSDn,d, which is strict unless d = 2, or n = 2, or
(n, d) = (3, 4) [21]. Let z(x, d) be the vector of all monomials of degree exactly d; it is well known that a
form p of degree 2d is sos if and only if it can be written as p(x) = zT (x, d)Qz(x, d), for some psd matrix
Q [35], [34]. The size of the matrix Q, which is often called the Gram matrix, is

(
n+d−1

d

)
×
(
n+d−1

d

)
. At

the price of imposing a semidefinite constraint of this size, one obtains the very useful ability to search and
optimize over the convex cone of sos forms via semidefinite programming.

2.1 DSOS and SDSOS optimization

In order to alleviate the problem of scalability posed by the SDPs arising from sum of squares programs, Ah-
madi and Majumdar [4], [3]2 recently introduced similar-purpose LP and SOCP-based optimization prob-
lems that they refer to as DSOS and SDSOS programs. Since we will be building on these concepts, we
briefly review their relevant aspects to make our paper self-contained.

The idea in [4], [3] is to replace the condition that the Gram matrix Q be positive semidefinite with
stronger but cheaper conditions in the hope of obtaining more efficient inner approximations to the cone
SOSn,d. Two such conditions come from the concepts of diagonally dominant and scaled diagonally dom-
inant matrices in linear algebra. We recall these definitions below.

Definition 2.1. A symmetric matrix A = (aij) is diagonally dominant (dd) if aii ≥
∑

j 6=i |aij | for all i. We
say that A is scaled diagonally dominant (sdd) if there exists a diagonal matrix D, with positive diagonal
entries, such that DAD is diagonally dominant.

We refer to the set of n × n dd (resp. sdd) matrices as DDn (resp. SDDn). The following inclusions
are a consequence of Gershgorin’s circle theorem:

DDn ⊆ SDDn ⊆ Pn.
2The work in [4] is currently in preparation for submission; the one in [3] is a shorter conference version of [4] which has

already appeared. The presentation of the current paper is meant to be self-contained.

4

We now use these matrices to introduce the cones of “dsos” and “sdsos” forms and some of their gen-
eralizations, which all constitute special subsets of the cone of nonnegative forms. We remark that in the
interest of brevity, we do not give the original definitions of dsos and sdsos polynomials as they appear in [4]
(as sos polynomials of a particular structure), but rather an equivalent characterization of them that is more
useful for our purposes. The equivalence is proven in [4].

Definition 2.2 ([3, 4]). Recall that z(x, d) denotes the vector of all monomials of degree exactly d. A form
p(x) of degree 2d is said to be

(i) diagonally-dominant-sum-of-squares (dsos) if it admits a representation as
p(x) = zT (x, d)Qz(x, d), where Q is a dd matrix,

(ii) scaled-diagonally-dominant-sum-of-squares (sdsos) if it admits a representation as
p(x) = zT (x, d)Qz(x, d), where Q is an sdd matrix,

(iii) r-diagonally-dominant-sum-of-squares (r-dsos) if there exists a positive integer r such that
p(x)(

∑n
i=1 x

2
i)
r is dsos,

(iv) r-scaled diagonally-dominant-sum-of-squares (r-sdsos) if there exists a positive integer r such that
p(x)(

∑n
i=1 x

2
i)
r is sdsos.

We denote the cone of forms in n variables and degree d that are dsos, sdsos, r-dsos, and r-sdsos by
DSOSn,d, SDSOSn,d, rDSOSn,d, and rSDSOSn,d respectively. The following inclusion relations are
straightforward:

DSOSn,d ⊆ SDSOSn,d ⊆ SOSn,d ⊆ PSDn,d,

rDSOSn,d ⊆ rSDSOSn,d ⊆ PSDn,d, ∀r.

The multiplier (
∑n

i=1 x
2
i)
r should be thought of as a special denominator in the Artin-type representation

in (1). By appealing to some theorems of real algebraic geometry, it is shown in [4] that under some
conditions, as the power r increases, the sets rDSOSn,d (and hence rSDSOSn,d) fill up the entire cone
PSDn,d. We will mostly be concerned with the cones DSOSn,d and SDSOSn,d, which correspond to the
case where r = 0. From the point of view of optimization, our interest in all of these algebraic notions stems
from the following theorem.

Theorem 2.3 ([3, 4]). For any integer r ≥ 0, the cone rDSOSn,d is polyhedral and the cone rSDSOSn,d
has a second order cone representation. Moreover, for any fixed d and r, one can optimize a linear function
over rDSOSn,d (resp. rSDSOSn,d) by solving a linear program (resp. second order cone program) of size
polynomial in n.

The “LP part” of this theorem is not hard to see. The equality p(x)(
∑n

i=1 x
2
i)
r = zT (x, d)Qz(x, d)

gives rise to linear equality constraints between the coefficients of p and the entries of the matrix Q (whose
size is polynomial in n for fixed d and r). The requirement of diagonal dominance on the matrix Q can also
be described by linear inequality constraints on Q. The “SOCP part” of the statement comes from the fact,
shown in [4], that a matrix A is sdd if and only if it can be expressed as

A =
∑
i<j

M ij
2×2,

5

where eachM ij
2×2 is an n×n symmetric matrix with zeros everywhere except for four entriesMii,Mij ,Mji,Mjj ,

which must make the 2× 2 matrix
[
Mii Mij

Mji Mjj

]
symmetric and positive semidefinite. These constraints are

rotated quadratic cone constraints and can be imposed using SOCP [6], [27]:

Mii ≥ 0,
∣∣∣∣∣∣(2Mij

Mii −Mjj

) ∣∣∣∣∣∣≤Mii +Mjj .

We refer to optimization problems with a linear objective posed over the convex cones DSOSn,d,
SDSOSn,d, and SOSn,d as DSOS programs, SDSOS programs, and SOS programs respectively. In gen-
eral, quality of approximation decreases, while scalability increases, as we go from SOS to SDSOS to DSOS
programs. Depending on the size of the application at hand, one may choose one approach over the other.
In related work, Ben-Tal and Nemirovski [10] and Vielma, Ahmed and Nemhauser [42] approximate SOCPs
by LPs and produce approximation guarantees.

3 Column generation for inner approximation of positive semidefinite cones

In this section, we describe a natural approach to apply techniques from the theory of column genera-
tion [9], [19] in large-scale optimization to the problem of optimizing over nonnegative polynomials. Here
is the rough idea: We can think of all SOS/SDSOS/DSOS approaches as ways of proving that a polynomial
is nonnegative by writing it as a nonnegative linear combination of certain “atom” polynomials that are al-
ready known to be nonnegative. For SOS, these atoms are all the squares (there are infinitely many). For
DSOS, there is actually a finite number of atoms corresponding to the extreme rays of the cone of diagonally
dominant matrices (see Theorem 3.1 below). For SDSOS, once again we have infinitely many atoms, but
with a specific structure which is amenable to an SOCP representation. Now the column generation idea is
to start with a certain “cheap” subset of atoms (columns) and only add new ones—one or a limited number
in each iteration—if they improve our desired objective function. This results in a sequence of monotoni-
cally improving bounds; we stop the column generation procedure when we are happy with the quality of
the bound, or when we have consumed a predetermined budget on time.

In the LP case, after the addition of one or a few new atoms, one can obtain the new optimal solution
from the previous solution in much less time than required to solve the new problem from scratch. However,
as we show with some examples in this paper, even if one were to resolve the problems from scratch after
each iteration (as we do for all of our SOCPs and some of our LPs), the overall procedure is still relatively
fast. This is because in each iteration, with the introduction of a constant number k of new atoms, the
problem size essentially increases only by k new variables and/or k new constraints. This is in contrast to
other types of hierarchies—such as the rDSOS and rSDSOS hierarchies of Definition 2.2—that blow up in
size by a factor that depends on the dimension in each iteration.

In the next two subsections we make this general idea more precise. While our focus in this section is
on column generation for general SDPs, the next two sections show how the techniques are useful for ap-
proximation of SOS programs for polynomial optimization (Section 4), and copositive programs for discrete
optimization (Section 5).

6

3.1 LP-based column generation

Consider a general SDP
max
y∈Rm

bT y

s.t. C −
m∑
i=1

yiAi � 0,
(2)

with b ∈ Rm, C,Ai ∈ Sn as input, and its dual

min
X∈Sn

C ·X

s.t. Ai ·X = bi, i = 1, . . . ,m,

X � 0.

(3)

Our goal is to inner approximate the feasible set of (2) by increasingly larger polyhedral sets. We
consider LPs of the form

max
y,α

bT y

s.t. C −
m∑
i=1

yiAi =

t∑
i=1

αiBi,

αi ≥ 0, i = 1, . . . , t.

(4)

Here, the matrices B1, . . . , Bt ∈ Pn are some fixed set of positive semidefinite matrices (our psd
“atoms”). To expand our inner approximation, we will continually add to this list of matrices. This is
done by considering the dual LP

min
X∈Sn

C ·X

s.t. Ai ·X = bi, i = 1, . . . ,m,

X ·Bi ≥ 0, i = 1, . . . , t,

(5)

which in fact gives a polyhedral outer approximation (i.e., relaxation) of the spectrahedral feasible set of
the SDP in (3). If the optimal solution X∗ of the LP in (5) is already psd, then we are done and have
found the optimal value of our SDP. If not, we can use the violation of positive semidefiniteness to extract
one (or more) new psd atoms Bj . Adding such atoms to (4) is called column generation, and the problem
of finding such atoms is called the pricing subproblem. (On the other hand, if one starts off with an LP
of the form (5) as an approximation of (3), then the approach of adding inequalities to the LP iteratively
that are violated by the current solution is called a cutting plane approach, and the associated problem of
finding violated constraints is called the separation subproblem.) The simplest idea for pricing is to look at
the eigenvectors vj of X∗ that correspond to negative eigenvalues. From each of them, one can generate a
rank-one psd atom Bj = vjv

T
j , which can be added with a new variable (“column”) αj to the primal LP in

(4), and as a new constraint (“cut”) to the dual LP in (5). The subproblem can then be defined as getting
the most negative eigenvector, which is equivalent to minimizing the quadratic form xTX∗x over the unit
sphere {x| ||x|| = 1}. Other possible strategies are discussed later in the paper.

This LP-based column generation idea is rather straightforward, but what does it have to do with DSOS
optimization? The connection comes from the extreme-ray description of the cone of diagonally dominant

7

matrices, which allows us to interpret a DSOS program as a particular and effective way of obtaining n2

initial psd atoms.
Let Un,k denote the set of vectors in Rn which have at most k nonzero components, each equal to ±1,

and define Un,k ⊂ Sn to be the set of matrices

Un,k := {uuT : u ∈ Un,k}.

For a finite set of matrices T = {T1, . . . , Tt}, let

cone(T) := {
t∑
i=1

αiTi : α1, . . . , αt ≥ 0}.

Theorem 3.1 (Barker and Carlson [8]). DDn = cone(Un,2).

This theorem tells us that DDn has exactly n2 extreme rays. It also leads to a convenient representation
of the dual cone:

DD∗n = {X ∈ Sn : vTi Xvi ≥ 0, for all vectors vi with at most 2 nonzero components, each equal to ±1}.

Throughout the paper, we will be initializing our LPs with the DSOS bound; i.e., our initial set of
psd atoms Bi will be the n2 rank-one matrices uiuTi in Un,2. This is because this bound is often cheap
and effective. Moreover, it guarantees feasibility of our initial LPs (see Theorems 4.1 and 5.1), which is
important for starting column generation. One also readily sees that the DSOS bound can be improved if we
were to instead optimize over the cone Un,3, which has n3 atoms. However, in settings that we are interested
in, we cannot afford to include all these atoms; instead, we will have pricing subproblems that try to pick a
useful subset (see Section 4).

We remark that an LP-based column generation idea similar to the one in this section is described in
[24], where it is used as a subroutine for solving the maxcut problem. The method is comparable to ours
inasmuch as some columns are generated using the eigenvalue pricing subproblem. However, contrary to us,
additional columns specific to max cut are also added to the primal. The initialization step is also differently
done, as the matricesBi in (4) are initially taken to be inUn,1 and not inUn,2. (This is equivalent to requiring
the matrix C −

∑m
i=1 yiAi to be diagonal instead of diagonally dominant in (4).)

Another related work is [40]. In this paper, the initial LP relaxation is obtained via RLT (Reformulation-
Linearization Techniques) as opposed to our diagonally dominant relaxation. The cuts are then generated
by taking vectors which violate positive semidefiniteness of the optimal solution as in (5). The separation
subproblem that is solved though is different than the ones discussed here and relies on anLU decomposition
of the solution matrix.

3.2 SOCP-based column generation

In a similar vein, we present an SOCP-based column generation algorithm that in our experience often does
much better than the LP-based approach. The idea is once again to optimize over structured subsets of the
positive semidefinite cone that are SOCP representable and that are larger than the set SDDn of scaled
diagonally dominant matrices. This will be achieved by working with the following SOCP

8

max
y∈Rm,aji

bT y

s.t. C −
m∑
i=1

yiAi =
t∑
i=1

Vi

(
a1i a2i
a2i a3i

)
V T
i ,(

a1i a2i
a2i a3i

)
� 0, i = 1, . . . , t.

(6)

Here, the positive semidefiniteness constraints on the 2×2 matrices can be imposed via rotated quadratic
cone constraints as explained in Section 2.1. The n× 2 matrices Vi are fixed for all i = 1, . . . , t. Note that
this is a direct generalization of the LP in (4), in the case where the atoms Bi are rank-one. To generate a
new SOCP atom, we work with the dual of (6):

min
X∈Sn

C ·X

s.t. Ai ·X = bi, i = 1, . . . ,m,

V T
i XVi � 0, i = 1, . . . , t.

(7)

Once again, if the optimal solution X∗ is psd, we have solved our SDP exactly; if not, we can use X∗

to produce new SOCP-based cuts. For example, by placing the two eigenvectors of X∗ corresponding to
its two most negative eigenvalues as the columns of an n × 2 matrix Vt+1, we have produced a new useful
atom. (Of course, we can also choose to add more pairs of eigenvectors and add multiple atoms.) As in the
LP case, by construction, our bound can only improve in every iteration.

We will always be initializing our SOCP iterations with the SDSOS bound. It is not hard to see that this
corresponds to the case where we have

(
n
2

)
initial n× 2 atoms Vi, which have zeros everywhere, except for

a 1 in the first column in position j and a 1 in the second column in position k > j. We denote the set of all
such n× 2 matrices by Vn,2.

The first step of our procedure is carried out already in [23] for approximating solutions to QCQPs.
Furthermore, the work in [23] shows that for a particular class of QCQPs, its SDP relaxation and its SOCP
relaxation (written respectively in the form of (3) and (7)) are exact.

(a) LP starting with DSOS and adding 5 atoms. (b) SOCP starting with SDSOS and adding 5 atoms.

Figure 1: LP and SOCP-based column generation for inner approximation of a spectrahedron.

9

Figure 1 shows an example of both the LP and SOCP column generation procedures. We produced two
10 × 10 random symmetric matrices E and F . The outer most set is the feasible set of an SDP with the
constraint I + xE + yF � 0. (Here, I is the 10× 10 identity matrix.) The SDP wishes to maximize x+ y

over this set. The innermost set in Figure 1(a) is the polyhedral set where I+xE+yF is dd. The innermost
set in Figure 1(b) is the SOCP-representable set where I+xE+yF is sdd. In both cases, we do 5 iterations
of column generation that expand these sets by introducing one new atom at a time. These atoms come
from the most negative eigenvector (resp. the two most negative eigenvectors) of the dual optimal solution
as explained above. Note that in both cases, we are growing our approximation of the positive semidefinite
cone in the direction that we care about (the northeast). This is in contrast to algebraic hierarchies based
on “positive multipliers” (see the rDSOS and rSDSOS hierarchies in Definition 2.2 for example), which
completely ignore the objective function.

4 Nonconvex polynomial optimization

In this section, we apply the ideas described in the previous section to sum of squares algorithms for non-
convex polynomial optimization. In particular, we consider the NP-hard problem of minimizing a form (of
degree ≥ 4) on the sphere. Recall that z(x, d) is the vector of all monomials in n variables with degree
d. Let p(x) be a form with n variables and even degree 2d, and let coef(p) be the vector of its coeffi-
cients with the monomial ordering given by z(x, 2d). Thus p(x) can be viewed as coef(p)T z(x, 2d). Let
s(x) := (

∑n
i=1 x

2
i)
d. With this notation, the problem of minimizing a form p on the unit sphere can be

written as

max
λ

λ

s.t. p(x)− λs(x) ≥ 0, ∀x ∈ Rn. (8)

With the SOS programming approach, the following SDP is solved to get the largest scalar λ and an SOS
certificate proving that p(x)− λs(x) is nonnegative:

max
λ,Y

λ

s.t. p(x)− λs(x) = zT (x, d)Y z(x, d), (9)

Y � 0.

The sum of squares certificate is directly read from an eigenvalue decomposition of the solution Y to the
SDP above and has the form

p(x)− λs(x) ≥
∑
i

(zT (x, d)ui)
2,

where Y =
∑

i uiu
T
i . Since all sos polynomials are nonnegative, the optimal value of the SDP in (9) is a

lower bound to the optimal value of the optimization problem in (8). Unfortunately, before solving the SDP,
we do not have access to the vectors ui in the decomposition of the optimal matrix Y . However, the fact
that such vectors exist hints at how we should go about replacing Pn by a polyhedral restriction in (9): If
the constraint Y � 0 is changed to

Y =
∑
u∈U

αuuu
T , αu ≥ 0, (10)

10

where U is a finite set, then (9) becomes an LP. This is one interpretation of Ahmadi and Majumdar’s work
in [3, 4] where they replace Pn by DDn. Indeed, this is equivalent to taking U = Un,2 in (10), as shown in
Theorem 3.1. We are interested in extending their results by replacing Pn by larger restrictions than DDn.
A natural candidate for example would be obtained by changing Un,2 to Un,3. However, although Un,3 is
finite, it contains a very large set of vectors even for small values of n and d. For instance, when n = 30 and
d = 4, Un,3 has over 66 million elements. Therefore we use column generation ideas to iteratively expand
U in a manageable fashion. To initialize our procedure, we would like to start with good enough atoms to
have a feasible LP. The following result guarantees that replacing Y � 0 with Y ∈ DDn always yields an
initial feasible LP in the setting that we are interested in.

Theorem 4.1. For any form p of degree 2d, there exists λ ∈ R such that p(x)− λ(
∑n

i=1 x
2
i)
d is dsos.

Proof. As before, let s(x) = (
∑n

i=1 x
2
i)
d. We observe that the form s(x) is strictly in the interior of

DSOSn,2d. Indeed, by expanding out the expression we see that we can write s(x) as zT (x, d)Qz(x, d),
where Q is a diagonal matrix with all diagonal entries positive. So Q is in the interior of DD(n+d−1

d), and

hence s(x) is in the interior of DSOSn,2d. This implies that for α > 0 small enough, the form

(1− α)s(x) + αp(x)

will be dsos. Since DSOSn,2d is a cone, the form

(1− α)

α
s(x) + p(x)

will also be dsos. By taking λ to be smaller than or equal to −1−α
α , the claim is established.

As DDn ⊆ SDDn, the theorem above implies that replacing Y � 0 with Y ∈ SDDn also yields an
initial feasible SOCP. Motivated in part by this theorem, we will always start our LP-based iterative process
with the restriction that Y ∈ DDn. Let us now explain how we improve on this approximation via column
generation.

Suppose we have a set U of vectors in Rn, whose outerproducts form all of the rank-one psd atoms that
we want to consider. This set could be finite but very large, or even infinite. For our purposes U always
includes Un,2, as we initialize our algorithm with the dsos relaxation. Let us consider first the case where U
is finite: U = {u1, . . . , ut}. Then the problem that we are interested in solving is

max
λ,αj

λ

s.t. p(x)− λs(x) = zT (x, d)Y z(x, d),

Y =
t∑

j=1

αjuju
T
j , αj ≥ 0 for j = 1, . . . , t.

Suppose z(x, 2d) has m monomials and let the ith monomial in p(x) have coefficient bi, i.e., coef(p) =

(b1, . . . , bm)T . Also let si be the ith entry in coef(s(x)). We rewrite the previous problem as

max
λ,αj

λ

s.t. Ai · Y + λsi = bi for i = 1, . . . ,m,

Y =

t∑
j=1

αjuju
T
j , αj ≥ 0 for j = 1, . . . , t.

11

where Ai is a matrix that collects entries of Y that contribute to the ith monomial in z(x, 2d), when
zT (x, d)Y z(x, d) is expanded out. The above is equivalent to

max
λ,αj

λ

s.t.
∑
j

αj(Ai · ujuTj) + λsi = bi for i = 1, . . . ,m, (11)

αj ≥ 0 for j = 1, . . . , t.

The dual problem is

min
µ

m∑
i=1

µibi

s.t. (
m∑
i=1

µiAi) · ujuTj ≥ 0, j = 1, . . . , t,

m∑
i=1

µisi = 1.

In the column generation framework, suppose we consider only a subset of the primal LP variables cor-
responding to the matrices u1uT1 , . . . , uku

T
k for some k < t (call this the reduced primal problem). Let

(ᾱ1, . . . , ᾱk) stand for an optimal solution of the reduced primal problem and let µ̄ = (µ̄1, . . . , µ̄m) stand
for an optimal dual solution. If we have

(

m∑
i=1

µ̄iAi) · ujuTj ≥ 0 for j = k + 1, . . . , t, (12)

then µ̄ is an optimal dual solution for the original larger primal problem with columns 1, . . . , t. In other
words, if we simply set αk+1 = · · · = αt = 0, then the solution of the reduced primal problem becomes a
solution of the original primal problem. On the other hand, if (12) is not true, then suppose the condition is
violated for some uluTl . We can augment the reduced primal problem by adding the variable αl, and repeat
this process.

Let B =
∑m

i=1 µ̄iAi. We can test if (12) is false by solving the pricing subproblem:

min
u∈U

uTBu. (13)

If uTBu < 0, then there is an element u in U such that the matrix uuT violates the dual constraint written
in (12). Problem (13) may or may not be easy to solve depending on the set U . For example, an ambitious
column generation strategy to improve on dsos (i.e., U = Un,2), would be to take U = Un,n; i.e., the set all
vectors in Rn consisting of zeros, ones, and minus ones. In this case, the pricing problem (13) becomes

min
u∈{0,±1}n

uTBu.

Unfortunately, the above problem generalizes the quadratic unconstrained boolean optimization problem
(QUBO) and is NP-hard. Nevertheless, there are good heuristics for this problem (see e.g., [12],[17]) that
can be used to find near optimal solutions very fast. While we did not pursue this pricing subproblem, we did

12

consider optimizing over Un,3. We refer to the vectors in Un,3 as “triples” for obvious reasons and generally
refer to the process of adding atoms drawn from Un,3 as optimizing over “triples”.

Even though one can theoretically solve (13) with U = Un,3 in polynomial time by simple enumeration
of n3 elements, this is very impractical. Our simple implementation is a partial enumeration and is imple-
mented as follows. We iterate through the triples (in a fixed order), and test to see whether the condition
uTBu ≥ 0 is violated by a given triple u, and collect such violating triples in a list. We terminate the
iteration when we collect a fixed number of violating triples (say t1). We then sort the violating triples by
increasing values of uTBu (remember, these values are all negative for the violating triples) and select the t2
most violated triples (or fewer if less than t2 are violated overall) and add them to our current set of atoms.
In a subsequent iteration we start off enumerating triples right after the last triple enumerated in the current
iteration so that we do not repeatedly scan only the same subset of triples. Although our implementation is
somewhat straightforward and can be obviously improved, we are able to demonstrate that optimizing over
triples improves over the best bounds obtained by Ahmadi and Majumdar in a similar amount of time (see
Section 4.2).

We can also have pricing subproblems where the set U is infinite. Consider e.g. the case U = Rn in
(13). In this case, if there is a feasible solution with a negative objective value, then the problem is clearly
unbounded below. Hence, we look for a solution with the smallest value of “violation” of the dual constraint
divided by the norm of the violating matrix. In other words, we want the expression uTBu/norm(uuT) to
be as small as possible, where norm is the Euclidean norm of the vector consisting of all entries of uuT . This
is the same as minimizing uTBu/||u||2. The eigenvector corresponding to the smallest eigenvalue yields
such a minimizing solution. This is the motivation behind the strategy described in the previous section
for our LP column generation scheme. In this case, we can use a similar strategy for our SOCP column
generation scheme. We replace Y � 0 by Y ∈ SDDn in (9) and iteratively expand SDDn by using the
“two most negative eigenvector technique” described in Section 3.2.

4.1 Experiments with a 10-variable quartic

We illustrate the behaviour of these different strategies on an example. Let p(x) be a degree-four form
defined on 10 variables, where the components of coef(p) are drawn independently at random from the
normal distribution N (0, 1). Thus d = 2 and n = 10, and the form p(x) is ‘fully dense’ in the sense
that coef(p) has essentially all nonzero components. In Figure 2, we show how the lower bound on the
optimal value of p(x) over the unit sphere changes per iteration for different methods. The x-axis shows the
number of iterations of the column generation algorithm, i.e., the number of times columns are added and
the LP (or SOCP) is resolved. The y-axis shows the lower bound obtained from each LP or SOCP. Each
curve represents one way of adding columns. The three horizontal lines (from top to bottom) represent,
respectively, the SDP bound, the 1SDSOS bound and the 1DSOS bound. The curve DSOSk gives the bound
obtained by solving LPs, where the first LP has Y ∈ DDn and subsequent columns are generated from a
single eigenvector corresponding to the most negative eigenvalue of the dual optimal solution as described
in Section 3.1. The LP triples curve also corresponds to an LP sequence, but this time the columns that are
added are taken from Un,3 and are more than one in each iteration (see the next subsection). This bound
saturates when constraints coming from all elements of Un,3 are satisfied. Finally, the curve SDSOSk gives
the bound obtained by SOCP-based column generation as explained just above.

13

5 10 15 20 25 30
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

iterations

SDP
LP triples
SDSOSk

DSOSk

1−sdsos
1−dsos

Figure 2: Lower bounds for a polynomial of degree 4 in 10 variables obtained via LP and SOCP based
column generation

4.2 Larger computational experiments

In this section, we consider larger problem instances ranging from 15 variables to 40 variables: these in-
stances are again fully dense and generated in exactly the same way as the n = 10 example of the previous
subsection. However, contrary to the previous subsection, we only apply our “triples” column generation
strategy here. This is because the eigenvector-based column generation strategy is too computationally
expensive for these problems as we discuss below.

To solve the triples pricing subproblem with our partial enumeration strategy, we set t1 to 300,000 and
t2 to 5000. Thus in each iteration, we find up to 300,000 violated triples, and add up to 5000 of them. In
other words, we augment our LP by up to 5000 columns in each iteration. This is somewhat unusual as in
practice at most a few dozen columns are added in each iteration. The logic for this is that primal simplex
is very fast in reoptimizing an LP when a small number of additional columns are added to an LP whose
optimal basis is known. However, in our context, we observed that the associated LPs are very hard for
the simplex routines inside our LP solver (CPLEX 12.4) and take much more time than CPLEX’s interior
point solver. We therefore use CPLEX’s interior point (“barrier”) solver not only for the initial LP but for
subsequent LPs after adding columns. Because interior point solvers do not benefit significantly from warm
starts, each LP takes a similar amount of time to solve as the initial LP, and therefore it makes sense to add a
large number of columns in each iteration to amortize the time for each expensive solve over many columns.

Table 1 is taken from the work of Ahmadi and Majumdar [4], where they report lower bounds on the
minimum value of fourth-degree forms on the unit sphere obtained using different methods, and the respec-
tive computing times (in seconds).

14

n=15 n=20 n=25 n=30 n=40
bd t(s) bd t(s) bd t(s) bd t(s) bd t(s)

DSOS -10.96 0.38 -18.012 0.74 -26.45 15.51 -36.85 7.88 -62.30 10.68
SDSOS -10.43 0.53 -17.33 1.06 -25.79 8.72 -36.04 5.65 -61.25 18.66
1DSOS -9.22 6.26 -15.72 37.98 -23.58 369.08 NA NA NA NA

1SDSOS -8.97 14.39 -15.29 82.30 -23.14 538.54 NA NA NA NA
SOS -3.26 5.60 -3.58 82.22 -3.71 1068.66 NA NA NA NA

Table 1: Comparison of optimal values in [4] for lower bounding a quartic form on the sphere for varying
dimension, along with run times (in seconds). These results are obtained on a 3.4 GHz Windows computer
with 16 GB of memory.

In Table 2, we give our bounds for the same problem instances. We report two bounds, obtained at two
different times (if applicable). In the first case (rows labeled R1), the time taken by 1SDSOS in Table 1 is
taken as a limit, and we report the bound from the last column generation iteration occuring before this time
limit; the 1SDSOS bound is the best non-SDP bound reported in the experiments of Ahmadi and Majumdar.
In the rows labeled as R2, we take 600 seconds as a limit and report the last bound obtained before this limit.
In a couple of instances (n = 15 and n = 20), our column generation algorithm terminates before the 600
second limit, and we report the termination time in this case.

n=15 n=20 n=25 n=30 n=40
bd t(s) bd t(s) bd t(s) bd t(s) bd t(s)

R1 -6.20 10.96 -12.38 70.70 -20.08 508.63 N/A N/A N/A N/A
R2 -5.57 31.19 -9.02 471.39 -20.08 600 -32.28 600 -35.14 600

Table 2: Lower bounds on the optimal value of a form on the sphere for varying degrees of polynomials
using Triples on a 2.33 GHz Linux machine with 32 GB of memory.

We observe that in the same amount of time (and even on a slightly slower machine), we are able to
consistently beat the 1SDSOS bound, which is the strongest non-SDP bound produced in [4]. We also
experimented with the eigenvalue pricing subproblem in the LP case, with a time limit of 600 seconds. For
n = 25, we obtain a bound of −23.46 after adding only 33 columns in 600 seconds. For n = 40, we are
only able to add 6 columns and the lower bound obtained is −61.49. Note that this bound is worse than the
triples bound given in Table 2. The main reason for being able to add so few columns in the time limit is
that each column is almost fully dense (the LPs for n=25 have 20,475 rows, and 123,410 rows for n = 40).
Thus, the LPs obtained are very hard to solve after a few iterations and become harder with increasing n.
As a consequence, we did not experiment with the eigenvalue pricing subproblem in the SOCP case as it is
likely to be even more computationally intensive.

5 Inner approximations of copositive programs and the maximum stable set
problem

Semidefinite programming has been used extensively for approximation of NP-hard combinatorial optimiza-
tion problems. One such example is finding the stability number of a graph. A stable set (or independent

15

set) of a graphG = (V,E) is a set of nodes ofG, no two of which are adjacent. The size of the largest stable
set of a graph G is called the stability number (or independent set number) of G and is denoted by α(G).

Throughout, G is taken to be an undirected, unweighted graph on n nodes. It is known that the problem of
testing if α(G) is greater than a given integer k is NP-hard [22]. Furthermore, the stability number cannot
be approximated to a factor of n1−ε for any ε > 0 unless P=NP [20]. The natural integer programming
formulation of this problem is given by

α(G) =max
xi

n∑
i=1

xi

s.t. xi + xj ≤ 1,∀(i, j) ∈ E,
xi ∈ {0, 1}, ∀i = 1, . . . , n.

(14)

Although this optimization problem is intractable, there are several computationally-tractable relaxations
that provide upper bounds on the stability number of a graph. For example, the obvious LP relaxation of
(14) can be obtained by relaxing the constraint xi ∈ {0, 1} to xi ∈ [0, 1]:

LP (G) =max
xi

∑
i

xi

s.t. xi + xj ≤ 1, ∀(i, j) ∈ E,
xi ∈ [0, 1],∀i = 1, . . . , n.

(15)

This bound can be improved upon by adding the so-called clique inequalities to the LP, which are of the
form xi1 + xi2 + . . . + xik ≤ 1 when nodes (i1, i2, . . . , ik) form a clique in G. Let Ck be the set of all
k-clique inequalities in G. This leads to a hierarchy of LP relaxations:

LPk(G) = max
∑
i

xi,

xi ∈ [0, 1], ∀i = 1, . . . , n,

C2, . . . , Ck are satisfied.

(16)

Notice that for k = 2, this simply corresponds to (15), in other words, LP2(G) = LP (G).
In addition to LPs, there are also semidefinite programming (SDP) relaxations that provide upper bounds

to the stability number. The most well-known is perhaps the Lovász theta number ϑ(G) [28], which is
defined as the optimal value of the following SDP:

ϑ(G) :=max
X

J ·X

s.t. I ·X = 1,

Xi,j = 0, ∀(i, j) ∈ E
X ∈ Pn.

(17)

Here J is the all-ones matrix and I is the identity matrix of size n. The Lovász theta number is known to
always give at least as good of an upper bound as the LP in (15), even with the addition of clique inequalities
of all sizes (there are exponentially many); see, e.g., [26, Section 6.5.2] for a proof. In other words,

ϑ(G) ≤ LPk(G),∀k.

16

An alternative SDP relaxation for stable set is due to de Klerk and Pasechnik. In [18], they show that the
stability number can be obtained through a conic linear program over the set of copositive matrices. Namely,

α(G) = min
λ
λ

s.t. λ(I +A)− J ∈ Cn,
(18)

where A is the adjacency matrix of G. Replacing Cn by the restriction Pn +Nn, one obtains the aforemen-
tioned relaxation through the following SDP

SDP (G) := min
λ,X

λ

s.t. λ(I +A)− J ≥ X,
X ∈ Pn.

(19)

This latter SDP is more expensive to solve than the Lovász SDP (17), but the bound that it obtains is always
at least as good (and sometimes strictly better). A proof of this statement is given in [18, Lemma 5.2], where
it is shown that (19) is an equivalent formulation of an SDP of Schrijver [39], which produces stronger upper
bounds than (17).

Another reason for the interest in the copositive approach is that it allows for well-known SDP and
LP hierarchies—developed respectively by Parrilo [34, Section 5] and de Klerk and Pasechnik [18]—that
produce a sequence of improving bounds on the stability number. In fact, by appealing to Positivstellensatz
results of Pólya [36], and Powers and Reznick [37], de Klerk and Pasechnik show that their LP hierarchy
produces the exact stability number in α2(G) number of steps [18, Theorem 4.1]. This immediately implies
the same result for stronger hierarchies, such as the SDP hierarchy of Parrilo [34], or the rDSOS and rSDSOS
hierarchies of Ahmadi and Majumdar [4].

One notable difficulty with the use of copositivity-based SDP relaxations such as (19) in applications is
scalibility. For example, it takes more than 5 hours to solve (19) when the input is a randomly generated
Erdós-Renyi graph with 300 nodes and edge probability p = 0.8. 3 Hence, instead of using (19), we will
solve a sequence of LPs/SOCPs generated in an iterative fashion. These easier optimization problems will
provide upper bounds on the stability number in a more reasonable amount of time, though they will be
weaker than the ones obtained via (19).

We will derive both our LP and SOCP sequences from formulation (18) of the stability number. To
obtain the first LP in the sequence, we replace Cn by DDn + Nn (instead of replacing Cn by Pn + Nn as
was done in (19)) and get

DSOS1(G) := min
λ,X

λ

s.t. λ(I +A)− J ≥ X,
X ∈ DDn.

(20)

This is an LP whose optimal value is a valid upper bound on the stability number as DDn ⊆ Pn.

Theorem 5.1. The LP in (20) is always feasible.

3The solver in this case is MOSEK [2] and the machine used has 3.4GHz speed and 16GB RAM; see Table 4 for more results.
The solution time with the popular SDP solver SeDuMi [41] e.g. would be several times larger.

17

Proof. We need to show that for any n × n adjacency matrix A, there exists a diagonally dominant matrix
D, a nonnegative matrix N , and a scalar λ such that

λ(I +A)− J = D +N. (21)

Notice first that λ(I + A)− J is a matrix with λ− 1 on the diagonal and at entry (i, j), if (i, j) is an edge
in the graph, and with −1 at entry (i, j) if (i, j) is not an edge in the graph. If we denote by di the degree of
node i, then let us take λ = n −mini di + 1 and D a matrix with diagonal entries λ − 1 and off-diagonal
entries equal to 0 if there is an edge, and −1 if not. This matrix is diagonally dominant as there are at most
n − mini di minus ones on each row. Furthermore, if we take N to be a matrix with λ − 1 at the entries
(i, j) where (i, j) is an edge in the graph, then (21) is satisfied and N ≥ 0.

Feasibility of this LP is important for us as it allows us to initiate column generation. By contrast, if we
were to replace the diagonal dominance constraint by a diagonal constraint for example, the LP could fail to
be feasible. This fact has been observed by de Klerk and Pasechnik in [18] and Bomze and de Klerk in [11].

To generate the next LP in the sequence via column generation, we think of the extreme-ray description
of the set of diagonally dominant matrices as explained in Section 3. Theorem 3.1 tells us that these are
given by the matrices in Un,2 and so we can rewrite (20) as

DSOS1(G) := min
λ,αi

λ

s.t. λ(I +A)− J ≥ X,

X =
∑

uiuTi ∈Un,2

αiuiu
T
i ,

αi ≥ 0, i = 1, . . . , n2.

(22)

The column generation procedure aims to add new matrix atoms to the existing set Un,2 in such a way
that the current bound DSOS1 improves. There are numerous ways of choosing these atoms. We focus first
on the cutting plane approach based on eigenvectors. The dual of (22) is the LP

DSOS1(G) := max
X

J ·X,

s.t. (A+ I) ·X = 1,

X ≥ 0,

(uiu
T
i) ·X ≥ 0, ∀uiuTi ∈ Un,2.

(23)

If our optimal solution X∗ to (23) is positive semidefinite, then we are obtaining the best bound we can
possibly produce, which is the SDP bound of (19). If this is not the case however, we pick our atom matrix
to be the outer product uuT of the eigenvector u corresponding to the most negative eigenvalue of X∗. The
optimal value of the LP

DSOS2(G) := max
X

J ·X,

s.t. (A+ I) ·X = 1,

X ≥ 0,

(uiu
T
i) ·X ≥ 0,∀uiuTi ∈ Un,2,

(uuT) ·X ≥ 0

(24)

18

that we derive is guaranteed to be no worse than DSOS1 as the feasible set of (24) is smaller than the
feasible set of (23). Under mild nondegeneracy assumptions (satisfied, e.g., by uniqueness of the optimal
solution to (23)), the new bound will be strictly better. By reiterating the same process, we create a sequence
of LPs whose optimal values DSOS1, DSOS2, . . . are a nonincreasing sequence of upper bounds on the
stability number.

Generating the sequence of SOCPs is done in an analogous way. Instead of replacing the constraint
X ∈ Pn in (19) by X ∈ DDn, we replace it by X ∈ SDDn and get

SDSOS1(G) := min
λ,X

λ

s.t. λ(I +A)− J ≥ X,
X ∈ SDDn.

(25)

Once again, we need to reformulate the problem in such a way that the set of scaled diagonally dominant
matrices is described as some combination of psd “atom” matrices. In this case, we can write any matrix
X ∈ SDDn as

X =
∑

Vi∈Vn,2

Vi

(
a1i a2i
a2i a3i

)
V T
i ,

where a1i , a
2
i , a

3
i are variables making the 2×2 matrix psd, and the Vi’s are our atoms. Recall from Section 3

that the set Vn,2 consists of all n×2 matrices which have zeros everywhere, except for a 1 in the first column
in position j and a 1 in the second column in position k 6= j. This gives rise to an equivalent formulation of
(25):

SDSOS1(G) := min
λ,aji

λ

s.t. λ(I +A)− J ≥ X

X =
∑

Vi∈Vn,2

Vi

(
a1i a2i
a2i a3i

)
V T
i(

a1i a2i
a2i a3i

)
� 0, i = 1, . . . ,

(
n

2

)
.

(26)

Just like the LP case, we now want to generate one (or more) n× 2 matrix V to add to the set {Vi}i so that
the bound SDSOS1 improves. We do this again by using a cutting plane approach originating from the dual
of (26):

SDSOS1(G) := max
X

J ·X

s.t. (A+ I) ·X = 1,

X ≥ 0,

V T
i ·XVi � 0, i = 1, . . . ,

(
n

2

)
.

(27)

Note that strong duality holds between this primal-dual pair as it is easy to check that both problems are
strictly feasible. We then take our new atom to be

V = (w1 w2),

19

where w1 and w2 are two eigenvectors corresponding to the two most negative eigenvalues of X∗, the
optimal solution of (27). If X∗ only has one negative eigenvalue, we add a linear constraint to our problem;
if X∗ � 0, then the bound obtained is identical to the one obtained through SDP (19) and we cannot hope
to improve. Our next iterate is therefore

SDSOS2(G) := max
X

J ·X

s.t. (A+ I) ·X = 1,

X ≥ 0,

V T
i ·XVi � 0, i = 1, . . . ,

(
n

2

)
,

V T ·XV � 0.

(28)

Note that the optimization problems generated iteratively in this fashion always remain SOCPs and their
optimal values form a nonincreasing sequence of upper bounds on the stability number.

To illustrate the column generation method for both LPs and SOCPs, we consider the complement of
the Petersen graph as shown in Figure 3(a) as an example. The stability number of this graph is 2 and one of
its maximum stable sets is designated by the two white nodes. In Figure 3(b), we compare the upper bound
obtained via (19) and the bounds obtained using the iterative LPs and SOCPs as described in (24) and (28).

(a) The complement of Petersen Graph

2 4 6 8 10 12
1.5

2

2.5

3

3.5

4

4.5

iterations

DSOSk

SDSOSk

SDP

α(G)

(b) Upper bounds on the stable set number α(G)

Figure 3: Bounds obtained through SDP (19) and iterative SOCPs and LPs for the complement of the
Petersen graph.

Note that it takes 3 iterations for the SOCP sequence to produce an upper bound strictly within one
unit of the actual stable set number (which would immediately tell us the value of α), whereas it takes 13
iterations for the LP sequence to do the same. It is also interesting to compare the sequence of LPs/SOCPs
obtained through column generation to the sequence that one could obtain using the concept of r-dsos/r-

20

sdsos polynomials. Indeed, LP (20) (resp. SOCP (25)) can be written in polynomial form as

DSOS1(G) (resp. SDSOS1(G)) = min
λ
λ

s.t.

x
2
1
...
x2n

T

(λ(I +A)− J)

x
2
1
...
x2n

 is dsos (resp. sdsos).
(29)

Iteration k in the sequence of LPs/SOCPs would then correspond to requiring that this polynomial be k-dsos
or k-sdsos. For this particular example, we give the 1-dsos, 2-dsos, 1-sdsos and 2-sdsos bounds in Table 3.

Iteration r-dsos bounds r-sdsos bounds
r = 0 4.00 4.00
r = 1 2.71 2.52
r = 2 2.50 2.50

Table 3: Bounds obtained through rDSOS and rSDSOS hierarchies.

Though this sequence of LPs/SOCPs gives strong upper bounds, each iteration is more expensive than
the iterations done in the column generation approach. Indeed, in each of the column generation iterations,
only one constraint is added to our problem, whereas in the rDSOS/rSDSOS hierarchies, the number of
constraints is roughly multiplied by n2 at each iteration.

Finally, we investigate how these techniques perform on graphs with a large number of nodes, where
the SDP bound cannot be found in a reasonable amount of time. The graphs we test these techniques on are
Erdös-Rényi graphs ER(n, p); i.e. graphs on n nodes where an edge is added between each pair of nodes
independently and with probability p. In our case, we take n to be between 150 and 300, and p to be either
0.3 or 0.8 so as to experiment with both medium and high density graphs.4

In Table 4, we present the results of the iterative SOCP procedure and contrast them with the SDP
bounds. The third column of the table contains the SOCP upper bound obtained through (27); the solver
time needed to obtain this bound is given in the fourth column. The fifth and sixth columns correspond
respectively to the SOCP iterative bounds obtained after 5 mins solving time and 10 mins solving time.
Finally, the last two columns chart the SDP bound obtained from (19) and the time in seconds needed
to solve the SDP. All SOCP and SDP experiments were done using Matlab, the solver MOSEK [2], the
SPOTLESS toolbox [30], and a computer with 3.4 GHz speed and 16 GB RAM.

4All instances used for these tests are available online at http://aaa.princeton.edu/software.

21

n p SDSOS1 time (s) SDSOSk (5 mins) SDSOSk (10 mins) SDP (G) time (s)
150 0.3 105.70 1.05 39.93 37.00 20.43 221.13
150 0.8 31.78 1.07 9.96 9.43 6.02 206.28
200 0.3 140.47 1.84 70.15 56.37 23.73 1,086.42
200 0.8 40.92 2.07 12.29 11.60 6.45 896.84
250 0.3 176.25 3.51 111.63 92.93 26.78 4,284.01
250 0.8 51.87 3.90 17.25 15.39 7.18 3,503.79
300 0.3 210.32 5.69 151.71 134.14 29.13 32,300.60
300 0.8 60.97 5.73 19.53 17.24 7.65 20,586.02

Table 4: SDP bounds and iterative SOCP bounds obtained on ER(n,p) graphs.

From the table, we note that it is better to run the SDP rather than the SOCPs for small n, as the bounds
obtained are better and the times taken to do so are comparable. However, as n gets bigger, the SOCPs
become valuable as they provide good upper bounds in reasonable amounts of time. For example, for
n = 300 and p = 0.8, the SOCP obtains a bound that is only twice as big as the SDP bound, but it does so
30 times faster. The sparser graphs don’t do as well, a trend that we will also observe in Table 5. Finally,
notice that the improvement in the first 5 mins is significantly better than the improvement in the last 5 mins.
This is partly due to the fact that the SOCPs generated at the beginning are sparser, and hence faster to solve.

In Table 5, we present the results of the iterative LP procedure used on the same instances. All LP
results were obtained using a computer with 2.3 GHz speed and 32GB RAM and the solver CPLEX 12.4
[16]. The third and fourth columns in the table contain the LP bound obtained with (23) and the solver time
taken to do so. Columns 5 and 6 correspond to the LP iterative bounds obtained after 5 mins solving time
and 10 mins solving time using the eigenvector-based column generation technique (see discussion around
(24)). The seventh and eighth columns are the standard LP bounds obtained using (16) and the time taken
to obtain the bound. Finally, the last column gives bounds obtained by column generation using “triples”,
as described in Section 4.2. In this case, we take t1 = 300, 000 and t2 = 500.

n p DSOS1 time (s) DSOSk (5m) DSOSk (10m) LP2 time (s) LPtriples (10m)
150 0.3 117 < 1 110.64 110.26 75 < 1 89.00
150 0.8 46 < 1 24.65 19.13 75 < 1 23.64
200 0.3 157 < 1 147.12 146.71 100 < 1 129.82
200 0.8 54 < 1 39.27 36.01 100 < 1 30.43
250 0.3 194 < 1 184.89 184.31 125 < 1 168.00
250 0.8 68 < 1 55.01 53.18 125 < 1 40.19
300 0.3 230 < 1 222.43 221.56 150 < 1 205.00
300 0.8 78 < 1 65.77 64.84 150 < 1 60.00

Table 5: LP bounds obtained on the same ER(n, p) graphs.

We note that in this case the upper bound with triples via column generation does better for this range
of n than eigenvector-based column generation in the same amount of time. Furthermore, the iterative LP
scheme seems to perform better in the dense regime. In particular, the first iteration does significantly better
than the standard LP for p = 0.8, even though both LPs are of similar size. This would remain true even if
the 3-clique inequalities were added as in (16), since the optimal value of LP3 is always at least n/3. This

22

is because the vector (13 , . . . ,
1
3) is feasible to the LP in (16) with k = 3. Note that this LP would have order

n3 constraints, which is more expensive than our LP. On the contrary, for sparse regimes, the standard LP,
which hardly takes any time to solve, gives better bounds than ours.

Overall, the high-level conclusion is that running the SDP is worthwhile for small sizes of the graph.
As the number of nodes increases, column generation becomes valuable, providing upper bounds in a rea-
sonable amount of time. Contrasting Tables 4 and 5, our initial experiments seem to show that the iterative
SOCP bounds are better than the ones obtained using the iterative LPs. It may be valuable to experiment
with different approaches to column generation however, as the technique used to generate the new atoms
seems to impact the bounds obtained.

6 Conclusions and future research

For many problems of discrete and polynomial optimization, there are hierarchies of SDP-based sum of
squares algorithms that produce provably optimal bounds in the limit [35], [25]. However, these hierarchies
can often be expensive computationally. In this paper, we were interested in problem sizes where even the
first level of the hierarchy is too expensive, and hence we resorted to algorithms that replace the underlying
SDPs with LPs or SOCPs. We built on the recent work of Ahmadi and Majumdar on DSOS and SDSOS
optimization [4], [3], which serves exactly this purpose. We showed that by using ideas from linear pro-
gramming column generation, the performance of their algorithms is improvable. We did this by iteratively
optimizing over increasingly larger structured subsets of the cone of positive semidefinite matrices, without
resorting to the more expensive rDSOS and rSDSOS hierarchies.

There is certainly a lot of room to improve our column generation algorithms. In particular, we only
experimented with a few types of pricing subproblems and particular strategies for solving them. The
success of column generation often comes from good “engineering”, which fine-tunes the algorithms to the
problem at hand. Developing warm-start strategies for our iterative SOCPs for example, would be a very
useful problem to work on in the future.

Here is another interesting research direction, which for illustrative purposes we outline for the problem
studied in Section 4; i.e., minimizing a form on the sphere. Recall that given a form p of degree 2d, we are
trying to find the largest λ such that p(x)− λ(

∑n
i=1 x

2
i)
d is a sum of squares. Instead of solving this sum of

squares program, we looked for the largest λ for which we could write p(x)− λ as a conic combination of
a certain set of nonnegative polynomials. These polynomials for us were always either a single square or a
sum of squares of polynomials. There are polynomials, however, that are nonnegative but not representable
as a sum of squares. Two classic examples [31], [15] are the Motzkin polynomial

M(x, y, z) = x6 + y4z2 + y2z4 − 3x2y2z2,

and the Choi-Lam polynomial

CL(w, x, y, z) = w4 + x2y2 + y2z2 + x2z2 − 4wxyz.

Either of these polynomials can be shown to be nonnegative using the arithmetic mean-geometric mean
(am-gm) inequality, which states that if x1, . . . , xk ∈ R, then

x1, . . . , xk ≥ 0⇒ (
k∑
i=1

xi)/k ≥ (Πk
i=1xi)

1
k .

23

For example, in the case of the Motzkin polynomial, it is clear that the monomials x6, y4z2 and y2z4 are
nonnegative for all x, y, z ∈ R, and letting x1, x2, x3 stand for these monomials respectively, the am-gm
inequality implies that

x6 + y4z2 + y2z4 ≥ 3x2y2z2 for all x, y, z ∈ R.

These polynomials are known to be extreme in the cone of nonnegative polynomials and they cannot be
written as a sum of squares (sos) [38].

It would be interesting to study the separation problems associated with using such non-sos polynomials
in column generation. We briefly present one separation algorithm for a family of polynomials whose non-
negativity is provable through the am-gm inequality and includes the Motzkin and Choi-Lam polynomials.
This will be a relatively easy-to-solve integer program in itself, whose goal is to find a polynomial q amongst
this family which is to be added as our new “nonnegative atom”.

The family of n-variate polynomials under consideration consists of polynomials with only k+1 nonzero
coefficients, with k of them equal to one, and one equal to −k. (Notice that the Motzkin and the Choi-Lam
polynomials are of this form with k equal to three and four respectively.) Letm be the number of monomials
in p. Given a dual vector µ of (11) of dimension m, one can check if there exists a nonnegative degree 2d

polynomial q(x) in our family such that µ · coef(q(x)) < 0. This can be done by solving the following
integer program (we assume that p(x) =

∑m
i=1 x

αi):

min
c,y

m∑
i=1

µici −
m∑
i=1

kµiyi (30)

s.t.
∑

i:αi is even
αici = k

m∑
i=1

αiyi,

m∑
i=1

ci = k,

m∑
i=1

yi = 1,

ci ∈ {0, 1}, yi ∈ {0, 1}, i = 1, . . . ,m, ci = 0 if αi is not even.

Here, we have αi ∈ Nn and the variables ci, yi form the coefficients of the polynomial q(x) =
∑m

i=1 cix
αi−

k
∑m

i=1 yix
αi . The above integer program has 2m variables, but only n + 2 constraints (not counting the

integer constraints). If a polynomial q(x) with a negative objective value is found, then one can add it as
a new atom for column generation. In our specific randomly generated polynomial optimization examples,
such polynomials did not seem to help in our preliminary experiments. Nevertheless, it would be interesting
to consider other instances and problem structures.

Similarly, in the column generation approach to obtaining inner approximations of the copositive cone,
one need not stick to positive semidefinite matrices. It is known that the 5 × 5 “Horn matrix” [14] for
example is extreme in the copositive cone but cannot be written as the sum of a nonnegative and a positive
semidefinite matrix. One could define a separation problem for a family of Horn-like matrices and add them
in a column generation approach. Exploring such strategies is left for future research.

24

7 Acknowledgments

We are grateful to Anirudha Majumdar for insightful discussions and for his help with some of the numerical
experiments in this paper.

References

[1] Gurobi optimizer reference manual. URL: http://www. gurobi. com, 2012.

[2] MOSEK reference manual, 2013. Version 7. Latest version available at http://www.mosek.
com/.

[3] A. A. Ahmadi and A. Majumdar. DSOS and SDSOS optimization: LP and SOCP-based alternatives to
sum of squares optimization. In Proceedings of the 48th Annual Conference on Information Sciences
and Systems. Princeton University, 2014.

[4] A. A. Ahmadi and A. Majumdar. DSOS and SDSOS: more tractable alternatives to sum of squares
and semidefinite optimization. In preparation, 2015.

[5] A. A. Ahmadi and A. Majumdar. Some applications of polynomial optimization in operations research
and real-time decision making. Prepint available at http://arxiv.org/abs/1504.06002. To
appear in Optimization Letters, 2015.

[6] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical programming, 95(1):3–
51, 2003.

[7] E. Artin. Über die Zerlegung definiter Funktionen in Quadrate. In Abhandlungen aus dem mathema-
tischen Seminar der Universität Hamburg, volume 5, pages 100–115. Springer, 1927.

[8] G. Barker and D. Carlson. Cones of diagonally dominant matrices. Pacific Journal of Mathematics,
57(1):15–32, 1975.

[9] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh, and P. H. Vance. Branch-and-price:
Column generation for solving huge integer programs. Operations research, 46(3):316–329, 1998.

[10] A. Ben-Tal and A. Nemirovski. On polyhedral approximations of the second-order cone. Mathematics
of Operations Research, 26(2):193–205, 2001.

[11] I. M. Bomze and E. de Klerk. Solving standard quadratic optimization problems via linear, semidefinite
and copositive programming. Journal of Global Optimization, 24(2):163–185, 2002.

[12] E. Boros, P. Hammer, and G. Tavares. Local search heuristics for quadratic unconstrained binary
optimization (qubo). Journal of Heuristics, 13(2):99–132, 2007.

[13] S. Burer. Copositive programming. In Handbook on semidefinite, conic and polynomial optimization,
pages 201–218. Springer, 2012.

[14] S. Burer, K. M. Anstreicher, and M. Dür. The difference between 5× 5 doubly nonnegative and
completely positive matrices. Linear Algebra and its Applications, 431(9):1539–1552, 2009.

25

[15] M. D. Choi and T. Y. Lam. Extremal positive semidefinite forms. Math. Ann., 231:1–18, 1977.

[16] CPLEX. V12. 4: Users manual for CPLEX. International Business Machines Corporation,
46(53):157.

[17] S. Dash. A note on QUBO instances defined on Chimera graphs. arXiv preprint arXiv:1306.1202,
2013.

[18] E. de Klerk and D. Pasechnik. Approximation of the stability number of a graph via copositive pro-
gramming. SIAM Journal on Optimization, 12(4):875–892, 2002.

[19] G. Desaulniers, J. Desrosiers, and M. M. Solomon. Column generation, volume 5. Springer Science
& Business Media, 2006.

[20] J. Håstad. Clique is hard to approximate within n1−ε. In Proceedings of the 37th Annual Symposium
on Foundations of Computer Science.

[21] D. Hilbert. Über die Darstellung Definiter Formen als Summe von Formenquadraten. Math. Ann., 32,
1888.

[22] R. M. Karp. Reducibility among combinatorial problems. Springer, 1972.

[23] S. Kim and M. Kojima. Exact solutions of some nonconvex quadratic optimization problems via sdp
and socp relaxations. Computational Optimization and Applications, 26(2):143–154, 2003.

[24] K. Krishnan and J. E. Mitchell. A semidefinite programming based polyhedral cut and price approach
for the maxcut problem. Computational Optimization and Applications, 33(1):51–71, 2006.

[25] J. B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on
Optimization, 11(3):796–817, 2001.

[26] M. Laurent and F. Vallentin. Lecture Notes on Semidefinite Optimization. 2012.

[27] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order cone program-
ming. Linear algebra and its applications, 284(1):193–228, 1998.

[28] L. Lovász. On the Shannon capacity of a graph. Information Theory, IEEE Transactions on, 25(1):1–7,
1979.

[29] A. Majumdar, A. A. Ahmadi, and R. Tedrake. Control and verification of high-dimensional systems
via DSOS and SDSOS optimization. In Proceedings of the 53rd IEEE Conference on Decision and
Control, 2014.

[30] A. Megretski. SPOT: systems polynomial optimization tools. 2013.

[31] T. S. Motzkin. The arithmetic-geometric inequality. In Inequalities, pages 205–224. Academic Press,
New York, 1967.

[32] K. G. Murty and S. N. Kabadi. Some NP-complete problems in quadratic and nonlinear programming.
Mathematical Programming, 39:117–129, 1987.

26

[33] Y. Nesterov. Squared functional systems and optimization problems. In High performance optimiza-
tion, volume 33 of Appl. Optim., pages 405–440. Kluwer Acad. Publ., Dordrecht, 2000.

[34] P. A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness and
optimization. PhD thesis, California Institute of Technology, May 2000.

[35] P. A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Mathematical Pro-
gramming, 96(2, Ser. B):293–320, 2003.

[36] G. Pólya. Über positive Darstellung von Polynomen. Vierteljschr. Naturforsch. Ges. Zürich, 73:141–
145, 1928.

[37] V. Powers and B. Reznick. A new bound for Pólya’s theorem with applications to polynomials positive
on polyhedra. Journal of Pure and Applied Algebra, 164(1):221–229, 2001.

[38] B. Reznick. Some concrete aspects of Hilbert’s 17th problem. In Contemporary Mathematics, volume
253, pages 251–272. American Mathematical Society, 2000.

[39] A. Schrijver. A comparison of the Delsarte and Lovász bounds. Information Theory, IEEE Transac-
tions on, 25(4):425–429, 1979.

[40] H. Sherali and B. Fraticelli. Enhancing rlt relaxations via a new class of semidefinite cuts. Journal of
Global Optimization, 22(1-4):233–261, 2002.

[41] J. Sturm. SeDuMi version 1.05, Oct. 2001. Latest version available at
http://sedumi.ie.lehigh.edu/.

[42] J. Vielma, S. Ahmed, and G. Nemhauser. Mixed-integer models for nonseparable piecewise-linear
optimization: unifying framework and extensions. Operations research, 58(2):303–315, 2010.

27

