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Consumers are increasingly navigating across sales channels to make purchases. The common retail practice

of pricing channels independently is unable to achieve the desired profitable coordination required between

channels. As part of a joint partnership agreement with IBM Commerce, we engaged with three major

retailers over two years, and developed advanced omni-channel pricing (OCP) solutions that are used by

several retail chains today. A big-data platform is employed to develop an omni-channel framework to model

location-specific cross-channel demand interactions. An integrated OCP optimization formulation profitably

coordinates prices for non-perishable products across channels and store locations, taking into account the

impact of competition, and sales goals. The resultant non-linear model is non-convex and NP-hard, and

practically efficient optimization approaches are prescribed, along with computational results using real-

world data. In the absence of certain side constraints, we derive insightful results on price coordination across

channels.

An OCP implementation for a large retail chain yielded a 7% profit lift. IBM Commerce deployed propri-

etary versions of these models into production in 2014. Subsequently, IBM attributed the opening of several

new market opportunities as well as significant incremental revenue to the deployed solution. In 2015, IBM

formally recognized this work as a significant research accomplishment.
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1. Introduction

The face of retail is changing with consumers increasingly navigating through multiple channels

with ease to make purchases. Using smart phones, consumers shopping at a brick-and-mortar

store can simultaneously visit the mobile or web store, or even the social networking storefront of

the same retailer and its competitors to finalize a purchase. Omni-channel retailing is all about

ensuring a seamless customer experience across all possible touch points, including stores, catalog,

website, mobile, and social. It is aimed at revolutionizing how retailers engage with customers

along every step of the consumers path to purchase, starting from product research to the final
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purchase and beyond, including the ‘last-mile’ related to product delivery and consumer feedback.

For example, omni-channel retailing includes (a) the opening of newer channels (physical stores, dot

com websites, mobile or social networking pages) that consumers can access; (b) the employment

of a variety of marketing measures that follow the customer seamlessly across channels to maximize

their purchasing decision; (c) the use of advanced order fulfillment practices that enable a retailer

to initiate ship-from-store fulfillment for e-commerce orders for faster delivery times and fewer out

of stock situations; and last but not the least, (d) the buy-online-pick-up-in store offering.

Omni-channel retailing is a sweeping trend across the industry (Huffington Post 2013, Brynjolf-

sson et al. 2013, Bell et al. 2014) with the top retailers aggressively pursuing a variety of these

strategies to attract the modern consumers and be well-positioned to maximize benefit from the

accelerating mobile shopping trend. For example, an e-commerce platform vendor Shopify provides

over 200K merchants with new sales channels by adding ‘Buy’ buttons through agreements with

Facebook and Twitter (Shopify 2015). Retailers are shifting their advertisement spending from tra-

ditional to digital channels and the ad revenue growth is forecast to be 11% in the digital channels

compared to 0.4% in the traditional channels (Business Insider 2015). The story for 2015’s Black

Friday sales is the blurring of the line between in-store and the online shopping experiences with

many large retail chains, like Target and Walmart, beginning to take an integrated approach to

merchandizing (Retail Dive 2015).

Many of today’s large retailers started as single channel retailers and their supply chain was

designed to ensure maximum efficiency and scale in that channel. These retailers operated either

the brick-and-mortar channel or the e-commerce/online channel, which broadly encompasses all the

digital/virtual channels such as websites, mobile and social. These retailers subsequently opened

additional sales channels, and supported common and channel-specific assortments, in order to

increase their customer base. However, these channels largely operated independently of each other

in ‘silos’, with limited transparency and data sharing even within the organization. From the

perspective of operations research technologies, many retailers today maintain separate brick and

online merchandizing divisions, and employ decision support tools for demand forecasting, pricing

optimization, and inventory management that are channel specific, often procured from different

vendors. Such tools largely ignore the multi-channel shopping path of today’s customers, as well

as the potential efficiencies of integrated omni-channel decision support systems. Recently the

Walmart CEO Doug McMillon said, “I want us to stop talking about digital and physical retail as

if they’re two separate things. The customer doesn’t think of it that way, and we can’t either,” in

the annual shareholders meeting (WAL 2015).

The omni-channel environment is also characterized by a highly competitive and dynamic mar-

ketplace due to the presence of e-tailers whose product offerings are price-transparent because of
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comparison shopping websites sites such as shopsavvy, which exert a downward pressure on the

retailers sales and profitability. Moreover, the online marketplace is witnessing a steep growth

rate even as brick stores are transforming their operations to attract more walk-in customers and

make in-store purchases more viable. The internet retailer magazine reports that in 2014 online

sales grew six times faster for U.S. top 500 merchants than total retail sales, at 16% compared

to 2.4% (Internet Retailer 2015). A key challenge here for retailers is to not cannibalize, but pre-

serve and enhance the viability of traditional channels over time, while also increasing their online

presence.

Given these emerging challenges in the omni-channel market-place, retailers are attempting to

fundamentally transform their business models and organization structure, and synchronize the

merchandizing decision systems supporting their sales channels in order to be more nimble, inte-

grated, and effective at being customer centric, and profitable. This work is focused on developing

a novel solution that overcomes some of these challenges by integrating key decisions, specifically

pricing, across the different sales channels.

Consider for example, a retail chain that operates two sales channels (say brick-and-mortar,

and online), and wants to set prices for products sold in these channels. A mixture of customer

segments across various demographics including traditional walk-in customers, as well as mobile-

enabled, internet-savvy customers purchase products from the retailer. Keeping this in mind, the

brick prices across the store locations and the online prices that are set by the retailer have to

be profitable while also meeting sales goals and being competitive with large e-tail giants who

are steadily gaining market-share. The retailer’s online price should not be cannibalizing brick

sales at these store locations and vice-versa. Given this, the retailer is faced with the question of

whether to match prices across channels or not, at what price levels, at what location, and for which

products. With the increase in the number of digital channel offerings in the future and dynamic

nature of the marketplace, the scale and speed of these decisions become critical. Current retail

revenue management and pricing decision systems are limited by their capabilities, which were

largely built to support an earlier, single-channel world of either brick or e-commerce. They are

unable to manage the diversity and volume of data, or possess the advanced analytical techniques

that are needed to effectively answer such questions, sometimes in (near) real-time. The integral

omni-channel pricing solution that we have proposed and developed for the retail industry in this

paper addresses all these questions.

As part of a joint partnership agreement with our client, IBM Commerce, a leading provider

of merchandizing solutions, we engaged with three major omni-channel retailers over a period of

two years, who were faced with one or more of the challenges described above. Our engagement

with the retailers was from the perspective of a retail analytics solution provider, in that our goal

http://www.ibm.com/commerce/us-en/
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was to develop advanced omni-channel retail analytics solutions for commercial use by current

and future retail customers of IBM Commerce, keeping in mind the infrastructure and operational

requirements of a deployable solution.

We now summarize the main contributions of this paper:

1. Omni-channel demand modeling and optimization framework: We design and develop

an omni-channel demand modeling framework over which a suite of advanced omni-channel

retail analytical solutions such as demand forecasting, pricing, and inventory management can

be built upon. Within this framework, we can predict demand at the location-specific channel

level, providing the flexibility to model sales channels as purchase choices for consumers in a

location, while also capturing the heterogeneity of channel preferences across locations. This

method steps away from our client’s traditional approach of viewing the online channel as a

single entity independent of the brick channel (e.g., yet another store location of the retailer).

2. Omni-channel price optimization: We study the omni-channel pricing (OCP) of non-

perishable products geared towards regular pricing solutions (also commonly referred to as

base pricing or everyday pricing). Our method gainfully employs the aforementioned demand

modeling framework to formulate and solve an integrated price optimization problem across

multiple channels and locations. In this paper, the OCP problem for a non-perishable product

is practically motivated with business constraints on prices that maximizes the retailer’s gross

profitability across all locations and channels, while also satisfying certain volume and price-

image goals. We use attraction demand models to represent consumer choice across various

channels and observe that the resulting optimization model is a non-linear, non-convex NP-Hard

problem. In the absence of certain side constraints, we show that the optimal price online is a

weighted average of the optimal brick prices in various locations plus a known constant that

depend on the price sensitivity coefficients of the two channels. In general, we propose a pseudo

polynomial decomposition based approach to solve this pricing problem in the presence of two

channels such as the brick-and-mortar and online channels. In the case of two or more channels,

we employ specialized mathematical transformations to recover a mixed-integer programming

(MIP) reformulation that can be solved efficiently using commercial off-the-shelf MIP solvers

such as IBM ILOG CPLEX.

3. Implementation and business value assessment: We share the in-depth results of the

business value assessment conducted as a part of our OCP implementation for one of the major

omni-channel retailers in the United States. For 100 products in the two product categories

that we analyzed, we observed that the cross-channel price effects were significant, and vary by

category, and can be as high as 50% of the own channel price elasticity. We solved the resulting
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omni-channel pricing formulation to optimality, and obtain a 7% profit lift using omni-channel

pricing over their existing channel-independent pricing methods. These results were presented at

the retailer’s site to a team that included senior executives, and their Vice-President for revenue

management. Their response was overwhelmingly positive, and with similar experiences with

other retailers, our proposed solution was approved for commercial deployment.

Commercial Success: Proprietary versions of the models presented in this paper were deployed

into production by IBM Commerce in 2014 as a cloud solution. This solution was showcased as

one of the retail analytics success stories in the smarter-commerce global summit in 2014. Today,

several large global retail chains are regular users of the commercial offering including those with

whom we engaged. Overall, IBM has directly attributed several new market opportunities as well

as significant incremental revenue to IBM in 2015 due to the deployed OCP solution. In November

2015, this work was formally recognized by IBM as one of the major accomplishments in 2015 by

the research division.

Organization: The remainder of the paper is structured as follows. In Section 2 we review related

literature. In Section 3 we describe the omni-channel demand modeling and optimization frame-

work. We discuss the parametric form of the omni-channel demand model we use in Section 4, and

in Section 5, we formulate the resultant price optimization problem and discuss its tractability. In

Section 6 we describe prescriptive optimal conditions on price coordination between the different

channels, followed by solution methods in Section 7. In Section 8 we discuss the OCP implementa-

tion and the business value assessment presented to the retail customer on their data. We conclude

in Section 9 with a brief discussion of data flow in the commercial deployment along with other

practical use-cases of OCP, lessons learnt, and our some post-deployment highlights

2. Literature Review

Omni-channel retailing is a relatively recent phenomenon in the retail industry. Therefore, not

surprisingly, there are not many papers in the available literature that study this topic, with little

or discussion about its operations aspect.

Studying and modeling the consumer preferences in an omni-channel environment and under-

standing shift from the previous single-channel era is a first step that can pave its way into

operations. Some recent papers in the marketing literature have explored consumer dynamics in

a multi-channel environment, in particular, consumers migration across multiple channels (Ansari

et al. 2008, Chintagunta et al. 2012) and the impact on cross-channel elasticities when newer chan-

nels are introduced (Avery et al. 2012). The former papers use binary choice probit models to

calibrate the substitution behavior of consumers between two channels (web and catalog or online
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and brick respectively). More recently, (Gallino and Moreno 2014) empirically study the impact of

sharing inventory information on the channel sales in the context of a buy-online-ship-from-store

offering by a retailer. In this paper, we estimate consumer channel preferences from data, similar to

the consideration in the above papers, using attraction demand models (McFadden 1974, Urban

1969) and geared to improve operational pricing decisions in the presence of two or more channels.

Game theoretic analysis to study price competition in a multi-channel context has been a topic

of recent interest. Kireyev et al. (2014) study how and when self-matching prices can be an effective

pricing strategy for the multi-channel retailers in the presence e-tailers and other multi-channel

retailers. Hua et al. (2010), Yan and Pei (2011) study competition due to the pricing policies in a

supply chain with a retailer and a separate multi-channel manufacturer (with online and traditional

retail channels).

From an operational perspective, there is substantial academic literature that focus on single and

multi-product pricing problems (for example, see the survey papers by Bitran and Caldentey 2003,

Elmaghraby and Keskinocak 2003, Chen and Simchi-Levi 2012). To the best of our knowledge, the

focus has been on single channel pricing and largely restricted to single location. Commercially

available pricing solutions employed by retailers today price the multiple channels of a retailer

separately or sequentially. In contrast, the focus of this paper and the deployed solution is on

an integrated multi-channel and multi-location pricing problem in the presence of cross-channel

demand interactions and important practical considerations.

From the perspective of price optimization using customer choice models, several papers in the

literature have analyzed a variety of parametric and non-parametric approaches. For the multino-

mial logit (MNL) demand model, Hanson and Martin (1996) show that the profit as a function

of the prices is not quasi-concave. Aydin and Porteus (2008), Akçay et al. (2010) explored this

problem further and show that the resultant profit function is unimodal in the price space. Mean-

while, Song and Xue (2007), Dong et al. (2009) proposed a market share variable transformation

to demonstrate that the objective function is jointly concave in the space of the market share

variables. This transformation idea for MNL demand models was later extended to general class

of attraction models by Schön (2010), Keller et al. (2014).

Our work more specifically relates to the pricing with mixture of attraction demand models. For

a mixture of attraction demand models, the pricing problem is an open problem as pointed by

Keller et al. (2014), who develop a local optimal heuristic solution by employing an approximate

demand model and assuming convexity. On the other hand, for the non-convex problem we analyze

and we develop tractable exact solution methods to solve large-scale OCP problem instances that

arise in practice. In Section 9.1, we comment on the unsuitability of suboptimal approaches for

practical deployment as they can often lead to incorrect downstream decisions.
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A few papers have explored the use of other demand models in the context of multi-item pricing

problems. For example, pricing nested logit demand models has been studied by Li and Huh (2011),

Gallego and Wang (2014), Rayfield et al. (2012). In the presence of varying price elasticities across

items, and unconstrained prices, Gallego and Wang (2014) show that the resultant problem can

be computationally intractable as a transformed model is non-convex. For multi-item pricing using

a hybrid MNL demand model, Subramanian and Sherali (2010) provide a mixed-integer linear

programming formulation that incorporates a variety of practical business rules by simultaneously

working in the price and market share space. Non-parametric approaches to multi-item pricing

have been explored by Rusmevichientong et al. (2006) and Aggarwal et al. (2004) using heuristic

approaches and approximation algorithms.

3. Omni-Channel Demand Modeling and Optimization Framework

In this section, we present the design of a framework over which a suite of advanced omni-channel

retail analytical solutions such as demand forecasting, pricing, and inventory management can be

built upon. The OCP problem developed in this paper uses this framework.

Consider an omni-channel retail chain that wants to understand its customers channel preferences

and propensity to purchase. The existing demand forecasting systems (and that of our client) use

historical point-of-sales data for the online store and the brick stores along with the associated

sales attributes such as price, promotion, seasonality, etc., to calibrate separate demand models for

every store cluster as a function of these attributes. In particular, the online channel is treated as

an independent single-store cluster.

On the other hand, as shown in Fig. 1(a), the retail chain’s consumers navigate across chan-

nels and retailers to finalize a purchase. The incumbent demand forecasting approach limits the

retailer’s ability to accurately quantify this behavior of omni-channel customers. For example, while

this approach is quite capable of identifying the effect of the online price on brick sales at any

physical store location, it is difficult to quantify the impact of brick-store prices on online-channel

sales. Mathematically, the existing system can calibrate a reasonable model for demand at location

Bj denoted by DBj
(pO, pBj

) where pO is the online price, and pBj
is the brick price at location Bj,

whereas it is not easy to estimate the online demand denoted by DO(pO, pB1
, pB2

, ...) as a function

of all the brick prices. The sheer number of physical store locations (ranging from several hun-

dreds to a few thousand), and the usage of location-specific pricing makes this task impractical.

While employing some store-weighted average brick price across locations may simplify the param-

eter estimation procedure, the resultant loss in sensitivity to location specific brick prices, store

promotions, and the impact of local events precludes the accurate quantification of the a brick

location’s cross channel impact on the online channel. This inability to quantify cross-channel sales
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impact across the retail chain would result in sub-optimal decisions being produced by downstream

decision systems. We overcome this limitation by designing an alternative framework that enables

retailers to model a variety of cross-channel interactions benefiting both the demand, as well as

the supply side.

In Fig. 1(b) we propose a demand modeling framework for the omni-channel environment to

accurately quantify cross-channel demand interactions. We partition the online store (transactions

of which, in reality, originate from a continuum of customer zip-codes) into multiple virtual online

stores (virtual stores, for brevity). Each virtual store corresponds to the online transactions orig-

inating from a specific geographical aggregation of zip-codes. These zip-codes can also represent

the customer-base of the physical stores in that region, referred to as a brick store cluster. Thus,

customers within the zip-codes associated with any virtual store, can choose to purchase from this

virtual store or the brick store cluster in that area. Virtual store transactions whose zip-codes can-

not be mapped to any physical store cluster in the vicinity are grouped into a single virtual store

that we denote as Oo in the figure. In Fig. 1(b) we create one virtual store for every physical brick

store. Often times, multiple brick stores can be located in neighboring zip-codes, and imputing

the online transactions at the brick-store level is difficult. Therefore, identifying a suitable level of

aggregation in the location hierarchy of the retailer to create the virtual stores is important so as

to balance the richness of the predictive model and forecast accuracy. Here on, we use the term

location or zone interchangeably to represent the level of geographical aggregation at which we

develop the predictive model.

Online	  Store	  

Compe..on	  

Brick	  and	  mortar	  stores	  

Current	  Retail	  Analy.cs	  Framework	  

B1	   B3	  B2	  

Compe&&on	  

B1	   B3	  B2	  

Brick	  and	  mortar	  stores	  

O0	   O1	   O2	   O3	  

Online	  store	  divided	  into	  	  
virtual	  stores	  with	  billing	  informa&on	  

Proposed-‐Omni-‐channel	  Retail	  Analy&cs	  Framework	  

Brick	  and	  mortar	  stores	  

O0	   O1	   O2	   O3	  

Virtual	  online	  stores	  

Cascading	  elas9city	  network	  	  

B1	   B3	  B2	  

Linking	  constraints	  

Cr
os
s-‐
ch
an

ne
l	  

In
te
ra
c3
on

s	  

(a) (b) (c)

Figure 1 (a) Current retail demand modeling framework; (b) Proposed omni-channel demand modeling frame-

work; and, (c) Illustration of the cascading interactions across channels and locations. The dotted lines

represent the cross-channel effects and double solid lines represent the linking constraints.

The main advantages in creating these virtual online stores are as follows:
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1. Calibrating the demand model for a virtual store reduces to solving a local parameter estimation

problem without the need to consider the impact of all the (several hundred) location-specific

prices or promotions. For example, from a pricing point of view, the demand at virtual store

O3 is just DO3
(pO3

, pB3
). Here we assume that different physical store clusters have negligible

interaction from a demand perspective which is quite reasonable. The total online demand is,

therefore, the sum of demands of the virtual stores.

2. The demand modeling framework in Fig. 1(b) naturally lends itself to modeling the channel-

switching propensity of customers within an omni-channel environment. Geographical clustering

enables the demographic heterogeneity of online shoppers to be automatically incorporated.

Finer levels of consumer segmentation are also possible within this framework. . In fact, if

customer loyalty card data is available, this framework can be used to calibrate customer-specific,

personalized demand models.

3. Incorporating the effects of competition, product ratings, social network sentiment, and local

events in demand modeling is useful, and is relatively easy to do within the proposed framework.

Brick as well as online competitor prices, if available, can be introduced as additional attributes,

or as additional customer choices in order to account for lost sales.

4. Our virtual store model enables downstream systems to accurately calculate shipping costs, and

delivery times for online orders as well guide fulfillment decisions.

In Fig. 2 we provide an example of the geographical dispersion of the volume of sales (represented

by the size of the pie) and channel share between brick (red) and online (blue) for a consumer

electronics category of an omni-channel retailer. We clustered their store network (more than

1500 stores) using a k-means distance based algorithm (MacQueen et al. 1967) where k= 50. The

figure shows the vornoi diagram created using the centroids of the clusters, which also enables the

partitions of zip-codes into the zones. Interestingly, the figure shows that the channel preferences

varies by location. Our clustering method not only captures the heterogeneity in the volume of

sales but also the variation in the channel preferences of consumers. This visualization of the data

was developed using D3 libraries and is a key output shared with retailer.

In the future, explicitly distinguishing between the virtual channels (e.g. mobile, social, video)

may be essential because of the emerging differences in merchandizing strategies adopted. A similar

approach demonstrated for the online channel can be performed for every virtual channel.

A big-data platform can be gainfully employed to manage the variety, volume, and velocity of

data required to support and periodically update the omni-channel demand modeling framework

within a practical application.

Integrated decision making across the retail chain: The proposed omni-channel framework

enables a more accurate characterization of demand and can be employed to solve omni-channel

d3js.org
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11%	  

9%	  

7%	  

Online	  Share	  (blue)	  	  
10%	  

	  	  	  	  4%	  

Figure 2 Example of the volume of sales and channel share across the geographical clusters for one electronics

category of an omni-channel retailer.

decision problems such as a pricing and inventory management. Toward this, observe that the

propensity of customers to switch channels based on price comparisons, as well as the natural

pricing constraints between locations (e.g. a common price across virtual stores), and channels (e.g.,

online price must be within 20% of the brick price) results in a cascading, directed price-influence

network, as depicted in Fig. 1(c). Therefore, in today’s omni-channel environment there is a need

for integrated decision making across all channels and locations.

The benefits of integrated decision making across the retail chain are as follows: (1) it minimizes

cross channel sales cannibalization, as well as lost sales to competitors; (2) it better manages

inventory costs across the retail chain by modeling cross-channel fulfillment possibilities such as

ship-from-store and buy-online-pickup-instore; (3) it better satisfies inter-channel and inter-location

constraints (such as price-matching between channels or locations, and global sales goals) which

are of practical importance; (4) the analysis can be readily extended to manage more than two

channels, as well as multiple shipping tiers for online product purchases, and (5) the retailer is better

positioned to profitably manage the increasing online sales presence in the future marketplace,

where cross-channel demand interaction levels are likely to be even higher.

On the other hand, integrated decision making in an omni-channel environment requires us to

solve a large-scale optimization problem spanning the retail chain, along both the channel, and

location dimensions. In this paper, we highlight how certain reformulation and decomposition

techniques help overcome this challenge in the specific context of prescribing optimal prices for a

non-perishable (hardline) product sold in multiple channels and locations by a retailer.
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We commenced the engagement with the retailers in the firm belief that with the plethora of

data being collected, and the impressive strides made in large-scale optimization technologies over

the years, such advanced revenue management solutions are not only practicable but also essential

for an omni-channel retailer to retain the edge in today’s competitive environment. The creation

of the virtual stores and an integrated operation across the retail chain clearly makes the retailer’s

decision problems more customer centric (i.e., where does the demand originate from and what

factors impacts demand) rather than being business- or operation-centric, as it was in the past.

4. Demand Model

Consider an omni-channel retailer selling a product using M sales channels to customers in J

locations. Let V ⊂M be the set of virtual channels like website, mobile, social, which are partitioned

into virtual stores by location j ∈ J . Let pjm be the price for the product sold in channel m ∈M

and location j ∈ J and pj be the corresponding vector of prices in all channels at location j. Note

that pjm is often the same across j ∈ J for virtual channels m ∈ V . Let Dj(pj) be the vector of

demands originating from location j ∈ J in all the channels. As motivated in Section 3 we assume

that the demand for a product in a specific channel and location depends on the attributes of all

channels at that location in order to model customer choices across channels in an omni-channel

world. We refer to this representation as the omni-channel demand model.

In deciding the specific class of the demand model, one has multiple alternatives depending

on the features it captures as well as the practical ease of parameter estimation using historical

sales data. Attraction demand models are one of the commonly used demand functions to model

consumer choice in marketing, economics, and more recently, in the revenue management litera-

ture. They generalize the well-known multinomial logit (MNL) and the multiplicative competitive

interaction (MCI) demand models, and have their foundations in the random utility theory in

economics (McFadden 1974, Urban 1969). We use these attraction demand functions to model

consumer demand, more specifically the channel choice of a consumer, in an omni-channel envi-

ronment. In particular, we assume it has the following form:

Dmj(pj) =
Market Size
of location j

∗
Market Share
of channel m
in location j

(4.1)

= τj
fmj(pmj)

1 +
∑

m′∈M fm′j(pm′j)
(4.2)

where τj is the market size of location j and fmj(pmj) is the attraction function of customers

in location j to channel m. The market size represents the measure of consumers interested in

the product and the market share, also commonly referred to as the purchase/choice probability,
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captures how consumers choose between different choices, including a no-purchase option. Some

examples of the attraction demand model include the MNL demand model where fmj(pmj) =

eamj+bmjpmj , MCI demand model where fmj(pmj) = amjp
bmj

mj , and a linear attraction demand model

where fmj(pmj) = amj+bmjpmj. Here, amj, bmj are constants that ensure the negative price elasticity

of demand.

An attraction demand model is often chosen to model consumer choice even at an aggregate

level (as we do in this paper) rather than just the willingness to buy of an individual because it

has fewer coefficients to evaluate than its counterparts. In particular, the number of coefficients in

the attraction demand model is O(M) for M choices as opposed to O(M 2) required in scan-pro

demand models such as linear, log-linear or power-law models (Reibstein and Gatignon 1984, Berry

1994). Attraction demand functions also possess certain useful practical features that make it a

viable demand modeling alternative for the downstream price optimization applications, as we see

in Section 5.

The standard methods to estimate the parameters of an attraction demand model, and the MNL

model in particular, are the maximum log-likelihood method (McFadden 1974, Ben-Akiva and

Lerman 1985) and the ratio method (Berry 1994). Both methods require historical information

about every choice. In our setting, this includes information about the historical transaction/sales

data in every channel and location as well as lost sales. Lost sales refers to the instances where

the no-purchase option in exercised by a consumer who finds all the available purchase choices to

be less attractive. Mathematically it refers to the component τj
1

1+
∑

m′∈M fm′j(pm′j)
in the demand

model in Eq. (4.2). Omni-channel retailers rarely have complete information about lost sales and

more often than not, have to calibrate the attraction demand model using incomplete data.

In the seminal work on choice based revenue management by Talluri and Van Ryzin (2004),

the authors develop an estimation method for this problem using an expectation maximization

(EM) method. Newman et al. (2014) identify some drawbacks of the EM method and propose a

computationally fast two step non-EM based estimation method. Talluri (2009) also describes a

two-step risk-ratio based estimation method. We employ an alternative estimation method that we

recently developed, and is described in our forthcoming paper (Subramanian and Harsha 2015). In

that paper, we detail some of its advantages and provide a detailed computational comparison of the

proposed method with other existing estimation methods on multiple real world data sets. However,

any of these aforementioned estimation methods can be employed to calibrate our proposed omni-

channel demand model. Also, during model calibration with real data, demand drivers besides price

such as promotions, seasonlities, holidays and even competitor prices, if available, are included and

we highlight this in our computational experiments in Section 8.2.
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An alternative approach that is often employed in practice to model consumer choice and avoid

estimating lost sales is the so-called hybrid attraction demand model (Subramanian and Sherali

2010). In these models, the market size is allowed to depend on the attributes of all the choices

(e.g., prices in all channels). This modified market size denotes the set of people who purchase the

product through one of the channels (i.e., it indirectly accounts for lost sales). The market share

component is the standard attraction model only across the different choices available, excluding

the lost share choice (i.e., without 1 in the denominator). The size of the pie in Fig. 2 represents

the market size of a hybrid model and the channel fraction denotes the corresponding market

share. Such a scheme simplifies the estimation procedure, which decomposes into two independent

estimations of market size and share. Unfortunately, a hybrid model calibrated in this manner

can yield counter-intuitive elasticity estimates (e.g., positive price elasticity for substitutive items),

which are subsequently projected into the non-positive space after the estimation. Ex-post trun-

cation can result in poor forecasts, whereas ignoring the sign of the price elasticity value can yield

impractical pricing recommendations. Finally, the market size model injects additional nonlinearity

and nonconvexity into a price optimization formulation as discussed in (Subramanian and Sherali

2010).

Attraction models satisfy the independence of irrelevant alternatives (IIA) property (McFadden

1974). As the number of (virtual) channels increases, the newer channels maybe perfectly substi-

tutable and hence less likely to satisfy the IIA assumption. In such scenarios, alternative demand

models that can overcome the IIA assumption, such as the nested attraction demand model, or the

continuous mixture of attraction demand models (even at a single location) have to be considered

and is a topic suitable for future research.

5. Omni-channel Price optimization (OCP) for a single non-perishable product

In this section, we formulate the omni-channel price optimization model for a non-perishable

product in order to identify the most profitable prices in all channels and locations, subject to

various retailer goals and practical business rules.

We restrict our analysis to the class of non-perishable items, and assume that there are well

established replenishment policies, and that out-of-stock inventory effects negligible. This is a rea-

sonable assumption for non-perishable goods. Mathematically, it allows one to view the integrated

pricing problem across the retail chain as a single period pricing problem without inventory effects.

For simplicity, we restrict our focus to the case when inter-item substitutive and complementary

effects are absent.
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Using the notation introduced earlier in Section 4, we formulate the general non-linear omni-

channel price optimization problem denoted by OCP as follows:

OCP: max
pj

∑
j∈J

(pj − cj)
TDj(pj) (5.1)∑

j

AkjDj(pj)≤ uk ∀ k= 1, ...,K (5.2)∑
j

Bljpj ≤ vl ∀ l= 1, ...,L (5.3)

pm,j = pm,j′ ∀ m∈ V, j, j′ ∈ J (5.4)

pmj ∈Ωmj ∀ m∈M, j ∈ J. (5.5)

The decision variables in the above OCP formulation are the prices in all locations and channels,

and the objective is to maximize the total profitability of the retailer across the retail chain.

Constraints (5.2–5.3) are generic polyhedral constraints on demands and prices defined with known

matrices Ak,Bl ∈RM ×RJ and vectors u∈RK ,v ∈RL. These generic constraints encapsulate the

retailer’s goals and practical pricing rules. We provide several examples of these constraints in

this section below. Constraint (5.4) ensures that the retailer offers the same price across all the

virtual stores. This constraint is particularly relevant within our omni-channel framework because

we explicitly partitioned the virtual channels by location in order to model cross-channel effects,

and this constraint binds them back together from the view of the customer. Discrete pricing

constraints, if present, are encapsulated in constraint (5.5).

Some examples of the generic business rules used in practice are as follows:

Volume (or sales goal) constraints

∑
m∈Mk,j∈Jk

Dmj(pj)≥ uk, (5.6)

where Mk ⊂ M and Jk ⊂ J and depending on the choice of Mk, Jk these constraints can be

employed to support a retailers global or channel and location-specific sales goals. For example, con-

straint (5.6) can ensure that the total sales volume by channel does not drop below a user-specified

threshold, uk, thereby balancing profitability and market share objectives. Such constraints also

act as a practical guard that prevent the drastic price increases that can occur while optimizing

for weakly elastic products.

Price monotonicity constraints

pmj ≤ γmm′pm′j + δmm′j ∀j ∈ J and for some m,m′ ∈M. (5.7)
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The goal of constraint (5.7) is to enforce that prices in certain channels are cheaper than others

by a specified percentage γmm′ and/or a constant δmm′j. This constraint can also account for the

variation in unit-cost across channels, i.e., the overhead cost of operating a physical store. An

extension of constraint (5.7) is the price-matching constraint across the retail chain where the

inequality is replaced by a equality and setting γmm′j = 1, δmm′j = 0. Here, consumers can buy the

same product anywhere in the retail chain at the same price. One can view constraint (5.7) also

as a volume measure constraint. Sometimes a channel exclusively sells a larger volume measure or

pack of the same product (for example, a 12-pack case of white board markers sold online versus

a 6-pack case of markers sold in-store). Here, γmm′ is a scaling factor between channels that is

employed to achieve price parity per unit measure.

Price bounds

µ
mj
≤ pmj ≤ µmj ∀j ∈ J, m∈M. (5.8)

Here, µ
mj

and µmj are upper and lower bounds that are often imposed as a percentage of historically

offered prices or as a percentage of competitor prices to ensure the competitiveness of the retailer.

Discrete prices

pmj ∈Ωmj ∀j ∈ J,∀m∈M. (5.9)

Magic number endings (e.g., those ending with 9) are important to a retailer and are encoded in

this business rule. Furthermore, when a retail re-optimize prices, constraint 5.9 can be employed

to generate a price ladder that proactively excludes trivial price changes in order to avoid the

substantial labor cost incurred in physically changing the sticker prices in brick stores.

In practice, the choice of the business rules differ by product category and by the retailer. But

in general, we classify all the business rules as either inter-channel or inter-location constraints,

and treat restrictions on a specific channel-location pair as a subclass of inter-channel constraints.

From a computational complexity perspective, inter-channel constraints are typically easy to satisfy

(see Remark 1 below for a counter example), whereas inter-location constraints tend to be harder.

We discuss this issue in detail along with examples in the following subsection.

5.1. Special cases of the OCP and computational complexity

In this section, we analyze different special cases of the omni-channel price optimization problem

and understand its computational complexity by positioning it in the context of current literature.

Single location and multiple channels: The OCP problem in this special case has a formulation

that is structurally identical to the multi-item pricing problems with several side constraints.
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Attraction demand models provide unimodal and convex structure to some special cases of the

pricing problem using a market share transformation. We will explain the transformation below as

we will use this later in the paper. The market share variables are defined as follows for the specific

location j:

θmj =
fmj(pmj)

1 +
∑

m′∈M fm′j(pm′j)
∀m∈M, and (5.10)

θ̄j = 1−
∑
m

θmj. (5.11)

Given the market share variables, there is a one-to-one transformation to the price variables as

follows:

pmj = f−1
mj

(
θmj
θ̄j

)
= gmj

(
θmj
θ̄j

)
(5.12)

where f−1
mj (.) = gmj(.) under the following very mild assumption on the structure of the attraction

functions.

Assumption 1. (Keller et al. 2014) The attraction function, fmj : R→ R+ for each channel

m∈M and location j ∈ J and satisfies:

1. fmj(.) is strictly decreasing and is twice differentiable on R, and

2. limx→−∞ fmj(x) =∞, and limx→∞ xfmj(x) = 0.

Keller et al. (2014) provide a general condition under which the objective is concave function in

the market share space. We state this condition as an assumption in our paper and in particular,

the well know MNL, MCI and linear attraction demand models satisfy this assumption.

Assumption 2. (Keller et al. 2014) The function gmj(.) = f−1
mj (.) satisfies the following condition

for all m∈M and the specific location j under consideration:

2g′mj(y) + yg′′mj(y)≤ 0 ∀y > 0. (5.13)

The authors also show that the volume goals and price bounds constraints (5.6) and (5.8)

respectively can be transformed into linear constraints in the market share space and therefore

the multi-item problem with these constraints, under assumption 2, can be solved efficiently as a

convex optimization problem. However, this result does not extend in the presence of general linear

pricing constraints (5.7) that are important in practical pricing applications. We motivate this in

the following remark.

Remark 1. The price monotonicity and the volume measure constraints (5.7) transform into

highly non-linear and non-convex constraints in the market share space. For example, consider the
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constraint pmj ≤ γpm′j where γ is a constant. For an attraction demand model the constraint in

the attraction space translates to fmj(pmj)≤ fmj (γpm′j) which in the market share space translates

to θmj ≤
fmj(γpm′j)
fm′j(pm′j)

θm′j. Even for simple attraction models, the ratio of the attractions is not a

constant. In the special case when γ = 1 and the bmj are identical for all m∈M in an MNL or linear

attraction demand model, the right hand side can be transformed into an affine function in the

market share space. We did not observe that bmj are identical for all m∈M for any of the product

categories that we analyzed across retailers in our customer engagements. This can be attributed to

the heterogeneity in people’s shopping preferences at a location across different channels. Therefore,

such a transformation fails to recover a convex formulation in either the price, or the market share

space.

Multiple locations and multiple channels of a single type (virtual or not):

Suppose the multiple channels are physical store-like channels where prices can vary by location.

In this case, the OCP problem decomposes by location in the absence of inter-location constraints,

and reduces to multiple independent single-location, multi-channel pricing problems.

On the other hand, if the multiple channels under consideration represent virtual channels, the

OCP problem has a structure that is identical to the pricing problem for a mixture of attraction

demand models. Traditionally, such a mixture is across multiple segment classes where a customer

has a certain probability of belonging to a particular segment. In the omni-channel modeling

framework, a customer belongs to only one location, whereas the total demand is the sum of

demands in each of these locations. A key feature of the mixture model is that the prices offered

across the segments are the same for each choice, similar to the virtual channel prices in the OCP

problem.

Remark 2. In Fig. 3 we plot the values of the objective function Eq. (5.1) for an OCP instance

having a single virtual channel, say online, and two locations, with constraint (5.4) ensuring that

the online price across locations is the same. We can observe from the figure that the objective

function in this example is non-convex and has multiple peaks. Although constraint (5.4) is similar

to the price matching constraint (see Remark 1), note that it is across locations and not choices.

Because the lost sales probabilities, θ̄j’s, vary across locations, the resulting constraint in the market

share space is likely to inject a higher degree of non-linearity and non-convexity into the problem,

when compared to the price matching constraint (which is a special case of constraint (5.7)).

We now show that the OCP problem having two or more virtual channels and just two locations

is an NP-hard problem. This result is achieved by performing a reduction from the 2-class logit

assortment optimization problem (2CL). The goal of 2CL is to identify an optimal assortment of
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Figure 3 Example of a OCP objective for a single virtual channel and two locations as a function of the virtual

channel price for an MNL attraction demand model with a11 = 10, a12 = 1, b11 = 1, b12 = 1, τ1 = 1 and

τ2 = 10.

items in a set V to offer to customers who can potentially belong to one of two segment classes that

are unknown to the seller. The inputs to this problem include the item profits, the relative weight

of the classes and the preference weight of each item in each class. Rusmevichientong et al. (2010)

showed that the 2CL is NP-hard. The reduction is as follows. Consider an arbitrary instance of

2CL and map every item in set V to a distinct virtual channels in the OCP problem. If an item

v ∈ V is part of an assortment then offer a product in the virtual channel v at some finite price that

results in the attraction value of the channel-class being equal to the preference weight of the item

in that class. If an item v ∈ V is not part of an assortment then we offer the product in channel v

at a sufficiently high price that reduces the attraction value of channel v to zero. The item profits

in 2CL correspond to the margin of the channels, and the relative weight of the classes correspond

to the market size of each location. As a reduction from this 2CL assortment optimization problem

for an MMNL demand model, we can see that the OCP problem is NP hard. We state this as a

remark below.

Remark 3. The OCP problem with multiple virtual channels and at least two locations is NP-hard.

A relevant question for this paper is the complexity of the OCP problem having multiple locations

but a limited number of channels (with one or more virtual channels). While this remains an open

question, we present an empirically efficient pseudo-polynomial algorithm in this paper for the

single virtual channel instance and propose a tractable MIP to manage the general case.

Multiple locations and multiple channels of different types: This setting encapsulates

the OCP problem of interest. Clearly, the presence of the virtual channels and practical business
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rules makes this case non-convex and non-linear. Solutions obtained using gradient-based, non-

linear programming can be stuck in local optima which can be far away from the global optimum

of the problem, resulting in poor quality pricing recommendations. Randomized meta-heuristic

methods can be employed to partially overcome this problem. In Section 9.1, we comment on the

unsuitability of such suboptimal approaches for practical deployment. In the following sections, we

study prescriptive conditions and exact solution methods to solve the OCP problem.

6. Price-coordination between channels

Price-coordination between channels for a product is often a retailer’s choice and/or strategy that

is based on the brand image to be maintained. Price-coordination can include, price-matching, or

maintaining a certain price differential between channels. In this section, we provide a prescriptive

solution for price-coordination using the parameters of the OCP attraction demand model. These

solutions are meant to guide the retailer in the right direction when they set business rules and/or

goals such as price-monotonicity. For this reason, we derive first order necessary conditions for

the OCP problem while satisfying only constraint (5.4) that enforces the same price across virtual

stores, and treat prices as continuous variables. The optimal prices in the presence of business rules

can be obtained by using the methods described in Section 7.

Proposition 1. For a retailer operating multiple channels at a single location, the optimal prices

with a general attraction model satisfies the following condition:

(po− co)− (pb− cb) =
po

εo(po)
− pb
εb(pb)

∀ o, b∈M (6.1)

where εm(pm) = −f ′m(pm)pm
fm(pm)

, the point price elasticity of the attraction function for channel m.

To provide more structure, we substitute the different forms of the attraction model and deduce

the following corollary which we state without proof. We note that Eq. (6.1) is derived based on

first order conditions and hence represents a necessary condition, but is not sufficient.

Corollary 1. For an MNL demand model where fm(pm) = eam−bmpm, Eq. (6.1) reduces to:

p∗o− p∗b = co− cb +
1

bo
− 1

bb
∀ o, b∈M, (6.2)

whilst for a linear attraction demand model where fm(pm) = am− bmpm, Eq. (6.1) reduces to:

p∗o− p∗b =
1

2

[
co− cb +

ao
bo
− ab
bb

]
∀ o, b∈M. (6.3)

On the other hand, for a power attraction demand model where fm(pm) = amp
−bm
m Eq. (6.1) reduces

to

p∗o

[
1− 1

bo

]
− p∗b

[
1− 1

bb

]
= co− cb ∀ o, b∈M. (6.4)
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A special case of the above corollary that is well-known from the multi-product pricing literature

on MNL demand models is that if the price coefficients, bo, bb, are equal then so are margins at

optimality (see e.g., Gallego and Wang (2014) and references therein).

Based on this corollary, we observe that for the MNL demand model in our OCP context, the

optimal price gap between any two channels just depends only on bm and is independent of the

intercept am, and hence the channel market-shares. Also, if bo > bb then p∗o− co < p∗b − cb. In other

words, if the online customers (o) are more price sensitive than the brick customers (b) then the

optimal online margin is lower than the optimal brick margin. Moreover, if co ≤ cb then at optimality

p∗o < p
∗
b , i.e., the optimal online price is less than the optimal brick price. Finally because Eq. (6.1)

holds for any two channels, the relationship between price-sensitivity and the optimal price holds

for OCP instances with more than two channels as well. For example, if f refers to the social-

networking store channel, then p∗f < p∗o < p∗b , if we assume cf ≤ co ≤ cb and bf > bo > bb, i.e., the

customers in the social channel are more price sensitive compared to the other online customers.

These results extend directly to the power-law form of the demand model and the linear attraction

demand models, except that the price coefficient in the latter case is bm/am. We summarize this

insight with the following remark.

Remark 4. If the cost co ≤ cb for any o, b ∈M and if the price coefficient ηo > ηb where ηm is bm

for the MNL and MCI demand models and is bm/am for the linear attraction demand model then

po < pb.

We obtain yet another insight from the above discussion and the corollary.

Remark 5. For a fixed set of costs across channels, as the gap between the price coefficients ηm

increases (decreases), the gap between the prices at optimality increases (decreases).

In other words, if widely different classes of customers shopping in the different channels, then

the optimal channel prices can be sufficiently apart. On the other hand, if the customers who shop

in the different channels become increasingly homogenous, their price sensitivities will be similar

and the prices will be closer.

Finally, for the MNL demand model from Eq. (6.2), when all the channels are highly price

sensitive, say bm > 1 ∀m ∈M , then the gap in the margins (or prices if the costs are equal across

channels) are less than 1.

We now consider the case of a retailer operating across multiple locations.

Proposition 2. For a retailer operating multiple channels and multiple locations, let wj(p) be the

normalized values corresponding to the online demand in each location, i.e., τj
f ′oj(po)

1+
∑

m′∈M fm′j(pm′j)
,
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over all the locations j ∈ J resulting in
∑

j∈J wj(p) = 1. Then the optimal prices with a general

attraction model satisfy the following condition:∑
j∈J

wj(p)

[
(po− co)− (pbj − cbj)−

po
εoj(po)

+
pbj

εbj(pbj)

]
= 0 (6.5)

where εmj(pmj) =
−f ′mj(pmj)pmj

fmj(pmj)
, the point price elasticity of the attraction function for channel m.

Given that the online price is a constant across locations, one can rewrite Eq. (6.5) to conclude

the following: the online margin is a weighted linear combination of brick margins and certain

constant terms across all locations. Note that the weights represent the normalized online demand

by location, which in turn, are a function of the prices but are numbers less than 1. Here, the

constant term represents the difference in the price over the point elasticities between the online

and the brick channel in each location. The result is an interesting insight that can be shared with

the retailer in order to better understand how optimal brick and the online channel prices interact

with each other. Analogous to corollary 1, we can deduce the following result for the multi-location

setting.

Corollary 2. Let wj(p) be the normalized values corresponding to the online demand in each

location, i.e., τj
f ′oj(po)

1+
∑

m′∈M fm′j(pm′j)
, over all the locations j ∈ J resulting in

∑
j∈J wj(p) = 1. Then,

for an MNL demand model where fmj(pmj) = eamj−bmjpmj , Eq. (6.5) reduces to:

p∗o = co +
∑
j∈J

wj(p)

[
p∗bj − cbj +

1

boj
− 1

bbj

]
∀ o, b∈M, (6.6)

whilst for a linear attraction demand model where fmj(pmj) = amj − bmjpmj, Eq. (6.5) reduces to:

p∗o =
co
2

+
∑
j∈J

wj(p)

[
p∗bj −

cbj
2

+
aoj
2boj
− abj

2bbj

]
∀ o, b∈M. (6.7)

On the other hand, for a power attraction demand model where fmj(pmj) = amjp
−bmj

mj Eq. (6.5)

reduces to

p∗o =

(
co +

∑
j∈J

wj(p)

[
p∗bj

(
1− 1

bbj

)
− cbj

])[∑
j∈J

wj(p)

(
1− 1

boj

)]−1

∀ o, b∈M. (6.8)

The above constraints are similar to the single location constraint except that the location

specific terms (or their combinations) are replaced by the weighted averages. Therefore, the insights

developed in the single location setting (which channel price is lower and by how much) hold here

but with respect to the weighted average values. The insight that can be derived is if the brick

price coefficient at every location is smaller in magnitude than the corresponding online coefficient

then the optimal online prices will be lower than the brick prices assuming also that the unit cost

online is less than its brick counterpart.
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7. Exact methods to solve the OCP problem

In the following section, we provide two tractable methods that can achieve the global optimum to

the OCP problem and compare their computational performance. These methods exploit the special

structure of the OCP problem, the features of the attraction demand model, and the discreteness

of the price space.

7.1. A decomposition method for the case of the brick and online channel

In the two channel case, a decomposition algorithm for the OCP problem with any omni-channel

demand model is as follows: fix the online price and solve the corresponding single channel brick

problem to optimality, and repeat this search over all online prices.

Given an online price, the problems at each of the brick locations are separable except in the

presence of inter-location constraints, if any. In the absence of inter-location constraints, these brick

problems are solved separately to optimality. For attraction demand models, we derive near-closed

form solutions to the brick problems, enabling us to solve OCP fast enough for (near) real-time

price optimization. Towards the end of the section, we provide extensions of this decomposition

method in the presence of inter-location constraints. The method can also be generalized and

remains viable for demand functions that do not necessarily come from the attraction family.

Consider the OCP problem employing an attraction demand model without inter-location con-

straints. Recall that channel and location specific restrictions are considered as inter-channel con-

straints. Given an online price po, the OCP problem decomposes by brick locations. If Π(po) denotes

the optimal objective of the corresponding OCP with online price po then

Π(po) =
∑
j∈J

τjΠj(po) (7.1)

where Πj(po) is the optimal objective of the corresponding OCP at location j. We denote this

problem as OCPj(po). The only decision variable in this location specific OCP is the brick price

denoted by pbj. Therefore, given po, all the inter-channel constraints are reduced to lower and upper

bounds on the scalar variable pbj denoted by h(po) and h(po) respectively. The problem OCPj(po)

takes the following form:

OCPj(po) : Πj(po) = max
pbj∈Ωbj

∑
m∈{o,b}

(pmj − cmj)
fmj(pmj)

1 + fbj(pbj) + foj(po)
(7.2)

s.t. hj(po)≤ pbj ≤ hj(po) (7.3)

We show below that Πj(po) can be obtained in near closed form using the following theorem. In

the remainder of the section, we work under assumptions 1 and 2.
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Theorem 1. The optimal solution and the objective of the location specific OCP with inter-

channel constraints and continuous brick prices (i.e., Ωbj = R), given the online price po, for any

location j ∈ J can be simplified as follows:

p∗bj(po) =


hj(po), if p̂bj <hj(po),

p̂bj, if hj(po)≤ p̂bj ≤ hj(po),

hj(po), otherwise.

(7.4)

Πj(po) =


Zj
(
po, hj(po)

)
, if p̂bj <hj(po)

(po− co)
foj(po)

1+foj(po)
+Hj(po, p̂bj), if hj(po)≤ p̂bj ≤ hj(po),

Zj
(
po, hj(po)

)
, otherwise.

(7.5)

where

• Zj(po, pbj) is the objective of OCPj(po) with online price po and brick price pbj,

• p̂bj = gbj(z), gbj(.) = f−1
bj (.),

• Hj(po, p̂bj) =− z2

1+foj(po)
g′bj(z) =− f2bj(p̂bj)

1+foj(po)
1

f ′
bj

(p̂bj)
and

• z is the solution of the differential equation:

gbj(z) + z

(
1 +

z

1 + foj(po)

)
g′bj(z)

def
= σj(po) = (po− co)

foj(po)

1 + foj(po)
+ cbj. (7.6)

In particular, for an MNL demand function, where fmj(pmj) = eamj−bmjpmj for m ∈ {o, b}, the

differential equation simplifies to

logx+x= abj − 1− bbjσj(po)− log(1 + foj(po)), (7.7)

where z = x(1 + foj(po)) and Hj(po, p̂bj) = x
bbj

.

The proof of the theorem is in Appendix A. The unconstrained objective at optimality, Πj(po),

has an interesting interpretation:

(po− co)
foj(po)

1 + foj(po)︸ ︷︷ ︸
Profit in the absence of

the brick channel

+ Hj(po, p̂bj)︸ ︷︷ ︸
Incremental profit due to

the brick channel

.

The first term is the profit from the online channel in location j when the brick price in location

j is set to a very large number so that, for all practical purposes, the brick channel does not exist.

The second term is the additional profit from location j when brick price is set to its optimal

value p̂bj. Note that this additional profit is always non-negative because g′bj(z) =
[
f ′bj(p̂bj)

]−1 ≤ 0

because of assumption 1.

Let ψj(z, po) denote the left hand side (LHS) of Eq. (7.6).
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Proposition 3. ψj(z, po) is a non-increasing function in z and in po. Moreover, for a given po,

limz→0ψj(z, po) =∞, and limz→∞ψj(z, po)≤ 0 while σj(po) is a constant independent of z. This

implies that Eq. (7.6) always has a solution.

The solution to Eq. (7.6) can be derived using root finding algorithms such as the Newton

Raphson method.

The above theorem and proposition assumes continuous brick prices. The extension to the case

of discrete brick prices is simple. Each subproblem by location given po is a concave maximization

problem in a market share space. Therefore, a simple rounding algorithm around the maximum

value p̂bj that checks for the maximum objective at the ceiling and floor of p̂bj with respect to the

discretization within the feasible region can be employed.

In order to find the optimal online price, p∗o = argmaxpoΠ(po) = argmaxpo
∑

j∈J τjΠj(po), that

solves the OCP, we search over every discretized online price point with the near-closed form

solution described above for each location j ∈ J . Note that the example in Fig. 3 depicts a function

that is non-convex and can have multiple peaks. This is the reason that the objective has to be

evaluated at every feasible online price point.

Remark 6. The complexity of the decomposition algorithm in the absence of inter-location con-

straints and an attraction demand model is O(IJR) where I is the size of the price ladder in the

online channel, J is the number of locations, and R is the complexity of a root finding algorithm.

In other words, the computational complexity of the decomposition algorithm is pseudo-linear.

The analysis so far ignored inter-location constraints. If inter-location constraints are active,

the following approach can be adopted in practice. For a chosen online price, all feasible brick

prices, from a discrete set, for each location corresponding to the online price and its corresponding

contributions to inter-location constraints and objective are included in a master problem. The

master problem maximizes the total profit subject to the inter-locations constraints only. The

feasible brick prices in each location correspond to binary variables in the master problem and one

feasible brick price per location has to be chosen. This master problem has a structure identical to

a multi-choice multi-dimension knapsack problem (multi-choice corresponds to picking one price in

every location and multi-dimensions corresponds to the inter-location constraints). For example, in

the presence of a single inter-location constraint such a global volume goal, we obtain a multi-choice

knapsack problem (MCKNP), which was can be solved using pseudo-polynomial algorithms based

on dynamic programming (Pisinger 1994). One such MCKNP has to be solved for every chosen

online price. Therefore, the overall method for the OCP problem remains pseudo-polynomial.
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The decomposition method described in this section are especially beneficial when there are

several inter-channel constraints (e.g., channel price monotonicity) because they can all be man-

aged locally with the brick subproblem. The above knapsack-based extensions, generalize to omni-

channel demand models beyond the attraction family.

7.2. A mixed-integer programming approach for the multi-channel case

We present a MIP re-formulation that simultaneously works in the price and the market share

space in order to handle a variety of practical constraints. Introducing market share variables

enables us to avoid bilinear binary variables (e.g., zblizoli′ for channels b at price p̄i and channel o

at price p̄i′ in location l) in the formulation, leading to tractable runtimes for practical instances.

This formulation is flexible in that it can encode important and complex business rules employed

in practice, and can overcome the two-channel limitation of the decomposition method. On the

other hand, the decomposition method is generalizable to demand functions beyond the attraction

family, whereas the MIP approach gainfully exploits the structure of the attraction demand model

in order to generate tractable market share transformations.

Our re-formulation is in the spirit of Subramanian and Sherali (2010) who developed a reformu-

lation for price optimization problem using a hybrid MNL demand model by employing a piecewise

linear approximation of the market size term. In contrast, our reformulation is valid for a general

attraction demand model and does not require such piecewise linear approximations or big-M

upper-bounds.

Let the feasible discrete prices for each channel m ∈M and location j ∈ J be denoted by p̄mji

for i∈ Imj. Here, the set Imj denotes the index set of feasible prices. Let zmji be a binary variable

which is nonzero only if the price in channel m∈M at location j ∈ J is p̄mji. Note that for a virtual

channel v ∈ V the prices across all locations are the same. Therefore, the corresponding prices p̄vi,

the price index set Iv and binary variable zvi are location independent. For ease of exposition, we

use the notation zvji and assume that it is always replaced by variable zvi for every v ∈ V . Similarly,

we assume Iv = Ivj and p̄vi = p̄vji for every v ∈ V . Assuming qmji = τj(p̄mji− cmj)fmj(p̄mji), rmji =

fmj(p̄mji), αkmji =Akmjrmji and βkmji =Blmj p̄mji, the omni-channel price optimization problem is

reduced to the following form:

max
zmji,zvi

∑
j∈J

∑
m∈M

∑
i∈Imj

qmjizmji

1 +
∑

m∈M
∑

i∈Imj
rmjizmji

(7.8)∑
j∈J

∑
m∈M

∑
i∈Imj

αkmjizmji
1 +

∑
m∈M

∑
i∈Imj

rmjizmji
≤ uk ∀ k ∈K (7.9)
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j∈J

∑
m∈M

∑
i∈Imj

βlmjizmji ≤ vl ∀ l ∈L (7.10)

∑
i∈Imj

zmji = 1 ∀ m∈M,j ∈ J (7.11)

zvi = zvji ∀ i∈ Iv, v ∈ V, j ∈ J (7.12)

zmji ∈ {0,1} ∀ i∈ Imj,m∈M,j ∈ J (7.13)

In the above formulation, the general business rules on volumes and prices given by con-

straints (5.2–5.3) are encapsulated in constraints (7.9–7.10). In practice, the zvji variables are never

introduced and we work only with zvi variables, and constraint (7.12) is redundant. The above

formulation is nonlinear, but can be linearized as follows. We first use the fractional programming

transformations proposed by Charnes and Cooper (1962) to overcome the nonlinearity arising from

the ratio terms, and then use the reformulation and linearization technique (RLT) proposed by

Sherali and Adams (1999) to eliminate the non-linearities due to product terms. The RLT trans-

formations exploit the discrete nature of the binary variables, allowing us to recover an exact

reformulation of the OCP problem. We now describe the transformations. Let

yj =
1

1 +
∑

m∈M
∑

i∈Imj
rmjizmji

∀ j ∈ J. (7.14)

Because zmji are binary variables and rmji are non-negative constants, 0≤ yj ≤ 1 ∀j ∈ J . Now define

xmji = yjzmji. It is easy to see that 0≤ xmji ≤ 1 ∀m∈M,i∈ Imj. Substituting these transformations

and linearizing, the resulting reformulated OCP problem is as follows:

max
zbji,zoi,yj ,xmji

∑
j∈J

∑
m∈M

∑
i∈Imj

qmjixmji (7.15)

∑
j∈J

∑
m∈M

∑
i∈Imj

αkmjixmji ≤ uk ∀ k ∈K (7.16)

∑
j∈J

∑
m∈M

∑
i∈Imj

βlmjizmji ≤ vl ∀ l ∈L (7.17)

yj +
∑
m∈M

∑
i∈Imj

rmjixmji = 1 ∀ j ∈ J (7.18)

xmji ≤ yj ∀ i∈ Imj,m∈M, j ∈ J (7.19)

xmji ≤ zmji ∀ i∈ Imj,m∈M, j ∈ J (7.20)∑
i∈Imj

xmji = yj ∀ m∈M, j ∈ J (7.21)

∑
i∈Imj

zmji = 1 ∀ j ∈ J,m∈M (7.22)

zvi = zvji ∀ j ∈ J, v ∈ V (7.23)

zmji ∈ {0,1} ∀ i∈ Imj,m∈M,j ∈ J (7.24)

yj, xmji ≥ 0 ∀ i∈ Imj,m∈M, j ∈ J (7.25)
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Constraint (7.18) linearizes Eq. (7.14). Constraints (7.19–7.20) along with the objective linearize

the product term xmji = yjzmji. RLT constraints (7.21) are implied by constraint (7.19) in the

integer sense but serve to tighten the underlying LP relaxation. In our numerical computations,

we observed that the addition of constraints (7.21) yielded a considerable improvement in the

computational performance.

Observe that the above formulation is now a linear MIP and a commercial optimization software

package like IBM ILOG CPLEX can be used to solve this problem to optimality. Furthermore, this

transformed OCP formulation allows for any number of channels and can incorporate a variety of

business rules that are commonly employed in practice.

7.2.1. Comparison of computational performance between the decomposition and

the MIP approach Fig. 4 compares the average running time of the decomposition method and

the MIP method for two channels (brick and online) as a function of the number of locations using

simulated demand models that were motivated from real data. We assume the absence of inter-

location constraints, and report run times for the decomposition methods under the assumption of

full parallelization of subproblem solutions across locations. An MNL attraction model was used

in the simulations, and the resulting optimization problem was solved using the decomposition

method by exploiting the near-closed form results of Theorem 1. The simulations incorporated the

business rules related to the price bounds and discrete prices. Not surprisingly, Fig. 4 shows that

the parallelized decomposition method takes a constant time even with a large number of locations.

On the other hand, the run times associated with the MIP method tends to increase with the

number of locations. However, for a relatively small number of locations, the MIP approach was

faster than the decomposition method. In practice, we employed no more than 100 locations/zones

to model retail chains having thousand or more physical stores. The figure also includes the average

run time of the MIP for a single online channel. It has a similar trend as that exhibited by the MIP

method with two channels, but tends to grow at a slower rate as the number of locations increase.

8. OCP implementation for a major US retailer

In this section we report results of an OCP implementation for a major U.S. omni-channel

retailer. We worked with our client and engaged with the retailer over the course of 8 months to

demonstrate the business value of the integrated omni-channel regular pricing over their existing

channel independent regular pricing method. We describe (a) the retailer and their business process

(while maintaining their anonymity), (b) the business problem that motivates the new solution, (c)

the data summary, (d) our implementation details and finally, (d) our business value assessment
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Figure 4 Average run times of the decomposition model and the MIP over 25 simulated instances using a MAT-

LAB prototype as a function of the number of locations

for two product categories. The details about the commercial viability of the proposed solution,

and integration into the client IT architecture is presented in Section 9.

Retailer and their current business process: The omni-channel retailer we worked with sells a

variety of products, including office supply product categories such as inkjet cartridges, markers and

highlighters, cut-sheet paper and filing. They operate a brick-and-mortar channel with a network

of well over 1500 stores across the United States. The online channel is used to complete sales

transactions that are routed through their website, as well as mobile and paper-catalog orders.

The organizational structure of the retailer results in two different divisions managing the plan-

ning and operations of the brick-and-mortar, and the online channels and they are largely inde-

pendent of each other. Both divisions use a regular price optimization (RPO) solution to manage

prices for many non-perishable products, referred to as UPCs (universal product code) in the chan-

nels that they are responsible for. The prices for the remaining products are controlled partly by

the manufacturer, or are price-matched with certain competitors. The incumbent RPO solution

produces demand forecasts that are independent of the other channel or competitors, and identifies

regular or base price for the (non-perishable) products that maximizes the retailer’s profitability

over a specified finite horizon subject to some business constraints. One price is found for every

geographical cluster of brick stores identified by the retailer as a ‘price zone’. The entire online

channel is treated as a separate price zone. The regular prices identified are treated as ticket prices.

Sometimes, the ticket prices are overlaid with promotions. Promotions can be of various types,

and includes discounting and advertisement. The regular prices can be held constant for a few

weeks, or can vary from week to week and the retailer can re-optimize it using the RPO solution
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as needed. The pricing solution requires weekly sales and promotion data but does not have, nor

require visibility into the inventory levels on the shelf. Standard inventory re-order policies are in

place, and are managed by separate systems.

Business Problem: Among the UPCs that are priced by the retailer, more than 20% of the

UPCs are sold in both channels - brick and online. They contribute to a significant portion of the

retailer’s category revenue (details provided below). Due to the rapid growth of the online channel,

the retailer was concerned about how to optimally coordinate prices between these two channels

while accounting for competitor effects. In our discussion, the retailer did point that in the future,

they would use the OCP solution to re-optimize online prices as often as possible, in order to

respond to changes in competitor prices. Their immediate goal was to solve the business problem

of coordinating regular prices between channels in order to optimize certain Key Performance

Indicators (KPIs) such as gross profit and sales volume. The retailer also mentioned that they were

not keen on enforcing a price match between the brick and online channels.

Data Summary: To support the business value assessment, we were provided with 52 weeks of

U.S. sales transaction and promotion data (date range of July 2012 to July 2013) for the brick and

online channel for two categories: (1) inkjet cartridges and (2) markers and highlighters. The top

50 UPCs in terms of historical volume that were sold in both the online and the brick and mortar

channel (channel volume share of at least 1%) were selected for the business value assessment.

Some statistics about the data are summarized in Table 8.

Category No. of UPCs
Avg. Final Price % of category Online volume

Brick Online revenue share

Inkjet Cartridges 50 $36.4 $32.1 30% 12%

Markers and Highlighters 50 $8.7 $8.3 42% 12%

Table 1 Summary of the 2012-13 data provided.

In the inkjet cartridges and the markers and highlighters category, the 50 UPCs that were

selected contributed to about 30%, and 42% of the category revenues respectively, and have a 12%

online volume share in each case. Although the online share of the retailer sales in 2012-13 was

relatively low, this number has been steadily increasing year to year.

We also note that the inkjet cartridges category consists of products that are more expensive

than the markers and highlighters category and that the retailer sells products in the brick channel

at a slightly higher price than the online channel.

There were approximately 40 distinct geographical price zones in the brick channel. The con-

tinuum of online sales was disaggregated by the brick channel’s geographical price zones using the
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omni-channel framework described in Section 3. The total sales rates across the 40 zones were not

evenly distributed across locations, and we found that the top 10 zones contributed to 54% of the

total sales, and the top 20 zones to about 83% of the total sales.

For each of the UPC-zone pairs, we obtained by channel, the weekly aggregated sales, volume

weighted weekly average ticket price, discounts and promotions, weekly holidays and seasonalities.

Seasonality is a category level time series computed from multi-year data provided as a part of

input data from an upstream existing data processing system. For a small sample of UPCs, we

were also provided a time series of three online competitor’s final website prices. We observed that

the products in both these categories exhibited a relatively steady sales rate, which is typical of

non-perishable basic products.

We were also provided with the wholesale cost information for the different UPCs and this was

the same across the sales channels. It is possible that the holding cost is lower online but is offset

by the shipping cost, although this information was not provided to us.

In the following subsections, we (a) estimate and compare the degree of channel-switching in

each of the two categories using historical data, (b) calculate the cross-channel price elasticities at

the UPC-zone level using the proposed omni-channel demand model Eq. (4.2) and (c) report on

the results of the business value assessment.

8.1. Identifying UPCs having significant cross-channel price elasticity

In this section we highlight an empirical threshold based method that we developed for our client

to help them identify UPCs exhibiting significant cross-channel price elasticity effects. These UPCs

tend to be ideal candidates for omni-channel price optimization.

Because the assumption of substitution is implicit within an attraction demand model form, we

employed an alternative scan-pro demand model that does not assume substitution or complemen-

tary effects between channels. We fit a scan-pro log-linear demand model to the historical sales

data at the UPC-zone-channel level using own-channel and cross-channel features as follows:

log(Channel Sales) = α0 +
∑
m∈M

[
α1,mPRICEm +

∑
k

α2,k,mPROMOTION-VARIABLESk,m

]
(8.1)

+
∑

m∈M,j

α3,j,mCOMPETITOR PRICES (optional)m +
∑
k

α4,lTEMPORAL-VARIABLESl

where m∈M represent the different channels such as brick and online. The own and cross-channel

features include factors such as price and promotion variables. The latter can include discounts and

other indicators represented by index k. The causals also include the temporal variables such as

the seasonality, holiday effects and trends denoted with index l, and competitor prices, whenever
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present. Note the difference of this model from a single channel model where all the causals depend

only on channel m.

Using a standard glmnet R statistical package (Friedman et al. 2010), we performed a constrained

linear regression with lasso regularization, where we enforce appropriate sign constraints consistent

with cross-channel substitution (e.g., non-positivity of own price coefficient, as well as the non-

negativity of the cross-channel price coefficients to be estimated). These constraints are added in

order to eliminate non-intuitive and incidental complementary cross-channel effects, which, if not

removed, could produce false-positive results that exaggerate the cross-channel impact of features.

We also used an appropriate lasso (L1) penalty setting to ensure that only significant features are

selected. Using the results of this estimation, we can classify a UPC-zone-channel instance as having

a cross-channel price elasticity if the feature is selected within the calibrated log-linear model. The

magnitude of the impact viewed as cross-channel elasticities is provided in the following section.

Category
Percentage of UPCs that have
significant cross channel effects

Inkjet Cartridges 76%

Markers and Highlighters 56%

Table 2 Presence of significant cross-channel effects

In Table 2 we present the percentage of UPCs in each category having significant cross-channel

price effects, which is in turn, defined as having cross channel effects in at least 10% (four) of

the zones. This turns out to be 76%, and 56% for the inkjet cartridges and the markers and

highlighters categories, respectively. These results were presented to the retailer, who concurred

with the findings based on their own experience, indicating that the channel switching based on

pricing does occur, particularly within the more expensive inkjet cartridges category. Thus, we are

already observing cross-channel demand influence in the 2012-13 data, when the online share was

no more than 12%.

If a UPC-zone-channel exhibits cross-channel price effects, then that zone’s brick channel has to

be jointly optimized for price with all the zones of the online channel, which in turn, also have to

be optimized together because of the presence of the online price constraint linking all the virtual

zones. On the other hand, if the cross-channel price effect is negligible in either direction, then that

specific UPC-zone’s brick channel can be priced independently in the absence of inter-channel and

inter-location constraints.

Although a calibrated scan-pro demand model can potentially be used for price optimization, our

preferred choice is an attraction demand model due to multiple practical considerations as discussed
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in Section 4. For example, a scan-pro model in this setting requires twice the number of parameters

to be estimated as the attraction demand model. Furthermore, the resultant optimization problem

using a MIP approach requires the creation of second order binary variables that can result in

intractable run times.Therefore, the scan-pro model helps in identifying UPCs/categories that are

ideal candidates for omni-channel price optimization. This feature, in itself, was a practical and

useful tool for the client and in turn, the retailer.

8.2. Estimating cross-channel elasticities

In this section, we use a omni-channel demand model to calculate cross-channel price elasticities.

We construct a demand model for each UPC-zone in order to account for heterogeneity in channel

preferences across the geography. Within a UPC-zone, a customer chooses between no-buy, buy in

the online channel or buy in the brick-and-mortar channel. We assume that the demand model has

a form described in Eq. (4.2) based on the MNL attraction function.

Model selection and cross-validation on a variety of training instances yielded the following

log-utility function for a given channel:

log(Channel Attraction) =β0 +β1PRICE +
∑
k

β2,kPROMOTION-VARIABLESk (8.2)

+
∑
j

β3,jCOMPETITOR PRICES (optional).

The best short-term forecast for market size for a zone (or zone-channel for single channel demand

model) was given by:

log(Market Size) = γ0 +
∑
1,k

γ1,kTEMPORAL-VARIABLESk. (8.3)

The promotion variables included discounts and other promotional indicators and the temporal

variables included seasonality, holiday effects and trend. Competitor prices were introduced as

attributes in the channel specific utilities, whenever they were available. For certain retailer data

sets, we observed that it was important to incorporate the temporal effects in the channel attraction

model instead, because the lead time required to complete online order delivery can result in holiday

orders being placed earlier in the online channel, thereby shifting the time-period of peak sales in

different channels. This demand model was calibrated using the approach discussed in Section 4.

The preferred method for the retailer to track the forecast accuracy was using the weighted mean

absolute percentage error (WMAPE) metric where t represents the week index:

WMAPE =

∑
t |predicted sales(t)− actual sales(t)|∑

t actual sales(t)
∗ 100 (8.4)
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Table 3 reports the achieved out-of sample WMAPE metric for eight-week ahead predictions of

weekly sales at the UPC-zone level. On the whole, the achieved forecast accuracy at this fine level

of aggregation satisfied the retailer’s expectation.

Category Brick Online

Inkjet Cartridges 29 36

Markers & Highlighters 36 24

Table 3 Eight week average out-of-sample WMAPE fit over the UPC-zone pairs in each category.

Own and cross-channel price elasticities: Price elasticity is defined as the percentage change

in demand in a specific channel that is associated with a percentage change in a price variable. If

the price change belongs to the same channel where the sales change is measured, we refer to it as

own price elasticity, and if it corresponds to the other channel, we refer to it as a cross-channel price

elasticity. Price elasticity is dimensionless, and tends to have a significant impact on the optimized

prices. It is commonly studied and viewed as a property of a product. We refer the reader to Train

(2009) for calculating the own and cross-elasticity for an MNL demand model.

Table 4 summarizes the average and the range of the own and cross-channel price elasticities

evaluated at the average channel price. These elasticities range between -2.0 to 0. The relatively low

elasticity values are typical of non-perishable consumer products that represent obligatory trans-

actions rather than luxury purchases. It can also be seen that the cross-channel price elasticities

are significant for these categories, although their impact is expectedly lower than that of the own

channel price. From Table 4, we observe that cross-channel price elasticities can be as high as 50%

of the own channel price elasticity. Note that these cross-elasticities have a positive sign which

is indicative of substitution between channels, i.e., channel-switching behavior based on the price

differential. Note also that the cross-elasticities are asymmetric in that the impact of brick prices

on the online sales is different from (and tends to be higher than) the impact of the online prices on

brick sales. It is indicative of the heterogeneity of the customers shopping in the different channels

as well as the volume share of these channels (the absolute change in volume of brick sales is much

higher than that for the online channel). As the online share rises in the future, we can expect the

online price to exert an increasing influence on the brick channel sales.

It must be noted that the cross-channel elasticities (off diagonal entries in Table 4) cannot be

computed using traditional pricing models employed in the industry. Specifically, the omni-channel

framework proposed in this paper enables us to compute the impact of the brick prices on online

sales at a location specific level (lower off-diagonal entry). Similarly, we compute the elasticities

of online competitor prices, whenever available. The pricing data for brick competitors was sparse
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Channel \ Price
Inkjet Cartridges Markers and highlighters

Brick price Online price Brick price Online price

Brick sales
-0.66 0.06 -1.19 0.04

(-1.84,-0.4) (0,0.22) (-1.87,-0.01) (0, 0.05)

Online sales
0.31 -1.04 0.19 -0.78

(0,1.46) (-1.99,-0.01) (0,0.39) (-1.96,-0.01)

Table 4 Average and the range (10th and 90th quantile) of the own and cross-channel price elasticities.

and hence could not be included. Complete brick competitor data, if available, can be similarly

analyzed to determine the impact of a competitor retail chain’s brick stores on online sales.

The calibrated zone level omni-channel MNL demand models were used to perform the OCP

optimization for the two product categories and we report on the business value in the following

section.

8.3. Business value assessment

As a part of the OCP implementation, we worked with the retailer and our client to set up a

business value assessment. Toward this, we held a series of conversations to understand their omni-

channel business process, channel sales goals, pricing policy, and the competitive environment they

operated in. We learned that:

1. Online prices tended to lower than the brick store prices.

2. Their brick stores were able to retain an 88% channel share, suggesting that the vast majority

of their customers preferred to touch-and-feel, and purchase the product in-store rather than

wait, unless of course, a substantial price bargain was available online.

3. Maintaining and then growing their online presence was important in order to remain com-

petitive, given the steadily rising popularity of the online shopping. The lower online prices

appeared to be partly driven by the need to compete with large online retailers who offered the

same product at an even lower price.

4. Raising prices in all channels may yield short-term profits, but will result in lost customers in the

long run. In fact, their incumbent business process that optimized channel prices independently

was more likely to produce such a result for basic products that are weakly price elastic.

Given these findings, the challenge for us was to solve a multiobjective problem that achieves

an optimal balance between brick and online prices for the next few weeks in order to be more

profitable, while also preserving global as well as online sales volume. To demonstrate the business

value of our solution, we analyzed the top 50 UPCs in the two product categories and jointly opti-

mized UPC prices in all the brick and mortar stores and the online channel using the calibrated

omni-channel MNL demand model as described in the previous subsection. We incorporated price
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bounds to ensure that recommended prices were within historical values, and satisfy the magic

number endings. To preserve sales volume, we added a global volume goal that required the pre-

dicted volume at the optimal prices to be no less than the predicted volume at the baseline (actual)

prices. To prevent the myopic response of raising prices in both channels, we added a price bal-

ancing constraint that required the average channel price to be no higher than the corresponding

baseline value. For the business case, we explicitly focused on the multi-period regular pricing

problem wherein the goal is to find the optimized price for a product over a specified time horizon

which was chosen as the last 8 consecutive out-of-sample prediction weeks in 2013. The resultant

optimization models developed as a JAVA API were evaluated on a Windows-7 PC having 8GB

RAM, and an Intel Core i7 processor. CPLEX 12.6.2 with its out-of-box parameter settings was

used to solve the resultant MIPs to global optimality. The average runtime per UPC was 1.7 sec-

onds, and no more than 3 seconds in the worst case. Thus, the solution response is fast enough to

process multiple price updates within a day, e.g., within a dynamic price optimization scenario in

a production environment.
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Figure 5 Re-normalized gross-profit and sales during a 8 week period for actuals from historical data, predicted

using omni-channel demand models at actual prices and the optimization

The results of this optimization are presented in Fig. 5 along with two baselines. The first baseline

(actual) represents the KPIs achieved by the retailer’s incumbent single channel forecasting and

pricing system. The second baseline (predicted) represents the KPIs using the actual prices and

the omni-channel demand model. To protect the retailer’s data privacy, the actual gross profits are

normalized to $1M and the sales volume to 100K units and hence the results for predicted and

optimized are relative to these normalized actuals. We can observe that the predicted and realized

(or actual) metrics are relatively close to each other for both categories, i.e., within 1% in terms
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of sales volume and gross profit each for inkjet cartridges category, and within 1% in terms of

sales volume and 4% in terms of gross profit for markers and highlighters category. The optimized

metrics, on the other hand, indicate a 7% gross profit lift in the inkjet cartridges and the markers

and highlighters categories each with respect to the predicted metrics, while also achieving a 1%

and 3% increase in aggregate sales volume respectively.

Fig. 6 displays the histogram of the relative change in brick store prices compared to the baseline.

In the inkjet category, we observe that the optimization increased brick prices in 70% of the zones,

while retaining or lowering prices in 30% of the locations. On the other hand, for the markers, only

37% of the brick locations witness a price rise (due to relatively higher own brick price elasticity).

The optimal price gap between the channels can be controlled via another inter-channel price

constraint, if required.
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Figure 6 Histogram of relative price change in brick store prices compared to the actuals

To see how the OCP approach generates better KPIs for retailers, we first observe from the

price histogram that the average optimized online price discounts the actual prices calculated by

the existing single-channel system, while the optimized average brick store prices are marginally

higher. Note that the retailers existing single-channel systems are limited by their silo approach.

Such an uncoordinated approach can achieve incremental profitability only by raising the average

price across all channels, at the expense of losing sales volume. Such a solution can be infeasible

because it can fail to satisfy the global volume and balanced pricing constraints. The OCP approach

overcomes this challenge as follows. First, it analyzes the feasible channel price combinations via

integrated optimization. Second, it recognizes that a portion of brick customers who are unwilling

to pay a higher brick price will switch channels if an attractive online discount is on offer, thereby

recapturing a fraction of lost brick sales due to a price increase at any store location. By carefully
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searching this feasible space of joint pricing decisions, the OCP approach finds the most profitable

recommendation that satisfies the global constraint of preserving sales volume. As an additional

benefit, such a pricing solution boosts the online sales, allowing the retailer to be more competitive

with e-tailers in the marketplace.

Our business value assessment projected an incremental annual profit gain of 7% for the retailer

for the categories analyzed. These results were presented at the retailer site to a team of pric-

ing analysts and senior executives, including their Vice-President for revenue management. Their

feedback was positive, and with similar experiences with other retailers in a variety of product

categories, our proposed solution was approved for commercial deployment.

9. Deployment and Commercialization

Fig. 7 provides a high level view of the data flow of the OCP implementation. A big-data

platform was employed to implement the specific data extraction algorithms required to create the

omni-channel modeling framework. This platform is scalable to the enterprise level and allows for

extraction, transformation, loading (ETL), and is capable of managing large volumes of diverse

transaction data (e.g., in the order of several Terra Bytes) associated with various channels and

locations, including competitor prices, local events information, product ratings, social sentiment,

etc. A D3 data visualization tool was employed to view a variety of results derived from the omni-

channel framework. The data preprocessing is followed by the omni-channel models that includes

demand prediction and the optimization engine. A scalable JAVA API (application programming

interface) employing CPLEX 12.6.2 was developed for commercial deployment. JAVA programming

language and CPLEX were chosen to guarantee compatibility on a variety of operating systems.

The API is configurable with a variety of business rules and goals that can vary across UPCs and

allows for an in-memory processing of inputs and outputs.

The data flow described in Fig. 7 and the JAVA API was specifically designed to integrate

with the existing IBM Commerce IT infrastructure. Through multiple engagements with retailers

we were successful in fine-tuning the OCP solution so as to meet infrastructure and operational

requirements. Proprietary versions of these models were developed and handed to IBM Commerce

following multiple sessions of knowledge transfer. These assets were deployed into production by

IBM Commerce in 2014 and reside in the IBM cloud. The methods and the systems described in

this paper are patent pending.

The OCP solution emphasizes to retailers the importance of integrated pricing decisions across

the retailer’s sales channels and represents a major shift from their traditional approach of pricing

in channel silos. Along with the double digit growth rate of online, this solution is proving invaluable

to retailers, as it positions them strategically in this omni-channel era.
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Figure 7 Data flow diagram for OCP

9.1. Impact of operations research in the deployment of the OCP models

We now delineate three applications of the OCP optimization model and discuss the positive

impact of operations research on the resulting pricing decisions and prior business practices.

Value of accurate multi-period price optimization modeling: The pricing problems some-

times require a multi-period treatment even in the absence of inventory effects because the retailer

aims to set a fixed regular price over a time horizon, and runs promotional campaigns to alter

prices in near term. The business value assessment analyzed in this paper corresponds to this multi-

period setting. Note that in these scenarios the channel demands are predicted for every period in

the planning horizon using the weekly forecasting reports. A heuristic optimization method that

was previously adopted was to solve the pricing problem for a representative ‘average’ time period

that ignores the temporal variation in demand, resulting in suboptimal solutions. We demonstrated

as part of the business value assessment that the OCP model can be easily extended to include

multiple time periods and its demand variations, via a constraint similar to constraint 5.4 that

runs across time and solve the resulting problem with no significant increase in run time.

Profitability threshold based price matching and the practical value of global opti-

mality: Consider a retailer who would rather price-match the channels if the profitability gain

(by not imposing the constraint) is insufficient. The retailer can conveniently specify this tradeoff

via a profitability threshold, where in, a price match constraint is accepted only if the resultant
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drop in profitability is within the threshold limit. One can view this threshold policy as a means

of understanding the implications of a strategic decision like price matching.

A natural way of implementing this feature is to solve the OCP problem with, and without the

price-matching constraint and then choose the preferred solution. Employing an optimal solution

approach to OCP turns out to be critical in this context. The use of a local-optimum based

heuristic approach to solve the OCP problem with and without the price matching constraint, can

result in incorrect profitability gaps, producing ‘false-positive’ price-matching recommendations.

Note that for such heuristic methods, a price-matching constraint can operate like a cutting-plane

that deletes a local (but not global) optimal solution to the unconstrained problem (i.e., without

the price-matching constraint), potentially yielding an improved profitability objective. In such

cases, the heuristic approach is likely to approve price-matching, whereas in reality, the achieved

unconstrained profit value may have been far away from optimality. Numerical testing showed that

such false-positives were not uncommon. Furthermore, when the user employs the application in

an interactive ‘what-if’ mode to analyze the impact of omni-channel constraints, such behavior

becomes quite apparent, and has a negative influence on user experience and acceptance. On the

other hand, an optimal approach always generates the correct price-coordination recommendation,

and the application produces stable and predictable responses from a user perspective.

Asynchronous channel-specific dynamic price optimization to support the existing

business process: In the presence of dynamically changing attributes of the market that impact

the demand (e.g., competitive prices), the retailer has to respond quickly to the changes in the

market conditions. It is relatively easier, and often required, to more frequently change the online

prices compared to brick prices, which typically incurs additional labor cost. Therefore, asyn-

chronous channel-specific optimization becomes necessary along with the ability to execute rapid

data refreshes. We demonstrate our ability to solve the integrated OCP on a weekly basis, and

our algorithms were fast enough to support frequent re-optimization of online prices (one or more

times a day or near real-time) while keeping the brick prices fixed at their most recent optimized

values, thereby, accounting for their cross-channel impact. Analyzing and implementing a retailer’s

competitive price response strategies in the omni-channel era is an important topic with research

underway.

9.2. Post-deployment highlights

We conclude the paper some with important highlights. Our analytical solution was showcased as

one of the retail analytics success stories in the smarter-commerce global summit in 2014. Today,

several large global retail chains are regular users of the commercial offering including those with
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whom we engaged. Overall, IBM has directly attributed several new market opportunities as well

as significant incremental revenue to IBM in 2015 due to the deployed OCP solution. In November

2015, this work was formally recognized by IBM as one of the major accomplishments in 2015 by

the research division.

Appendix A: Proof of Theorem 1

We drop subscript j in this proof as we are working with a specific location. We perform the

market share variable transformation to obtain the solution of this problem in near closed form.

Let θb denote the market share of brick as follows:

θb =
fb(pb)

1 + fb(pb) + fo(po)
. (A.1)

The lost market share and the online market share in terms of θb are then 1−θb
1+fo(po)

and fo(po)(1−θb)

1+fo(po)

respectively. Due to assumption 1, the inverse attraction function defined as gb(y) = f−1
b (y), y > 0

exists. Therefore, we can write pb = gb

(
Bθb
1−θb

)
where B = 1 + fo(po). Substituting this for pb in

problem OCP(po), we get

Z(θ∗b ) = max
θb∈[ΘL,ΘU ]

A(1− θb) + θb

(
gb

(
Bθb

1− θb

)
− cb

)
(A.2)

where ΘU = θb|pb=h(po), ΘL = θb|pb=h(po) and A = (po − co) fo(po)

1+fo(po)
. Under assumption 2, we know

that this problem has a concave objective (Keller et al. 2014). Therefore, a solution to the equation

that sets the first derivative of the objective to zero exists and it is an optimal solution to the

unconstrained problem. We use this in deriving an optimal solution to the constrained problem as

well. Now taking first derivative and setting it to zero, we get:

gb

(
Bθ∗b

1− θ∗b

)
+ θ∗bg

′
b

(
Bθ∗b

1− θ∗b

)
B

1

(1− θ∗b )2
=A+ cb. (A.3)

Substituting z =
Bθ∗b
1−θ∗

b
, we get

gb(z) + z
(

1 +
z

B

)
g′b(z) =A+ cb

which is the same as Eq. (7.6).

Now substituting for gb(.) in the objective function using the differential equation, the uncon-

strained maximum is

Z(θ∗b ) =A− (A+ cb)
z

z+B
+

z

z+B

[
A+ cb−

z(z+B)

B
g′b(z)

]
=A− z

2

B
g′b(z) =A+H(po, p̂b).

The constrained optimal solution to the problem takes one of the following three values because

the objective in the problem (A.2) is concave in θb: (a) optimal value, θ∗b if ΘL ≤ θ∗b ≤ ΘU ; (b)
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ΘU if θ∗b > ΘU ; or (c) ΘL if θ∗b < ΘL. In the price space, because θb and pb have a one-to-one

correspondence and have a inverse relationship, this optimal solution simplifies to Eq. (7.4) and

translates to Eq. (7.5) for the optimal objective value.

Now for an MNL demand function, in particular, because fm(pm) = eam−bmpm for m ∈ {o, b},

gm(z) = am−log z
bm

and g′m(z) =− 1
bmz

. Substituting this in Eq. (7.6) and setting z = x(1 + fo(po)), we

get the derivative and similarly the result for H(po, p̂b). �

Appendix B: Proof of Proposition 3

We drop subscript j in this proof as we are working with a specific location. Consider the derivative

of ψ(z, po) w.r.t. z:

∂ψ(z, po)

∂z
= (2g′b(z) + zg′′b (z))

(
1 +

z

1 + fo(po)

)
≤ 0. (B.1)

The last inequality is because the first product term is always non-negative because of assumption 2

and second product term is positive because z represents market share ratios and is always positive.

This negative derivative implies that ψ(z, po) is a non-increasing function in z.

From assumption 1, it is easy to gather that the inverse function gb(z) = f−1
b (pb) will satisfy the

following:

g′b(z)≤ 0, lim
z→0

gb(z) =∞, and lim
z→∞

gb(z) = 0.

This implies, limz→0ψ(z, po) =∞, and limz→∞ψ(z, po) ≤ 0. In turn, this implies the differential

Eq. (7.6) always has a solution because the right hand side is a positive constant for any given po.

Now consider the partial derivative of ψ(z, po) w.r.t to po:

∂ψ(z, po)

∂po
=−z

2g′b(z)f
′
o(po)

(1 + fo(po))2
≤ 0 (B.2)

The second inequality is because both g and f have negative derivatives because of assumption 1.

This negative derivative implies that ψ(z, po) is a non-increasing function of po as well. �

Appendix C: Proof of Proposition 1 and 2

We provide the proof of Proposition 2 which considers the multi-location setting. The proof of

Proposition 1 is a special case of Proposition 2 for a single location case and follows from this

directly.

Consider a retailer in the absence any business rules. The OCP objective for the retailers is:

Obj =
∑
j∈J

τj
∑
m∈M

(pmj − cmj)
fmj(pmj)

1 +
∑

m′∈M fm′j(pm′j)

∣∣∣
pmj=pm ∀ m∈V

(C.1)
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We take the first derivative and set it equal to zero and obtain the following two conditions

where pmj = pm ∀ m∈ V . :

∑
j∈J

τj

[
foj(po) + (po− co)f ′oj(po)

1 +
∑

m′∈M fm′j(pm′j)
−
∑
m∈M

(pmj − cmj)
fmj(pmj)f

′
oj(po)[

1 +
∑

m′∈M fm′j(pm′j)
]2
]

= 0 ∀ o∈ V (C.2)

fbj(pbj) + (pbj − cbj)f ′bj(pbj)
1 +

∑
m′∈M fm′j(pm′j)

−
∑
m∈M

(pmj − cmj)
fmj(pmj)f

′
bj(pbj)[

1 +
∑

m′∈M fm′j(pm′j)
]2 = 0 ∀ b∈M\V, j ∈ J

(C.3)

Because the first order conditions are necessary conditions for optimality, all the optimal prices

satisfy these conditions, maybe in addition to other prices.

Simplifying by substituting εmj(pmj) =
−f ′mj(pmj)pmj

fmj(pmj)
in the conditions we get

∑
j∈J

τj
f ′oj(po)

1 +
∑

m′∈M fm′j(pm′j)

[
po

εoj(po)
+ (po− co)−

∑
m∈M

(pmj − cmj)
fmj(pmj)

1 +
∑

m′∈M fm′j(pm′j)

]
= 0

∀ o∈ V
(C.4)

pbj
εbj(pbj)

+ (pbj − cbj)−
∑
m∈M

(pmj − cmj)
fmj(pmj)

1 +
∑

m′∈M fm′j(pm′j)
= 0 ∀ b∈M\V, j ∈ J (C.5)

Multiplying each of the latter location specific condition by τj
f ′oj(po)

1+
∑

m′∈M fm′j(pm′j)
and subtracting

it from the first condition, we get,

∑
j∈J

τj
f ′oj(po)

1 +
∑

m′∈M fm′j(pm′j)

[
(po− co)− (pbj − cbj)−

po
εoj(po)

+
pbj

εbj(pbj)

]
= 0 (C.6)

This proves Proposition 2 in the multi-location setting.
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