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Abstract

The recent paper “A quantitative Doignon-Bell-Scarf Theorem” by Aliev et al.
generalizes the famous Doignon-Bell-Scarf Theorem on the existence of integer solu-
tions to systems of linear inequalities. Their generalization examines the number of
facets of a polyhedron that contains exactly k integer points in Rn. They show that
there exists a number c(n, k) such that any polyhedron in Rn that contains exactly
k integer points has a relaxation to at most c(n, k) of its inequalities that will define
a new polyhedron with the same integer points. They prove that c(n, k) = O(k2n).
In this paper, we improve the bound asymptotically to be sublinear in k. We also
provide lower bounds on c(n, k), along with other structural results. For dimension
n = 2, our bounds are asymptotically tight to within a constant.

1 Introduction

The classical theorem of Helly states that for any finite collection of convex subsets of
X = Rn, if the intersection of every n + 1 subsets is nonempty, then the intersection
of the entire collection is nonempty. In 1973, Doignon was curious as to how such a
theorem could hold over the discrete set of integers X = Zn. What resulted is a famous
theorem that can be phrased as follows: any system of linear inequalities in Rn without
integer solutions has a subsystem of at most 2n inequalities that also has no integer
solutions [16]. This result was also independently reproved shortly thereafter by both
Bell and Scarf [11, 24]. In its Helly formulation, the Doignon-Bell-Scarf Theorem states
that for any finite collection of convex subsets of Rn, if the intersection of every 2n subsets
contains at least one integer point, then the intersection of the entire collection contains
at least one integer point.

Since Doignon’s result, many versions of Helly’s theorem have been studied based on
the underlying set of feasible points. For instance, the Helly number with X = Zn × Rd
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was shown to be (d+ 1)2n [5]. See [3] for a recent survey of variations and applications
of Helly’s theorem. We focus on a quantitative generalization of Doignon’s result guided
by the following definition.

Definition 1.1. Given n, k two non-negative integers, c(n, k) is the least integer such that
for any m, matrix A ∈ Rm×n, and b ∈ Rm, if the polyhedron {x ∈ Rn : Ax ≤ b} has
exactly k integer solutions, then there exits a subset S of the rows of A with |S| ≤ c(n, k)
such that {x ∈ Rn : ASx ≤ bS} has exactly the same k integer solutions.

It turns out c(n, k) is always finite, so, phrased as a Helly-type theorem, this implies
that if a finite collection of convex subsets of Rn has the property that the intersection
of any c(n, k) subsets contains at least k + 1 integer points, then the intersection of all
of them contains at least k + 1 integer points [1]. Following this notation, the Doignon-
Bell-Scarf Theorem asserts that, for all n ≥ 1, c(n, 0) = 2n. The quantity c(n, k) was
formally defined by Aliev, De Loera, and Louveaux [2], although a much older result of
Bell [11] implies that c(n, k) ≤ (k + 2)n. Aliev et al. [2] improve the upper bound to
c(n, k) ≤ 2k2n and have since, together with Bassett [1], improved the bound to

c(n, k) ≤ d2(k + 1)/3e2n − 2d2(k + 1)/3e+ 2. (1)

Our Theorem 3.6 sharpens the upper bound to o(k) · 2n and simplifies the reasoning
behind the bound. To illustrate it, let us quickly describe how one can achieve an upper
bound of k2n, which is of the same order as (1). It begins with a trick that was known
already by Bell [11], and which is formalized in Lemma 2.2. Recall that a set of points is
in convex position if it contains no point that can be expressed as a convex combination
of the others. If P = {x ∈ Rn : Ax ≤ b} contains exactly k integer points and is defined
by c(n, k) constraints, none of which can be removed without affecting the integer hull,
then there exists a collection S ⊆ Zn of c(n, k) points in convex position such that1

ic(S) \ S ⊆ P .
To prove the upper bound, take P and S as above, and consider the parities of the

points in S. Let A ⊆ S be the set of points with a given parity, that is, with exactly the
same coordinates even and odd. The midpoint of any pair of points in A is an integer
point in P , so the number integer points in P is bounded like k ≥ |A + A| − |A| ≥ |A|,
where A + A is the Minkowski sum and the second inequality holds because the points
are in convex position. There are 2n parity classes and every parity class has at most k
points, so c(n, k) = |S| ≤ k2n.

For dimension n = 2, Erdös, Fishburn, and Füredi [17] have proved that |A + A| −
|A| ≥ 1

4 |A|
2, when A ⊆ R2 is in convex position. Applying the reasoning above to this

case yields c(2, k) ≤ 8
√
k. It is, however, suboptimal. Bell [11] mentions that, due to

Andrews [4], any polygon with at least c facets, the removal of any one of which affects
the integer hull, has Ω(c3) interior lattice points. This argument, implies that there exists
a constant C such that

c(2, k) ≤ Ck
1
3 . (2)

1We use the notation ic(S) := conv(S) ∩ Zn where conv(S) is the convex hull of S.

2



Our Theorem 3.7 sharpens this bound by providing an explicit constant.
The Doignon-Bell-Scarf Theorem has had many applications in the theory of integer

programming and the geometry of numbers. Aliev et al. use c(n, k) to extend a ran-
domized algorithm of Clarkson [13] to then find the k best solutions to an integer linear
program [1]. A recent focus in the integer programming community relates to cutting
planes known as intersection cuts that are derived from maximal lattice-free polyhedra.
See, for instance, [14]. It follows from the Doignon-Bell-Scarf Theorem that any maximal
lattice free polyhedron has at most 2n facets. This result has been central in classifying
the different types of maximal lattice free convex sets. In a similar way, c(n, k) bounds
the facet complexity of a maximal polyhedron containing k integer points.

Baes, Oertel, and Weismantel used the Doignon-Bell-Scarf theorem as a basis for
describing a dual for mixed-integer convex minimization [6]. Likewise, c(n, k) could be
used to describe a dual for the problem of finding the k best solutions to an integer
convex minimization problem.

Finally, the techniques used for studying c(n, k) in [1] and in this paper involve
analyzing lattice-polytopes, and hence, bear a close connection to the theory of toric
varieties [20].

Our Contributions

This paper improves the asymptotic upper bound on c(n, k) to sublinear in k using the
midpoints methodology outlined above and stronger bounds on the cardinality of sumsets
from the field of additive combinatorics.

We complement the sublinear (in k) upper bound on c(n, k) with a Ω(k
n−1
n+1 ) lower

bound, where the hidden constant depends on the dimension n. The lower bound is
proved by relating c(n, k) to the maximum vertex complexity of a lattice polytope con-
taining k lattice points and then applying a theorem of Bárány and Larman [9] that the
integer hull of the n-dimensional hyperball with radius r is Θ(rn(n−1)/(n+1)), where the
neglected constants depend on n.

Increasing the lower bounds on |A + A| might be one way to decrease our upper
bound. In dimension greater than two, surprisingly little is known about the minimum
possible cardinality of |A + A| for A in convex position. In Proposition 3.4, we show
that the integer points inside a sphere give an upper bound for the minimum number
of |A + A|. However, we are aware of no lower bounds on sumset cardinalities that
specifically make use of convexity of the points, and, therefore, we make virtually no use
of convexity when proving the sublinear upper bound.

As the paper progresses towards proving the bounds, we establish some structural
properties of c(n, k) and related sequences that may be of independent interest. One of
the difficulties, in particular, that we encounter while proving the lower bound is that
c(n, k) is not monotonic in k, which we demonstrate by proving that c(2, 5) = 7 < 8 =
c(2, 4).

The formula given by Aliev et al. [1] implies c(n, 2) ≤ 2(2n − 1) and they left as an
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open problem whether equality holds. Gonzalez Merino and Henze [3] have proved it
to be true, and we also prove it (Proposition 4.5) as well as give an alternative proof
that c(n, 2) ≤ 2(2n − 1) (Theorem 3.9). Corollary 3.10 and Proposition 4.5, with the
discussion immediately following it, show that this is the correct asymptotic behavior in
n for every (fixed) k, specifically, for all k, c(n, k) is asymptotic to 2n+1.

Section 2 describes Bell’s technique in more detail. The midpoints technique is applied
in Section 3 to prove the sublinear upper bound and in Section 4 we prove the lower
bound. Finally, Section 5 proves that c(n, k) is not a monotonic function of k.

2 Bell’s Expanding Polyhedron

The main lemma of this section, Lemma 2.2, is an important tool for understanding the
behavior of c(n, k). It relates a general system of linear inequalities with a collection of
integer points in convex position. Each integer point serves as a witness to one inequality
in a system where every inequality is necessary to maintain the integer hull, as described
in Lemma 2.1 which we prove first. The basic idea of the proof is described by [11], and
it uses several ideas from [1]. Let int(X) denote the interior of a set X.

Lemma 2.1. Let S ⊆ Zn. For any polytope P = {x ∈ Rn : Ax ≤ b} with P ∩ Zn = S
there exists a polytope P ′ = {x ∈ Rn : A′x ≤ b′} with int(P ′) ∩ Zn = S that has most as
many facets as the number of inequalities in the description of P and exactly one integral
point in the interior of each facet.

Proof. Let ai ∈ Rn, for i = 1, . . . ,m denote the rows of A. We would like to enlarge P
until each facet of contains a unique integer point. To make these points unique, we will
perturb the facets slightly. For this process, we first establish a bounded region to work
on. That is, let Q = {x : ai · x ≤ ai · xi + 1} ⊃ P . Notice that Q is bounded since P and
Q share the same recession cone. Since Q is bounded, Q ∩ Zn is finite and there exists
an integer u > 0 such that ‖x‖∞ ≤ u for all x ∈ Q.

Next, we establish a region Pε such that P ⊂ Pε ⊂ Q. Let Pε = {x : ai ·x ≤ bi+ ε, i =
1, . . . ,m} where we chose ε > 0 such that Pε∩Zn = P ∩Zn and such that, for all integers
x and y, |ai · (x− y)| > ε whenever ai · (x− y) 6= 0 and ‖x‖∞, ‖y‖∞ are less than u.

We will use the perturbation vector ā = ε
2nu2n

∑n
i=1 u

iei, where ei denotes the stan-
dard unit vector. By this choice, notice that for all z ∈ Q ∩ Zn, ā · z is distinct and that
|ā · z| ≤ ε

2 .
Therefore, by choosing a′i = ai + ā, we see that āi · z is distinct for all z ∈ Q ∩ Zn.

Therefore the set {x : a′i · x = a′i · z} ∩Q ∩ Zn = {z} for any z ∈ Q ∩ Zn. Furthermore,
by the size of ā chosen, it follows that P ′0 = {x : a′i · x ≤ bi + ε

2 , i = 1, . . . ,m} satisfies
P∩Zn = int(P ′0)∩Zn, and that xi is valid for all inequalities of P ′0 except for a′i ·x ≤ bi+ ε

2 .
In order, for i = 1, . . . ,m, set b′i = minx∈P ′i∩Zn a′i ·x where P̄i is the polyhedron given
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by the inequalities 
a′j · x ≤ b′j j = 1, . . . , i− 1,

a′j · x ≥ bj + ε j = i,

a′j · x ≤ bj + ε
2 j = i+ 1, . . . ,m.

Note that we let b′i = +∞ if the minimization problem is infeasible.
Finally, setting P ′ = {x : a′i ·x ≤ b′i, i = 1, . . . ,m} satisfies the hypotheses since every

facet contains a unique integer point, and therefore it must be in the relative interior.
Inequalities a′i · x ≤ b′i with b′i = +∞ are irrelevant, and hence P ′ has at most m facets.
Furthermore, no new integer points were introduced to the interior of P ′. �

If Ax ≤ b is a system of inequalities such that removing any one inequality strictly
increases the number of integer solutions we say that Ax ≤ b is stable.

Lemma 2.2. If P = {x ∈ Rn : Ax ≤ b} is stable with s inequalities, then there exists a
set S ⊆ Zn in convex position, |S| = s, such that ic(S) \ S ⊆ P ∩ Zn.

Proof. Let P ′ = {x ∈ Rn : A′x ≤ b′} be the polyhedron obtained from P by Lemma 2.1,
and let S be the integer points on the facets of P ′. By construction, ic(S) \ S ⊆ P ∩Zn.
Since P is stable, no inequality can be removed during the expansion step in the proof
of Lemma 2.1, i.e., b′i < +∞ for all i = 1, . . . ,m. Therefore, A′x ≤ b′ has s inequalities
and this is the same as the number of points in S. �

3 Asymptotic Upper Bounds

We obtain asymptotically sublinear (in k) upper bounds on c(n, k) by focusing on a
question based on the discrete geometry of lattice points. The bounds are derived from
upper bounds on `(n, k).

Definition 3.1. Given n, k two non-negative integers, `(n, k) is the smallest integer such
that for any set S ⊆ Zn in convex position with |S| = `(n, k), we have that | ic(S)\S| ≥ k.

Although not stated explicitly, [1] proves the following lemma. They go on to show
that `(n, k) ≤ d2k/3e2n− 2d2k/3e+ 2 by inductively using the fact that `(n, 1) = 2n + 1.
We provide a proof here for completeness.

Lemma 3.2. c(n, k) < `(n, k + 1).

Proof. Suppose, for the sake of contradiction, that c(n, k) ≥ `(n, k + 1). Let P = {x :
Ax ≤ b} be a stable system of c(n, k) inequalities with k integer solutions, and let S ⊆ Zn
in convex position with |S| = c(n, k) be given by Lemma 2.2. Since ic(S) \ S ⊆ P ∩ Zn,
we must have | ic(S) \ S| ≤ k. But this contradicts the assumption c(n, k) ≥ `(n, k + 1).
�
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Clearly, the points {0, 1}n demonstrate that `(n, 1) > 2n. The proof of `(n, 1) ≤ 2n+1
follows by the parity and pigeonhole principle argument outlined in the introduction.
Consider the parities of the 2n + 1 points in S. Since there are only 2n total parities,
there must be two points with the same parity in S. Since these two points share the
same parity, the midpoint of these two points is also an integer point, and thus S contains
at least one integer point in its convex hull that is not in S.

For any set S ⊆ Rn, let M(S) denote the set of midpoints of points in S, that is,
M(S) = 1

2(S + S) \ S = {1
2(x1 + x2) : x1, x2 ∈ S} \ S. Given n, s two non-negative

integers, µ(n, s) is the minimum integer such that for any set of points S ⊆ Rn, |S| = s,
with no three points of S collinear, |M(S)| ≥ µ(n, s). In a similar way, µc(n, s) is the
minimum integer such that for any set of points S ⊆ Rn, |S| = s, in convex position,
|M(S)| ≥ µc(n, s). Obviously, µ(n, s) ≤ µc(n, s); ` and µc are related in the following
way, which follows as well by a parity and pigeonhole principle argument.

Lemma 3.3. Let n ≥ 1, k ≥ 0, and let sn,k := min{s : µc(n, s) ≥ k}. Then `(n, k) ≤
(sn,k − 1)2n + 1.

It appears that the quantity µc(n, k) has not been studied for n ≥ 3. The strong
quadratic growth that is observed in dimension n = 2 does not hold in higher dimensions.

Proposition 3.4. For every fixed n, µc(n, s) = O(s(n+1)/(n−1)). Therefore, sn,k =
Ω(k(n−1)/(n+1)).

Proof. Let n be fixed. By [19], there exists u ∈ Rn such that for all N ∈ Z+, there exists
a radius RN such that |Bn(u,RN ) ∩ Zn| = N . For every R, let VR denote the set of
vertices of the integer hull of Bn(u,R). Partition the set of vertices VR into parity sets
VR,x := {v ∈ V : v ≡ x (mod 2)} for x ∈ {0, 1}n. Let sR = max{|VR,x| : x ∈ {0, 1}n}
and SR = VR,xR be a parity set that corresponds to sR, i.e., sR = |VR|.

By choice of u, sRN+1
≤ sRN

+1. Hence, for every s ∈ Z+, there exists a radius R such
that s = sR. Since SR ⊆ Zn has the same parity, all midpoints of this set are integral,

that is, M(SR) ⊆ Bn(u,R)∩Zn. Note that sR ≥ 1
2n |VR|. By [7] and [9], sR = Ω(R

n(n−1)
n+1 )

while |Bn(u,R) ∩ Zn| = O(Rn). It follows that µc(n, s) = O(s
n+1
n−1 ). �

In this section we are interested lower bounds on µc(n, s). It is trivial to show
µc(n, s) ≥ s. Pach [21] and Stanchescu [25] have both proved superlinear lower bounds for
µ(2, s), and we could take advantage of these by projecting a convex set in n dimensions
to a set in the plane that has no three term arithmetic progression. However, we achieve
a slightly better bound from the following theorem of Sanders.

Theorem 3.5 (Sanders [23]). There exists a constant C such for any abelian group G
and finite subset A ⊆ G containing no three-term arithmetic progressions

|A+A| ≥ C|A|

(
log

1
3 |A|

log log |A|

)
.
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Sanders’s Theorem implies

µ(n, s) ≥ Cs log
1
3 s

log log s
. (3)

We are in position to prove the sublinear upper bound on c(n, k).

Theorem 3.6. For all n, k ≥ 1,

c(n, k) ≤ `(n, k + 1) ≤ O

(
k

log log k

log
1
3 k

)
· 2n.

Proof. Let s be the solution, in terms of k, to k = C ′s′ log
1
3 s′

log log s′ , where C ′ is the constant
from (3). Then

µc(n, dse) ≥ µ(n, dse) ≥ C ′dse log logdse
log

1
3 dse

≥ k.

It follows from the parities argument that c(n, k) ≤ 2ndse. One easily checks that s is
asymptotic, in k, to k log log k

C′ log
1
3 k

. Applying Lemma 3.3 completes the proof. �

As pointed out by Bell [11], in dimension n = 2, we can do much better. Here is
a proof based on a recent bound for the minimum area of a lattice n-gon that gives an
explicit upper bound.

Theorem 3.7.
c(2, k) ≤ `(2, k + 1) ≤ b4.43(k + 4)

1
3 c.

Proof. Let ` = 4.43(k + 4)
1
3 . We want to show that for any set S ⊆ Z2 in convex

position, if |S| ≥ `, then | ic(S) \ S| ≥ k + 1. We instead show the contrapositive: if
| ic(S) \ S| < k + 1 then |S| < `.

Let P = conv(S). Let v = |S| be the number of vertices of P , let b be the number
of lattice points on the boundary of P that are not vertices, and let i be the number
of interior lattice points. Therefore i + b < k + 1. By Pick’s Theorem, the area A of
P is given by A = i + v+b

2 − 1. By [22], A ≥ v3

8π2 . Hence v3

8π2 ≤ i + v+b
2 − 1. After

rearranging, we have v3

8π2 − v
2 ≤ i + b

2 − 1 < k. One choice of a lower bound for v ≥ 0

is v3

4.433 − 4 ≤ v3

8π2 − v
2 < k. The result follows now by isolating v and then applying the

floor operator since v is an integer. �

From the calculation above, we could also say that for every ε > 0 there exists a
constant Cε such that `(n, k + 1) ≤ (8π2 + ε)

1
3 (k + Cε)

1
3 . It was shown that for Av, the

minimum area of a convex lattice polygon with v vertices, the limit limv→∞
Av
v3 exists

and is very nearly 1/54 [10]. Using this asymptotic result, the relation to k
1
3 can be value

(8π2 + ε) could be improved further.
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3.1 Tighter bounds for specified arrangements

The dependence on k of the upper bound is tight for n = 2, but it is likely not tight
for n ≥ 3. The goal of this section is to achieve a smaller upper bound for specified
arrangements of points. For a set S ⊆ Zn, let c(S) denote the maximum number of
number of inequalities in any stable system P = {x ∈ Rn : Ax ≤ b} such that P ∩Zn = S
or c(S) = −∞ if there is no such system. One can show that c(S) is no larger than the
Helly number of X = Zn\S [5], but it is unclear if these numbers coincide. The quantities
c(S) and c(n, k) are related as follows.

Proposition 3.8.
c(n, k) = max

S⊆Zn

|S|=k

c(S),

in particular c(S) is finite.

The two main theorems of this section are Theorem 3.9 and Theorem 3.11. The
values for both bounds can be substantially lower than c(n, k). The first theorem says
that if S, |S| = k, lies in a d-dimensional subspace, then c(S) ≤ c(d, |S|) + 2(2n − 1).
This bound upper bound is sharp, and equal to 2(2n− 1), for any set of collinear points,
which gives an alternative proof that c(n, 2) ≤ 2(2n−1) as every two points are collinear.
The bound for the case of collinear points is used in our proof that c(2, 5) ≤ 7.

The second theorem proves the bound c(S) ≤ p(2n − 1), where p is the size of the
smallest system of inequalities whose integer solutions are exactly the points in S. We
learn that the largest system with solutions S and no unnecessary inequalities is not
more than 2n times larger than the smallest system with solutions S. Therefore, given
any system whose integer solutions are S we can derive an upper bound on c(S).

Theorem 3.9. If 1 ≤ d ≤ n and S ⊆ Zn, ic(S) = S, is contained d-dimensional affine
subspace of Rn, then c(S) ≤ c(d, k) + 2(2n − 2).

Proof. The Doignon-Bell-Scarf Theorem covers the case k = 0 and (1) covers k = 1.
Henceforth, let k ≥ 2. Without loss of generality we may assume that 0 ∈ S.

Suppose that P = {x ∈ Rn : Ax ≤ b} is a polytope defined by a stable system of
c(S) inequalities and has P ∩ Zn = S. Let P ′ be the polytope from Lemma 2.1 with
c(S) facets and let T be the set of c(S) integer points, one on the interior of each facet
of P ′. Let L ⊆ Rn be a d-dimensional subspace containing S. There exists a hyperplane
H such that L ⊆ H and H ∩ (Zn \ L) = ∅, since a random hyperplane containing L has
this property. Let H0 and H1 denote the closed halfspaces with H0 ∩H1 = H. Notice
that no two points in T ∩ int(H0) can have the same parity nor can a point here have
the same parity as a point in S because their midpoint cannot lie in L. The same holds
for T ∩ int(H1). Since ic(S) = S and k ≥ 2, the points in S have at least two distinct
parities. Therefore |T ∩ int(H0)|, |T ∩ int(H1)| ≤ 2n − 2.

It remains to bound |T ∩ H|. Let B ∈ Zn×d be a basis for the lattice L ∩ Zn, and
let B−1 ∈ Rd×n denote the inverse of B when it is viewed as a linear map from Rd to
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L. Now consider Q = B−1(P ′ ∩ L). Q is a polytope in Rd that has |S| = k integer
points in its interior and |T ∩ L| integer points on its boundary. Each of the points on
the boundary of Q is in the interior of a facet. It follows, by the definition of c(d, k) that
we can remove all but c(d, k) facets from Q without changing the set of interior integer
points. Obviously, such a relaxation must retain facets containing points in T . Thus
c(d, k) ≥ |T ∩ L|, and we have

c(S) = |T | = |T ∩ L|+ |T ∩ int(H0)|+ |T ∩ int(H1)| ≤ c(d, k) + 2(2n − 2).

�

As any k points in Rn are contained in a k − 1 dimensional affine subsapce, an
immediate consequence of Theorem 3.9 is the following corollary. In particular, for each
fixed k, c(n, k) is asymptotic to 2n+1.

Corollary 3.10. If k ≤ n, then c(n, k) ≤ c(k − 1, k) + 2(2n − 2).

Theorem 3.11. Let S ⊆ Zn be a set of points such that S = ic(S) and let P = {x ∈
Rn : Ax ≤ b} be any system of inequalities with P ∩Zn = S. Let p denote the number of
inequalities. Then c(S) ≤ p(2n − 1).

Proof. The statement is implied by the Doignon-Bell-Scarf Theorem if S = ∅, so suppose
S 6= ∅. Consider a stable system of inequalities whose integer points are the set S and let
Q = {x ∈ Rn : Ax ≤ b} be the system obtained after applying Lemma 2.1. Q also has
c(S) facets, and each facet has one integer point in its interior. Let T = {t1, t2, . . . , tc(S)}
denote these points. Apply Lemma 2.1 to P as well and perturb the result to get a
polytope with integral solutions S in its interior and no integer points on its boundary.
We denote the new polytope again by P ; we may have reduced the size of its inequality
description but this will only tighten the lower bound. We have P ∩ Zn = int(Q) ∩ Zn,
and in particular T ∩ P = ∅.

Consider the relative positions of the facets of Q and the facets of P . The fact that
every facet of Q contains an integral point in T implies that no facet of Q is contained
in P . For each facet F of P , let HF = {x ∈ Rn | aF · x ≤ bF } be the halfspace such that
F = HF ∩ P . Without loss of generality, we can assume that aF ∈ Qn and bF ∈ R \Q,
so there are no integer points on the hyperplane aF · x = b.

Let QF = Q ∩ HF , clearly there are at most p such polytopes. For every F , one
facet of QF shares its supporting hyperplane with a facet of P , and the remaining facets
of QF are contained in facets of Q. We call these the P -facet and the Q-facets of QF ,
respectively. Notice that each point ti ∈ T lies on the interior of some Q-facet.

For every F , int(QF ) ∩ Zn = ∅. Let Cx ≤ d be a minimal inequality description
of QF . By perturbing QF slightly so it contains no integer points and applying the
Doignon-Bell-Scarf Theorem, there is a subsystem of at most 2n of these inequalities
so that the resulting polytope also contains no integral points in its interior. Let the
resulting polytopes be denoted Q′F . No inequality corresponding to a Q-facet can be
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removed where a point from T is present, and the P -facet cannot be removed, since
removing these clearly introduces S into the interior. Thus, the number of Q-facets in
Q′F is at most 2n − 1, and every Q-facet is represented in at least one of the polytopes
Q′F because that facet’s integral point is. Thus the total number of facets of Q is at
most p(2n− 1), since there are p polytopes QF . Since Q has c(S) facets, this proves that
c(S) ≤ p(2n − 1). �

4 Asymptotic Lower Bounds

In this section, we prove that c(n, k) is at least as large as the maximum number of vertices
of any lattice polytope with k non-vertex integer points. It follows that exhibiting such
a polytope with many vertices gives a lower bound for c(n, k). We use the integer hull
of the hyperball. The result is a lower bound for c(n, k) whenever there exists r > 0 so
that k is the number of non-vertex lattice points in the integer hull of the hyperball with
radius r. We do not know if every k ∈ N can be achieved in this way, for example by
a translation of the hyperball, so this leads us to a lower bound on c(n, kr) only for a
sequence of values kr → ∞. The problem is compounded by the fact that c(n, k) may
decrease as k increases, which makes it difficult to extend the bound from the sequence
kr to all k ≥ 0. Fortunately, as the next lemma shows, the decrease is modest. This is
enough to fill in the gaps between consecutive values kr.

Lemma 4.1. For all k, n ≥ 1, c(n, k) ≥ c(n, k − 1)− 1.

Proof. Let P = {x ∈ Rn | Ax ≤ b} be stable with c(n, k − 1) inequalities and containing
k − 1 lattice points. Let P ′ = {x ∈ Rn : A′x ≤ b′} as given in Lemma 2.1. Then there
exists an ε > 0 such that P ′′ = {x ∈ Rn : a′1 ·x ≤ b′1, a′i ·x ≤ b′i−ε for all i = 2, . . . , c(n, k−
1)} contains exactly k lattice points. By construction, there are c(n, k−1)−1 inequalities,
those numbered 2, 3, . . . , c(n, k−1), that cannot be removed from P ′′ without increasing
the number of integer points in P ′′. Hence, c(n, k) ≥ c(n, k − 1)− 1. �

As with the upper bound, our lower bound is proved by considering integer points in
convex position.

Definition 4.2. Let

α(n, k) := max {|S| : S ⊆ Zn in convex position, | ic(S) \ S| = k} . (4)

In other words, α(n, k) is the maximum number vertices of a lattice polytope that
contains exactly k lattice points. A related quantity has been studied by Averkov [5].
Let X be a discrete subset of Rn and let f(X) denote the maximum number vertices
of a polytope P with vertices in X such that P no other vertices in X. If follows
from [5] that f(X) is equivalent to the Helly number of X. See also [3, 18]. Clearly
α(n, k) ≤ max{f(Zn \ Y ) : Y ⊆ Zn, |Y | = k, ic(Y ) = Y }, but it is unclear if these are
always equal.
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Many lower bounds for α(2, k) can be found in [12]. In that paper, Castryck studies
the number of interior lattice points for convex lattice n-gons in the plane. They define
the genus g(n) as the minimum number of interior lattice points of a lattice n-gon.
They compute g(n) for n = 1, . . . , 30 and also provide related information such as the
number of equivalence classes up to lattice invariant transformations. Although the
computations done here are with respect to interior lattice points, many of their examples
have no boundary lattice points that are not vertices. Therefore, these examples provide
lower bounds on the values of α(2, k) and hence c(2, k). For example, α(2, 17) ≥ 11,
α(2, 45) ≥ 15, α(2, 72) ≥ 17, and α(2, 105) ≥ 19.

Our strategy is to prove that c(n, k) ≥ α(n, k) and then use known properties of the
integer hull of the Euclidean ball to prove a lower bound on α(n, k). The first lemma in
this direction is the following.

Lemma 4.3. Let k ∈ Z≥0 and S ⊆ Zn be a maximizer of (4). There exists a polyhedron
P = {x ∈ Rn | Ax ≤ b} with |S| facets such that (a) each point of S is contained in the
relative interior of a different facet of P and (b) P ∩ Zn = ic(S).

Proof. Because the points in S are in convex position, for each xi ∈ S there exists
ai ∈ Rn and bi ∈ {0, 1} such that ai · xi = bi and, for all y ∈ S \ {xi}, ai · y < bi. Let
A and b represent the combined system of inequalities ai · x ≤ bi, for all xi ∈ S, and let
P = {x ∈ Rn | Ax ≤ b}. By construction P has |S| facets and satisfies (a).

Furthermore, conv(S) ⊆ P , so ic(S) ⊆ P ∩ Zn, as well. Suppose, for contradiction,
that P does not satisfy (b), so that there exists an integral point in P that is not in
the convex hull of S. Let x ∈ Zn be such a point that minimizes d(x, conv(S)) :=
mins∈conv(S) ‖x − s‖22. Notice that S ∪ {x} is in convex position because we chose x /∈
conv(S) and each point of S is alone on the interior of some facet of P . It suffices for us
to show that ic(S) \S = ic(S ∪{x}) \ (S ∪{x}), because this contradicts the maximality
of S.

Indeed, suppose that there is an integral point y ∈ P \conv(S) and some s ∈ conv(S)
such that y = λx+ (1− λ)s, 0 < λ < 1. The function d(·, conv(S)) is a convex function
on Rn, so d(y, conv(S)) ≤ λd(x, conv(S)) < d(x, conv(S)), which contradicts the choice
of x. Thus, ic(S ∪ {x}) \ (S ∪ {x}) = ic(S) \ S, which completes the proof. �

Lemma 4.4. For all n ≥ 1 and k ≥ 0, c(n, k) ≥ α(n, k).

Proof. Let S be a maximizer of (4) and let P = {x ∈ Rn | Ax ≤ b} be the polyhedron
from Lemma 4.3. We have ic(S) \ S ⊆ int(P ). Thus, there exists ε > 0 such that, for
b′ = b−ε~1, the polyhedron P ′ = {x ∈ Rn | Ax ≤ b′} has ic(S)\S = P ′∩Zn and removing
any inequality from Ax ≤ b′ adds a point from S to the polyhedron. c(n, k) is at least
as large as the smallest subsystem of Ax ≤ b′ that preserves the set of interior integral
points. We have just shown that the smallest such subsystem is the entire system of
inequalities, which has cardinality |S| = α(n, k). Therefore, c(n, k) ≥ α(n, k). �

Notice that Lemma 4.4 is already a useful result to quickly obtain some bounds on
c(n, k). For example, we can get a much shorter proof of c(n, 1) ≥ 2(2n − 1) (and thus
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Figure 1: This figure gives three examples of integer point configurations which imply
lower bounds for c(n, k) ≥ α(n, k). In each example, the set S is the set of integer points
colored red that create the vertices of a polygon containing other integer points. From
left to right, these examples show that α(2, 2) ≥ 6, α(2, 4) ≥ 8, and α(2, 5) ≥ 7.

c(n, 1) = 2(2n − 1) by our upper bound on c(n, 1)) than the example presented in [1].
It suffices to consider S = ({−1, 0}n ∪ {0, 1}n) \ {0}n, and observe that S is in convex
position and fulfills | ic(S) \ S| = |{0}n| = 1. Hence, α(n, 1) ≥ |S| = 2(2n − 1), and by
Lemma 4.4, c(n, 1) ≥ α(n, 1) ≥ 2(2n − 1).

The authors of [1] use (1) to prove c(n, 2) ≤ 2(2n−1) and leave it as an open question
of this bound is tight.

Proposition 4.5. c(n, 2) = 2(2n − 1)

Proof. From (1), or also Theorem 3.9, we see that c(n, 2) ≤ 2(2n − 1). We show that
c(n, 2) ≥ α(n, 2) ≥ 2(2n − 1).

Consider the set S = ({−1, 0}n∪{0, 1}n∪{~2})\{~0, ~1}, there~t denotes the vector with
all entries t. Notice that |S| = 2(2n−1), S is in convex position, and (conv(S)∩Zn)\S =
{~0, ~1}. Hence, c(n, 2) ≥ α(n, 2) ≥ 2(2n − 1). �

Upon replacing ~2 with ~k in the last proof one can find lower bound of 2(2n − 1) on
c(S) for any collinear set S of k ≥ 2 points where ic(S) = S. Thus c(S) = 2(2n − 1) for
any set S of k ≥ 2 collinear points with ic(S) = S, by Theorem 3.9.

We now use the integer points in a ball to give a lower bound on c(n, k). We begin
by exhibiting a sequence that lower bounds many values of α(n, k), and therefore c(n, k),
for many values of k. We will then use Lemma 4.1 to connect these lower bounds to all
other entries k.

Theorem 4.6. For each n ≥ 2, there exists a constant C, depending only on n, such
that

c(n, k) ≥ Ck
n−1
n+1 .

Proof. Throughout, we will assume that the dimension n is fixed. Hence, many of the
constants used in the proof will depend on n.

By [19], there exists u ∈ Rn such that for all N ∈ Z+, there exists a radius R such
that |Bn(u,R) ∩ Zn| = N . Fix a u ∈ U ∩Bn(0, 1). Define

Nr := |Bn(u, r) ∩ Zn|, vr := | vert(conv(Bn(u, r) ∩ Zn))|, kr := Nr − vr.
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The number of integer points contained in a ball of radius r in n-dimensions is known
to grow asymptotically as rn vol(Bn(0, 1)), where vol(S) denotes the n-dimensional vol-
ume of S. For n ≥ 4, it is known that the error term is of order rn−2, and for n = 2, 3,
the exact orders are still unknown. For our purposes, we can use the weaker error order

of r
n(n−1)
n+1 , which holds for all n ≥ 2 [7]. It is easy to see that these results apply also to

any translate of the ball from the origin. Hence, we have

Nr = vol(Bn(0, 1))rn + E(r), where E(r) = O(r
n(n−1)
n+1 ). (5)

Bárány and Larman [9] show that the number of vertices of the integer hull of a ball

of radius r in n-dimensions grows like r
n(n−1)
n+1 . Since their arguments do not depend on

the center of the ball, their work shows that there exist constants C1, C2 such that

C1 r
n(n−1)
n+1 ≤ vr ≤ C2 r

n(n−1)
n+1 . (6)

See also [8] for a discussion of this problem and related extremal problems.
From (5) and (6), we see that there exist constants C3, C4 such that

C3 r
n ≤ kr ≤ C4 r

n. (7)

It follows that

α(n, kr) ≥ vr ≥ C1r
n(n−1)
n+1 ≥ C1

(
kr
C4

)n−1
n+1

= C5 k
n−1
n+1
r .

By Lemma 4.4, we have that

c(n, kr) ≥ C5 k
n−1
n+1
r . (8)

This shows that for all k such that k = kr, for some value r, the theorem holds. We will
now show that we can extend the lower bound to all values sufficiently large values of k.

Fix k ∈ Z+. Next, fix r,R such that kr ≤ k ≤ kR. By the choice of u ∈ U , we can
choose r,R such that

|Nr −NR| = 1.

For this to hold, we must have |r −R| ≤ 1. Therefore, it follows from (7) that

k ≤ kR ≤ C4R
n ≤ C4(r + 1)n ≤ C6 kr (9)

for some constant C6. By (8) and (9) we see that

c(n, kr) ≥ C5k
n−1
n+1
r ≥ C5

(
k

C6

)n−1
n+1

=

 C5

C
n−1
n+1

6

 k
n−1
n+1 . (10)

Next, we derive an upper bound for the difference |k − kr|. First notice that

0 ≤ k − kr ≤ kR − kr ≤ NR −Nr + vr − vR = 1 + vr − vR.
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Therefore, it is important that we estimate the difference in the number of vertices vr and
vR. Let x̄ ∈ (Bn(u,R)\Bn(u, r))∩Zn be the single integer point that is not in common in
both balls. When x̄ is included in the ball, some of the vertices of conv(Bn(u, r)∩Zn) cease
to be extreme points. Let VR = vert(conv(Bn(u,R) ∩ Zn)), Vr = vert(conv(Bn(u, r) ∩
Zn)). Let P = conv(VR) and Q = conv(VR \ {x̄}). From these definitions, we have that
|vr − vR| = |Vr ∩ (P \Q)|.

The strategy for the rest of the proof to find a spherical cap of Bn(u,R) that contains
all of the vertices that are “lost” when x̄ is added to the ball. The number of points in
the cap can be bounded using its volume. We should expect to be able to find a small
cap because all of the vertices of conv(Bn(u, r) ∩ Zn are contained in a thin spherical
shell near the surface of the ball.

Let Vx̄ denote the set of vertices z of P such that there exists an edge [x̄, z] of P . Let
T = conv(Vx̄ ∪ {x̄}).

We claim that T ⊇ P \ Q. To see this let conex̄(P ) = {g ∈ Rn : there exits λ ≥
0 such that x̄ + λg ∈ P}. It follows that conex̄(P ) = cone({z − x̄ : z ∈ Vx̄}) where
cone(X) = {

∑
x∈X µxx : µx ≥ 0}. Let y ∈ P \ Q. Since P is convex, there exists

g ∈ conex̄(P ) such that y = x + g. Then g =
∑

z∈Vx̄ µz(z − x̄) for some µ ≥ 0. Let

µ̄ =
∑

z∈Vx̄ µz. Define ȳ = x̄+ 1
µ̄g =

∑
z∈Vx̄

µz
µ̄ z ∈ conv(Vx̄) ⊆ Q. Next, define ỹ = x̄+λg

where λ = max{λ : x̄+ λg ∈ P}. By definition, λ ≥ 1 and ỹ lies in a face of P that does
not contain x̄. Therefore ỹ ∈ Q. Finally, if µ̄ ≤ 1, then y = x̄+g = (1−µ̄)x̄+

∑
z∈Vx̄ µzz ∈

T . Otherwise, µ̄ > 1. But then 1
µ̄ < 1 ≤ λ. Therefore y ∈ conv({ȳ, ỹ}) ∈ Q, which is a

contradiction. Therefore, T ⊇ P \Q.
We may assume, without loss of generality, that r ≥ 2

√
n, as this may be accounted

for by adjusting the final constant C. Since R ≥ r ≥ 2
√
n, it holds that P ⊇ Bn(u,R −

2
√
n). If this is not the case, then, since these are convex sets, there exists an inequality

a · x ≤ b valid for ic(Bn(u, r)), but is not valid for Bn(u,R −
√
n). Let y = arg max{a ·

x : x ∈ Bn(R,−2
√
n} by the unique maximizer of the linear functional a · x. Next,

let z = R−
√
n

‖y‖2 y. It follows that Bn(z, 1
2

√
n) ∩ ic(Bn(u,R)) = ∅ while Bn(z, 1

2

√
n) ⊆

Bn(u,R). But since any ball of radius 1
2

√
n must contain an integer point, we have that

Bn(z,
√
n) ∩ Zn 6= ∅, which is a contradiction.

Next we claim that any edge e of P has Euclidean length at most 4∆
1
2R

1
2 where

∆ = 2
√
n. Since P ⊇ Bn(u,R − 2

√
n), every edge of P must not intersect the interior

of Bn(R − 2
√
n). Clearly the Euclidean length of any edge of P is at most the length

of the longest chord in Bn(u, r) \ int(Bn(u, r −∆)). By the Pythagorean Theorem, it is
easy to see that the length of the longest chord in Bn(u,R) \ int(Bn(u,R−∆)) is

2
√
R2 − (R−∆)2 = 2

√
2R∆ + ∆2 ≤ 4∆

1
2R

1
2 .

By convexity of T and the function ‖ · ‖2, since ‖z− x̄‖2 ≤ 4∆
1
2R

1
2 for all z ∈ Vx̄, we

have that
T ⊆ Bn(x̄, 4∆

1
2R

1
2 ).
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Therefore the volume vol(T ) ≤ C7R
n
2 . By [4] (see also [8]), the number of vertices of any

full dimensional lattice polytope K ⊆ Rn is at most C8 vol(K)
n−1
n+1 for some constant C8.

Note that T has positive volume by its definition and the fact that conv(Bn(u,R) ∩ Zn)
has positive volume. Further, if conv((T \{x̄})∩Zn) does not have positive volume, then
vert(conv((T \ {x̄}) ∩ Zn)) = vert(conv(T )) \ {x̄}. Since

vert(conv((T \ {x̄}) ∩ Zn)) ⊇ (Vr \ VR),

it follows that |Vr \ VR| ≤ C8(C7R
n
2 )

n−1
n+1 ≤ C8(C7C

1
2
6 k

1
2
r )

n−1
n+1 . Since vr − vR = |Vr \ VR|

and that |R− r| ≤ 1, we see that there exists a constant C9 such that

|kr − kR| = |vr − vR| ≤ C9k
n−1

2(n+1)
r . (11)

Finally, by applying induction to Lemma 4.1, we see that

c(n, k) ≥ c(n, kr)− |k − kr|. (12)

Combining equations (10), (11), and (12), we have that

c(n, k) ≥ c(n, kr)− |k − kr| ≥

 C5

C
n−1
n+1

6

 k
n−1
n+1 − C9k

n−1
2(n+1)
r ≥ Ck

n−1
n+1 ,

where, C is a constant. This completes the proof. �

We remark that the bound we give above on vr − vR is likely quite loose. This is
because we use the fact that conv(Bn(u,R) ∩ Zn) ⊇ Bn(u,R − ∆) for ∆ = 2

√
n and

because we bound the volume of the cap by the volume of a ball with the same radius.
The value ∆ can likely decrease with the size of R. For comparison, vert(conv(Bn(0, r)∩
Zn)) ⊆ Bn(0, r) \Bn(0, r − δ) where δ ≤ Cr−

n−1
n+1 [7] .

5 Non-monotonicity of c(n, k) in k

It is easy to see that c(n, k) is nondecreasing in n. So, it is natural to ask whether
c(n, k) is nondecreasing in k. It is not. Lemmas 5.2 and 5.3 show that c(2, 5) ≤ 7 and
c(2, 4) ≤ 8. The reverse inequalities are established by the examples in Figure 1. The
next proposition will help with some case analysis in the proof of Lemma 5.2

Proposition 5.1. Let S ⊆ R2. If the points in S are all collinear then |M(S)| ≥ |S|−1.
If the points in S are not all collinear then |M(S)| ≥ 2|S| − 3.

Proof. The first claim is trivial. If the points are not collinear, then any triangulation of
S has at least 2|S| − 3 edges [15], and each edge contains a distinct midpoint. �

Lemma 5.2. c(2, 5) ≤ 7.
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a b

d

e

c

Figure 2: The five interior (black) and facet (red) points for the final case in the proof
of Lemma 5.2.

Proof. Let P ⊆ R2 be a stable polytope with c(2, 5) facets and containing five integer
points. Applying Lemma 2.2 yields a set T ⊆ Z2 of cardinality c(2, 5) in convex position
such that ic(T ) \ T ⊆ P ∩ Z2.

Partition the points in T∪(P∩Z2) according to their parities. If every parity class has
three or fewer points, then c(2, 5)+5 ≤ 12, hence c(2, 5) ≤ 7. If any parity class contains
five or more points, then Proposition 5.1 implies that |P ∩ Z2| ≥ 7, a contradiction. We
will now show that it is possible for one parity class to have four points, but in this
case the remaining parity classes have no more than eight points combined. This implies
c(n, k) ≤ 7.

First, if any parity class contains four collinear points, then all five of the integer
points in P are collinear. It follows from Theorem 3.9 that |T | ≤ 6.

Suppose that no parity class contains four collinear points, but some parity class
contains four points which are not collinear. By Proposition 5.1 there are at least five
(integral) midpoints among them. As all of the midpoints are integral points in P , there
can be no more then five, and the four points of the parity class lie on the boundary of
P ′. Since the four points have only five (rather than six) distinct midpoints they must
form the vertices of a parallelogram.

Consider the parity classes of the five interior integer points. The above arguments
show that no four or five of them can be in one parity class. It is impossible for any three
to be in the same parity class since this implies that the five interior points are collinear,
which cannot happen because we have already shown that they are the midpoints of a
set of four points in convex position.

One parity class is taken entirely by the four vertices of the parallelogram, so we are
left with the five interior points in three parity classes, with two classes containing two
of the points and the third class containing one point. We claim that no point in T can
lie in a parity class with two interior points. If we label the points as in Figure 5, then
the interior points are grouped into parity classes as {{a, b}, {c}, {d, e}}.

We will prove that no point in T lies in the parity classes with a, b or d, e. All
together, this implies that the size of the classes are at most 4, 3, 2, 2 hence there are 11
total points so |T | ≤ 11− 5 = 6.

Suppose, for contradiction, that a point z ∈ Z2 lies on a facet of P ′ and is in the
same parity class as a and b. We have m1 = 1

2(z+a) and m2 = 1
2(z+ b) are in int(P ′). If

we show that {m1,m2} 6⊆ {a, b, c, d, e}, then we have the desired contradiction. We have

16



already shown that z cannot be a vertex of the parallelogram. If z is collinear with a
and b, then at least one of {m1,m2} is not among {a, b, c, d, e} which is a contradiction.
If b is not collinear with a and b, then it lies in an open half-space to one side of the line
through a and b. The midpoints m1 and m2 lie in the same open half space, but none of
{a, b, c} are there and at most one of {d, e}. Therefore, {m1,m2} 6⊆ {a, b, c, d, e}. �

Lemma 5.3. c(2, 4) ≤ 8.

Proof. By Lemmas 4.1 and 5.2 we have

c(2, 4) ≤ c(2, 5) + 1 ≤ 8.

�
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[2] Iskander Aliev, Jesús A. De Loera, and Quentin Louveaux. Integer programs with
prescribed number of solutions and a weighted version of Doignon-Bell-Scarf’s The-
orem. In Jon Lee and Jens Vygen, editors, Integer Programming and Combinatorial
Optimization, volume 8494 of Lecture Notes in Computer Science, pages 37–51.
Springer International Publishing, 2014.
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[9] Imre Bárány and David G. Larman. The convex hull of the integer points in a large
ball. Mathematische Annalen, 312(1):167–181, 1998.
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