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Abstract

We describe a mathematical program which finds an expression tree of least description complexity
that fits a set of observations as well as required.

1 Introduction

We are concerned with the problem of finding a closed-form expression of a function f(x), where x =
(x1, . . . , xD), for which we only know a set of approximate observations P = {(χh, φh) | h ∈ H} such
that f(χh) ≈ φh for each h ∈ H.

We use the approximation relation symbol ≈ in the following sense: if µ is a metric on R|H|, then
there is some constant ε > 0 such that µ(f ,φ) ≤ ε, where f = (f(χh) | h ∈ H) and φ = (φh | h ∈ H).
For the rest of the paper we will assume that µ(f ,φ) = ‖f − φ‖22, but this need not necessarily be the
case in general.

An expression digraph is a directed graph representation of a mathematical expression g (we assume g
to be a sentence of a formal language L). The expression digraph Dg of g can be obtained as the parsing
tree Tg which is derived from parsing g with the formal grammar of the language [1]1. Although Tg is
a directed tree in the graph theoretical sense of the word, if some term t appears more than once in g,
then one can contract the nodes of Tg representing t, and end up with a Directed Acyclic Graph (DAG)
[1]. The representation Tg of g is useful because it makes the recursive evaluation of g very efficient. In
this paper, we are going to focus on expression trees rather than actual digraphs, i.e. we do not contract
same term nodes.

In very broad terms, our problem is as follows. We are given:

• the sets H and P and the constant ε described above;

• the alphabet of the formal language L,

and we look for an expression tree T = (N,A), with nodes labelled by symbols in the alphabet, such
that:

1. |N |+ |A| is minimum;

1Get a textbook citation
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2. the evaluation function evalT (x) of the expression represented by G is such that:

µ(e(χ),φ) ≤ ε, (1)

where e(χ) = (evalG(χh) | h ∈ H).

Every expression tree corresponds to a unique mathematical expression g of L. Since L is a formal lan-
guage, we assume it has no ambiguity, which means that every mathematical expression in L corresponds
to a unique expression tree2 We define |N |+ |A| to be the description complexity ∆(g) of g.

We call this the Model Finding Problem (MFP).

2 The mathematical program

The aforementioned problem can be formulated as an optimization problem subject to constraints. More
specifically, we minimize the description complexity of T subject to Eq. (1), which is a constraint on the
fidelity of the evaluation process of T with respect to the given observations.

Mathematical Programming (MP) is a formal language for describing optimization problems. The
advantage of employing MP as a modelling tool for optimization problems is that very generic solvers are
readily available to be deployed on many different classes of MPs. Specifically, our MP formulation turns
out to belong to the very general class of Mixed-Integer Nonlinear Programs (MINLP). These describe
optimization problems where some of the variables may be constrained to have integral values, and where
some of the variables may appear nonlinearly in the problem.

An optimization problem has known input data and encodes the problem solution by means of vari-
ables. Accordingly, MP formulations involve different entities: parameters, i.e. the known input data, de-
cision variables, which encode the problem solution, an objective function, and possibly some constraints.
In MINLPs, objective functions have the form minx g0(x) and constraints have the form gi(x) ≤ 0 (for
all i ≤ m), where g = (g0, . . . , gm) is a sequence of mathematical expressions in L. There are trivial
reformulations which allow to express different optimization directions and different constraint sense by
means of the above symbols [2].

2.1 Parameters

1. The dimension d of the Euclidean space embedding the observations.

2. The set H of observation indices.

3. The observation points (χh | h ∈ H) at which f is evaluated.

4. The observation values (fh | h ∈ H) corresponding to the evaluation of f at the observation points.

5. The set A of alphabet symbol indices.

6. The alphabet {⊕a |; a ∈ A} of the formal language L, which consists of mathematical operators of
given arity Ka for each a ∈ A.

7. Since many nodes can be labelled by the same operator symbol ⊕a, we introduce a maximum
quantity Ca of occurrences of operator ⊕a in the expression.

8. The set V = {(a, i) | a ∈ A ∧ i ≤ Ca} of all potential nodes in the problem (N will turn out to be
a subset of V ).

2This bijection between expressions and trees ceases to hold if we consider expression digraphs, as there may be multiple
ways to contract same term nodes.
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For the sake of clarity, we assume the alphabet A to consist of very common arithmetic operators
of arity two and one, such as + (binary sum), − (binary difference), × (binary product), ÷ (binary
division), ˆ(binary power), ·2 (unary square),

√
· (unary square root), log (unary logarithm), exp (unary

exponential), sin (unary sine) and cos (unary cosine). In general, obviously, this need not be the case.

We also include two special operators var and coef, which stand for a variable and a coefficient.
Although these operators obviously have arity zero, for technical reasons (which will be explained below)
we define them as having arity 1.

2.2 Decision variables

Our model finder MINLP must take both topological decisions on the structure of the expression tree T ,
as well as numerical decisions about the evaluation of T at the given observation points. Accordingly, we
introduce two main classes of decision variables.

2.2.1 Numerical variables

Every operator ⊕a for a ∈ A, aside from the leaf operators in L = {var, coef}, has a given number Ka

of operands. We associate two sets of variables, v and w, with nodes s ∈ N : specifically, vsh holds the
value of the evaluation at node s ∈ N for observation point h ∈ H, and wskh holds the corresponding
value at the k-th subnode of s.

2.1 Example
For example, in the expression x4 + 10 evaluated at χ3

1 = 5, we would have v(+,1),3 = 15, w(+,1),1,3 =
χ3
1 = 5, and w(+,1),2,3 = 10 (see Fig. 1). Note that the index of x4 does not appear in these variables —

the matching of nodes to coordinate indices is made through the structural variable γ (see Sect. 2.2.2).

v

w1 w2

v

w1 w2

v

w1 w2

Figure 1: The expression appearing in Example 2.1.

The reason why we need two sets of variables is that both v and w refer to the same operand s, but
v indicates the parent node and w the child nodes; the unique relationship between parent and children
warrants the distinction between v and w. The structural variables (see Sect. 2.2.2) match different
occurrences of operators as operands, as shown in Example 2.2.

2.2 Example
The expression tree 3(x4 + 5) consists of two operators: ×, which has operands 3 and +, and + itself,
which has operands x4 and 5. The two subtrees and the whole tree are shown in Fig. 2.

Example 2.2 shows that the + operator is both a parent and a child. This constraint will be enforced by
setting vth = wskh for each h ∈ H, whenever t ∈ V is the k-th operand of s ∈ V .

Additionally, we also introduce a variable δ with the purpose to minimize the approximation error
with respect to the observations: essentially, the error can never be more than ε, but if possible it will
be driven to be lower.
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Figure 2: The expression appearing in Example 2.2.

2.2.2 Structural variables

All of the following structural variables are constrained to be binary (i.e. their values are in {0, 1}).

1. For each s ∈ V , αs = 1 if and only if s ∈ N , i.e. s is part of T .

2. For each s ∈ V , ρs = 1 if and only if s is the root node of T .

3. For each s ∈ V and d ≤ D, γsd = 1 if and only if: (a) s is a variable node (i.e. s = (var, i) for some
i ≤ Cvar) and (b) s is the variable representing the d-th coordinate xd.

4. For each s = (a, i), t = (b, j) ∈ V and k ≤ Kb, βstk = 1 if and only if s is the k-th operand of t.

5. For each s = (a, i), t = (b, j) ∈ V , σst = 1 if and only if s is an operand of t.

Note that σ are a projection of the β variables: essentially, σst = 1 if and only if there is a k such that
βstk = 1 (constraints to this effect are introduced below). However, we use β, σ for two different purposes:
β control the matching of v and w variables (i.e. vsh = wtkh if and only if βstk = 1), whereas σ are used
to ensure that the selected structure is a tree.

Additionally, we introduce variables to determine the rank of nodes in the evaluation tree: for each
s ∈ V , rs is the rank of node s. Although the rank is an integer value, the integrality of rs will be
enforced by linear constraints involving the binary structural variables σ. This means that rs can be
simply defined to be a continuous variable.

2.2.3 Boundedness

Most MINLP solvers are based on spatial Branch-and-Bound (sBB), which is a worst-case exponential-
time exhaustive (albeit implicit) search for an approximate global optimum. Like all Branch-and-Bound
(BB) algorithms, it computes upper and lower bounds for the optimal objective function value at a node
by means of “subsolvers”; if these bounds differ by more than a given tolerance, the feasible space at the
node is partitioned in some way, and the search is recursed on the subnodes. Because of the nature of
the subsolvers, it is better, in general, if all variables are bounded. Although this will call for imposing
arbitrary bounds, and will prevent the solver from detecting unboundedness, we are going to postulate
that v, w both belong to a “large enough” hypercube −M ≤ v, w ≤ M . The rank variables r range
between 0 and |V |, and δ ranges between 0 and ε. Naturally, all binary variables range by definition
between 0 and 1.

2.3 Objective function

In Sect. 1, we defined the description complexity of the mathematical expression g, which we mean to
determine by means of its expression tree T , as ∆(g) = |N | + |A|. We can write ∆ in function of the
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decision variables as:
∆(g) =

∑
s∈V

αs +
∑
s,t∈V

σts. (2)

On the other hand, if we limit ourselves to the simple but practically useful arithmetic alphabet A defined
in Sect. 2.1, we observe that all operators have arity at most two, which, since T is a tree, means that∑

s,t∈V σts ≤ 2
∑

s∈V αs. So it suffices to define the objective function min
∑

s∈V αs.

We also want to minimize the error δ which measures how well g approximates the unknown function
f . This results in a second objective function min δ, making this into a bi-objective MINLP. Since we
also bound this error above by ε, however, we focus on defining the global optimum with respect to the
description complexity, and merely focus on driving δ down as a second priority. Provided ε < 1, which
we can always enforce by suitably modifying the error metric µ, and since ∆(g) can only change by at
least one unit at a time (the value difference in any binary decision variable αs), we can trivially scalarize
the two objectives to obtain:

min
∑
s∈V

αs + δ. (3)

2.4 Constraints

The MP formulation for the MFP lists several constraint classes: approximation error, numerical relation-
ships between parent and child nodes, structural constraints to determine a tree, and mixed constraints
which relate numerical and structural variables.

2.4.1 Approximation error

As mentioned in Sect. 1, the approximation error of g with respect to f is given by µ(e(χ),φ), which we
implement as q‖e(χ) − φ‖22, where q is an optional scaling constant. The vectors in the argument are
both in R|H|, and the h-th component of e(χ) is evalG(χh). Our formulation is set up so that the value
of the mathematical expression evaluated at the h-th observation point is stored in the decision variable
vsh where s is the root node of the expression tree. Since a node is root if and only if rs = 1, we have:

∑
h∈H

(∑
s∈V

ρsvsh − φh
)2

≤ δ. (4)

2.4.2 Numerical values of expression terms

These constraints assign correct values to the nodes of the tree, so that vsh is the value of the term rooted
at s when evaluated with the h-th observation point, for each s ∈ V and h ∈ H. The general schema, for
the i-th occurrence of the operator ⊕a, is:

∀h ∈ H v(a,i),h =
⊕
k≤Ka

w(a,i),k,h. (5)
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We list different constraints for every non-leaf operator in A:

∀i ≤ C+, h ∈ H v(+,i),h = w(+,i),1,h + w(+,i),2,h (6)

∀i ≤ C−, h ∈ H v(−,i),h = w(−,i),1,h − w(−,i),2,h (7)

∀i ≤ C×, h ∈ H v(×,i),h = w(×,i),1,h w(×,i),2,h (8)

∀i ≤ C÷, h ∈ H v(÷,i),h = w(÷,i),1,h/w(÷,i),2,h (9)

∀i ≤ Cˆ, h ∈ H v(ˆ,i),h = w
w(ˆ,i),2,h
(ˆ,i),1,h (10)

∀i ≤ C·2 , h ∈ H v(·2,i),h = w2
(·2,i),1,h (11)

∀i ≤ C√·, h ∈ H v(
√
·,i),h =

√
w(
√
·,i),1,h (12)

∀i ≤ Clog, h ∈ H v(log,i),h = log(w(log,i),1,h) (13)

∀i ≤ Cexp, h ∈ H v(exp,i),h = ew(exp,i),1,h (14)

∀i ≤ Csin, h ∈ H v(sin,i),h = sin(w(sin,i),1,h) (15)

∀i ≤ Ccos, h ∈ H v(cos,i),h = cos(w(cos,i),1,h). (16)

We remark that enforcing all of the nonlinear constraints above concurrently makes it very difficult for a
MINLP solver to find the any solution. In practice, if one knows that certain operators will never occur
in g, it is best to remove the operator from A (and hence the corresponding constraints) altogether.

Next, if an operator is a coefficient, its value must be the same over all the observation points.

∀i ≤ Ccoef , h < ` ∈ H v(coef,i),h = v(coef,i),`. (17)

2.4.3 Structural operator relationships

The tree T has exactly one root node: ∑
s∈V

ρs = 1. (18)

Root nodes are used:
∀s ∈ V ρs ≤ αs. (19)

If the root is a leaf, then g = xd for some d ≤ D or g is a constant. If this is the case, then no arc
exists between nodes:

∀q, s, t = (b, j) ∈ V, k ≤ Kb βstk ≤ 1− ρq. (20)

Note that in practice one would never look for such a simple expression to fit a set of observation data,
so these constraints can usually be removed.

The w variables are indexed as wskh, and denote the numerical value (evaluated at the h-th observation
point) at the k-th child node of the parent s. Accordingly, for leaf operators which have no children, the
corresponding β variables should be zero:

∀s ∈ V, t = (b, j) ∈ L, k ≤ Kb βstk = 0. (21)

The parent-child relationship is irreflexive (no loops in the DAG):

∀s = (a, i) ∈ V, k ≤ Ka βssk = 0. (22)

We do not match the same operand node to two different child nodes:

∀s, t = (b, j) ∈ V
∑
k≤Kb

βstk ≤ 1. (23)
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Note that Eq. (23) is only valid if T is an expression tree. If we consider contractions of similar nodes,
as in expression DAGs, then these constraints should be removed.

Only match used nodes:

∀s, t = (b, j) ∈ V, k ≤ Kb βstk ≤ αs (24)

∀s, t = (b, j) ∈ V, k ≤ Kb βstk ≤ αt. (25)

A used, non-root node must be matched to some parent (non-leaf) node other than itself:

∀s ∈ V
∑

t=(b,j)∈V
t6∈L∪{s}

∑
k≤Kb

βstk ≥ αs − ρs. (26)

Only match var operator nodes to data points:

∀s ∈ V r {var}, d ≤ D γsd = 0. (27)

Each var operator node must be matched to at least one data component if used.

∀i ≤ Cvar

∑
d≤D

γ(var,i),d ≥ α(var,i). (28)

Each observation point must be matched to at least one var node.

∀d ≤ D
∑

i≤Cvar

γ(var,i),d ≥ 1. (29)

Root nodes cannot be child nodes:

∀s, t ∈ V σst ≤ 1− αs. (30)

Leaf nodes cannot be in a parent-child relationship with each other:

∀s, t ∈ inL σst = 0. (31)

The root node is a parent:

∀s ∈ V
∑
t∈V
t 6=s

σts ≥ ρs. (32)

Note that these constraints yield a contradiction with Eq. (20). In practice, Eq. (20) will be removed,
whereas Eq. (32) will be active. These two constraint sets can be made compatible by defining additional
binary variables to enforce that not both should be active at the same time.

Every used var node is a child of a non-leaf node:

∀i ≤ Cvar

∑
t∈VrL

σ(var,i),t = α(var,i). (33)

Projection of β variables on σ variables:

∀s ∈ V r L, t = (b, j) ∈ V, k ≤ Kb βstk ≤ σst (34)

∀s ∈ V r L, t = (b, j) ∈ V
∑
k≤Kb

βstk ≥ σst. (35)
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The rank of the root node is zero:

∀s ∈ V rs ≤ (1− ρs)|V |. (36)

The rank of unused nodes is zero:
∀s ∈ V rs ≤ αs|V |. (37)

If t is the parent of s, then its rank is the rank of s plus 1:

∀s ∈ V, t ∈ V rs + 1− (1− σst)(|V |+ 1) ≤ rt ≤ rs + 1 + (1− σst)(|V |+ 1). (38)

2.4.4 Mixed constraints

Numerical values of nodes stored in v and w variables are equal if there is a parent-child relationship in
the respective indices.

∀s ∈ V, t = (b, j) ∈ V, k ≤ Kb, h ∈ H βstk(vsh − wtkh) = 0. (39)

Numerical values of var nodes stored in v are equal to observation points if the var node is assigned
to the corresponding coordinate.

∀d ≤ D,h ∈ H, i ≤ Cvar γ(var,i),d(v(var,i),h − χh
d) = 0. (40)

2.4.5 Cuts

The following are implied constraints. Although they do not modify the set of feasible or optimal solutions,
they may improve the feasible/optimal set of the relaxation used by the sBB algorithm to compute lower
bounds to the optimal objective function value at a node.

No node is its own parent (this is implied by Eq. (22) and Eq. (34)-(35)):

∀s ∈ V σss = 0. (41)

No mathematical sub-expression of the form xd−xd can ever appear in g (this is implied by minimality
of description complexity, Eq. (3)):

∀i ≤ K− (42)
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