
RC25624 (WAT1609-040) September 13, 2016
Computer Science

Research Division
Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

IBM Research Report

Proceedings of the 10th Advanced Summer School on
Service Oriented Computing

Johanna Barzen1, Rania Khalaf2,
Frank Leymann1, Bernhard Mitschang1, Editors

1University of Stuttgart
Germany

2IBM Research Division
One Rogers Street

Cambridge, MA 02142-1203
USA

The 10th Advanced Summer School
on Service-Oriented Computing

June 27 – July 1

2016
Hersonissos, Crete, Greece

The 10th Advanced Summer School on Service Oriented Computing (SummerSOC’16)
continued a successful series of summer schools that started in 2007, regularly attracting
world-class experts in Service Oriented Computing to present state-of-the-art research during a
week-long program organized in several thematic tracks: patterns, formal methods for SOC,
computing in the clouds, data science, e-Health and emerging topics. The advanced summer
school is regularly attended by top researchers from academia and industry as well as by
graduate students from programs with international acclaim, such as the Erasmus Mundus
International Master in Service Engineering.

During the morning sessions at SummerSOC renowned researchers gave invited tutorials on
subjects from the themes mentioned above. The afternoon sessions were dedicated to original
research contributions in these areas: these contributions have been submitted in advance as
papers that had been peer-reviewed. Accepted papers were presented during SummerSOC and
during the poster session. Furthermore, PhD students had been invited based in prior
submitted and reviewed extended abstracts to present the progress on their theses and to
discuss it during poster sessions. Some of these posters have been invited to be extended as a
full paper, which are included in this Technical Report.

Also, this year the “Christos Nikolaou Memorial Ph.D. Award” to honor Prof. Christos
Nikolaou’s career-long contributions in university education and research was established. The
first winner of this Christos Nikolaou Memorial Ph.D. Award is Jörg Lenhard, who presents
the core ideas of his awarded thesis in this Technical Report too. The award is not only an
honor and distinction but is associated with 2000€ for the awardee, sponsored by StartTech
Ventures.

Johanna Barzen, Rania Khalaf, Frank Leymann, Bernhard Mitschang
 - Editors -

i

Content

Winner of the Christos Nikolaou Memorial Ph.D. Award:

On the Suitability of Process Model Similarity Metrics for Evaluating Replaceability 1
J. Lenhard

Poster Session: Papers

Towards Function and Data Shipping in Manufacturing Environments: How Cloud
Technologies leverage the 4th Industrial Revolution .. 16
M. Falkenthal, U. Breitenbücher, M. Christ, C. Endres, A. Kempa-Liehr, F. Leymann,
and M. Zimmermann

Flexible Execution and Modeling of Data Processing and Integration Flows 26
P. Hirmer

A Decision Support System for the Performance Benchmarking of Workflow
Management Systems .. 41
M. Skouradaki, T. Azad, U. Breitenbücher, O. Kopp, and F. Leymann

Poster Session: Extended Abstract

Adaptable Digital Enterprise Architecture with Microservices ... 59
J. Bogner and A. Zimmermann

	

ii

On the Suitability of Process Model Similarity
Metrics for Evaluating Replaceability

Jörg Lenhard

Department of Mathematics and Computer Science,
Karlstad University, 65188 Karlstad, Sweden

joerg.lenhard@kau.se

Abstract. In the field of process-aware information systems, much work
has been devoted to developing metrics for determining the similarity be-
tween process models. Similarity assessment is important for a wide array
of applications and one area that has received relatively little attention
so far is the replaceability assessment of executable process models. Re-
placeability assessment is relevant during software migration, e.g., when
upgrading to a new execution platform. In this setting, it might be nec-
essary to replace process models that can no longer be executed on the
newer platform. Many of the existing metrics are ill-suited for replaceabil-
ity assessment, because they were developed for non-executable models
and tend to abstract from details that are decisive for the aforementioned
application scenario. This paper discusses existing metrics for similarity
assessment in a literature review and selects a subset of the body of
metrics as candidates for replaceability assessment. Using an exemplary
computation, it recommends a particular metric, TAR-similarity, for this
purpose. Through this evaluation, this paper can be seen as a motivation
for developing better node mapping functions.

Keywords: replaceability, similarity, software metrics, process model

1 Introduction

In the software industry, changes take place at an unprecedented pace. Market
pressure forces enterprises to constantly revise and update their IT-systems to
maintain competitive advantages and to react to customer demands [4]. The
necessity to integrate new technologies or features, whilst keeping existing func-
tionality and coping with increasing load, leads to a need for continuous evolution
of system structure with respect to software and hardware [24].

In the area of distributed systems, the trends of service-orientation [27] and
process-awareness [8] have emerged to cope with such challenges. Computing
systems are built as loosly coupled sets of services, with a trend towards mi-
croservices [26], which interact by exchanging messages to provide higher-level
functionality. This approach eases system evolution, since, in a well-designed
system, singular services can be changed or upgraded without impact on the
overall system. Message exchanges between services are oftentimes structured

1

by capturing them in explicit process representations or process models [8]. Dur-
ing the implementation phase of the system [8, p. 12], executable models can
be deployed and instantiated on a particular type of middleware, called process
engines. In this setting, an executable process model corresponds to a piece of
application software, whereas the process engine represents the execution envi-
ronment. Process engines have considerable influence on the runtime quality of
service provided by the hosted applications. Consequently, there is value in se-
lecting the best performing engine and migrating to newer engines, as evidenced
by approaches on engine benchmarking [11,12], engine selection [13], or the ad-
vent of cloud-based engines with improved performance characteristics [15].

Process engines and models interface via language standards, such as the
Business Process Model and Notation (BPMN) [17]. A major motivation for
standardization is the portability of process models among engines enabled by
standards. If a model and a set of engines conform to a standard, the process
model can be freely migrated between the engines. In theory, this defends from
vendor lock-in and potentially eases system evolution. However, work on stan-
dard conformance of engines [12,14] demonstrates that standard support in en-
gines is very diverse in practice. Despite the existence of standards, engines tend
to implement di↵ering subsets of the specified features. Thus, it might not neces-
sarily be feasible to migrate an executable process model to a newer engine, even
if it is implemented in a standardized notation. In this case, a straight-forward
mode of action, described by software quality standards [16], is the replacement
of an application by an alternative one. In other words, if a process model can-
not be migrated, it could be considered to replace the existing model with a
di↵erent model that runs on the newer engine. This replacement scenario is the
motivation for this paper.

Fig. 1. Migration Scenario Leading to Process Model Replacement

Clearly, a replacement is only possible if alternatives to the original model
do exist and they are su�ciently replaceable with each other. An eventual source
of replacement candidates are process model repositories [35]. Management of
such repositories is a common task for enterprises that adopt process-aware and

2

service-oriented technologies. If replacement candidates are available in such a
repository, it is possible to compute the replaceability [16] for all paired combi-
nations of the enacted model and its alternatives to determine the best fitting
replacement candidate. This migration scenario is visualized in Fig. 1. The mi-
gration from Engine A to Engine B triggers the necessity to migrate Process X,
which unfortunately cannot be modified to enable execution on Engine B. There-
fore, it needs to be replaced and this is supported by a process model repository
that supplies a number of replacement candidates, which can be modified to run
on Engine B. From these candidates, Process Y is found to be most replaceable.
Therefore Process X is replaced by Process Y during the migration.

The property of central concern here is denoted as replaceability by soft-
ware quality models [16]. In essence, it translates to similarity [38]. If two
process models are very similar to each other, they can replace one another
with relative ease. This implies that metrics for evaluating process model simi-
larity seem suited for evaluating replaceability and opens up a large space of
related work. Many similarity metrics have been proposed in the literature,
e.g., [1, 2, 6, 18, 19, 23, 25, 31, 33, 34, 37]. What is more, comparative studies that
evaluate these metrics do exist [3]. Thus, the addition of yet another set of re-
placeability metrics on top of the existing body of metrics is neither desirable,
nor likely to form a novel contribution. Instead, in this paper, we provide a
discussion of existing similarity metrics for the purpose at hand. We select a
subset of metrics based on a categorization from [3] and discuss these metrics
more closely. Furthermore, we outline crucial problems that remain for using
these metrics to evaluate replaceability, essentially a proper node mapping func-
tion, and propose to take node types into account during evaluation. With the
help of an exemplary computation, we are, thus, able to identify one metric,
TAR-similarity [37], as most suitable for our use case.

The approach applied in this paper has been sketched in [20] and the paper is
based on an excerpt of [21, Chap. 7]. We cannot provide the same level of detail
here and try to distill key ideas into the format of this paper. For a more detailed
elaboration, we refer the interested reader to [21]. The remainder of the paper
is structured as follows: We start with a review of existing metrics in Sect. 2,
including the categorization from [3] according to their type and intended area of
application. Through this categorization, we select a subset of applicable metrics,
provide a closer discussion of these metrics, and ultimately choose two metrics
for an evaluation. Next, Sect. 3 states deficiencies for replaceability assessment,
proposes a way of dealing with them, and evaluates the selected metrics by means
of an exemplary computation. This allows to decide on which metric fits best.
Finally, the paper concludes with a summary.

2 Review of Existing Metrics

Similarity metrics, and, therefore, also replaceability metrics, measure the dis-
tance between objects [29, 36]. The smaller the distance between the objects is,
the more similar and, thus, the more replaceable they are. In our case, the ob-

3

jects are executable pieces of software. Based on the definition of a similarity
metric given in [3, Sect. 2.4], a replaceability metric can formally be defined as
follows:

Definition: Replaceability Metric

REPL(p1, p2) =
1

1 + dist(p1, p2)
, where (1)

- dist : Process⇥Process ! R+
0 is a function that computes the distance

between two process models.
- p

1
, p

2 2 P , where P is the set of all process models and (P, dist) forms
the metric space [36].

The crucial di↵erence between replaceability metrics lies in their definition of
the distance function.

Similarity metrics for process models can further be classified depending on
the entities which form the basis of the computation. This results in a classifi-
cation in terms of labels, structure, or behavior [9].

Label Similarity: Metrics based on label similarity compute the similarity of
process models based on the names, i.e., the labels, assigned to their ele-
ments. If the labels of two elements found in the models p and p

0 are identi-
cal, these elements are considered to be identical as well. If all elements of p
are also found in p

0, and no more, regardless of the structuring of the process
graph, then p and p

0 are considered to be identical and REPL(p, p0) = 1.
Examples of metrics for label similarity can be found in [1, 6, 18, 25,34].
The problem with label similarity is that the labels assigned to process ele-
ments are normally written in natural language and, hence, they are seldom
identical. For instance, the label of an activity in p might be “Check Order”,
whereas p0 contains an activity labeled “Order Checking”. Though the labels
are not identical, their distance could be considered as small. Certain natu-
ral language comparison techniques, such as the string edit distance [22], or
semantic techniques that utilize a thesaurus, as for instance found in [6,10],
can be used to improve the similarity computation among labels.

Structural Similarity: Metrics based on structural similarity compare the
structure of the process graphs of two models. The smaller the distance
between the structure of the graphs, the more similar they are. The distance
between graphs can be measured through the graph edit distance of process
models [7]. This distance corresponds to the number of insertions, deletions,
and substitutions of process elements that are needed to transform the graph
of one process model into another. The higher this number is, the greater
is the distance. Structural similarity metrics have for instance been defined
in [6, 7, 23].

Behavioral Similarity: Metrics based on behavioral similarity focus on the
execution behavior of process models [19]. They are often computed based on

4

the execution traces of process models or the execution dependencies among
the activities of two models. First, possible traces or execution dependencies
are computed based on the model. Then, these traces or dependencies are
compared to the traces or dependencies belonging to another model. The
higher the overlap between these sets of traces or dependencies is, the higher
is the similarity of the process models. Behavioral similarity metrics can for
example be found in [6, 31, 33].
A crucial problem of approaches in this area is the requirement to map the
nodes in one process model to one or more nodes in the other model. This is
necessary to identify if traces really are similar. To achieve this, approaches
for behavioral similarity often make use of approaches for label similarity.

A review of the existing metrics and their classification according to areas
of application can be found in [3]. This classification can be used to narrow
the set of relevant metrics and to decide which metrics are a potential fit for
our use case. In [3], Becker and Laue distinguish seven application areas for
similarity metrics: i) The simplification of change in process variants, ii) process
merging, iii) facilitation of reuse, iv) management of process model repositories,
v) automation of process execution, vi) compliance assurance with normative
models, and vii) service discovery. The areas of process execution automation and
service discovery are closest to our focus of application. The authors remark that
“automation is usually concerned in SOA applications” and service discovery is
“closely connected to the goal of automation” [3, Sect. 4.2]. For these areas of
application, the authors recommend behavioral metrics that compute similarity
based on the dependencies among the nodes of the process graph in favor of
metrics based on label or structural similarity. In particular, these metrics are
dependency graphs [2] and their improvement in TAR-similarity [37], the string
edit distance of sets of traces [33], causal behavioral profiles [31], and causal
footprints [6]. From this set of metrics, we consider TAR-similarity and causal
behavioral profiles to be applicable for a replaceability computation. The reasons
for excluding the remaining metrics are explained in the following subsections.

2.1 Direct Precedence Relationships Among Activities

The metrics captured by dependency graphs [2], TAR-similarity [37], and the
string edit distance of sets of traces [33], are all based on a similar idea: They
compute the similarity of process models by considering direct precedence rela-
tionships among the activities in a process model.

In [2], the direct precedence relationships among activities correspond to the
so-called dependency graph of a process model. To determine process model sim-
ilarity, first, all direct precedence relationships of two models, i.e., their depen-
dencies graphs, are computed. In a second step, these sets of direct precedence
relationships are compared and the higher their overlap is, the more similar the
two process models are. More precisely, the distance between the dependency
graphs is equal to the number of dependencies that are not present in both of
the graphs. In the case of [2], direct precedence relationships among activities are

5

considered, regardless of gateways that might be placed between two activities.
This means that conditional branching or parallelism in a process model is not
taken into account. This is a clear drawback of the approach.

An extension of dependency graphs that tries to tackle this issue is formed by
TAR-similarity [37]. The term TAR stems from the transition adjacency relation,
which is a special form of a direct precedence relationship. The TAR does not
only consider direct control dependencies among activities, but also takes into
account the interleaving of activities that are executed in parallel. This means
that if a process model uses inclusive (OR) or parallel (AND) gateways, there is a
larger amount of dependencies in the dependency graph, which is called the TAR
set here. Apart from this, TAR-similarity is computed in the same fashion as
dependency graphs, i.e., by comparing the amount of shared adjacency relations
of the TAR sets, TAR1 and TAR2, of two process models, p1 and p

2, to all
relations. Based on the definition of the similarity metric in [37], the distance
function, dist, can be defined as follows:

distTAR(p
1
, p

2) =
| (TAR1 [TAR2) |
| (TAR1 \ TAR2) |

� 1 (2)

Although TAR-similarity takes gateways into account, it is still limited to direct
adjacency relations. An improvement of TAR-similarity that tries to eliminate
the requirement of directness can be found in the projected TAR [28]. This
extension tries to relax the restriction of direct dependencies, by first computing
a projection of the original process model that eliminates so-called silent steps
in the model. TAR-similarity is then computed based on the projected model.
The problem with the approach presented in [28] is that it cannot automatically
be determined which parts of the process model are considered as silent. Here,
human judgment is required. For this reason, we omit the projected TAR from
further consideration.

Another metric that is quite similar to dependency graphs and TAR-similarity
is the string edit distance of sets of traces [33]. This metric is based on the analy-
sis of execution traces. However, as the traces are computed based on the process
graph, the di↵erence between sets of traces and a dependency graph is mainly
one of terminology. A more notable di↵erence of this metric lies in the fact that
it does not necessarily focus on binary, i.e., direct, relations only. Instead, it also
takes larger sets of activity sequences into account, which are called words of
length n, or n-grams. An n-gram is a trace of the process model that includes
exactly n subsequent activities. To calculate the string edit distance of sets of
traces, all possible n-grams for a process model have to be computed. There-
after, the distance of two process models corresponds to the aggregated string
edit distance of all n-grams. Although [33] does not address the computational
complexity of this approach, it is clear that the calculation is challenging. As
a result, the usage of a high value of n is not feasible in practice and n-grams
of length two, called bi-grams, are most frequent. In this case, the string edit
distance of sets of traces corresponds to TAR-similarity. For this reason, we only
consider TAR-similarity further.

6

2.2 Causal Footprints

Causal footprints are a behavioral similarity metric proposed in [6]. A causal
footprint of a process model corresponds to the set of its activities and the exe-
cution dependencies among them. These execution dependencies are not limited
to direct precedence relationships. To obtain a causal footprint, a set of look-back
links and a set of look-ahead links is computed for every activity in a process
model. The set of look-back links of an activity A corresponds to the set of all
activities that may precede the execution of A. Similarly, the set of look-ahead
links of A corresponds to the set of all activities that may be executed after
A has finished. The causal footprint of a process model corresponds to all sets
of look-back and look-ahead links of the activities in the model. The sets of
look-ahead and look-back links are treated as vectors, and the similarity of two
process models is computed through the cosine of their vectors.

Based on their observations in [3], Becker and Laue discourage the usage of
causal footprints, due to their computational ine�ciency. Despite the usage of
the reference implementation of causal footprints and a very moderate test set of
only eight small process models, they experienced computation times that were
more than five times as large as for any other similarity metric. Hence, we do
not consider causal footprints any further.

2.3 Causal Behavioral Profiles

As the name indicates, causal behavioral profiles [31] refer to a behavioral sim-
ilarity metric. Like the other metrics, its mechanism of computation bases on
relations between activities. These relations are not limited to direct precedence
relations, as for the metrics discussed in Sect. 2.1. Instead, the metric considers
four categories of behavioral relations between activities. Given two activities,
A1 and A2, these relations are: i) Strict order relation (A1 is always executed
before A2), ii) co-occurrence relation (if A1 is executed in a process instance, A2

must be executed as well, and vice versa), iii) exclusiveness relation (A1 and A2

are never executed in the same process instance), and iv) concurrency relation
(A1 may be executed before A2, but also the other way round). The set of all
relations among the activities of a process model is its behavioral profile.

The similarity of two process models is computed by comparing their behav-
ioral profiles. More precisely, the amount of shared execution relations among
activities is compared to the amount of all execution relations. In this sense,
causal behavioral profiles are very similar to TAR-similarity. The main di↵er-
ence between the two lies in what kind of relations among activities are consid-
ered. Behavioral profiles are necessarily larger than TAR sets, since they include
a relation for every pair of activities in a process model. However, there is an
additional notable distinction. To be able to compare the execution relations
among activities of the two process models, it is necessary to establish which
activities in the two models correspond to each other. Only then, it is possible
to determine if two behavioral relations are the same. If it is the case that, for
a specific activity, there are no corresponding activities in the partner process

7

model, all behavioral relations that involve this activity are ignored. As [31]
puts it: “Solely activities that are aligned by the correspondence relation are con-
sidered”. This is a significant di↵erence from TAR-similarity, for which such
relations are still part of the TAR sets. Furthermore, it implies that causal be-
havioral profiles heavily depend on a proper correspondence function. Weidlich
et al. use a trace equivalence correspondence function based on execution traces
and activity labels, but require that the function must be injective. This means
it is not applicable if there are activities in the first process model for which no
corresponding activity in the second process model can be found.

Table 1. Reviewed Similarity Metrics for Replaceability Evaluation

Metric Ref. Object in Focus Issues

Dependency [2] direct precedence relations gateways are ignored,
Graphs superseded by

TAR-similarity
TAR-similarity [37] direct precedence relations
Edit Distance of [33] n-grams ine�cient for larger n
Set of Traces
Causal Footprints [6] look-back and ine�cient computation

look-ahead links
Causal Behavioral [31] behavioral relations
Profiles among activities

The results of the review are summarized in Tab. 1. The table depicts the
metrics that seem suitable for our area of application, according to the catego-
rization specified in [3].

3 Metrics Selection

Evaluating the replaceability of executable software is not what the designers of
similarity metrics originally had in mind. Due to this, existing similarity metrics
share a number of deficiencies for a replaceability evaluation, which we discuss
in the following subsection, Sect. 3.1. Based on this discussion, we evaluate the
remaining metrics from the previous section using a set of synthetic process
models, similar to [3], in Sect. 3.2.

3.1 Deficiencies of Existing Metrics for Replaceability Evaluation

To be applicable in many settings and use cases, all metrics discussed in Sect. 2
are computed on the basis of a formalism, such as Petri nets, or other abstrac-
tions of concrete process models. To enable the metrics computation, a process
model has to be translated into the formalism. During this translation, language-
specific execution semantics of particular language elements, except for control-
flow routing constructs, are mostly lost. This is acceptable in general-purpose

8

application scenarios, in particular those that deal with non-executable and ab-
stract process models anyway. In fact, such scenarios are what most metrics
have been designed for. For instance, only three out of the 22 metrics evalu-
ated in [3] are targeted at similarity assessment of executable process models by
their authors. This results in several problems when trying to use the metrics for
an evaluation of the replaceability of executable software. These problems may
render certain metrics unsuitable for this use case.

To understand these issues, it is important to recall the purpose of a replace-
ability evaluation here: To investigate how well a given executable process model
can replace a second model in a given execution environment, because the second
one contains language elements that are not supported. As a consequence, the
concrete language elements have to be taken into account during the replace-
ability evaluation. Abstracting from the concrete vocabulary of the language,
which is what practically all metrics do, defeats the purpose of the evaluation
to begin with. The deficiencies for a replaceability evaluation resulting from this
abstraction level can be summarized a follows:

1. Generality : In most cases, similarity is computed based on the activities and
connectors among them. The vocabulary of a process language may not be
limited to these sets of elements. For instance, in the case of BPMN [17],
activities and gateways clearly fit to this model. However, it needs to be
stated, in what way events fit into the above categories. Moreover, it is
seldom made clear how a metric should deal with hierarchical decomposition
in a process model.

2. Node Mapping : Practically all approaches assume that it is possible to map
the nodes, in particular the activities or their execution traces, between two
process models, i.e., that it is possible to determine if an activity of process
model p1 corresponds to one or more activities of process model p2. This is
referred to as the matching problem in [32]. In the definition of most struc-
tural or behavioral metrics, this aspect is left open or, if discussed at all,
deferred to approaches that determine the correspondence between activi-
ties based on their labels. This underspecification is problematic, due to the
impact of the node mapping on the similarity metric. As [3, Sect. 7] puts it,
“the quality of the mapping between nodes [...] has a significant contribution
to the quality of a similarity measure”. This is even more evident when it
comes to executable models. Activity labels on their own are of no impor-
tance for the execution semantics of activities. As a consequence, relying
on activity labels only for finding corresponding activities is a questionable
assumption. Instead, the execution semantics of a concrete activity, as for
instance captured in its type (e.g., message sending, script execution, busi-
ness rule execution, etc.), are a decisive factor. When considering a process
language, such as BPMN, a variety of node types with di↵erent execution
semantics exist. None of the approaches explicitly takes these types into
account.

All in all, the issue of generality can be resolved with relative simplicity. In
the case of BPMN, as done in [3], events can be included in the replaceability

9

evaluation by considering them as nodes of a process model in the same fashion
as activities. Hierarchical decomposition is more di�cult to incorporate. It can be
achieved by either treating a SubProcess as a single node in the same fashion as
tasks and events, or by ignoring the decomposition and embedding the contents
of a SubProcess into the parent process. The latter is the strategy favored by
the metrics we consider for evaluation here [31, 37].

The issue of constructing a node mapping is more critical. By ignoring node
types, and, hence, parts of the execution semantics of the process model, a simi-
larity metric risks to rate process models as similar, although they are dissimilar
in reality, or vice versa. This can be demonstrated by considering the similarity of
the BPMN process models depicted in Fig. 21. These are a reference model, RM,
a first variant of the reference model, V1, and a second variant of the reference
model, V2. The structure of the process graph is identical in all cases and so are

Fig. 2. Process Models for Replaceability Computation

the labels of the nodes. We use identical labels and structure to eliminate any in-
fluence of label or structural similarity and to enable an isolated consideration of
the node types. When ignoring node types, the dependency graphs and execution
traces for the process models, as well as their causal footprints and behavioral
profiles are identical. As a result, all process models are considered as identical

1 The structure of the models is identical to the structure of the reference model
from [3]. We adjusted the types of the activities from ordinary tasks to specific
BPMN tasks and introduced events in V1.

10

to each other with the discussed metrics. This is problematic, since two of the
models are less similar, when taking the concrete node types into account. At
first glance, it may seem that V2 is more similar to the reference model than V1,
since V1 uses events, whereas V2 only uses activities. However, the opposite is
true: The execution semantics of V1 are identical to RM, although it uses events
instead of activities. In V1, Send- (A3, A4) and ReceiveTasks (A5) are replaced
by Send- and ReceiveEvents. These process elements have the same execution
semantics in BPMN. Furthermore, the ServiceTask (A7) in RM is replaced by
a ScriptTask. A script implemented in a programming language can be used to
emulate almost any other task, including a ServiceTask. Therefore, V1 and the
reference model are in fact fully replaceable. In contrast, in V2, activity A5 is
not a ReceiveTask that blocks until a message is received from an external party,
but a BusinessRuleTask, which has very di↵erent execution semantics. Thus, it
cannot be considered as corresponding to activity A5 of the reference model.
The same reasoning applies to activities A3, A4, and A7, which are Manual-
Tasks in V2, but Send- and ServiceTasks in the reference model. Similar to [3],
the process models depicted in Fig. 2 can be used for evaluating replaceability
metrics. A suitable replaceability metric should consider V2 less fit to replace
RM than V1 and RM.

To address this issue, we propose a node mapping approach that takes ex-
ecution semantics of nodes into account to operationalize the metrics for the
replaceability evaluation of executable software. [21, Chap. 6] defines a set of
alternatives for an element of a language in order to measure the adaptability
of process models. This set contains all semantically equivalent alternative pro-
cess elements that can be used to replace a certain element, as described above.
Using this set, nodes with similar execution semantics are considered as cor-
responding nodes in the replaceability computation. This notion can easily be
combined with approaches for label similarity. For instance, two nodes can be
considered as corresponding if their labels are identical and their types corre-
spond to each other. Due to limited space, we refer the interested reader to [21]
for a formal definition of the respective node mapping function and a mapping
of the language elements of BPMN [17].

3.2 Discussion of Metrics Performance

Based on the discussion from the previous section, it is possible to decide be-
tween the two remaining metrics, TAR-similarity [37] and causal behavioral pro-
files [31], through an exemplary computation. As stated in Sect. 3.1, a suitable
metric should find V1 to be very similar, if not identical, to the reference model.
At the same time, the metric should find V2 to be dissimilar from the reference
model. In the following, we discuss the values of these metrics based on the no-
tion of correspondence from the previous section and judge the results, which
can be found in Tab. 2. To determine corresponding nodes, we combine label
identity and execution semantics.

TAR-similarity: In the case of TAR-similarity, the TAR set of the reference
model, TARRM , resolves to {(A1, A2), (A1, A3), (A1, A4), (A2, A5), (A3,

11

Table 2. Results of the Metrics Evaluation

Metric RM $ V 1 RM $ V 2

Desired Result 1 < 1
TAR-similarity 1 0.16
Causal Behavioral Profiles 1 1

A5), (A4, A5), (A5, A6), (A6, A7), (A6, A8), (A7, A9), (A8, A9)}. For V1,
the nodes A3, A4, A5, and A7 are events and tasks that di↵er in their type
from their counterparts in the reference model. However, based on the notion
of correspondence outlined above, they correspond to the respective tasks
in the reference model. Thus, the TAR set of V1, TARV 1, resolves to the
same set as for the reference model, TARRM . Hence, dist(RM,V 1) = 0 and
REPL(RM,V 1) = 1. Put di↵erently, the TAR-similarity metric rates the
reference model and V1 as fully replaceable. This is the desired result.
When considering V2, the tasks A3, A4, A5, and A7 do not correspond to
their counterparts in the reference model. Therefore, the TAR set of V2,
TARV 2 resolves to {(A1, A2), (A1, A3V 2), (A1, A4V 2), (A2, A5V 2), (A3V 2,
A5V 2), (A4V 2, A5V 2), (A5V 2, A6), (A6, A7V 2), (A6, A8), (A7V 2, A9), (A8,
A9)}. Consequently, TARRM \ TARV 2 is limited to {(A1, A2), (A6, A8),
(A8, A9)}. Since | TARRM [TARV 2 | resolves to 19, the replaceability
metric bears the following value: REPL(RM,V 2) = 1 / (19 / 3) ⇡ 0.16.
The reference model and V2 are not considered as identical.
Summarizing the results, TAR-similarity, when computed based on our our
notion of correspondence, passes the evaluation, as it rates RM and V1 as
replaceable and RM and V2 as dissimilar.

Causal Behavioral Profiles: Although the source defining causal behavioral
profiles [31] uses BPMN process models as example, it states that it is nec-
essary to map the models into a formal representation. This mapping is not
clarified in the paper, but deferred to another paper [5]. The applicability of
this mapping for BPMN 2.0 process models is questionable, since it refers to
an outdated version of BPMN and, therefore, ignores aspects that are im-
perative to the execution semantics of a BPMN 2.0 process, such as di↵erent
task types. Nevertheless, using our notion of correspondence, metrics com-
putation for the process models is rather straight-forward. The structure of
the three process models is identical, hence, their behavioral profiles are also
identical, given they are computed based on node labels or execution traces.
As before, the distinguishing di↵erence lies in the nodes that di↵er between
the models: A3, A4, A5, and A7. In the case of the reference model and V1,
these nodes are considered to correspond to their counterparts by our notion
of correspondence. Therefore, the two process models are considered to be
identical and fully replaceable. Again, this is the desired result.
However, the assessment of the replaceability of the reference model and
V2 uncovers a crucial problem. For A3, A4, A5, and A7, no corresponding
nodes can be found for the reference model in V2 and vice versa. In this

12

case, as described in Sect. 2.3, all behavioral relations involving these nodes
are omitted from the behavioral profiles. This means, replaceability is solely
computed by considering the behavioral relations among A1, A2, A6, A8, and
A9. These relations are completely identical in both models. Therefore, the
result is the same as for the comparison of the reference model and V1: For
causal behavioral profiles, REPL(RM,V 2) = 1 = REPL(RM,V 1) applies,
and the two models are considered fully identical. This is not a desirable
result, since we expect REPL(RM,V 2) < 1.
This finding indicates that causal behavioral profiles are not applicable for
our use case of computing replaceability. It seems that our notion of node
correspondence is too restrictive for a meaningful application of the metric.

The result of the discussion in this section can be expressed as follows: TAR-
similarity has been found to be applicable for the evaluation of replaceability.
In contrast, causal behavioral profiles have not passed the test, and we cannot
recommend this metric for our application scenario.

4 Summary and Conclusion

In this paper, we discussed the suitability of existing metrics for process model
similarity, for evaluating the replaceability of executable process models. Essen-
tially, replaceability can be reduced to a problem of similarity. For the computa-
tion of this property, a large body of metrics does already exist. A categorization
according to the area of application limits the field of promising metrics to de-
pendency graphs, TAR-similarity, the string edit distance of sets of traces, causal
footprints, and causal behavioral profiles. The main issue is that the metrics in
their current form fail to take node types into account, i.e., the absence of a
proper node matching function. When taking node types into account, TAR-
similarity [37] seems to be the most promising candidate metric.

The evaluation presented here cannot be considered as a final answer, but
rather as a motivating example, and further work is needed. The focus of this
work should lie less on the definition of new metrics, but rather on the eval-
uation of proper node mapping functions. Furthermore, studies that compare
metrics would benefit significantly from the existence of su�ciently large cor-
pora of process models that can be used as a benchmark. Such corpora are under
development [30], but are still far from being accepted as a reference benchmark.

References

1. Akkiraju, R., Ivan, A.: Discovering Business Process Similarities: An Empirical
Study with SAP Best Practice Business Processes. In: 8th International Conference
on Service Oriented Computing (ICSOC). pp. 515–526. San Francisco, CA, USA
(December 7-10 2010)

2. Bae, J., Caverlee, J., Liu, L., Rouse, W.B.: Process Mining, Discovery, and Inte-
gration using Distance Measures. In: International Conference on Web Services.
pp. 479–488. Chicago, USA (September 2006)

13

3. Becker, M., Laue, R.: A Comparative Survey of Business Process Similarity Mea-
sures. Computers in Industry 63(2), 148–167 (2012)

4. Bosch, J.: Speed, Data, and Ecosystems: The Future of Software Engineering. IEEE
Software 33(1), 82–88 (Jan/Feb 2016)

5. Dijkman, R., Dumas, M., Ouyang, C.: Semantics and Analysis of Buisness Process
Models in BPMN. Information and Software Technology 50(12), 1281–1294 (2009)

6. Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity
of Business Process Models: Metrics and Evaluation. Information Systems 36(2),
498–516 (2011)

7. Dijkman, R.M., Dumas, M., Garćıa-Bañuelos, L.: Graph Matching Algorithms
for Business Process Model Similarity Search. In: Business Process Management
Conference. pp. 48–63. Ulm, Germany (September 2009)

8. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Informa-
tion Systems: Bridging People and Software Through Process Technology. Wiley
(2005), ISBN: 978-0-471-66306-5

9. Dumas, M., Garćıa-Bañuelos, L., Dijkman, R.: Similarity Search of Business Pro-
cess Models. IEEE Data Engineering Bulletin 32(3), 23–28 (2009)

10. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring Similarity between Semantic
Business Process Models. In: Asia-Pacific Conference on Conceptual Modelling
(APCCM). pp. 71–80. Ballarat, Australia (January/February 2007)

11. Ferme, V., Ivanchikj, A., Pautasso, C.: A Framework for Benchmarking BPMN
2.0 Workflow Management Systems. In: 13th International Conference on Business
Process Management (BPM 2015). Innsbruck, Austria (August 2015)

12. Geiger, M., Harrer, S., Lenhard, J., Casar, M., Vorndran, A., Wirtz, G.: BPMN
Conformance in Open Source Engines. In: 9th International IEEE Sympo-
sium on Service-Oriented System Engineering (SOSE). San Francisco Bay, USA
(March/April 2015)

13. Harrer, S.: Process Engine Selection Support. In: OTM Academy. Amantea, Italy
(October 2014)

14. Harrer, S., Lenhard, J., Wirtz, G.: Open Source versus Proprietary Software in
Service-Orientation: The Case of BPEL Engines. In: 11th International Conference
on Service Oriented Computing (ICSOC). pp. 99–113. Berlin, Germany (December
2-5 2013)

15. Hoenisch, P., Schulte, S., Dustdar, S., Venugopal, S.: Self-Adaptive Resource Allo-
cation for Elastic Process Execution. In: IEEE Sixth International Conference on
Cloud Computing. pp. 220–227. Santa Clara, CA, USA (June 2013)

16. ISO/IEC: Systems and software engineering – System and software Quality Re-
quirements and Evaluation (SQuaRE) – System and software quality models
(2011), 25010:2011

17. ISO/IEC: ISO/IEC 19510:2013 – Information technology - Object Management
Group Business Process Model and Notation (November 2013), v2.0.2

18. Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Increasing Re-
call of Process Model Matching by Improved Activity Label Matching. In: 11th
International Conference on Business Process Management. pp. 211–218. Beijing,
China (August 26-30 2013)

19. Kunze, M., Weidlich, M., Weske, M.: Behavioral Similarity – A Proper Metric.
In: 9th International Conference on Business Process Management. pp. 166–181.
Clermont-Ferrand, France (August, September 2011)

20. Lenhard, J.: Improving Process Portability through Metrics and Continuous In-
spection. In: Reichert, M., Oberhauser, R., Grambow, G. (eds.) Advances in Intel-

14

ligent Process-Aware Information Systems. Springer-Verlag, Germany (2016), to
appear

21. Lenhard, J.: Portability of Process-Aware and Service-Oriented Software: Evidence
and Metrics. Ph.D. thesis, University of Bamberg, Germany (2016)

22. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

23. Li, C., Reichert, M., Wombacher, A.: On Measuring Process Model Similarity
Based on High-Level Change Operations. In: 27th International Conference on
Conceptual Modeling. pp. 248–264. Barceclona, Spain (October 2008)

24. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hischfeld, R., Mehdi, J.:
Challenges in Software Evolution. In: 8th International Workshop on Principles of
Software Evolution. Lisbon, Portugal (September 2005)

25. Minor, M., Tartakovski, A., Bergmann, R.: Representation and Structure-Based
Similarity Assessment for Agile Workflows. In: ICCBR. pp. 224–238. Belfast,
Northern Ireland, UK (August 13-16 2007)

26. Newman, S.: Building Microservices. O’Reilly Media (February 2015)
27. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented Computing. Communica-

tions of the ACM 46(10), 24–28 (October 2003)
28. Prescher, J., Mendling, J., Weidlich, M.: The Projected TAR and its Application to

Conformance Checking. In: Entwicklungsmethoden für Informationssysteme und
deren Anwendung (EMISA). pp. 151–164. Vienna, Austria (September 13–14 2012)

29. Santini, S., Jain, R.: Similarity Measures. IEEE Transactions on Pattern Analysis
and Machine Intelligence 21(9), 871–883 (1999)

30. Thaler, T., Dadashnia, S., Sonntag, A., Fettke, P., Loos, P.: The IWi Process Model
Corpus. Tech. Rep. 199, Publications of the Institute for Information Systems,
Saarland Univerity, Saarbrücken, Germany (October 2015)

31. Weidlich, M., Mendling, J., Weske, M.: E�cient Consistency Measurement Based
on Behavioral Profiles of Process Models. IEEE Transactions on Software Engi-
neering 37(3), 410–429 (2011)

32. Weidlich, M., Sagi, T., Leopold, H., Gal, A., Mendling, J.: Predicting the Quality
of Process Model Matching. In: 11th International Conference on Business Process
Management. pp. 203–210. Beijing, China (August 26-30 2013)

33. Wombacher, A., Li, C.: Alternative Approaches for Workflow Similarity. In: 7th
International Conference on Services Computing. pp. 337–345. Miami, Florida,
USA (July 2010)

34. Yan, Z., Dijkman, R., Grefen, P.: Fast Business Process Similarity Search with
Feature-Based Similarity Estimation. In: 18th International Conference on Coop-
erative Information Systems (CoopIS). pp. 60–77. Crete, Greece (2010)

35. Yan, Z., Dijkman, R., Grefen, P.: Business Process Model Repositories – Frame-
work and Survey. Information and Software Technology 54(4), 380–395 (2012)

36. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach, Advances in Database Systems, vol. 32. Springer (2006), iSBN 978-0-
387-29146-8

37. Zha, H., Wang, J., Wen, L., Wang, C., Sun, J.: A workflow net similarity measure
based on transition adjacency relations. Computers in Industry 61(5), 463–471
(2010)

38. Zhou, Z., Gaaloul, W., Gao, F., Shu, L., Tata, S.: Assessing the Replaceability of
Service Protocols in Mediated Service Interactions. Future Generation Computer
Systems 29(1), 287–299 (2013)

15

Towards Function and Data Shipping
in Manufacturing Environments:
How Cloud Technologies leverage

the 4th Industrial Revolution

Michael Falkenthal1, Uwe Breitenbücher1, Maximilian Christ2,
Christian Endres1, Andreas W. Kempa-Liehr2,3,
Frank Leymann1, and Michael Zimmermann1

1 University of Stuttgart, Institute of Architecture of Application Systems
Universitätsstr. 38, 70569 Stuttgart, Germany

[lastname]@iaas.uni-stuttgart.de

2 Blue Yonder GmbH
Ohiostr. 8, 76149 Karlsruhe, Germany
maximilian.christ@blue-yonder.com

3 University of Freiburg, Freiburg Materials Research Center
Stefan-Meier-Str. 21, 79104 Freiburg, Germany

kempa-liehr@fmf.uni-freiburg.de

Abstract. Advances in the field of cloud computing and the Internet
of Things are boosting the 4th industrial revolution. New research and
developments foster the emergence of smart services, which augment
conventional machinery to become smart cyber-physical systems. The
resulting systems are characterized by providing preemptive functionality
to automatically react on circumstances and changes in their physical
environment. In this paper we sketch our vision of how to automatically
provision smart services in manufacturing environments, whereby the
paradigms of function and data shipping are specifically considered. To
base this approach upon a clear understanding of influences, we point
out key challenges in the context of smart services for Industry 4.0.

Keywords: data shipping, function shipping, fourth industrial revolu-
tion, cyber-physical systems, TOSCA

1 Introduction and Background

The availability of cheap sensors and the increasing connectivity between de-
vices are the drivers behind the accelerating availability of data in industrial
operations [2,20]. The evolving Internet of Things (IoT) is formed by “embedded
devices (Things) with Internet connectivity, allowing them to interact with each
other, services, and people on a global scale” [15] and is a central enabler of In-
dustry 4.0, which heavily relies on predicting future device states by combining
the knowledge of device attributes with historic and current sensor readings.

16

2 Falkenthal et al.

“Industry 4.0 is a collective term for technologies and concepts of value chain
organization” [11] and is a synonym for the 4th industrial revolution.

An important application of Industry 4.0 is the anticipation of future device
states in the context of predictive maintenance [14]. Its task is the discrimination
of properly working machines from those, which are likely to evolve a specific risk
of failure. Collected data might describe a fleet of machines, with each machine
being characterized by certain time invariant data (e.g., geo-coordinates, date
of putting into operation), time variant control parameters (e.g., the currently
used tool head), collections of regularly updated sensor data (e.g., time series
containing pressure and temperature measurements), and the results of some
successive inspection reports, which might indicate specific technical flaws. On
basis of the inspection reports, the machines can be divided into two groups:
Machines for which a specific technical flaw has been observed and machines, for
which this flaw has not been observed yet. The optimization task of predictive
maintenance is to determine the relation of statistical health factors to operating
costs and failure risks by means of machine learning algorithms [21].

This optimization task is provided by so-called smart services, which are not
only “reactive or even proactive” but actually “fundamentally preemptive” and
“based upon hard field intelligence” given by “awareness and connectivity” [1].
The vast amount of mounted sensors on machinery enables a smart service to
perform detailed analyses of production steps [9] and to subsequently influence
the production flow by adapting machine configurations and adjustments in an
automated fashion. As a consequence, these kind of machines become smart
cyber-physical systems. It is expected that this approach will contribute signifi-
cantly to the expectations being associated with Industry 4.0.

In such scenarios, huge amounts of metering data are generated. In case of
critical operations, this data has to be processed in parallel in order to react to
the process under optimization in a timely manner [12]. Accordingly, in many
applications it is insu�cient or almost impossible to transfer the data to a central
data store or a public cloud environment providing adequate processing power
and storage for analyzing the data [10]. Further, latencies and limited network
bandwidth make centralized processing unsuitable. Instead, analytics or data
aggregation functionality has to be provisioned as close to the data sources as
possible. Such a scenario, where functionality is shipped and provisioned close
to the data sources, is called function shipping.

While some applications benefit from the function shipping approach, also
other use cases exist that do not require strict reaction times for processing
analysis. Instead, the sensor data from di↵erent sources and respective meta-
information need to be merged, which raises the demand for self-documenting
file formats [18]. In these scenarios, the data have to be transferred to a powerful
central execution environment, either self-hosted or in a public cloud environ-
ment. This approach is called data shipping, because the data is transferred to
the functionality that has to process the data. Summarizing, di↵erent provi-
sioning strategies for providing and running analytics functionality seem to be
feasible to cover the needs of smart service development and operation.

17

Towards Function and Data Shipping in Manufacturing 3

However, there is still a lack of proper technologies and tools in order to
e�ciently support the development and provisioning of smart services. Further,
the concepts of function and data shipping have to be particularly applied to
manufacturing environments considering the specific challenges such as handling
of secret production data or time constraints for processing the data.

Thus, in this paper we introduce a standards-based vision of how to auto-
matically provision smart services in manufacturing environments, whereby the
paradigms of function and data shipping are specifically considered. To base this
approach upon a clear understanding of related issues, we point out key chal-
lenges in the context of smart services for Industry 4.0. The envisioned approach
is currently implemented in the course of the project SePiA.Pro4 (Service Plat-
form for intelligently optimizing Applications in Production and Manufacturing)
but should be applicable to smart services in general [19].

The remainder of this paper is structured as following: We discuss the key
challenges for provisioning smart services in Section 2. We sketch a self-contained
and secure packaging format for smart services in Section 3 and discuss how it
addresses the identified challenges and how it enables to establish function and
data shipping in the context of smart services for Industry 4.0. In Section 4, we
explain how to utilize the packaging format by a toolchain and conclude this
paper in Section 5.

2 Key Challenges

There are several key challenges, which have to be addressed in order to de-
velop and run smart services for, respectively, in manufacturing environments.
We categorize the identified challenges into organizational challenges and tech-
nical challenges. Organizational challenges mainly arise from the connection of
formerly disconnected sets of data and reflect issues concerning the collaboration
of former organizationally distinct (legal) entities like di↵erent departments, or-
ganizational units, subsidiaries, or even di↵erent companies. The technical chal-
lenges, in contrast, address di�culties that are driven by di↵erent technologies,
statistical aspects of the machine learning algorithms and programming princi-
ples. In SePiA.Pro, we will investigate and address both types of challenges.

2.1 Organizational Challenges

Restricted Access to Smart Services Since smart services contain analytics
algorithms that process detailed metering data from production processes, crit-
ical intellectual property of a company in the form of information about actual
processing steps and produced parts could be reengineered from the algorithm
implementations. Thus, access to a smart service, specifically the implementa-
tions of the contained analytics algorithms has to be restricted to authorized
personal only. Neither non-authorized personal shall be able to inspect nor to
configure the algorithms.

4 http://projekt-sepiapro.de

18

4 Falkenthal et al.

Data Security As mentioned in the former section, smart services process data
that contain trade secrets and confidential information. Thus, specifically in the
case of data shipping, where data are transferred to an analytics environment, it
has to be assured that access to the data, the data sources, and the persistency
layers is strictly controlled. This implies that shipped data have to be encrypted.

Data Ownership The discussed data security aspects are closely related to
data ownership issues. While smart services can process data close to the ma-
chinery, there might also be situations where data has to be transferred to an
external execution environment, such as a public cloud or the data center of
the smart service developer. The latter case especially emerges if smart service
developers establish new business models, whereby they also o↵er processing en-
vironments for the analysis of the metered data as a service, besides the mere
development and integration of smart services. Thus, the data owners, which
are typically the companies that operate the metered machinery, must not for-
feit control on where their data is sent to.

Algorithms as Intellectual Property Even though a customer purchases
and uses a smart service, this does not necessarily imply that they also obtain
the rights to reuse, manipulate, or adapt an algorithm contained in a smart
service. So, the intellectual property of the developer of a smart service has to
be respected by restricting access to the smart service itself.

Smart Service Integrity In order to enable new business models for smart
service developers, an app store like concept seems to be necessary. Developers
need the possibility to o↵er their smart services via platforms such as public
repositories or marketplaces, which allow customers to easily search, purchase,
and utilize smart services. This will boost the acceptance and success of smart
services. However, if smart services are provided that way, their integrity has
to be assured. This means that a smart service developer needs a means to
assure that algorithms and data contained in a smart service are not corrupted
or manipulated from any third-party.

2.2 Technical Challenges

Use Case-specific Function and Data Shipping In many industrial appli-
cations of machine learning algorithms the volume of the generated data forbids
their transport to centralized databases or computing centers [10]. Instead, tech-
niques for an e�cient reduction of the data volume and local data analysis close
to the machinery are needed [5]. Thus, the ability to ship and execute functional-
ity, either to analyze or to aggregate data as close to the production environment
and machinery as possible, is inevitable.

19

Towards Function and Data Shipping in Manufacturing 5

Fast Adaption of Analytics Algorithms There are two reasons why the
machine learning parts of smart services need to adapt quickly. Firstly, the al-
gorithms are mostly tailored to specific analysis scenarios. Thus, they handle
intrinsic characteristics of the data to process. If there are changes in the under-
lying dynamics and the characteristics of the metered data, the algorithms have
to be retrained in order to deal with such concept drifts. For example, it could
be that a new product is produced on the same machinery. Secondly, the ma-
chine learning algorithms have to be adapted and reconfigured if the production
environment or the optimization objectives itself are changing. Here, one could
think of a physical reordering of the existing machinery as an exemplary cause
for the adaption of the machine learning model.

Stream and Batch Processing of Data Most of the metering data from
machinery is not captured in a static but a streaming fashion resulting in more
and more timely annotated data sources. To unleash the full potential of this
data for use cases such as predictive maintenance it is necessary to process it on
the fly, which typically results in stream processing approaches. Besides, there
are also batch processing scenarios, which require to store raw data in order to
be processed and analyzed later on. For example, the training procedures for
most machine learning algorithms are working in a batch fashion.

Heterogeneous Technologies Smart services are complex compositions of
di↵erent technologies in order to meter data from machinery and process them
based on machine learning algorithms. Thus, it is up to the smart service de-
veloper which technologies and libraries to use for implementing the analytics
algorithms. Further, the technical circumstances of the production environments
and the machinery as well as the available IT infrastructures, platforms, middle-
wares, and applications on the customer side increase the number of heteroge-
neous technologies and software artifacts that are required in order to implement
a smart service. Exemplarily, the component to fetch metering data from machin-
ery might be designed to communicate via OPC-UA5 with metered machinery
in a specific production environment, while MQTT6 has to be used in another
one. To enable the e�cient development of smart services, developers are forced
to design the di↵erent components of a smart service as replaceable as possible.

Modularity In order to gain savings in terms of development time and, thus,
time to market, components of a smart service have to be self-contained and
interoperable with other components by stable interfaces. To raise great benefits
regarding development costs for creating new smart services or adapting existing
ones to new production environments, components of a smart service need to be
packaged to be easily reusable.

5 https://opcfoundation.org/about/opc-technologies/opc-ua/
6 http://mqtt.org

20

6 Falkenthal et al.

Smart Service Provisioning As a result of the formerly described challenges,
smart services have to be designed as analytics artifacts that can be dynamically
changed. This can be based on changes of the analyzed data, which has direct im-
pact on the used machine learning algorithms. Moreover, this can also be owing
to changing technical circumstances at customer side or the emergence of new
technologies. Thus, smart services should be fully automatically provisionable in
order to e�ciently deal with their dynamic character.

3 Self-Contained Packaging Format for Smart Services

In order to enable e�ciently developing, shipping, and deploying smart ser-
vices, a self-contained packaging format for smart services is inevitable. Thus,
in SePiA.Pro, one of the main objectives is to develop a Smart Service Archive
(SMAR) format that enables bundling all artifacts of a smart service. The con-
ceptual structure of a SMAR is depicted in Figure 1. The Smart Service Archive
format is based on TOSCA [17,16], an OASIS standard that enables describing
applications to be provisioned in a portable manner. In particular, SMARs are
based on the TOSCA Cloud Service Archive (CSAR), which is a standardized
archive format for packaging all required data to enable the automated provi-
sioning of the respective application. TOSCA and CSARs are explained in the
following in order to point out how the standardized format has to be enhanced
and extended to support the packaging of smart services.

CSARs contain several data required to automatically provision an applica-
tion. First, a CSAR contains a topology model, which is a directed graph describ-
ing the structure of the application to be provisioned. The topology model con-
sists of nodes, which represent the components of the application such as Web-
servers and virtual machines, and edges between these nodes, which represent
the dependencies between the components. Nodes are called node templates, the
dependencies are called relationship templates. The TOSCA standard provides
a means to specify types for node and relationship templates in the form of so
called node types and relationship types, which allows to specify the semantics of
the respective templates on a type level. Those types enable to populate a topol-
ogy model by di↵erent manifestations and instances of a node or relationship,
respectively. Therefore, they are reusable in arbitrary topology models and pro-
vide reusable building blocks for creating new applications. The actual artifacts
that implement the components, such as Java classes or other binaries of an ana-
lytics algorithm, can be placed into the archive by means of so called deployment
artifacts. These artifacts are associated with the corresponding node template
for which they provide the implementation. Through this format, TOSCA tack-
les challenges regarding the reusability of components by means of node types.
However, based on the presented key challenges in Section 2, it seems to be valu-
able to also treat algorithms and data along with policies as first level modeling
concepts for smart services. Therefore, the SMAR format needs to extend the
CSAR format by (i) algorithms, (ii) data, and (iii) data policies as conceptual
first level modeling entities, as depicted in Figure 1. Although TOSCA already

21

Towards Function and Data Shipping in Manufacturing 7

Algorithms Data

Structure Policies

Fig. 1. Concept of the Smart Service Archive (SMAR)

supports policies for cloud applications in general [17,22] and description lan-
guages, such as USDL [3], can be combined with TOSCA to add non-functional
service descriptions [8], a strict data policy approach for manufacturing data is
missing. Treating algorithms and data as first level modeling concepts allows
to enable function and data shipping approaches, either by clearly defining how
functionality has to be shipped close to the data, or by enforcing the provision-
ing of smart services based on policies and further rules through an adequate
toolchain. Therefore, SePiA.Pro will research on how already available TOSCA
modeling concepts can be generally reused, which of the key challenges out-
lined in this paper can be translated into already existing modeling concepts
of TOSCA, and where the TOSCA modeling approach eventually has to be
extended by new concepts to support the requirements of smart services.

4 Function and Data Shipping for Manufacturing
Environments

The capability to ship functionality as close to metered machinery, or to ship data
to powerful analytics environments is vital to tailor smart services to di↵erent use
cases. Besides the archive format for smart services, as introduced in Section 3,
also a Smart Service Ecosystem to enable (i) modeling, (ii) shipping as well as
(iii) provisioning and managing smart services is required and one of the main
deliverables of the SePiA.Pro project.

To support these features, the planned toolchain will base on tools from the
OpenTOSCA Ecosystem7, which is an open source toolchain that supports mod-
eling and provisioning of CSARs. The open-source TOSCA modeling tool Win-
ery8 [13], which supports modeling of topology models using the visual notation
Vino4TOSCA [7], will be extended and enhanced to a Smart Service Design
Platform in order to support modeling of SMARs. Further, a Smart Service
Repository and Self-Service Portal will be developed based on OpenTOSCA’s
Vinothek [6] in order to e�ciently ship smart services packaged in the SMAR

7 https://www.iaas.uni-stuttgart.de/OpenTOSCA/
8 https://projects.eclipse.org/projects/soa.winery

22

8 Falkenthal et al.

IT
Infrastructure

Machine Park

Production
Scheduling

Smart Service Archive

Smart Service
Platform

IaaS

Operating
System

developed by
Data Scientist

Algorithms Data

Structure Policies

Fig. 2. Function and Data Shipping Enabled by the Self-Contained Packaging Format
for Smart Services

format on the one hand, and to trigger the provisioning of smart services by end
users on the other hand. Finally, the OpenTOSCA Container [4], an open-source
runtime environment for CSARs, will be extended and enhanced in order to be
able to process the new SMAR format.

The Smart Service Ecosystem will support the development and application
of smart services as shown in Figure 2. The SMAR format is the key enabler to
automatically provision smart services. As shown on the left of the figure, a data
scientist can develop an analytics algorithm and put it into a SMAR along with
references to data that have to be processed. References to data can point to files
also contained in the archive, e.g., if the algorithm requires static data that does
not change over time. But they can also point to sensors from machinery that
constantly deliver metering data. The data can be secured by adding specific
data policies. These could declare, e.g., that the metering data must not leave
the IT infrastructure of the customer that will run the smart service. All these
steps in Figure 2 will be supported by the Smart Service Design Platform9.

SMARs can then be deployed on a Smart Service Platform that includes
the extended OpenTOSCA Container. The Smart Service Platform is capable
of provisioning new instances of a smart service, which is bundled in a deployed
SMAR. This is conceptually illustrated in Figure 2 by the IT infrastructure box,
where an application stack is sketched that consists of an operating system,
installed on a virtual machine in a private infrastructure as a service cloud. The
analytics algorithms developed by the data scientist are provisioned on top of the
operating system and wired to the sensors in the machine park via a production
scheduling system. In this scenario, the production scheduling system wraps

9 SMARs that are packaged in this manner can be uploaded to a Smart Service Repos-
itory and Self-Service Portal to ease the shipping to customers. For the sake of
simplicity this step is omitted in Figure 2.

23

Towards Function and Data Shipping in Manufacturing 9

the access to metering data from machinery as well as to functionality that
enables to adjust and to configure machinery programmatically. The connection
is established bidirectionally to receive metering data from the machinery and
to also send commands for adjustments of the machinery back to the production
scheduling system. Thus, this provisioning flow indicates how machinery can be
augmented by smart services and how functionality can be automatically shipped
and provisioned closely to the sensors.

Other scenarios could cause to provision the analytics stack along with the
algorithms in a public cloud environment, e.g., if the data to process is allowed to
physically leave the IT infrastructure of the data owner. In this case, functionality
is shipped automatically to the respective public cloud and, besides, also data
is shipped to the analytics stack in the public cloud environment.

Finally, scenarios are possible, where the analytics stack is provisioned at a
data center of the data scientist. This last scenario shows that also pure data
shipping approaches are possible by the depicted toolchain in combination with
the SMAR format since the extended format allows also packaging data only.

5 Conclusion

The presented key challenges are the objects of investigation for the project
SePiA.Pro. A huge potential of smart services to generate business value in the
field of Industry 4.0 on the one hand and the missing formats to provision smart
services on the other hand are motivating this research project. SePiA.Pro will
transfer the presented challenges into research questions in order to refine and
enhance the TOSCA standard to the field of smart services in production envi-
ronments. The resulting format will enable function and data shipping scenarios
in the context of Industry 4.0. Although the project is still in its opening stages
at the time of writing this paper, the presented vision of a new packaging format
for smart services along with an OpenTOSCA-based toolchain show how cloud
computing technologies may boost developments in the sector of manufacturing.

Acknowledgments. This work is partially funded by the project SePiA.Pro
(01MD16013F) of the BMWi program Smart Service World.

References

1. Allmendinger, G., Lombreglia, R.: Four strategies for the age of smart services.
Harvard Business Review 83(10), 131 (2005)

2. Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer
Networks 54(15), 2787–2805 (2010)

3. Barros, A., Oberle, D. (eds.): Handbook of Service Description: USDL and Its
Methods. Springer (2012)

4. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., Wag-
ner, S.: OpenTOSCA – A Runtime for TOSCA-based Cloud Applications. In:
Proceedings of the 11th International Conference on Service-Oriented Computing
(ICSOC 2013). pp. 692–695. Springer (2013)

24

10 Falkenthal et al.

5. Bolón-Canedo, V., Snchez-Maroo, N., Alonso-Betanzos, A.: Feature Selection for
High-Dimensional Data. Artificial Intelligence: Foundations, Theory, and Algo-
rithms, Springer (2015)

6. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Vinothek - A Self-Service
Portal for TOSCA. In: Proceedings of the 6th Central-European Workshop on
Services and their Composition (ZEUS 2014). pp. 69–72. CEUR-WS.org (2014)

7. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Schumm, D.: Vino4TOSCA:
A Visual Notation for Application Topologies based on TOSCA. In: On the Move
to Meaningful Internet Systems: OTM 2012 (CoopIS 2012). pp. 416–424. Springer
(2012)

8. Cardoso, J., Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: Cloud computing
automation: Integrating usdl and tosca. In: Proceedings of the 25th International
Conference on Advanced Information Systems Engineering (CAiSE 2013). Springer
(2013)

9. Chaouchi, H.: The Internet of Things: Connecting Objects. ISTE, Wiley
10. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): A

vision, architectural elements, and future directions. Future Generation Computer
Systems 29(7), 1645–1660

11. Hermann, M., Pentek, T., Otto, B.: Design Principles for Industrie 4.0 Scenarios.
In: Proceedings of the 49th Hawaii International Conference on System Sciences
(HICSS). pp. 3928–3937 (2016)

12. Kempa-Liehr, A.W.: Performance analysis of concurrent workflows. Journal of Big
Data 2(10), 1–14 (2015)

13. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – A Modeling Tool
for TOSCA-based Cloud Applications. In: Proceedings of the 11th International
Conference on Service-Oriented Computing (ICSOC 2013). pp. 700–704. Springer
(2013)

14. Mobley, R.K.: An introduction to predictive maintenance. Elsevier Inc., 2 edn.
15. Mukhopadhyay, S.C. (ed.): Internet of Things, Smart Sensors, Measurement and

Instrumentation, vol. 9. Springer International Publishing (2014)
16. OASIS: Topology and Orchestration Specification for Cloud Applications

(TOSCA) Primer Version 1.0 (2013)
17. OASIS: Topology and Orchestration Specification for Cloud Applications

(TOSCA) Version 1.0 (2013)
18. Riede, M., Schueppel, R., Sylvester-Hvid, K.O., Kühne, M., Röttger, M.C., Zim-

mermann, K., Liehr, A.W.: On the communication of scientific data: The full-
metadata format. Computer Physics Communications 181(3), 651–662 (2010)

19. Smart Service Welt Working Group/acatech (Eds.): Smart Service Welt Recom-
mendations for the Strategic Initiative Web-based Services for Businesses. Tech.
rep., Berlin (2015)

20. Sundmaeker, H., Guillemin, P., Friess, P., Woel✏e, S.: Vision and challenges for
realising the internet of things. European Commission Information Society and
Media (2010)

21. Susto, G.A., Schirru, A., Pampuri, S., McLoone, S., Beghi, A.: Machine Learn-
ing for Predictive Maintenance: A Multiple Classifier Approach. Transactions on
Industrial Informatics 11(3), 812–820 (2015-06)

22. Waizenegger, T., Wieland, M., Binz, T., Breitenbücher, U., Haupt, F., Kopp, O.,
Leymann, F., Mitschang, B., Nowak, A., Wagner, S.: Policy4TOSCA: A Policy-
Aware Cloud Service Provisioning Approach to Enable Secure Cloud Computing.
In: On the Move to Meaningful Internet Systems: OTM 2013 Conferences. pp.
360–376. Springer (2013)

25

Flexible Execution and Modeling of Data

Processing and Integration Flows

Pascal Hirmer

Institute of Parallel and Distributed Systems,
Universität Stuttgart,
Universitätsstraße ��,

����� Stuttgart, Germany,
Pascal.Hirmer@ipvs.uni-stuttgart.de

Abstract Today, the amount of data highly increases within all domains
due to cheap hardware, fast network connections, and an increasing
digitization. Deriving information and, as a consequence, knowledge
from this huge amount of data is a complex task. Data sources are
oftentimes very heterogeneous, dynamic, and distributed. This makes
it di�cult to extract, transform, process and integrate data, which is
necessary to gain this knowledge. Furthermore, extracting knowledge
oftentimes requires technical experts with the necessary skills to conduct
the required techniques. For my PhD thesis, I am working on a new and
improved approach for data extraction, processing, and integration by: (i)
facilitating the definition and processing of data processing and integration
scenarios through graphical creation of flow models, (ii) enabling an ad-
hoc, iterative and explorative approach to receive high-quality results,
and (iii) a flexible execution of the data processing tailor-made for users’
non-functional requirements. By providing these means, I enable a more
flexible data processing by a wider range of users, not only limited to
technical experts. This paper describes the approach of the thesis as well
as the publications until today.

Keywords: Big Data, Data Integration, Data Flows, Pipes and Filters

� Summary of the Research Problem

Today, the highly advanced connectivity of systems as well as their increasing
collaboration lead to new challenges regarding data exchange, data processing
and data integration. Especially the emerging topics Internet of Things (IoT),
advanced manufacturing, or case management are in need of a distributed,
flexible processing and integration of heterogeneous data to gain important
knowledge. Furthermore, the possibility to integrate data sources “ad-hoc” is
pursued to enable high flexibility. In this context, ad-hoc means: (i) enabling an
iterative and explorative “trial-and-error”-like data integration using di�erent
data sources without the need of creating, e.g., complex Extract-Transform-Load
(ETL) processes and data warehouses [�], (ii) the flexible adding and removing

26

of data sources with low e�ort (preferably automatically), and (iii) an easy
adaptation of the way data is processed and integrated considering the newly
added or removed data sources. However, this flexibility also leads to a high
complexity compared with statically defined data integration techniques such as
ETL processes. Those flexible scenarios are oftentimes realized using data flow and
streaming technologies based on di�erent execution models. The use of a data flow
model enables its flexible generation based on dynamic needs. That is, if a new
data source is added to an existing integration, the flow model can be re-generated
and re-executed in order to include it. Currently, existing solutions are mostly
tailor-made for a specific use case scenario and do not o�er a generic solution.
Another issue in this research area is coping with unstructured data. Most systems
do not support the simultaneous processing and integration of structured and
unstructured data. However, integrating unstructured data can lead to valuable
information. For example, in advanced manufacturing environments, the natural
language input of a worker or textually described manuals can lead to higher-level
information, which can e.g., be used for an automatic dissolving of occurring
problems as described in [��]. In conclusion, the main challenges of this research
area are: (i) providing a means to model data processing and integration without
having to design complex ETL processes or data warehouses using flow-based
models, (ii) automatic tethering of di�erent data sources, both structured and
unstructured, (iii) reducing the necessary technical expertise of the involved users
through a high degree of automation, (iv) integrating heterogeneous data formats
in an ad-hoc manner as defined before, and (v) achieving a flexible execution
of the data processing, i.e., a dynamic execution dependent on non-functional
requirements. These issues are addressed by this PhD thesis. How I will cope
with this research problem is described throughout this paper. All described
concepts are based on previous author publications that are listed in Sect. �.

The remainder of this paper is structured as follows: in Sect. �, the proposed
approach is described by introducing a new method that copes with the described
research problem. After that, in Sect. �, I propose an architecture this method
can be applied to. In Sect. �, the prototypical implementation of the concept is
described as a proof of concept. Sect. � contains related work and Sect. � gives
a summary as well as an outlook on future work. Finally, Sect. � lists selected
thesis-related author publications.

� Proposed Approach

I plan to address the research issues mentioned in the previous chapter in multiple
steps, which are depicted in Figure �.

In the first step, the focus lies on the tethering of data sources to be processed
and integrated and on providing data processing operations as services. On the
one hand, data sources have to be bound for data extraction, on the other hand
the data sources and the contained data to be used for processing and integration
should be cleaned and transformed into a uniform data format to be easy to
process and to ensure a high quality of the results.

27

2
Modeling of Data
Processing and

Integration

1
Providing

Data Sources and
Data Operations

Domain-specific Modeling
Based on Pipes and Filters

Model Transformation
Requirement-based transformation

Model Execution
Automated execution

Time-
Critical

Robust

…
5

Execution of
Data Integration

Flow

6 7
Result

Utilization

Optional Repetition

Non-functional
Requirement Selection

X

Domain-specific
Model

4
Environment
Selection and

Transformation
3

Executable
Dataflow Model

Setup of the Execution
Environment

Figure �. Data Processing and Integration Approach [��]

The binding of data sources is conducted through the so called resource
management platform (RMP), a middleware component that abstracts from the
concrete data sources and provides the data for integration in the suitable format.
The RMP o�ers the following functionality: (i) automated binding of data sources
through adapters, (ii) normalization and transformation of data to achieve a
uniform data structure, (iii) data cleaning to improve data quality, and (iv) data
provisioning through a uniform REST interface. The RMP is a powerful data
platform that highly improves the e�ciency and e�ectiveness for data processing
because the data is already provided in the right format and has a high degree
of quality. The concepts of the Resource Management Platform have been partly
published in [��,��]. Once the data sources are bound to the resource management
platform, they can be used for modeling of how data is processed and integrated.

Furthermore, services need to be registered that process the data that is
extracted and provisioned by the RMP, i.e., conduct data processing operations
such as filters, aggregation, or even sophisticated data analysis such as clustering
or classification [��]. These services can be registered at a service registry and
can then be used for flow-based modeling of data processing and integration
scenarios as described next.

In the second step, the data sources and data operations to be used for data
processing and integration are defined through graphical modeling based on the
Pipes and Filters pattern [��]. In this pattern, the filters are software components
such as e.g., web services, that have the same interfaces and the same data
exchange format. These filters are interconnected using the pipes. The main
advantage is that, due to the uniform interfaces, filters can be interconnected in
an arbitrary manner. The necessary uniform data exchange format is achieved
through the resource management platform. An example for such a Pipes and
Filters based model is depicted in Fig. �. This example was modeled using the
implemented prototype for the approaches presented in this paper, which is
called FlexMash (cf. Sect. �). As depicted, data sources available through the
RMP and data operations provided by services are shown in a palette on the left.
These can be inserted into the canvas and can be connected to each other via
drag and drop. Furthermore, once the model is finished, the single nodes can be

28

Figure �. Example for Pipes and Filters-based modeling of data processing and inte-
gration

configured, for example, by defining the criteria for a data filter operation. In
this example, the goal is integrating data from two hospitals, conducting analysis,
and visualize the result. To realize this, the data is extracted, one of the resulting
data sets is filtered because not all of its information are needed, and the data
sources are merged, e.g., by a join over the primary key attribute ID. Next, the
merged data is used for analysis, e.g., for clustering or classification, is stored,
and finally visualized, e.g., in a dashboard. At this point, the resulting model
is non-executable. This is important because it enables dynamic mapping onto
di�erent execution formats (cf. step four of the method).

After creating the model, in the third step of the method, the modeler can
select non-functional requirements from a requirement catalog. This catalog con-
tains well-known requirements that often occur when processing and integrating
data. For example, such requirements are robustness, security, e�ciency, and so
on. These requirements are described in a text-based manner by providing users,
typically non-IT experts, with the information necessary to choose the require-
ments most suitable for their needs, i.e., for their use case scenario. Furthermore,
several requirements can be combined with each other. However, obviously, some
of the requirements cannot be combined, for instance, robustness and e�ciency is
very hard to unify. These restrictions are also described in the requirement catalog.
Based on the selected non-functional requirements, the runtime environment to
process and integrate the data will be built automatically. As a consequence, the
execution environment could be di�erent for each execution. This leads to a very

29

dynamic execution, tailor-made for each user. Based on the selected requirements,
the runtime environment is set up in a modular way, as described in step five.

In step four, the execution environment is selected based on the defined non-
functional requirements. This is done through a graph-based algorithm, which
traverses so called requirement trees, as described more detailed in Sect. �.� and
in [�]. By doing so, a tailor-made execution environment, containing an execution
engine (e.g., a BPEL workflow engine) and other necessary components, can
be built suited for the non-functional requirements of each single user. Once
the most suitable execution environment is selected, the domain-specific non-
executable flow model created in step two is transformed into a suitable executable
representation (e.g., a BPEL workflow) to be processed by the selected execution
engine.

In the fifth step, the execution environment selected in step four is set
up automatically. For example, cloud computing technologies can be used for
the automated provisioning into arbitrary environments. In [�], we show how
this can be achieved using the Topology and Orchestration Specification for
Cloud Applications (TOSCA). In TOSCA, the software components to be set
up are represented in application topologies through so called Node Templates
(representing the software components) that are connected via Relationship
Templates, defining their communication. These topologies can be automatically
generated based on the component selection of step � and can be used for
automated provisioning using the results of previous work [�].

In step six, the transformed, executable flow model that was created in step
three is executed in the engine that was set up in the previous step. On execution,
services are invoked for each step of the Pipes and Filters based model. The
services have been registered in the first step of the method and o�er diverse
functionality for data processing and integration. In my prototype, I use approved
execution engines such as BPEL workflow engines for execution because they o�er
many features that, e.g., ensure error handling, e�ciency, security, etc. As already
mentioned, the selection of the engine highly depends on the non-functional
requirements of the users.

Finally, the last step is the usage of the integrated result, for example for
visualization, analytics, or other value-adding approaches. This, however, is not
part of this thesis.

� Architecture

I introduce the architecture depicted in Fig. � to realize the approach proposed in
Sect. �. In this architecture, several components are involved that have been or will
be designed to realize the introduced concepts. Those are (i) the service registry
to manage data processing services, (ii) the resource management platform to
manage data sources and normalize data to be processed, (iii) the modeling
tool to create Pipes and Filters-based data processing and integration flows,
(iv) the transformation and runtime selection component to select the runtime
environment and transform the model into an executable representation, (v) the

30

Requirement Catalog

Flow Modeling Environment

CanvasPaletteService
Registry

Domain Expert

Data Expert

Register
Services Publish

Services

Heterogeneous Service Runtime Environments

Deploy
Services

Resource Management Platform

Heterogeneous Data Sources

Data Source
Expert

Automated Binding

Data Provisioning

Transformation and
Runtime Selection

Component

Software Deployment
Component (e.g., TOSCA)

Runtime Eco System

Operating System

Execution
Engine Cache

Register
Data

Sources

Call Services

Workflow Fragment
Repository

Figure �. Architecture of the approach

software deployment component to set up the execution environment, and (vi)
the runtime eco system to execute the data processing and integration flows.
These components are described in detail in the following.

�.� Service Registry

The service registry enables data experts to provide services that process data.
Data experts have deep knowledge of data processing, data integration, and
analytics, and can provide the algorithms and the corresponding implementations
for these operations. The implementations are encapsulated in services that
process the data. On registration, two actions are initiated: (i) the service is
automatically deployed into a suitable service runtime dependent on the type
of service, e.g., Java SOAP Web Services or NodeJS-based REST services, and
(ii) an abstract entry for the service is created in the palette of the modeling
tool, so that domain experts can use it to model data integration and processing
flows. The automated deployment of the services is conducted using the Topology
and Orchestration Specification for Cloud Applications (TOSCA). In TOSCA,
the environment of the service can be specified using so called topologies. These
topologies can be used for automated provisioning of services on di�erent kinds
of infrastructure components. To be able to provide an entry for the service in
the modeling tool’s palette, the properties, i.e., its input parameter (e.g., a filter
criteria) have to be specified when registering the service. The registered services
are stored in a database to enable their synchronization with the modeling tool,
their re-hosting when the service or its runtime crashes, and the creation of
multiple service instances to enable scalability. The services are tightly coupled
with the resource management platform, which is described next.

31

�.� Resource Management Platform

The resource management platform (RMP) is a middleware component that o�ers
an abstraction from the underlying data sources to be processed by our approach,
and furthermore, contains functionality to transform data into a uniform format.
As described, this is a precondition for Pipes and Filters-based processing of
data. The resource management platform enables an easy binding of data sources
through data source adapters. These adapters are stored in a repository and can
be deployed on demand. More precisely, on registration of a new data source,
data experts only have to provide some information about the data source such
as the type (e.g., MySQL) and access information (IP, port, user, password), and
the adapters can be automatically deployed and started with these information.
On start of an adapter, it connects to the data source and is then able to extract
information through the RMP. The RMP can then provision the data on demand
to the services that process them. The automated deployment of these adapters is
conducted similar to the service deployment in the service registry using TOSCA.

Through the RMP, I provide an abstraction from data sources so that data
processing services can be implemented more easily. The services only have to
access the RMP and do not have to implement the functionality to access the data
sources themselves, which is very cumbersome due to their high heterogeneity.
Furthermore, the RMP o�ers functionality to cache data, which enables higher
e�ciency for data extraction. However, it is important to note that through
caching of data, their quality could decrease.

�.� Data Processing and Integration Flow Modeling Environment

Once data sources and data processing services are bound and deployed, re-
spectively, the Pipes and Filters based models for the data integration and
processing flows can be created by domain experts. The registered services and
data sources, bound to the resource management platform, appear in the palette
of the modeling environment on registration. The elements in the palette can
then be used for drag and drop based modeling in the modeling canvas. Once
one or more data sources and services are moved to the canvas, they can be
arbitrarily interconnected, also using drag and drop as depicted in Fig. �. The
arbitrary interconnection is possible through the uniform data exchange format
that is provided through the RMP and that is complied by the services. Once
the modeler has completed modeling the data integration and processing flows,
he can select his non-functional requirements for the execution in a requirement
catalog (cf. Fig. �). These requirements are described in a non-technical manner
so that domain experts can understand them and can select them reasonably. A
common example for such a requirement is security. By selecting the security
requirement, the execution is processed in a way that data is encrypted and the
communication channels are secured. The descriptions of the requirements also
contain drawbacks that could come with their selection. For example, in case
of the security requirement, there is a significant overhead for the encryption,
which leads to an increased runtime.

32

Implementation
Component

Top-Level
Requirement

Sub-Requirement Sub-Requirement Sub-Requirement

Sub-Requirement Sub-Requirement

Implementation
Component

Implementation
Component

Implementation
Component

Implementation
Component

Figure �. Example of a requirement tree containing the top-level requirement, sub-
requirements, and implementation components

�.� Transformation and Runtime Selection Component

After modeling, the non executable flow model is transformed into an exe-
cutable representation. However, the format of this representation depends on
the non-functional requirements that were selected by the user in the modeling
environment’s requirement catalog. Based on the requirements, a mapping algo-
rithm selects the suitable software components that are able to fulfill them. This
algorithm is based on trees that contains two types of nodes: (i) requirement nodes
that describe, which requirements have to be fulfilled, whereas a requirement
can contain an arbitrary number of sub-requirements, and (ii) implementation
component nodes that represent a software component that is necessary to
fulfill a requirement. The root node represents a requirement described in the
requirement catalog, the implementation component nodes are always leaf nodes
of the tree. Figure � depicts the structure of these trees. By traversing the
tree, the goal is fulfilling all contained sub-requirements and, as a consequence,
the top level requirement. Assuming that the tree only contains one leaf node
per sub-requirement, this can be done in a straight-forward manner through a
depth-first search by selecting all leaf nodes. However, as depicted in Fig. � on
the right, requirement nodes can have more than one implementation compo-
nent child node. Due to the fact that the selection of the runtime is conducted
fully automatically, there is no possibility to get feedback from the users about
which node to choose. Because of that, I use a parameter-based approach based
on [��,��]: depending on parameters that are either chosen in the requirement
catalog (e.g., preferred cloud provider) or that are extracted from the flow model,
the selection of the implementation component can be done automatically. In
case it cannot be decided, which node to choose based on the parameters, one
node is randomly selected. Due to the fact that the domain expert usually does
not have exact preferences regarding the execution and is only interested in
that the non-functional requirements are somehow fulfilled, a random selection
approach seems to be reasonable. Getting user feedback is not an option because
the domain experts usually do not have the expertise about technical details or

33

(hostedOn)

(MongoDBServer)(UbuntuLinux)

(NodeJS)

(OpenStackVM)

(NodeRED) (MongoDB)

(hostedOn)

(hostedOn)

(hostedOn)

(connectsto)

(hostedOn)

(hostedOn)

(MongoDBServer)(UbuntuLinux)

(ApacheTomcat)

(OpenStackVM)

(ApacheODEEngine) (MongoDB)

(hostedOn)

(hostedOn)

(hostedOn)

(connectsto)

(hostedOn)

Figure �. Examples for TOSCA topologies to set up the execution environments. Left:
execution in Node-RED, right: execution in an ApacheODE workflow engine

software components. Furthermore, our goal is hiding all technical information
from the end user.

Each top-level requirement, as contained and described in the requirement
catalog, is represented by a single tree. Consequently, the trees have to be merged
to fulfill more than one requirement at once because there could be duplicate
implementation component nodes in the trees. Before a traversal of the trees
is possible, the trees have to be merged into a single one. To realize this, I use
and adapt existing tree merging algorithms because there are already many
existing approaches, e.g. [��,�], and developing a new algorithm is out of scope
of this thesis. Based on the merged trees, the graph is traversed to find suitable
implementation components as described before.

The output of this component is a list of software components that are needed
for the execution of the data processing and integration flows dependent on the
non-functional requirements of the modelers. This list serves as basis for the
deployment of the execution environment, which is conducted by the Runtime
Environment Deployment component described next.

�.� Runtime Environment Deployment Component

Based on the list provided by the tree traversal, the runtime execution environment
can be automatically set up using TOSCA. By doing so, a TOSCA Topology
Template is created based on the list and is used as input for a corresponding
TOSCA runtime. An exemplary topology is depicted in Fig. �. Details of this
step are provided in [��].

�.� Execution Environment

Finally, the data processing and integration flows are deployed into the execution
environment, i.e., in the corresponding engine. As described, the execution
environment is dependent on the non-functional requirements of the modeler and
therefore could be di�erent for each user. On execution, the services are invoked

34

Requirement Catalog

Flow Modeling Environment

Service
Registry

Heterogeneous Service Runtime Environments

Resource Management Platform

Transformation and
Runtime Selection

Component

Software Deployment
Component (e.g., TOSCA)

Runtime Eco System

Operating System

Execution
Engine Cache

Fragment
RepositoryJava

MySQL

Apache Tomcat, Glassfish, NodeJS, …

Java, MongoDB, OWL, Apache Jena

ExtJS, HTML

JavaScript
HTML
AlloyUI
Bootstrap
ExtJS

Java
JAXB

ApacheODE
WSO2 Workflow Engine
Node-RED
MongoDB
CouchDB
…

Java, XML, JAXB
MongoDB

MySQL

Figure �. Implementation architecture annotated with the used technologies

in the order as defined in the flow model. By doing so, data is being extracted
through the RMP and is being processed through service composition, which is
conducted by the corresponding execution engine.

� Prototypical Implementation

I implemented the tool FlexMash as a prototype for the concepts of my thesis.
This prototype has been demonstrated in ���� and in ���� at the International
Conference of Web Engineering (ICWE) during the Rapid Mashup Challenge.
In both challenge participations, I could achieve winning the second prize. The
corresponding publication for the first challenge ���� can be found in [�], the
second publication will be published in January ���� [�].

The prototype consists of two parts: (i) the front end containing the flow
modeling environment, and (ii) the back end containing the service registry,
the service runtime, the resource management platform, the transformation
and deployment components, and the execution environment. In the following,
I will describe the technologies used for the implementations of these compo-
nents. The architecture annotated with the corresponding technologies used for
implementation is depicted in Fig. �.

The front end component is implemented in JavaScript exclusively, supported
by the frameworks AlloyUI�, ExtJS�, and Bootstrap�. The underlying data
model for the data processing and integration flows is based on the JavaScript
Object Notation (JSON), which is already natively supported by JavaScript.

� http://alloyui.com/
� https://www.sencha.com/products/extjs/
� http://getbootstrap.com/

35

Figure �. Exemplary entry in the requirement catalog

On graphical modeling, the JSON model is automatically synchronized. The
modeling interface is depicted in Fig. �.

The requirement catalog is also implemented in JavaScript and is fully inte-
grated into the modeling environment. The catalog is designed like a wiki, which
means that a navigation between di�erent entries is possible through links. Each
page in the wiki is a HTML page that is stored in the file system of the server
the modeling environment is hosted on. The implementation of the requirement
catalog is inspired by the PatternPedia as described by Fehling et al. [�]. An
example entry in the requirement catalog is depicted in Fig. �.

The back end is mostly implemented as web application in Java, running in
an Apache Tomcat application server container. The service registry component
o�ers a REST interface to create, retrieve, update or delete the services. The
services are deployed using OpenTOSCA [�]. The runtimes of the services are
hosted on an OpenStack� cluster to enable scalability and availability. These
could for example be Java application servers such as Apache Tomcat or Glassfish
or a NodeJS-based runtime, depending on the service implementation itself.
Currently these runtimes have to be set up manually, however, in the future, they
could also be set up using TOSCA. This enables setting runtime environments
up only if they are needed. If there is for example no NodeJS service, it makes
sense to undeploy the NodeJS runtime to save resources.

The transformation of the data processing and integration flows into an
executable representation is implemented as a modular Java library. The trees
that map requirements to corresponding implementations are based on XML and
are traversed using the Java Architecture for XML Binding (JAXB), which is
integrated into the Java Developer Toolkit (JDK). The input of the transformation
� https://www.openstack.org/

36

ETL Tools Data Analytics
Tools

Information
Integration Tools

FlexMash

Extensibility

Cloud support

Graphical modeling / Usability

Flexible execution

User interaction during runtime

Criteria
Approach

No Support Low Support Medium Support High Support Full Support

Table �. Comparison of the introduced approach with others

component consists of the flow model, and a list of requirements selected by the
modeler in the catalog. The transformation of the non-executable model into
an executable one (e.g., a BPEL workflow) is based on a fragment repository
that enables modular building of these executable models based on fragments.
The fragment repository is implemented using a MongoDB� document store
loosely based on the approach described in [��]. The output of the component is
a list of runtime components necessary for execution of the data processing and
integration flow, and its executable representation.

The software deployment component uses the Topology and Orchestration
Specification for Cloud Applications and the implementation provided in [�,�] to
create a TOSCA Topology Template based on the component list generated by
the transformation component. This Topology Template is used for deployment of
the runtime environment’s components using OpenTOSCA [�] on an OpenStack-
based IBM PureFlex computing cluster, for the deployment of the executable flow
model in the corresponding engine, and for the invocation of this model. This
can be done using TOSCA build plans that describe operations to be executed
on the deployed software components.

� Related Work

In [�], we conducted an extensive survey of related work and discussed how the
approach of this thesis di�ers from other approaches. As a consequence, I will
only show a summary of the results of this survey based on the table depicted in
Table �. We compared our prototype FlexMash with other approaches, i.e., ETL
(Extract-Transform-Load) tools, data analytics tools, and information integration
tools. As shown in this table, FlexMash exceeds other similar approaches mostly
regarding its flexibility in the execution of data processing and integration flows,
a high extensibility, and the possibility of interaction during runtime, which has
not been described in this paper because it will be published in [�].
� https://www.mongodb.com/

37

� Summary

In this paper, I introduced my PhD thesis for flexible execution and modeling
of data processing and integration flows. By the proposed approach, I enable
a means to model data processing scenarios in an easy manner using so called
data integration flows, a means to select non-functional requirements for their
execution, an automated binding of data sources and data processing services, and
a fully automated set up of the execution environment as well as the execution
of the flows. By doing so, technical details can be hidden from the end users
through a fully automated approach.

In the future, I will mostly work on optimizations and improvements of
the introduced approach because the main features have been implemented as
described in Sect. � and published as shown in the next section.

� Selected Thesis-Related Author Publications

– Automatic Topology Completion of TOSCA-based Cloud Applications. In:
Proceedings des CloudCycle�� Workshops auf der ��. Jahrestagung der
Gesellschaft für Informatik e.V. (GI) (����)

– Flexible Modeling and Execution of Data Integration Flows. In Proceedings
of the �th Symposium and Summer School On Service-Oriented Computing
(SummerSOC) (����)

– Extended Techniques for Flexible Modeling and Execution of Data Mashups.
In: Proceedings of �th International Conference on Data Management Tech-
nologies and Applications (DATA) (����)

– FlexMash - A Flexible Data Mashup Tool. In Proceedings of the Rapid
Mashup Challenge @International Conference on Web Engineering (ICWE)
(����)

– SitRS - A Situation Recognition Service based on Modeling and Executing
Situation Templates. In Proceedings of the �th Symposium and Summer
School On Service-Oriented Computing (SummerSOC) (����)

– FlexMash – Flexible Data Mashups Based on Pattern-Based Model Trans-
formation. In: Rapid Mashup Development Tools. Springer International
Publishing (����)

– FlexMash �.�. In Proceedings of the Rapid Mashup Challenge @International
Conference on Web Engineering (ICWE) (����)

– TOSCA�Mashups – Enhanced Method for On-Demand Data Mashup Pro-
visioning. In: Proceedings of the ��th Symposium and Summer School On
Service-Oriented Computing (����)

– Automated Sensor Registration, Binding and Sensor Data Provisioning. In:
Proceedings of the CAiSE ���� Forum at the ��th International Conference
on Advanced Information Systems Engineering (����)

– Dynamic Ontology-based Sensor Binding. In Proceedings of the ��th East-
European Conference on Advances in Databases and Information Systems
(����)

38

References

�. Binz, T., et al.: OpenTOSCA - A Runtime for TOSCA-based Cloud Applications.
In: ICSOC. pp. ���–���. Springer (December ����)

�. Breitenbücher, U., Binz, T., Képes, K., Kopp, O., Leymann, F., Wet-
tinger, J.: Combining Declarative and Imperative Cloud Application Provi-
sioning based on TOSCA. In: Proceedings of the IEEE International Con-
ference on Cloud Engineering (IC�E). pp. ��–��. IEEE Computer Soci-
ety (März ����), http://www�.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/
NCSTRL_view.pl?id=INPROC-����-��&engl=�

�. Brown, M.R., Tarjan, R.E.: A fast merging algorithm. J. ACM ��(�), ���–��� (Apr
����), http://doi.acm.org/��.����/������.������

�. Devlin, B.: Data Warehouse: From Architecture to Implementation. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (����)

�. Fehling, C., Barzen, J., Falkenthal, M., Leymann, F.: PatternPedia–Collaborative
Pattern Identification and Authoring. In: Proceedings of Pursuit of Pattern Lan-
guages for Societal Change-Preparatory Workshop (����)

�. Hirmer, P., Breitenbücher, U., Binz, T., Leymann, F.: Automatic Topology Com-
pletion of TOSCA-based Cloud Applications. In: Proceedings des CloudCycle��
Workshops auf der ��. Jahrestagung der Gesellschaft für Informatik e.V. (GI) (����)

�. Hirmer, P., Mitschang, B.: FlexMash - Flexible Data Mashups Based on Pattern-
Based Model Transformation. In: Rapid Mashup Development Tools. Springer
International Publishing (����)

�. Hirmer, P., Mitschang, B.: TOSCA�Mashups – Enhanced Method for On-Demand
Data Mashup Provisioning. In: Proceedings of the ��th Symposium and Summer
School On Service-Oriented Computing (����)

�. Hirmer, P., Mitschang, B.: FlexMash �.� – Flexible Modeling and Execution of Data
Mashups. In: Rapid Mashup Development Tools. Springer International Publishing
(to be published ����)

��. Hirmer, P., Wieland, M., Breitenbücher, U., Mitschang, B.: Automated Sensor
Registration, Binding and Sensor Data Provisioning. In: Proceedings of the CAiSE
���� Forum at the ��th International Conference on Advanced Information Systems
Engineering (����)

��. Hirmer, P., Wieland, M., Breitenbücher, U., Mitschang, B.: Dynamic ontology-based
sensor binding. In: Proceedings of the ��th East-European Conference on Advances
in Databases and Information Systems (����)

��. Hirmer, P., et al.: Extended Techniques for Flexible Modeling and Execution of Data
Mashups. In: Proceedings of �th International Conference on Data Management
Technologies and Applications (DATA) (����)

��. Kassner, L., Mitschang, B.: MaXCept–Decision Support in Exception Handling
through Unstructured Data Integration in the Production Context. In Proceedings
of the ��th Hawaii International Conference on System Sciences (����)

��. Meunier, R.: The pipes and filters architecture. In: Pattern languages of program
design (����)

��. Reimann, P., et al.: Data Patterns to Alleviate the Design of Scientific Work
Flows Exemplified by a Bone Simulation. In: Proceedings of the ��th International
Conference on Scientific and Statistical Database Management (����)

��. Reimann, P., et al.: A Pattern Approach to Conquer the Data Complexity in
Simulation Workflow Design. In: Proceedings of the ��nd International Conference
on Cooperative Information Systems (CoopIS ����), Amantea, Italy (����)

39

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-21&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-21&engl=0
http://doi.acm.org/10.1145/322123.322127

��. Schumm, D., Dentsas, D., Hahn, M., Karastoyanova, D., Leymann, F., Sonntag,
M.: Web service composition reuse through shared process fragment libraries. In:
Proceedings of the ��th International Conference on Web Engineering. pp. ���–���.
ICWE’��, Springer-Verlag, Berlin, Heidelberg (����), http://dx.doi.org/��.����/
���-�-���-�����-�_��

��. Sun, X., Wang, R., Salzberg, B., Zou, C.: Online b-tree merging. In: Proceedings of
the ���� ACM SIGMOD International Conference on Management of Data. pp.
���–���. SIGMOD ’��, ACM, New York, NY, USA (����), http://doi.acm.org/
��.����/�������.�������

��. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann (����)

All links were last followed on August ��, ����.

40

http://dx.doi.org/10.1007/978-3-642-31753-8_53
http://dx.doi.org/10.1007/978-3-642-31753-8_53
http://doi.acm.org/10.1145/1066157.1066196
http://doi.acm.org/10.1145/1066157.1066196

A Decision Support System for the

Performance Benchmarking of

Workflow Management Systems

Marigianna Skouradaki1, Tayyaba Azad, Uwe Breitenbücher1,
Oliver Kopp2, and Frank Leymann1

�IAAS, �IPVS, University of Stuttgart, Germany
{firstname.lastname}@iaas.uni-stuttgart.de

Abstract. Along with the growing popularity of the Workflow Manage-
ment Systems, the performance and e�ciency of their underlying technol-
ogy becomes crucial for the business. The development of a representative
benchmark for Workflow Management Systems is very challenging, as one
needs to realistically stress the di�erent underlying components. However,
structured information on how to do so is generally missing. Thus, the
users need to arbitrarily make crucial design decisions or to study complex
standard benchmarks before designing a benchmark. In this work, we
propose a Decision Support System to ease the decision making of the
desigh of benchmarks for Workflow Management Systems. We present
the conceptual models of the Decision Support System and provide a
prototypical implementation of it. Finally, we validate the functionality
of our implementation with representative use cases.

Keywords: Decision Support System, Benchmarking, Workflow Managament
Systems

� Introduction

The representativeness and reliability of a benchmark comprises its key char-
acteristics, otherwise it may indicate misleading results [��]. As Moscato [��]
characteristically says there are “Lies, Damned Lies and Benchmarks”. Therefore,
standard benchmarks are generally developed and supported by corporations
like the Standard Performance Evaluation Corporation (SPEC) [��] and the
Transaction Processing Performance Council (TPC) [��]. In order to develop
a new benchmark or to apply an existing benchmark on a middleware system,
practitioners need to comprehend and analyze a set of standard benchmarks.

The BenchFlow project � comprises an academic e�ort to create the first
standard benchmark for the performance of Business Process Model and No-
tation �.� (BPMN �.�) compliant Workflow Management Systems (WfMS).
Thus, in this case information otherwise acquired by the companies is currently

� http://www.iaas.uni-stuttgart.de/forschung/projects/benchflow.php

41

� Marigianna Skouradaki et al.

unavailable, as companies cannot share their data to maintain their corporate
assets. In order to ensure the reliability and representativeness of the BenchFlow
benchmark, we have conducted a literature review on standard benchmarks of
related middleware technologies and custom benchmarks of WfMSs. The goal of
this review is to filter the relevant information and answer research questions as
the following: �) What are the key decision points for the construction of new
WfMS benchmarks? �) What are the dependencies that a�ect the design of the
participating artifacts in a benchmark? �) How could one utilize historical data
to take key decisions for the design of a WfMS benchmark?

To get an in-depth knowledge of the related existing benchmarks, we focused on
standardized benchmarks that were published by industry-accepted consortia such
as SPEC [��] and TPC [��], as well as state-of-the art custom benchmarks that
target to measure the performance of WfMS. We have gathered the information
in a knowledge base and o�er it as a Decision Support System (DSS) [��], named
as DSS�MiddlewarePBenchmarkingto support stakeholders in future decisions
concerning the construction of WfMS benchmarks.

Thus, the original scientific contributions of this work are to:

�. Investigate the related standard and custom benchmarks in order to outline
the current trends on benchmarking and DSS in regards to benchmarking;

�. Analyze the requirements for the definition of the DSS�MiddlewarePBench-
marking;

�. Identify the artefacts that are relevant for the construction of new WfMS
benchmarks and their underlying dependencies;

�. Provide a prototypical implementation of the DSS�MiddlewarePBenchmark-
ing;

�. Validate the solution through use case scenarios.

The remainder of this paper is structured as follows: Sect. � provides back-
ground information on current standard benchmarks for related middleware and
custom benchmarks and introduces the concept of Decision Support Systems;
Sect. � specifies the functional and non-functional requirements, introduces the
conceptual model on which our system relies, and the design dependencies that
stem from the participating artifacts; Sect. � explains the technologies used for
the implementation of the DSS�MiddlewarePBenchmarking; Sect. � validates the
system through use cases; Sect. � overviews existing work for Decision Support
Systems and Sect. � concludes and proposes our plans for future work.

� Background

�.� Standardised Middleware Benchmarks

There exist a number of organisations that provide standard benchmarks. Two of
the most relevant ones that focus on performance benchmarking are the Standard
Performance Evaluation Corporation (SPEC) [��] and Transaction Processing
Performance Council (TPC) [��]. The following sections summarise the most
relevant benchmarks published by these consortia.

42

A DSS for the Performance Benchmarking of WfMSs �

SPEC ® JMS ���� [��] provides the assessment of performance for Message
Oriented Middleware (MOM) servers based on the Java Message Service (JMS).
The main purpose of the SPEC ® JMS ���� benchmark is to support a standard
workload and metrics in order to provide an in depth performance analysis of all
the individual components comprising the JMS-based MOM platforms. In order to
avoid the scalability limitations within the workload of SPEC ® JMS ����, users
are able to increase the number of destinations (queues and topics). The number
of messages per destination can be increased or users can scale the workload in
a customised manner. The application scenario for SPEC ® JMS ���� involves
the model of a supply chain for a supermarket. The supermarket company, its
stores, its distribution centers and its suppliers are the di�erent participants that
are involved in this scenario. The requirements discussed in the previous section
are applied to this scenario. It allows a clear specification of interactions that
stress defined features of the JMS Servers. For instance, publish/subscribe or
peer-to-peer communication as well as diverse message types. Moreover, there
are no limitations on scalability of the workload, the number of supermarkets
can be increased and the number of products o�ered by a supermarket can also
be increased.

SPECjbb ® ���� [��] provides the performance measurement based on the
latest Java application features. It is applicable to all organisations that are
interested in measuring Java server performance. The benchmark includes a model
that illustrates a supermarket company with an Informations Technology (IT)
infrastructure that deals with point-of-sale requests, online purchases and data-
mining operations. The metric included in the benchmark is a pure throughput
metric. SPECjbb ® ����also supports visualisation and cloud environments [��].

TPC-C [��] is an On-Line Transaction Processing (OLTP) benchmark.
It is an improved version of the previously published benchmarks due to its
multiple transaction types, greater complexity of the database and the overall
execution structure. TPC-C includes five concurrent transactions of di�erent
types and complexity. The involved database is made up of nine di�erent types
of tables with large sizes in regards to recording and population. The TPC-C
benchmark is measured in transactions per minute (tpmC). It simulates a running
computing environment where users execute transactions against a database. The
transactions contain entering and delivering orders, recording payments, checking
the status of orders, and monitoring the level of stock at the corresponding
warehouse. This benchmark is not restricted to a specific business area, but
targets di�erent market sectors [��].

TPC-E [��] is also an OLTP benchmark that resembles the OLTP workload
of a brokerage firm. The main target of the benchmark is the central database that
executes transactions associated to the company’s customer accounts. Despite
the fact that the business model covered by the TPC-E is a brokerage firm,
the benchmark can be used on various modern OLTP systems. The benchmark
specifies the required combination of transactions it should be able to handle.
The TPC-E benchmark is measured in transactions per second (tpsE) [��].

43

� Marigianna Skouradaki et al.

�.� Workflow Management Systems Benchmarks

A standard benchmark for Workflow Management Systems is not available yet [��].
Threrefore, we are presenting the state-of the art in custom benchmarks that
have been proposed during the last years.

SOABench [�] targets to assess the middleware performance in the context
of a Service-Oriented Architecture (SOA). In general, it proposes the automatic
generation and execution of testbeds for benchmarking SOAs. As a use case for
the proposed framework workflow engines supporting the Web Services Business
Process Execution Language (WS-BPEL �.�) [��] are used as the Systems Under
Test (SUT). For the experiments four di�erent workloads are defined which
express basic control flow structures of the WS-BPEL language (i. e., Sequential,
FlowNoDep, Flow, While). For each defined workload the authors separate four
di�erent load situations that span from low to high system loading. The defined
metric is limitted to response time for all the executed experiments. The tests
target two open source and one proprietary WfMSs.

ActiveVOS [�] targets solely the performance of the ActivevVOS WS-BPEL
WfMS. For the performance tests four workload mixes are used. The tests
are executed on a variable request rate of maximum �� users. Althought the
configuration of the infrastructure underlying the WS-BPEL engine is described
in detail, results on the performance tests are not further discussed.

Sliver [�] is a WS-BPEL WfMS for mobile devices. In order to evaluate
the performance of the proposed protytipical implementation, the authors are
evaluating the Sliver engine with twelve WS-BPEL patterns. The performance of
the Sliver WfMS is measured with respect to three di�erent infrastructures (PC,
PDA and Phone) and compared to one more WfMS (i. e., ActiveBPEL) on a PC
infrastructure. Also in this case, the examined metric is the reponse time of the
WfMS.

Dit et al. [�] propose a workload model for benchmarking WS-BPEL WfMS.
For the derivation of the model the authors simulate real world tra�c conditions
in order to better define the end-users that characterize it. For the performance
tests a two phase workload is defined that implements a WS-BPEL correlation.
The SUT is the ActiveBPEL engine�. The experiments run for � minutes in total
and simulate ���� users. The defined metrics are success/failure rate, response
times and round-trip delays.

Intel & Cape Clear [�] asseses the performance of the Cape Clear WS-
BPEL engine running on Intel ®servers. This white paper introduces the concept
of executing di�erent real-world process models for the di�erent performance tests.
Consequently, with a focus on execution of the throughput test, a loan-approval
process is executed, a correlation-rich process model for the load and recovery
tests. For the throughput tests (in terms of transactions per minute) � to � servers
are used, as well as a variety of di�erent clients, which range from �� to ���.
During the load tests the SUT is loaded with up to one million live long running
instances. The measurements are taken in pre-defined times points.
� http://www.activevos.com/content/developers/education/sample_active_bpel_

admin_api/doc/index.html

44

A DSS for the Performance Benchmarking of WfMSs �

SWoM [��] conducts load tests on one proprietary engine in order to measure
throughput. The defined workload for execution is four simple WS-BPEL pro-
cesses. The injected WS-BPEL process contains also the invocation of external
services, which is continuously called by the testing clients. Each experiment
executed ��.��� instances in a total of approximately �� minutes. The client
emulates �� requestors whose think time for subsequent requests was adjusted
to run with respect to the CPU load, keeping it in between of ��% and ��%.

Micro-Benchmark BPMN �.� Workflow Management Systems [��]
constitutes a micro-benchmark (i. e., a toy benchmark) that targets to measure
the preformance of BPMN �.� [�] WfMSs. The goal of the micro benchmark
is to define the correlation between the fundamental structures of the BPMN
�.� language to the performance of the BPMN �.� WfMS, as well as reveal any
potential bottlenecks. Six di�erent workload mixes are defined for the micro-
benchmark, which are derived from the subset of the BPMN �.� control-flow
workflow patterns that were actually found to be applicable in real-world process
models [��]. The control flow patterns used are the sequence flow, the exclusive
choice, the simple merge, the parallel split, the synchronization patterns [?].
The benchmark is run by an automated, isolated, reproducible, and reliable
benchmark environment, called the BenchFlow framework [�]. The analysed
metrics are the reponse time, the throughput (business process instances per
second), and resource utilization for the CPU and RAM.

�.� Decision Support Systems and Decision Support

The term Decision Support System is used to describe an information system
that maintains decision-making tasks of a business or an organisation [��]. Gen-
erally, the di�erent types of DSSs can be summarised as follows: Data-driven
DSS provides access to large knowledge bases in order to extract information;
Communication-driven DSS supports the shared access on a specific task where
more than one person is involved in working on it; Document-driven DSS data
is retrieved and manipulated in form of a document; Knowledge-driven DSS or
Expert Systems provide professional problem-solving in terms of defined rules and
procedures; Model-driven DSS provide functionality by o�ering di�erent models
for which the data and parameters are provided by the user. The three di�erent
components inside a DSS are: the knowledge base where all relevant information
is stored, the conceptual model that defines di�erent decision criteria and the
user interface that presents the required output [��].

� Concept and Specification

�.� Requirements Analysis

This section deals with the functional and non-functional requirements that were
considered to be relevant for our DSS, here after refered to as DSS�Middle-
warePBenchmarking. The following list describes the most important recognized

45

� Marigianna Skouradaki et al.

Functional Requirements (FR). We concluded on them through an thorough
literature review and practical experience.

FR1 Visualisation of the Decision Support System: Extract data from the DSS-
�MiddlewarePBenchmarkingin a human recognisable manner. In order to
provide support to the decision-making for performance benchmarking.

FR2 Management and Configuration: Create, Read, Update and Delete (CRUD)
operations should be provided for each conceptual entity of the database and
should be accessed through the user interface level. It should allow the user to
i) create or add new entries; ii) read, retrieve, search, or view existing entries;
iii) update or edit existing entries; iv) delete/deactivate existing entries.

FR3 Dynamic Querying: The system should provide dynamic querying by
excluding dependencies that cannot be combined together. For example, in
the case requesting information for a Java Server, the system should exclude
parameters that are solely related to WfMS.

FR4 Reporting Support: The DSS�MiddlewarePBenchmarkingshould support
the decision making by providing responses that are logically reduced by the
provided input, or indicate failure to respond if a corresponding reply is not
available.

FR5 Realiability of Data: The DSS�MiddlewarePBenchmarkingshould contain
data coming from reliable resources such as scientific papers and documenta-
tions of standard benchmarks.

Moreover, the DSS�MiddlewarePBenchmarkingshould also satisfy the non-
functional requirements described in the following list:

NFR1 Usability: The developer should specify all main and relevant benchmark
characteristics according to the decision tree with an easy and interactive
interface. The interface should be graphical, web-based, user-friendly and
should allow querying the knowledge base. The software platform should
be self-explanatory to the user, and the user should know exactly what the
required steps are.

NFR2 Consistency: The system should allow the user to view the results of
the selected criteria in a consistent manner. All included operations should
always behave in a predictable and consistent manner.

NFR3 Performance: The knowledge base conducted from the decision tree
should be exposed as a Representational State Transfer (REST)-ful web
application. The DSS should respond with success or failure in realistic times
(seconds).

NFR4 Web-based development: Portability, cross-platform support and a user-
friendly interface should be supported through a web-based solution.

NFR5 Easy installation: The configuration and installation of the software
should be rapid and easy.

NFR6 Guidelines, compliance & documentation: For future extension and
modification the source code should be supported by following well established
software engineering guidelines and descriptive documentation.

46

A DSS for the Performance Benchmarking of WfMSs �

�.� Conceptual Model

This subsection introduces a conceptual model presented in the form of an Entity
Relationship (ER) diagram, shown in Fig. �. The ER diagram represents the key
decision points as entities and the corresponding dependencies as relationships.
The knowledge base and functionality of the DSS�MiddlewarePBenchmarkingrely
on this conceptual model. The entities described in the conceptual model were
recognized through the extended review of the benchmarks described in Sect. �.
Due to the fact that all benchmarks have similar domains of application, their
structure is overlapping in many aspects. The recognized entities are derived
from the recognized overlapping information. Concepts that did not share a
common usage in all the studied benchmarks were not included in the ER
model. More particularly, the conceptual model includes relevant information
that is required for the construction of new domain-related benchmarks. For
purposes of a better engineering each entity of the ER diagram is marked with
an identifier (ID) attribute. These IDs are meant for “internal” usage of the
DSS�MiddlewarePBenchmarkingand, thus, they are not further explained.

The system refers to the type of system that the user is interested in retriev-
ing the data for. The system contains a type which refers to the type of the
benchmarked system (i. e., Java Server, Workflow Management System, etc.).
The various benchmarks focus on addressing the performance of di�erent types of
systems. Each benchmark is characterised by its name, the consortium that has
proposed it, and if it is widely accepted and adopted as a standard benchmark.
Furthermore, based on their compositions, benchmarks can be categorized into
types: synthetic benchmark, application benchmark, micro/toy benchmarks etc.
Each system has a set of factors or components whose performance a�ect the
performance of the overall system. As for example, in the SPEC ® JMS ����bench-
mark recognizes as performance factors the hardware configuration, the JMS
server software, the Java Virtual Machine software and the network performance.

The individual systems that are deployed and benchmarked are refered to
as System Under Test (SUT). The benchmark related attributes of a SUT are
the hardware configuration of its comprising artifacts, the enteprise name of
the product (i. e., Camunda�, Apache Active MQ�, etc.), as well as its software
license, and the version of the benchmarked system. In this work, the hardware
configuration has been assumed as unstructured data described in free text.
However, in future work, the harware configuration may constitute an entity by
itself describing in detail the number of servers used, if the SUT was deployed
on virtual or physical machines, the technical details of the machines and other
configuration related information. It is widely accepted that a representative
benchmark should follow hardware configurations similar to the consumer envi-
ronment [�]. Therefore, the DSS�MiddlewarePBenchmarkingshould indicate the
minimum necessary hardware requirements of the SUTs.

The application scenario in a benchmark should cover similar target audience.
Consequently, the decision on what application scenario to propose is closely
� https://camunda.org
� http://activemq.apache.org

47

� Marigianna Skouradaki et al.

Fig. �. Entity Relationship model of the knowledge base

48

A DSS for the Performance Benchmarking of WfMSs �

related to the type of benchmark that the user would like to construct or apply.
It is important to assure that the benchmark can be suitable for a large number
of users [�]. Every benchmark covers an application scenario that provides con-
ceptual frameworks for a specific area containing underlying components that
are well-known for applications of this kind [��]. Furthermore, the application
scenario should be chosen in a way where di�erent subsets of the functionality
o�ered by the underlying technology are stressed [��]. All conducted benchmarks
cover a specific business model along with defined tasks that are being fulfilled.
Each application scenario defines di�erent users, which with respect to di�erent
roles, focus on various tasks. The roles defined in the application scenario could
be grouped according to the nature of their tasks. We grouped these tasks in
two groups, namely admin and regular user. Most of the conducted applica-
tion scenarios had a clear distinction between administrative tasks and normal
operations, therefore, this solution was considered most suitable. For instance,
the SPEC ® JMS ����benchmark four di�erent participants were involved in
the application scenario [��]. The Company Headquaters responsible for the
accounting of the company can be classified as the admin of the scenario. The
Distribution Centers, Supermarkets and Suppliers are involved in tasks related
to their capable functionalities, therefore, these were grouped as (regular) users.

As discussed, each application scenario involves di�erent roles that have
a focus on di�erent tasks. The roles defined in the application scenario could
be grouped according to the nature of their tasks. During the benchmark the
roles are instantiated and executed by the participating clients. The clients are
responsible to periodically initiate various instances of the workload mix, i. e., the
data to issue to the SUT in order to execute the performance tests. The time
for which the client waits before instantiating the next instance is defined as the
think time of the client. Each client might initiate di�erent types of instances for
a workload mix. This is defined by the instances distribution attribute. In order
to start an instance of the workload mix the client might also provide initiating
input data. Each instance of the workload mix is connected to its definition.
The definition, for example, might be a reference model of the workflows or the
definition of a database query. During its execution the workload mix will follow
a specific behavior. For example, with what percentage a condition statement will
evaluate to true. The application scenario, the workload mix and the client are
grouped together to form the workload model [�]. Namely, the workload model
can be described as the group of components that are needed for stressing the
system.

The execution of the workload model is highly dependent and connected to
the experiments. The experiments can be basically considered as the orchestrators
of the overall benchmark methodology. The experiments create clients that in
turn instantiate the workload mix. The clients are created with respect to a
load distribution function which can be normal, bursting, etc. At the end, the
experiment needs to store how many clients were instantiated for the produced
results. The experiments also contain information on the scalability as for some
of the benchmarks the ability to scale the workload was provided. For instance,

49

�� Marigianna Skouradaki et al.

in the SPEC ® JMS ���� [��] benchmark, a natural way to scale the workload
was provided. To be precise, two di�erent types of scaling were provided, the
horizontal approach supported scaling in terms of increasing the number of
supermarkets, while in the vertical approach the number of products sold in each
supermarket was increased. If the scalability is defined, then the instantiation of
clients and workload mix need to be adjusted accordingly. Each experiment is
repeated for a predefined number of rounds and lasts for a specific time (duration).
In case the system will not respond the experiment will time out after a predefined
amount of time (time-out duration). The warm up time occurs at the beggining
of the experiment and refers to the time that the system needs for initialization
before reaching a stable state. Likewise, ramp up time is called the time that the
experiment driver need to reach the maximum level of workload. The durations
of the warm up and the ramp up times are excluded from the measuremens of
the experiment. The product of an experiment are the raw data. As suggested by
research guidelines the raw data should be published online in order to foster
reproducibility. Thus, the raw data are linked to their location of publication.

Finally, the raw data are analyzed in order to derive meaningful metrics.
One of the characteristics of a good benchmark is the usage of meaningful and
understandable metrics [�], thus the selection of the metrics plays an important
role in the design of the benchmark. For instance, the metric used for the
SPECjbb ® ����benchmark is defined as business operations per second [�] and
measures SPECjbb bops units. Another example is the throughtput metric of
the TPC-C benchmark defined as transactions per minute and measured in the
tpm unit.

�.� Model of Dependencies

The complexity of designing a new benchmark is caused by the high dependencies
between its participating artifacts. Figure � shows the dependencies between
the recognized artefacts of a benchmark. The system is the most a�ecting factor
of the benchmark’s design. As seen in Fig. � it a�ectrs the definitions of the
performance factors, as well as the design of the application scenario, the system
under test, the experiment and the workload mix. The performance factors are
derived directly from the system, as the participating components of the systems
are these having an impact on the performance. The application scenario is also
strongly dependent on the system as it has to be compliant with a representative
use case of the system’s usage. The system plays also a big role in the definition
of the metrics to be computed, as the computed metrics should be interesting,
relevant and representative of the system’s performance. Finally, the systems
under test have to be compliant with the defined system type. For example, in
the case of WfMSs, the systems under test should be compliant with either the
BPEL or the BPMN �.� process modeling language, in order to derive consistent
results and be able to apply a fair comparison between the SUT. Lastly, the
design of the experiments is also dependent to the SUT, as the benchmarking
infrastructure that runs the experiments, the instructed load and data are also
strongly bound to the it. The workload mix is also a�ected by the system and

50

A DSS for the Performance Benchmarking of WfMSs ��

Metric

Performance
Factors

Existing
Benchmark

Application
Scenario

System	
Under

Test	(SUT)
Experiment

Workload	
Mix

Client

System

Decision	
Affecting
Factor

Affects

Fig. �. Conceptual Model of Dependencies in Benchmarks Design

the system under test, as its definition, design and behavior should be compliant
to the system’s type.

The application scenario of the benchmark a�ects the clients, as they are
the executors of the application scenario. Likewise, the design of the workload
mix is also a�ected by the application scenario as its execution from the clients
is basically completing the use cases defined in it. The design of the applica-
tion scenario is also dependent on the existing benchmarks, as historical data
stemming from applied practices can provide information on best practices or
detected pitfalls. Likewise, the design of the experiment and the recognition of
the performance factors are also a�ected by the information derived from the
already applied benchmarks. For instance, it is likely that a benchmark applied
on a system for the very first time will not recognize all the performance a�ecting
factors in its initial design, or might design experiments that are not considering
all the possible pitfalls for reliable measurements.

As expected, the experiments are also directly a�ecting the design of the
workload mix and the clients. This is because the application of the experiments
is driven by the execution of the clients and the instances of the workload mix. As
already discussed, the clients are providing the input data to initialize instances
of the workload mix. Consequently, the design of the workload mix is also a�ected
by the client’s design. The design of the experiments is a�ected by the design of
the metric. The experiment should follow the design of the metrics and target to
performance tests that will produce meaningful raw data out of which we will
derive the performance metrics. Consequently, the metric’s design will also a�ect

51

�� Marigianna Skouradaki et al.

Fig. �. Functional requirements for the user interface

the design of the workload mix in order to be representative and drive to relevant
raw data.

In general, we observed that in the design of the benchmark most of the
artifacts are dependent on at least one of the rest. The system artifact is the one
that mostly a�ects the design. This is reasonable as the system artifact is the
goal of the benchmark. Therefore, the benchmark’s design is centered on it. On
the other side, the workload mix seems to be the artifact whose design is a�ected
more by the surrounding components. Again this is reasonable, as the workload
mix plays an important role to the benchmark’s execution and its design a�ects
heavily the derived results and quality of the benchmark.

� Implementation

In order to realize the DSS�MiddlewarePBenchmarkingsystem we have utilized
the emerging javascript technologies MongoDB�, Express.js�, AngularJS�, and
Node.js�. This set of technologies are combined together to the open-source
� https://www.mongodb.com
� http://expressjs.com
� https://angularjs.org
� https://nodejs.org/en/

52

A DSS for the Performance Benchmarking of WfMSs ��

Fig. �. Validation of use case �

MEAN � technology stack to enable the development of dynamic web applications.
With the usage of this technology stack, we were able to develop back-end
services along with a web-based user interface in the front-end. The functional
requirements have been implemented through REST APIs that interract with the
back-end and deliver the results to the end user through a user-friendly interface.
Currently, the reasoning and responses of the DSS�MiddlewarePBenchmark-
ingare implemented through querying the knowledge base with respect to the
user defined parameters. In other words, the DSS�MiddlewarePBenchmarkingcan
be currently seen as a document driven DSS.

� Validation

In this section, we validate our prototypical implementation of the DSS�Middle-
warePBenchmarking. The DSS�MiddlewarePBenchmarkingis available as open
source��. The implementation of the functional requirements FR1 ≠ FR4 as they
are recognized in Sect. �.� is shown with labels on Fig. �.

FR2 is satisfied through the administation panel, which enables the easy
editing and expansion of the conceptual model through the graphical interface.
The validation of FR5 to provide related and reliable answers to the user is
� http://mean.io

�� https://bitbucket.org/tayyabaazad/dss�middlewarepbenchmarking/

53

�� Marigianna Skouradaki et al.

Fig. �. Validation of use case �

provided through three representative use cases. In the following, we present four
identified use cases along with their responses.

Use case �: What are the data types that the workload messages of my MOM-
based system can have?
The query specification and result of the use case � are shown in Fig. �. In this
case the user chooses the MOM as the system to focus and specifies the feature
that s/he is looking for as workload. This will narrow down the choice of workload
to filter down to model definition and eliminate the returned replies. The response
is that message types are specified to be as text message, or object message, or
stream message, or map message.

Use case �: What data types and metrics of the workload have to be considered
when benchmarking a DBMS-based system?
In this case, the user selects the Database Management System (DBMS) as the
system to target and then specifies the metric and filters down to its definition.
Finally, the response is energy e�cient, throughput and response time as defined
metrics.

Use case �: What are the existing benchmarks to study when benchmarking a
Java-server based middleware system?
In this case, the user selects Java Server as system to focus and existing benchmark
as the feature of interest. Here, no filters are applied and the resulting answer is
directing to the SPECjbb ® ���� [��] benchmark.

54

A DSS for the Performance Benchmarking of WfMSs ��

Fig. �. Validation of use case �

Use case �: What is the execution behavior of a workflow instance during a
benchmark?
In this case, the user selects Workflow Management System as the system of
focus and workload mix as the feature of interest and filters down the workload
mix options to execution behavior. The resulting answer indicates that previous
works have defined the execution behavior as “��% probability to follow each
control-flow path”.

� Related Work

With the evergrowing ratio of information and systems complexity the importance
of the DSS is increasing [��]. With a focus on cloud applications, Zimmermann
et al. [��] present a tool to support the decision making on architectural design
by providing features supporting rapid problem space modeling, UML model
linkage, question-option-criteria diagram support, meta-information for model
tailoring, as well as decision backlog management. For supporting the decision
making of the migration of the application database layer to the cloud, Strauch et
al. [��] present a DSS that implements the proposed methodology and supports
the user in this very complex decision making. Likewise, Andrikopoulos et al. [�]
propose a DSS for the application migration to the cloud.

One example for a web-based DSS implementation is implemented by Ngai
and Wat [��], where a risk analysis for the e-commerce sector is provided. Remko

55

�� Marigianna Skouradaki et al.

Fig. �. Validation of use case �

et al. [��] designed a web-based DSS that guides patients to make suitable
decisions in case of low back pain. To the extend of our knowledge this work
implements the first DSS in the area of middleware benchmarking. Our work
follows guidelines and recommendations in regards to building a DSS pointed out
by Bhargava et al. [��]. The proposed DSS can be classified as a knowledge-driven
approach where the decision-making is based on the defined information stored
in the database.

� Conclusion and Future Work

The application of benchmarks in a specific sector is a vital approach for contin-
uous improvement regarding the e�ectiveness of the systems. However, the right
selection of the required benchmark or decision making when developing a new
benchmark comes with the need of extensive research and crucial design decisions.
In this work, we provided a DSS to assist benchmark users and developers towards
choosing the suitable benchmark or defining key points when building a bench-
mark for WfMSs. The provided DSS is o�ered in the form of a Document Driven
DSS were the data were retrieved and manipulated as unstructured information.
The reasoning of our DSS is executed by the knowledge base through user defined
queries. On this we developed a prototypical implementation of the DSS and
validated it with respect to four use case scenarios.

56

A DSS for the Performance Benchmarking of WfMSs ��

In future work, we will consider the expansion of the current conceptual model
into a more comprehensive conceptual model. Furthermore, we plan to improve
the data visualization by leveraging the visualization of the output. Lastly we will
extend the current solution to a knowledge driven DSS by combinining the entity
relationship and dependencies diagrams to a Bayesian network and applying
rules for calculating the responses. Then we will evaluate it with respect to its
performance (response times) and accuracy of the responses.

Acknowledgments This work is funded by the “BenchFlow” DACH project
(������E-������/�) and by the “SmartOrchestra” the BMWi project (��MD�����F).

References

�. Active Endpoints Inc.: Assessing ActiveVOS performance (����), http:
//www.activevos.com/content/developers/technical_notes/assessing_activevos_
performance.pdf

�. Andrikopoulos, V., Darsow, A., Karastoyanova, D., Leymann, F.: CloudDSF – The
Cloud Decision Support Framework for Application Migration. In: Service-Oriented
and Cloud Computing, pp. �–��. Springer Science + Business Media (����)

�. Bianculli, D., Binder, W., Drago, M.L.: Automated Performance Assessment for
Service-oriented Middleware: A Case Study on BPEL Engines. In: Proc. of the ��th
International World Wide Web Conference. pp. ���–���. WWW ’�� (����)

�. Din, G., Eckert, K.P., Schieferdecker, I.: A workload model for benchmarking
BPEL engines. In: Proc. of the IEEE International Conference on Software Testing
Verification and Validation Workshop. pp. ���–���. ICSTW ’��, IEEE (����)

�. Ferme, V., Ivanchikj, A., Pautasso, C., Skouradaki, M., Leymann, F.: A Container-
centric Methodology for Benchmarking Workflow Management Systems. In: Pro-
ceedings of the �th International Conference on Cloud Computing and Service
Science. SciTePress (����)

�. Hackmann, G., Haitjema, M., Gill, C., Roman, G.C.: Sliver: A BPEL Workflow
Process Execution Engine for Mobile Devices. In: Proc. of the �th International
Conference of Service Oriented Computing. pp. ���–���. ICSOC ’��, Springer
(����)

�. Huppler, K.: The Art of Building a Good Benchmark, chap. Performance Evaluation
and Benchmarking, pp. ��–��. Springer Berlin Heidelberg, Berlin, Heidelberg (����)

�. Intel, Cape Clear: BPEL Scalability and Performance Testing. White paper (����)
�. Jordan, D., Evdemon, J.: Business Process Model And Notation (BPMN) Version

�.�. Object Management Group, Inc (����)
��. Menasce, D.A., Almeida, V.: Capacity Planning for Web Services: Metrics, Models,

and Methods. Prentice Hall, �st edn. (����)
��. Moscato, D.R.: Performance assurance for IT. Benchmarking: An International

Journal ��(�), ���–��� (����)
��. Muehlen, M., Recker, J.: How Much Language Is Enough? Theoretical and Practical

Use of the Business Process Modeling Notation. In: Bellahsène, Z., Léonard, M.
(eds.) Advanced Information Systems Engineering, Lecture Notes in Computer
Science, vol. ����, pp. ���–���. Springer Berlin Heidelberg (����)

��. Ngai, E., Wat, F.: Fuzzy decision support system for risk analysis in e-commerce
development. Decision Support Systems ��(�), ���–��� (Aug ����)

57

�� Marigianna Skouradaki et al.

��. OASIS: Web Services Business Process Execution Language Version �.� – OASIS
Standard (����)

��. Peiris, D., Williams, C., Holbrook, R., Lindner, R., Reeve, J., Das, A., Maher, C.: A
Web-Based Clinical Decision Support Tool for Primary Health Care Management of
Back Pain: Development and Mixed Methods Evaluation. JMIR Research Protocols
�(�) (Apr ����)

��. Power, D.J.: Decision support systems: A historical overview. In: Handbook on
Decision Support Systems �, pp. ���–���. Springer Science + Business Media (����)

��. Roller, D.H.: Throughput Improvements for BPEL Engines: Implementation Tech-
niques and Measurements applied in SWoM. Ph.D. thesis, University of Stuttgart
(����)

��. Sachs, K., Kounev, S., Carter, M., Buchmann, A.: Designing a Workload Scenario
for Benchmarking Message-Oriented Middleware. In: Proceedings of the ���� SPEC
Benchmark Workshop. SPEC (����)

��. Skouradaki, M., Ferme, V., Pautasso, C., Leymann, F., van Hoorn, A.: Micro-
Benchmarking BPMN �.� Workflow Management Systems with Workflow Patterns.
In: Proc. of the ��th International Conference on Advanced Information Systems
Engineering. CAiSE ’��, Springer (����)

��. Skouradaki, M., Roller, D.H., Leymann, F., Ferme, V., Pautasso, C.: On the Road
to Benchmarking BPMN �.� Workflow Engines. In: Proc. of the �th ACM/SPEC
International Conference on Performance Engineering. pp. ���–���. ICPE ’��
(����)

��. Standard Performance Evaluation Corporation: SPEC (����), https://www.spec.
org/spec/

��. Standard Performance Evaluation Corporation: SPEC JMS ���� (����), https:
//www.spec.org/jms����/

��. Standard Performance Evaluation Corporation: SPECjbb���� (����), https://www.
spec.org/jbb����/

��. Strauch, S., Andrikopoulos, V., Bachmann, T., Karastoyanova, D., Passow, S.,
Vukojevic-Haupt, K.: Decision Support for the Migration of the Application
Database Layer to the Cloud. In: Proceedings of the �th IEEE International
Conference on Cloud Computing Technology and Science. CloudCOM’��, Institute
of Electrical & Electronics Engineers (IEEE) (Dec ����)

��. Transaction Processing Performance Council: TPC (����), http://www.tpc.
org/information/benchmarks.asp

��. Transaction Processing Performance Council: TPC-C (����), http://www.tpc.
org/tpcc/

��. Transaction Processing Performance Council: TPC-E (����), http://www.tpc.
org/tpce/

��. Vieira, M., Madeira, H., Sachs, K., Kounev, S.: Resilience benchmarking. In:
Resilience Assessment and Evaluation of Computing Systems, pp. ���–���. Springer
Science + Business Media (����)

��. Zimmermann, O., Wegmann, L., Koziolek, H., Goldschmidt, T.: Architectural
decision guidance across projects - problem space modeling, decision backlog man-
agement and cloud computing knowledge. In: Proc. of the ��th Working IEEE/FIP
Conference on Software Architecture. WISCA ’��, IEEE Computer Soc.P., U.S.
(����)

All links were last followed on July �, ����.

58

Adaptable Digital Enterprise Architecture with
Microservices

Justus Bogner1, 2 and Alfred Zimmermann1

Herman Hollerith Center, Boeblingen, Germany1
Hewlett Packard Enterprise, Boeblingen, Germany2

justus.bogner@hpe.com, alfred.zimmermann@reutlingen-
university.de

1 Introduction and Motivation

The fast moving process of digitization1 demands flexibility in order to adapt to rapidly
changing business requirements and newly emerging business opportunities. New fea-
tures have to be developed and deployed to the production environment a lot faster. To
be able to cope with this increased velocity and pressure, a lot of software developing
companies have switched to a Microservice Architecture (MSA) approach. Applica-
tions built this way consist of several fine-grained and heterogeneous services that are
independently scalable and deployable. However, the technological and business archi-
tectural impacts of microservices based applications directly affect their integration into
the digital enterprise architecture. As a consequence, traditional Enterprise Architecture
Management (EAM) approaches are not able to handle the extreme distribution, diver-
sity, and volatility of micro-granular systems and services. We are therefore researching
mechanisms for dynamically integrating large amounts of microservices into an adapt-
able digital enterprise architecture.

2 Microservices and Adaptable Enterprise Architecture

The term microservices became popular around 2013 and refers to a fine-grained style
of service-oriented architecture (SOA). James Lewis defines a Microservice Architec-
ture as an approach for building a single application as a set of small independent ser-
vices. 2 Each of these services runs in its own process and communicates with light-
weight mechanisms. Microservices are built around business capabilities, are inde-
pendently deployable, and may utilize very different technologies. As opposed to big
monolithic applications, a single microservice tries to represent a unit of functionality
that is as small and coherent as possible. Using MSAs, organizations can expand agility
and flexibility for business and IT systems. However, microservices also come with the

1 Westerman, G. et al: Leading Digital: Turning Technology Into Business Transformation.

Harvard Business Press, 2014
2 Newman, S.: Building Microservices: Designing Fine-Grained Systems, O’Reilly, 2015

59

mailto:justus.bogner@hpe.com

need for a strong DevOps culture to handle the increased distribution level and deploy-
ment frequency. Moreover, while each single microservice is of low complexity, the
overall complexity of the system has not been reduced. It has moved from the inner
architecture to the outer architecture (see Fig. 1).

Fig. 1. Inner and Outer Architecture of Microservices3

In the context of EAM, challenges with microservices are mostly concerned with het-
erogeneity, distribution, and volatility. To integrate a huge amount of dynamically
growing architectural descriptions of very different microservices into a consistent en-
terprise architecture is a considerable challenge. In order to tackle this problem, we are
currently working on the formalization of small-decentralized mini-metamodels, mod-
els, and data of architectural microservice descriptions based on the Meta Object Facil-
ity standard4 (EA-Mini-Descriptions, see Fig. 2). M0 as well as M1 serve as local layers
to a single microservice (cell metaphor) with M0 representing operational run-time or
monitoring data and M1 providing metadata (e.g. purpose, API endpoints, or usage
costs) and also its inner architectural model (e.g. components or communication chan-
nels). Using these two as a foundation, M2 works as a global metamodel layer with
information for several communicating microservices (body metaphor, combining sev-
eral cells). It holds architectural metamodels and ontologies while providing important
integration rules for semi-automatic integration. These metamodels are then included

3 Based on Olliffe, G.: Microservices: Building Services with the Guts on the Outside, 2015.

Retrieved March 18, 2016 from http://blogs.gartner.com/gary-olliffe/2015/01/30/micro-
services-guts-on-the-outside

4 OMG, 2011, OMG Meta Object Facility (MOF) Core Specification, Version 2.5

60

into the holistic and dynamically growing EA metamodel from the composition of EA-
Mini-Descriptions. Finally, layer M3 defines the semantic representations and lan-
guages that are used for modeling and representing these adaptable enterprise architec-
ture metamodels.

Fig. 2. Structure of EA-Mini-Descriptions

As a next step, the presented EA-Mini-Descriptions are used with the Enterprise Ser-
vices Architecture Model Integration (ESAMI) method5 to perform correlation analy-
sis, which provides an instrument for systematic integration. The iterative approach is
based on special correlation matrices handled by a manual process to identify similari-
ties between analyzed model elements. The chosen elements are then integrated accord-
ing to their most valuable contribution towards a holistic reference model. This contin-
uous model refinement allows to integrate even extremely heterogeneous microservices
that may in fact not share a complete metamodel.

3 Conclusion and Future Work

The presented architectural properties of microservices demand advanced Enterprise
Architecture methodologies for the integration of structures with a micro-granular ar-
chitecture into an overall adaptable EA. Our EA-Mini-Descriptions can serve as flexi-
ble metamodels for microservices that can be combined into larger entities. Through a
manual correlation-based model analysis and integration approach, we presented means
to merge these microservices into a holistic, but dynamically adjusting reference archi-
tecture. Future research may include the automatic machine-supported creation of our
EA-Mini-Descriptions (at least partially). Similarly, it may be of interest to support the
manual integration decision by automated systems, e.g. via mathematical comparisons
(similarity, Euclidean distance), semantic integration rules, or data analytics and data
mining techniques. These methods can significantly ease associated manual efforts and
reduce the rate of architectural errors in traditional EA models and approaches.

5 Zimmermann, A. et al: Towards an integrated service-oriented reference enterprise architec-

ture, Proc. 2013 Int. Work. Ecosyst. Archit. - WEA 2013, pp. 26–30, 2013

61

