
RC25625 (WAT1607-027) July 15, 2016
Computer Science

Research Division
Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

IBM Research Report

Docker and Container Security White Paper

Salman Baset, Stefan Berger, James Bottomley, Canturk Isci,
Nataraj Nagaratnam1, Dimitrios Pendarakis, J. R. Rao,

Gosia Steinder, Jayashree Ramanatham1

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598 USA

1IBM Cloud

Docker and Container Security White Paper
Contributors: Salman Baset, Stefan Berger, James Bottomley, Canturk Isci, Nataraj
Nagaratnam, Dimitrios Pendarakis, JR Rao, Gosia Steinder, Jayashree Ramanatham

Introduction

This paper presents IBM's comprehensive point of view of security and privacy for Cloud
Computing services based on container technologies, in particular Docker containers. The
objective is to highlight benefits as well as security challenges for Docker containers, highlight
ongoing efforts that address these challenges and to motivate additional work that the Docker
community and IBM are undertaking to further strengthen the security of the Docker container
ecosystem. Potential users of Docker container based cloud services can use this paper to
evaluate the benefits and risks associated with deploying various workloads on Docker
containers, understand the evolution of Docker containers and decide what additional security
mechanisms and tools to employ to further reduce security risks. The paper starts with an
overview of the applicable threat model and then compares the security properties of base
technologies such as Linux containers, Docker, as well hypervisors, which are the basis of
Infrastructure as a Service (IaaS) offerings. Next we describe some of the gaps in security for
Docker containers and how IBM has helped and continues to help the community to address
them. Finally we describe some new and innovative security technologies in Docker and the
Linux Kernel to further strengthen container security.

Benefits of Cloud Services Based on Linux/Docker Containers

Since Linux containers are implemented through virtualization at the system call level,
applications running inside containers share the same underlying Linux kernel. Therefore, cloud
services built using containers offer several benefits compared to virtual machines, specifically:

• An application running inside a container can be expected to have near bare metal
performance while the same application running inside a virtual machine will not be
able to reach that performance level. The reason for this lies in the fact that containers
do not emulate devices but access system resources directly.

• The startup delay of containers is much shorter than that of a virtual machines since
containers typically only start a few applications while a virtual machine may first run
the firmware before booting an entire operating system.

• Since containers start only a few applications, they use resources, such as memory,
more efficiently and can therefore be deployed with much higher density than virtual
machines.

• Containers provide simplified management. The cloud operator takes responsibility for
life cycle management of the operating system (optimization, updates, patching,
security scans) allowing users to focus on application development and management.

• Containers provide better portability. Standardized and light-weight image formats such
as Docker enable nearly perfect transfer of application across environments: from
development to production and from on-premise and off-premise deployments.

• The reduced size of containers leads to a smaller attack surface for cloud customers'
workloads.

• Access to a common Operating System Kernel provides higher visibility to the behavior
of individual applications. Similarly, access to critical data and events may reveal
anomalies and mis-configuration before they become evident through other means.

• Containers encourage microservice-based application architectures, which delegate
persistent data to backend datastores and away from compute instances. This reduces
the problems of unguarded proliferation of confidential content, which is a common
side effect of image clone and copy in the virtual machine world.

Container Deployment Models in Cloud Computing Environments

How can the benefits of containers outlined above be realized in cloud computing
environments? There are several deployment models for containers in a cloud. One of them is
to enable tenants to deploy containers inside their virtual machines running in an infrastructure
as a service (IaaS) cloud. In this case, the cloud provider will provide a security architecture for
virtual machines, which includes the isolation of virtual machines from other tenants on the
compute, network, and storage layers. Several cloud providers, have chosen this model of VMs
hosting containers.

A second deployment model is to run containers directly on a shared host. In this case the cloud
management stack treats containers similarly to virtual machines and applies isolation
techniques directly to the containers. These techniques may include network isolation using
security groups, or hiding some containers' IP addresses from the public Internet by only
applying public IP addresses (NAT) to a subset of them.

Background: Container Isolation Technologies

Linux container technologies are implemented through virtualization at the system call layer
and the Linux kernel is shared between all applications running in containers on the same host.
When running containers directly on the shared host kernel, it is imperative to ensure proper
isolation of containers from each other as well as tohe protect the host from potentially
malicious containers. This can be achieved through a number of Linux isolation technologies

and features of container management stacks. The following is a list of Linux technologies
employed by containers:

• Namespaces

• Control groups (cgroups)

• Linux Capabilities

• Seccomp

• Linux Security Modules (LSM): SELinux, AppArmor

• User namespace for de-privileging the container root user

The most important isolation technology for containers is Linux namespaces. Namespaces help
to provide an isolated view of the system to each container. Namespace support exists for the
areas of networking, mount points, process IDs, user IDs, inter process communication, and the
setting of the hostname. Containers can be regarded as running inside a collection of these
namespaces. Resource visibility is governed by namespaces which can be used to limit access to
those resources by processes within each container. In the networking namespace, for
example, container processes access different network interfaces that typically have different
IP addresses assigned to them compared to the ones on the host or in other containers, thus
providing the basic architecture for isolating containers' network traffic. Some aspects of
namespace support are still work in progress and some areas, particularly those related to
security subsystems, require the implementation of further namespace support for them to be
independently usable by containers. Typically subsystems for which no namespace support is
implemented are not accessible from within containers.

With containers running on the same host, they necessarily share its limited resources. These
include resources related to compute, networking, and storage, as well as usage of devices. It is
important that access to the shared resources can be controlled and containers are prevented
from starving other containers or the host of time slices to access them. The Linux technology
for resource control and prioritization are control groups (Cgroups) and container management
stacks typically set them up as part of starting a container. Cgroups help to limit access to CPU
shares (time slices), as well as storage and networking bandwidth and can prevent access to
devices. Note that to limit the network bandwidth available to a container one also has to make
use of the Linux traffic control (tc) system for shaping and policing of containers' network
traffic.

For network bandwidth control it is important to differentiate between traffic that is occurring
exclusively inside the cloud, for example between different containers, and traffic between

containers and endpoints that reside outside the cloud. The previously mentioned control
groups can primarily address the former. The latter needs to be addressed on networking
equipment (routers, load balancers, etc.) at the entrance of the cloud where incoming traffic
volume is shaped on a per- destination IP address (container) basis so that high volumes of
traffic do not reach deep into the cloud infrastructure.

Linux implements more than 300 different system calls, of which some are typically only
accessible to the hosts' privileged root user. An example for this is the setting of the system
clock. With multiple containers running on the same host, each container can have its own root
user and invoke privileged syscalls. Since namespaces for example do not isolate the system
clock, it is necessary to prevent container users from modifying the system clock via limiting
access to the syscall interface. One technology that allows to achieve this is Linux Capabilities.
The Linux Kernel currently provides 37 different capabilities; individual capabilities can prevent
access to individual syscalls, or syscalls with certain parameters, or collection of syscalls. Docker
for example by default drops 24 of the 37 capabilities for processes it starts in a container and
thus de-privileges container applications. The consequence of dropping these capabilities is that
applications running inside containers cannot set the system clock as well as perform other
privileged operations such as activating or deactivating swap memory, among many others.

Another technology that can be used to limit access to syscalls is seccomp (mode 2). Seccomp
allows for creation of (Berkeley packet) filters that can filter by syscall number and the
parameters passed to syscalls. This technology allows for fine-grained access control to the
kernel syscall interface, for example to catch a specific syscall and depending on the call
number and arguments passed to "allow", "deny", "trap", "kill" or "trace" it. Limiting system
calls can be used to further reduce the system call attack surface. This capability was added to
Docker Engine 1.10, which allows the passing of a profile defining the syscalls and the filters for
them, as well as a defining a default profile [2].

Another Linux technology for confining container processes is the Linux Security Module (LSM).
Two prominent LSM implementations are SELinux and AppArmor. The SELinux-based sVirt
technology can be used to label container filesystems as well as the container processes. If a
container process succeeded in a "jail break", sVirt would prevent it from accessing files on the
host or in other containers. An AppArmor policy prevents access to certain critical files in the
container's filesystems, such as proc and sysfs. It can also control access to the network as well
as control Linux capabilities given to processes.

Since containers may require root privileges for various operations, such as for example adding
users or updating installed packages, the danger exists that a root user inside a container may
succeed in a jail break and gain root privileges on the host. Therefore, it is desirable to further
deprivilege the container root user for any operations she/he may succeed in performing
outside the container. User namespace support for containers helps to achieve this by
remapping the user IDs inside a container to deprivileged user IDs (non-zero, non-root) on the
host. With it the root user inside the container, identified by ID 0, becomes an arbitrary non-
root user outside the container. This is a critical capability that greatly reduces the potential for

host compromise; it was initially identified by IBM which worked with the community to ensure
a solution was introduced in Docker 1.10 [3].

Leveraging Container Isolation Technologies in the Cloud

As mentioned, container isolation on the host level is essential but not sufficient to achieve
security for containers in a cloud environment. In a cloud environment it is important that the
mentioned isolation and security technologies are applied to all containers and that the API of
the container management stack, such as the docker management stack, is used appropriately.
This means that API calls and parameters are filtered and the creation of containers with high
privileges is prevented. The management stack for containers may allow much control over
parameters and privileges a container is created with, exercising the capabilities for container
isolation described above.
Not every container management stack fulfills this requirement. IBM has used containers in an
OpenStack environment running on bare metal machines with Nova and Nova-docker drivers
and has ensured that the above mentioned security and isolation technologies are applied
appropriately. Other management stacks for Docker exist, such as Docker Swarm or
Kubernetes, that need to be investigated individually to determine their suitability for serving
as the management stacks in a multi-tenant cloud. OpenStack Magnum is an example of a
management stack that was not designed for a multi-tenant container cloud environment but is
currently most suitable for running containers inside VMs in a cloud where VMs of different
tenants are isolated.

Related Virtualization Technologies

Linux container technologies are implemented through virtualization on the system call layer
and make use of various Linux technologies to achieve isolation. Examples of Linux container
technologies are Docker, LXC, Warden, and Parallel's Virtuozzo. The difference in the container
technologies amounts to how they make use of the available namespace support. Some
technologies may make use of all available namespaces, others only use a subset of them. They
also generally differ on the level of the management stack where different features are
supported, different command line utilities and APIs are implemented, and a different
ecosystem exists. The performance, however, of all containers is expected to be the same.

Besides syscall virtualization, other prominent virtualization techniques include
paravirtualization and full virtualization. Paravirtualization is a technique by which the kernel
and device drivers are modified to work with the underlying hypervisor and hypervisor calls are
implemented for transitioning from the OS kernel to the hypervisor. An example of such an
implementation is the Xen hypervisor and an example for a paravirtualized kernel is
implemented by Linux's Xen support. The main advantage of paravirtualization over full
virtualization is the performance gain. Paravirtualized systems typically do not require the boot
process to start with firmware, but launch an instance of a kernel directly.

Full virtualization on the other hand is primarily based on emulation of devices and generally
requires support for hardware virtualization in the CPU to achieve good performance. The

emulation may range from emulation of systems and their original devices to the
implementation of synthetic devices that are optimized for performance and that have no
equivalent in form of a physical device. Also mapping of physical devices' addresses into the
address space of a virtual machine (SRIOV) is a possibility to provide maximum performance.
Full virtualization generally requires no changes to the operating system and kernel except for
the installation of special device drivers, e.g. to support SRIOV devices, for the purpose of
performance gain. Fully virtualized systems also typically start by invoking a firmware running
inside the virtual machine and are capable of running any operating system without
modifications. Full virtualization is implemented through a hypervisor that may either run
directly on the underlying hardware (type 1) or a hypervisor that is implemented by an
operating system kernel (type 2). Examples for type 1 hypervisors are Xen and VMWare ESX,
while KVM/QEMU and VMWare Workstation are type 2 hypervisors. Both types require a
privileged operating system that has access to several important hardware devices, such as disk
controllers and network interfaces. Xen's privileged domain is domain-0 and for QEMU/KVM
the equivalent is the Linux host.

Threat Model and Security Risks of Related Virtualization Technologies

A security comparison of containers versus virtual machines can be done along a few lines. For
the following it should be noted that various security subsystems can be used to confine
containers as well as type 2 hypervisors like QEMU/KVM. Supported Linux security subsystems
are Linux Capabilities (sets of syscalls), Seccomp (syscalls), AppArmor (syscalls, file access, Linux
Capabilties, networking), and SELinux (file and device access). For confining paravirtualized
guest operating system, Xen implements the Xen Security Module (XSM) restricting access to
hypercalls.

A clear advantage of containers can be shown when they run a well known application whose
syscalls requirements are static and therefore can be subject to maximum confinement by
minimizing the number of syscalls accessible while keeping the application functioning properly.
However, a generic container that is for example used in a cloud setting and where a user may
install any application into, cannot as easily be restricted since the syscall requirements are
typically not known in advance. Here a generic policy is required that fits all containers' needs,
thus leaving rather broad access to the syscall interface. A similarly restricted syscall interface is
generally not possible to implement for type 2 hypervisors since they require a rather wide set
of syscalls for proper functioning.

Another line of comparison may be the restriction of access of applications to syscalls. Linux
currently implements more than 300 syscalls, of which a significant subset is typically available
to applications running inside containers (though privileged ones may be disabled using Linux
Capabilities for example). The QEMU/KVM type 2 hypervisor needs to interact with the host
through syscalls and for that purpose requires access to around 216 syscalls (following its
seccomp policy). While applications in containers can make direct usage of the host's syscall
interface, while being limited by namespaces, applications running in a QEMU/KVM virtual
machine need to find vulnerabilities in the QEMU emulator and device models to be able to

access them. Once an application has broken out of QEMU, it will be subject to restrictions
imposed on the QEMU process, such as for example by an SELinux policy implemented by the
sVirt policy. sVirt would in this case be able to prevent the process from accessing privileged
user files if the QEMU process was subverted. The same type of SELinux policy can be applied to
containers, restricting processes from accessing the host's and other containers' files in case of
a jail-break. However, in all cases vulnerabilities may exist in the syscall implementations that
provide access to kernel functions and lead to exploits or denial of service attacks (DOS), such
as host crashes.

A quantification of the security risk of containers versus hypervisors is difficult. Containers
share the same kernel with the host operating system and thus have the possibility to directly
exploit system call vulnerabilities or bugs in the underlying kernel, though may be subject to
confinement by security policies (sVirt, AppArmor) and namespace isolation. Virtual machines
provide a higher level of isolation to the host's system call interface and, particularly if security
policies are properly applied and high privileges are dropped. Besides that VMs require that
two levels of vulnerabilities be exploited, one on the hypervisor (QEMU/KVM) and one in the
underlying host kernel. Overall one can maybe say that the exploitation of vulnerabilities of the
host is more difficult with virtual machines than with containers based on the fact that a type 2
hypervisor requires exploitable vulnerabilities on the emulator (QEMU) and host kernel level.

To help quantify the security risks one can investigate the frequency of CVEs found in the Linux
kernel. To escape a secure Docker, an attacker in a container would need to find a privilege
escalation attack on the shared kernel. Such kernel vulnerabilities occur roughly once a year.
The last was discovered in May 2015. To escape a type 2 hypervisor, such as KVM, an attacker
in a guest VM would need to become root in the VM and would need to find a vulnerability in
QEMU. If security policies are applied to QEMU, file and device accesses on the host's
filesystem can be prevented. Then the attacker must also find a privilege escalation attack on
the native host kernel that is exploitable. QEMU vulnerabilities are discovered roughly once a
year and the last was found in May 20165. Therefore, statistically, over the past few years, it is
roughly half as likely to find both a QEMU and kernel vulnerability at the same time, as just
finding the kernel one, and this combination occurs roughly every 2 years.

To escape a type 1 hypervisor, such as Xen or VMware ESX, an attacker in a guest VM would
need to become root in the VM, and would then need to find a vulnerability in the hypervisor.
The last such vulnerability in ESX was found in February 2013, and this occurs roughly once
every 2 years.

Further Strengthen Container Security

To further strengthen the security of containers, IBM Research is working on extending the
Linux Integrity subsystem to work inside Linux containers and allow each tenant to individually
manage its associated policy. Using the Integrity subsystem's appraisal capabilities, container
user will be able to sign the files in their container's filesystem and enforce that only signed files
can be executed. This effectively locks out any intruder from starting their malware in

containers, thus greatly reducing its attack surface. To achieve this, IBM Research is currently
working on namespace support for the Linux integrity subsystem, which is a prerequisite to
making it available to each container. Following support on the Linux level, the management
stack of the container technology will be extended. The intention is to share the resulting
implementation with the respective communities.

Conclusions and Summary

We have given an introduction on Linux containers and examined the technologies used for
providing isolation security in Linux containers. Of particular importance are namespaces,
cgroups, AppArmor and SELinux, Linux capabilities, and seccomp. It is important that these
technologies are properly applied to achieve the required security level for allowing tenants to
share hosts in a cloud. Therefore one must carefully examine and restrict the parameters that
may be passed to a Linux container management stack since those parameters may influence
the isolation and confinement properties of containers. Following this, it is important to closely
examine cloud management stacks for how they interact with the underlying Linux container
management stack, which in turn determines their suitability for allowing containers to share
the same host. Further, we gave background on paravirtualization and full virtualization for a
susequent comparison of the risk associated with running containers on bare metal machines
versus virtual machines. The conclusion we reached is that there is certainly less risk running
containers inside virtual machines, though the risk quantification is so that we believe that it is
possible to allow different tenants containers to share the same host.

We also pointed out that IBM Research is working on novel technologies to further strengthen
Linux container security.

References

1. X-Force Research and Development. “ IBM X-Force Threat Intelligence Quarterly 4Q 2014,”
Doc # WGL03062USEN, Publish Date: Nov 2014.
http://www.ibm.com/security/xforce/downloads.html

2. Docker Blog, Security: https://blog.docker.com/tag/docker-security/
3. Docker Engine 1.0 Security Improvements: https://blog.docker.com/2016/02/docker-

engine-1-10-security/
4. https://insights.ubuntu.com/2015/05/18/lxd-crushes-kvm-in-density-and-speed/
5. Wes Felter, Alexandre Ferreira, Ram Rajamony, Juan Rubio, An Updated Performance

Comparison of Virtual Machines and Linux Containers, IBM Research Report, RC25482
(AUS1407-001), 2014

For More information
To learn more about IBM BlueMix please visit: http://www.ibm.com/cloud-computing/bluemix/

http://www.ibm.com/security/xforce/downloads.html
https://blog.docker.com/tag/docker-security/
https://blog.docker.com/2016/02/docker-engine-1-10-security/
https://blog.docker.com/2016/02/docker-engine-1-10-security/
https://insights.ubuntu.com/2015/05/18/lxd-crushes-kvm-in-density-and-speed/
http://www.ibm.com/cloud-computing/bluemix/

	Docker and Container Security White Paper

