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Abstract—Machine learning algorithms are increasingly in-
fluencing our decisions and interacting with us in all parts of
our daily lives. Therefore, just like for power plants, highways,
and a myriad of other engineered socio-technical systems, we
must consider the safety of systems involving machine learning.
Heretofore, the definition of safety has not been formalized in
the machine learning context; in this paper, we do so by defining
machine learning safety in terms of risk, epistemic uncertainty,
and the harm incurred by unwanted outcomes. We then use this
definition to examine safety in all sorts of applications in cyber-
physical systems, decision sciences and data products, finding that
the foundational principle of modern statistical machine learning,
empirical risk minimization, is not always a sufficient objective.
In particular, we note an emerging dichotomy of applications:
ones in which safety is important and risk minimization is not the
complete story (we name these Type A applications), and ones in
which safety is not so critical and risk minimization is sufficient
(we name these Type B applications). Finally, we discuss how four
different strategies for achieving safety in engineering (inherently
safe design, safety reserves, safe fail, and procedural safeguards)
can be mapped to the machine learning context through inter-
pretability and causality of predictive models, objectives beyond
expected prediction accuracy, human involvement for labeling
difficult or rare examples, and user experience design of software
and open data.

I. INTRODUCTION

In recent years, machine learning algorithms have started
influencing every part of our lives, including health and
wellness, law and order, commerce, entertainment, finance,
human capital management, communication, transportation,
and philanthropy. As the algorithms, the data on which they
are trained, and the models they produce are getting more
powerful and more ingrained in society, questions about safety
must be examined. It may be argued that machine learning
systems are simply tools, that they will soon have a general
intelligence that surpasses human abilities, or something in-
between, but from all perspectives, they are technological
components of larger socio-technical systems that may have
to be engineered with safety in mind [1].

Safety is a commonly used term across engineering dis-
ciplines connoting the absence of failures or conditions that
render a system dangerous [2], cf. safe food and water, safe
vehicles and highways, safe medical treatments, safe toys,
safe neighborhoods, and safe industrial plants. Each of the
domains has specific design principles and regulations that are
applicable only to it; only a few works in the literature attempt

a precise definition applicable to a broad set of domains and
systems [3].

In particular, a general definition of safety is the mini-
mization of risk and epistemic uncertainty (understood in the
usual decision-theoretic senses of the words) associated with
unwanted outcomes that are severe enough to be seen as
harmful [3]. The epistemic uncertainty part of the definition is
key, because harmful outcomes often occur in regimes and
operating conditions that are rare, unexpected, or underde-
termined. The cost magnitude of unwanted outcomes is also
key, because safety is not concerned with reducing undesired
outcomes of an inconsequential nature.

With such a definition of safety, it is possible to consider
domains that do not have existing safety principles and regu-
lations such as machine learning [4]. The first contribution of
this work is to critically examine the foundational statistical
machine learning principles of empirical risk minimization
and structural risk minimization [5] from the perspective of
safety. We discuss how they, as their names imply, do not
deal with epistemic uncertainty. Furthermore, the principles
rely on average losses and laws of large numbers-type argu-
ments, which may not necessarily be fully applicable when
considering safety. Moreover, the loss functions involved in
the formulations are abstract distortions between true and
predicted values rather than application-specific quantities
measuring loss of life, loss of quality of life, etc. that can
be judged harmful or not [6]. To the best of our knowledge,
there is no existing work on analyzing machine learning using
precise decision-theoretic definitions of safety except our own
preliminary work [4].

A second contribution of this paper emerges from examin-
ing safety in formulating machine learning problems. Today,
machine learning technologies are being used in a variety of
settings, including cyber-physical systems, decision sciences,
and data products. By cyber-physical systems, we mean en-
gineered systems that integrate computational algorithms and
physical components [7]; by decision sciences, we mean the
use of algorithms to aid people in making important decisions
and informing strategy [8]; and by data products, we mean
the use of algorithms to automate informational products such
as search and recommendation [8]. These settings vary widely
in terms of their interaction with people, scale of data, time
scale of operation and consequence, and cost magnitude of



consequence. A further contribution is a discussion on how
to even understand and quantify the desirability and undesir-
ability of outcomes along with their costs. To complement
simply eliciting such knowledge directly from people, we
suggest a data-driven approach for characterizing harms that
is particularly relevant for cyber-physical systems with large
state spaces of outcomes.

Based on these factors, we find that applications of machine
learning systems cluster into two types: (A) applications of
high consequence that can have a profound effect on people’s
lives in a short time, and (B) applications of low consequence,
usually at a very large scale. Type A applications are the ones
in which safety is paramount. We have previously noted the
dichotomy of Type A and Type B applications of machine
learning and data science in [9], but did not pose them as
consequences of safety definitions. The related literature is
cited in [9], but again, does not stem from safety.

The final contribution of the paper is a discussion of
strategies to increase the safety of socio-technical systems with
machine learning components. Four categories of approaches
have been identified for promoting safety in general [10]:
inherently safe design, safety reserves, safe fail, and procedural
safeguards. We find and discuss examples of all of these
approaches specifically for machine learning algorithms and
especially to mitigate epistemic uncertainty. Through this
contribution, we can recommend strategies to engineer safer
machine learning methods and set an agenda for further
machine learning safety research.

The remainder of the paper is organized in the following
manner. In Section II, we discuss harm, risk, uncertainty and
the definition of safety. In Section III, we examine statistical
machine learning from the safety perspective. Section IV
discusses ways to understand the magnitude and direction of
harms and sets forth two types of machine learning appli-
cations distinguished by their relationship to safety. Section
V details a few example applications. Section VI describes
ways of achieving safety in general and their specializations
to machine learning. Section VII concludes the paper.

II. DEFINITION OF SAFETY

The term safety can have many different technical and non-
technical meanings, but for our purposes, we would like to
work with a precise, domain-agnostic definition. As well-
described in [3], [10] and numerous references therein, such a
definition of safety begins with outcomes and events. A system
yields an outcome based on its state and the inputs it receives;
the outcome event may be desired or undesired. Single events
and sets of events have associated costs that can be measured
and quantified by society (more on this in Section IV-A). A
numeric level of morbidity, for example, can be the cost of
an outcome. An undesired outcome is only a harm if its cost
exceeds some threshold. Unwanted events of small severity
are not counted as safety issues.

The next step in defining safety is to bring in decision theory
and the concepts of risk and epistemic uncertainty. Risk is the
expected value of the cost of harm: we do not know what

the outcome will be, but its distribution is known and we
can calculate the expectation of its cost. With uncertainty, we
still do not know what the outcome will be, but in contrast
to risk, its probability distribution is also unknown (or only
partially known). Epistemic uncertainty, in contrast to aleatoric
uncertainty, results from lack of knowledge that could be
obtained in principle, but may be practically intractable to
gather. Some decision theorists argue that all uncertainty can
be captured probabilistically, but we maintain the distinction
between risk and uncertainty herein, following [3].

Safety is the reduction or minimization of risk and uncer-
tainty of harmful events.

Much can be and is written on costs, risk and uncertainty,
and more mathematical precision given. For our purposes, the
key points in the definition of safety are that: costs have to
be sufficiently high in some human sense for events to be
harmful, and that safety involves reducing both the probability
of expected harms and the possibility of unexpected harms.

III. SAFETY AND MACHINE LEARNING

The starting point in the theory and practice of statistical
machine learning is risk minimization. Given joint random
variables X ∈ X (features) and Y ∈ Y (labels) with
probability density function fX,Y (x, y), a function mapping
h ∈ H : X → Y , and a loss function L : Y ×
Y → R, the risk R(h) is the expectation E[L(h(X), Y )] =∫
X
∫
Y L(h(x), y)fX,Y (x, y)dydx. The loss function L typi-

cally measures the discrepancy between the value predicted
for y using h(x) and y itself, for example (h(x) − y)2 in
regression problems. We would like to find the function h
that minimizes the risk.

However, in the machine learning context, we do not have
access to the probability fX,Y , but rather to a training set
of samples drawn i.i.d. from the joint distribution of X and
Y : {(x1, y1), . . . , (xm, ym)}. The empirical risk Rempm (h) is
1
m

∑m
i=1 L(h(xi), yi). The empirical risk minimization prin-

ciple formulates the learning of h as the minimization of
Rempm (h) [5]. Appealing to the results of Glivenko and Cantelli
in empirical process theory, it can be shown that the empirical
risk Rempm (h) converges to the risk R(h) uniformly for all
h as m goes to infinity. When m is small (in comparison
to a suitably defined complexity measure on H), minimizing
Rempm (h) may not yield an h that has small R(h). The struc-
tural risk minimization principle alleviates this problem by
restricting the complexity of H or introducing regularization
in the minimization problem for h based on some inductive
bias.

The risk minimization approach to machine learning has
many strengths, as evidenced by the innumerable applied
successes it has brought, and captures the risk component
of safety. However, it does not capture issues related to
uncertainty and loss functions that are relevant for safety.
First, although it is assumed that the training samples
{(x1, y1), . . . , (xm, ym)} are drawn from the true underlying
probability distribution of (X,Y ), that may not always be the
case. Furthermore, it may be that the distribution the samples



actually come from cannot be known, precluding the use of
covariate shift and domain adaptation techniques. This is one
form of epistemic uncertainty that is quite relevant to safety
because training on a data set from a different distribution can
cause much harm.

Also, it may be that the training samples do come from the
true, but unknown, underlying distribution, but are absent from
large parts of the X ×Y space due to small probability density
there. Here the learned h will be completely dependent on the
inductive bias rather than the uncertain true distribution, which
could introduce a safety hazard.

As mentioned above, statistical learning theory analysis
utilizes laws of large numbers to study the effect of finite
training data and the convergence of the empirical risk to
the true risk, but in considering safety, we should also be
cognizant that in deployment, a machine learning system only
encounters a finite number of test samples and the actual
operational risk is an empirical quantity on the test set. Thus
the operational risk may be much larger than the true risk
for small cardinality test sets, even if h is risk-optimal. This
uncertainty caused by the instantiation of the test set can have
large safety implications on individual test samples.

As we discussed above, the domain of the loss function
in risk minimization is Y × Y and the output is an abstract
quantity representing prediction error. However, in real-world
applications, the value of the loss function may be endowed
with some human cost and that human cost may imply a loss
function that also includes X in the domain. Moreover, the
cost may be severe enough to be harmful and thus a safety
issue in some parts of the domain and not in others.

IV. SAFETY ANALYSIS OF MACHINE LEARNING
APPLICATIONS

As mentioned in Section I, the ways that machine learning
enters larger socio-technical systems is myriad. Cyber-physical
system applications include robot surgery, self-driving cars,
and the smart grid. Decision sciences applications include
prison parole, medical treatment, and loan approval. Data
products applications include web advertising placement, me-
dia recommendation, and spam filtering. Let us see how our
definition of machine learning safety applies to these various
settings.

A. Harmful Costs

Machine learning safety requires us to first examine an
application on whether immediate human costs of its outcomes
exceed some severity threshold to be harmful. In decision
sciences applications such as the ones listed above, undesired
outcomes are truly harmful in a human sense and their effect
is felt in near-real time. They are safety issues. Moreover,
the space of outcomes is often binary or of small cardinality
and it is often self-evident which outcomes are undesired,
e.g. prescribing the incorrect medical treatment. However,
loss functions are not always monotonic in the correctness
of predictions and depend on whose perspective is in the
objective. Consider the loan approval application: the applicant

would like an approval decision regardless of their features
indicating ability to repay, the lender would like approval only
in cases in which applicant features indicate likely repayment,
and society would like there to be fairness or equitability in the
system so that protected groups, such as defined by race and
gender, are not discriminated against. The lender perspective
is consistent with the typical choice of loss function, but the
others are not.

The space of outcomes for the machine learning components
of typical cyber-physical systems applications is so vast that it
is near-impossible to enumerate all of the outcomes, let alone
elicit costs for them. Nevertheless, it is clear that outcomes
leading to road accidents, surgical accidents, etc. have high
human cost in real time and require the consideration of
safety. In order to get more nuanced characterizations of the
cost severity of outcomes, a data-driven approach is prudent.
As one example in the medical devices domain, we have
mined a large database of adverse events to obtain exactly
such characterizations [11]. With self-driving cars, such a
data-driven approach could help resolve trolley problem-like
conundra.

The quality of service implications of unwanted outcomes
in data products applications are not typically safety hazards
because they do not have an immediate severe human cost.
One may argue that an algorithm showing biased or misguided
advertisements or a spam filter not allowing an important email
to pass could eventually lead to harm, e.g., by being shown an
ad for a lower-paying job rather than a higher-paying one, a
person may hypothetically end up with a lower quality of life
at some point in the future. However, we do not view such a
delayed and only hypothetical consequence as a safety issue.

Based only on considering the severity or magnitude of
costs of unwanted outcomes, we may divide applications of
machine learning into two types: (A) applications in which
machine learning algorithms are used to support control and
decision making in safety-critical settings with harmful impact
on people’s lives such a loss of life or injury, and (B)
applications in which machine learning based predictions are
used in applications with less critical impact. This Type A
and Type B nomenclature follows [9]. Cyber-physical sys-
tems and decision sciences applications tend to be Type A
applications and data products applications tend to be Type B.
Table I summarizes the characteristics of Type A and Type B
applications along with specific examples from cyber-physical
systems, decision sciences, and data products.

B. Epistemic Uncertainty

Safety in machine learning applications can be further
analyzed with respect to epistemic uncertainty. There is no
a priori reason for the applications to follow the same type
structure when examining uncertainty, but as we discuss in
the following, the two types are recapitulated.

In addition to the lack of severity of costs, another character-
istic of Type B applications is that they are performed at scales
with large training sets, large testing sets, and the ability to
explore the feature space. For example, in the web advertising



TABLE I
TYPE A AND TYPE B APPLICATIONS: CHARACTERISTICS AND EXAMPLES

Type A Applications Type B Applications

Characteristics
harmful consequences (e.g., death or injury) less costly consequences (e.g., mission, financial, or

information losses)

many sources of epistemic uncertainties large scale training and testing sets and the ability to
explore the feature space

real time or near term impact hypothetical long term impact

Examples medical robots, autonomous cars, power grids, loan
approval, prison sentencing and parole

web advertisement placement, media recommenda-
tion, spam filtering

application, one can use billions of data points as training,
perform large-scale A/B testing, and evaluate average perfor-
mance on millions or billions of clicks. For these reasons,
the epistemic uncertainties discussed in Section III are less
prevalent in Type B applications than in Type A applications.
In contrast, in Type A applications it is more often than not
the case that there is uncertainty about the training samples
being representative of the testing samples, and that only a
few predictions are made. Moreover, in cyber-physical systems
applications, very large outcome spaces prevent even mild
coverage of the space through training samples. Uncertainty of
the various types discussed is common in Type A applications.

Thus, not only are errors in Type B applications less costly
in human terms, but the amount of uncertainty in the system is
less. Therefore, for both reasons, safety is much less relevant
in Type B applications than Type A applications. The focus
in Type B applications can be squarely on risk minimization
whereas Type A applications require the consideration of
strategies for achieving safety, as we discuss in Section VI.

V. DETAILED EXAMPLES

In this section, we further discuss the challenges in ensuring
safety in machine learning systems by providing examples
from emerging application areas of cyber-physical systems and
decision sciences.

A. Cyber-Physical Systems

With advances in computing, networking, and sensing
technologies, cyber-physical systems have been deployed in
various safety-critical settings such as aerospace, energy,
transportation, and healthcare. The increasing complexity and
connectivity of these systems, the tight coupling between their
cyber- and physical- components, and the inevitable involve-
ment of human operators in their supervision and control has
introduced significant challenges in ensuring system reliabil-
ity and safety while maintaining the expected performance.
Cyber-physical systems continuously interact with the physical
world and human operators in real-time. In order to adapt to
the constantly changing and uncertain environment, they need
to take into account not only the current application but also
the operator’s preferences, intent, and historical behavior [12].

Autonomous machine learning and artificial intelligence
techniques have been applied to several decision making and
control problems in cyber-physical systems. Here we discuss
two examples of Type A applications, where unexpected

harmful events with epistemic uncertainty might impact the
human lives in real-time.

1) Robot Surgery: Robotically-assisted surgical systems
used in minimally invasive surgery are a typical example
of human-in-the-loop cyber-physical systems. Surgical robots
consist of a teleoperation console operated by a surgeon, an
embedded system hosting the robot automated control, and
the physical robotic actuators and sensors. The robot control
system receives the surgeon’s commands issued using the
teleoperation console and translates the surgeon’s hand, wrist,
and finger movements into precisely engineered movements
of miniaturized surgical instruments inside patient’s body.
Recent research shows an increasing interest in use of machine
learning algorithms for modeling surgical skills, workflow, and
environment and integration of this knowledge into control
and automation of surgical robots [13]. Machine learning
techniques have been used for detection and classification of
surgical motions for automated surgical skill evaluation [14]–
[16] and automating portions of surgical tasks (e.g., knot-tying,
suturing, or stitching) to reduce the cognitive workload on the
surgical team [16], [17].

Although the state-of-the-art surgical robots are human
supervised systems that do not take any autonomous actions,
there have been ongoing reports on safety incidents during use
of such systems that negatively impact patients. Between 2011
and 2013, over 10,000 robotic-surgery-related adverse events
were reported to the U.S. Food and Drug Administration
(FDA), where majority of these incidents were related to mal-
functions in the robot control system and instruments [11]. As
surgical robots get enhanced with machine learning algorithms
providing real-time technical decision making and autonomous
control in the operating room, safety becomes even a big-
ger concern. Given the uncertainty and large variability in
the operator actions and behavior, organs/tissues dynamics,
and patient medical history, there are practical limitations in
learning surgical trajectories and workflows. The training data
often consists of samples collected from a select set of surgical
tasks (e.g., elementary suturing gestures) performed by well-
trained surgeons, which might not represent the variety of
actions and tasks performed during a real procedure. Previous
work shows that surgeon’s expertise level, surgery type, and
medical history have a significant impact on the possibility of
complications and errors occurring during surgery.

One solution for dealing with these uncertainties is to
assess the robustness of the system in presence of unwanted



hazardous events (e.g., failures in control system, noisy sensor
measurements, or incorrect commands sent by novice opera-
tors) by simulating such events in virtual environments [18]
and quantifying the possibility of making safe decisions by
the learning algorithm. This assessment would also help with
deciding the best safety strategies to be used in design and
further refinement of system (see Section VI).

2) Self-Driving Cars: Another example is self-driving cars,
which are autonomous cyber-physical systems capable of
making intelligent navigation decisions in real-time without
any human input. They combine a range of sensor data from
laser range finders and radars with the video and GPS data to
generate a detailed 3D map of the environment and estimate
their position. The control system of the car uses this infor-
mation to determine the optimal path to destination and sends
the relevant commands to actuators that control the steering,
braking and throttle. Machine learning algorithms are used in
the control system of self-driving cars to model, identify, and
track the dynamic environment, including the road conditions
and moving objects (e.g., other cars and pedestrians).

Although automated driving systems are expected to elimi-
nate human driver errors and reduce the possibility of crashes,
there are several sources of uncertainty and failure that might
lead to potential safety hazards in these systems. Unreliable
or noisy sensor signals (e.g., GPS data or video signals
in bad weather conditions), limitations of computer vision
systems, and unexpected changes in the environment (e.g.,
unknown driving scenes or unexpected accidents on the road)
can adversely affect the ability of control system in learning
and understanding the environment and making safe decisions
[19]. For example, this year a self-driving car (in auto-pilot
mode) failed in applying brakes and had a collision with a
truck, leading to the death of its driver. This was the first
known death event in over 130 million miles of testing the
automated driving system. The accident was caused under
extremely rare circumstances of the high height of the truck,
its white color under the bright sky, combined with the
positioning of the cars across the road [20].

The importance of epistemic uncertainty or ”Uncertainty on
Uncertainty” in these AI-assisted systems has been recently
recognized and there are ongoing research efforts towards
quantifying the robustness of self-driving cars to events that
are rare (e.g., distance to a bicycle running on an expected
trajectory) or not present in the training data (e.g., unexpected
trajectories of moving objects) [21].

B. Decision Sciences

In decision sciences applications, people are in the loop in
a different way than in cyber-physical systems, but in the loop
nonetheless. Decisions are made about people and are made by
people using machine learning-based tools for support. Many
emerging application domains are now shifting to data-driven
decision making due to greater capture of information digitally
and the desire to be more scientific rather than relying on
(fallible) gut instinct [22]. These applications present many
safety-related challenges.

1) Predicting Voluntary Resignation: We recently studied
a Type A problem of predicting which IBM employees will
voluntarily resign from the company in the next six months
based on human resources and compensation data, which
required us to develop a classification algorithm to be placed
within a larger decision-making system involving human de-
cision makers [23]. There are several sources of epistemic
uncertainty in this problem. First, the way to construct a
training set in the problem is to look at the historical set
of employees and treat employees that voluntarily resigned
as positive samples and employees still in the workforce as
negative samples. However, since the prediction problem is to
predict resignation in the next six months, our set of negative
samples will necessarily include employees who should be
labeled positively because they will be resigning soon [24].
Another uncertainty is related to quirks or vagaries in the data
that are predictive but will not generalize. In this problem, a
few predictive features related to stipulations in employees’
contracts to remain with IBM for a fixed duration after their
company was acquired, but such a pattern would not remain
true going forward. Another issue is unique feature vectors: if
the data contains an employee in Australia who has gone 17
years without being promoted and no other similar employees,
then there is huge uncertainty in that part of feature space and
inductive bias must be completely relied upon.

2) Loan Approval: As another example in the decision
sciences that we have studied, let us consider the decision to
approve loans for solar panels given to the rural poor in India
based on data in application forms [25]. Many of the same
uncertainties as in the previous example related to the training
set being representative of the true test distribution repeat here.
An interesting additional issue in this case relates to the human
cost function including X . One of the attributes available in
the problem was the surname of the applicant. In this part of
India, the surname is a strong indicator of religion and caste;
for this reason, a hazardous situation may have occurred if
surname were used as a feature in the prediction task, even if
it helped accuracy.

VI. STRATEGIES FOR ACHIEVING SAFETY

As discussed in the introduction, safety is usually inves-
tigated on an application-by-application basis and strategies
for achieving it the same. For example, setting the minimum
thickness of vessels and removing flammable materials from
a chemical plant are ways of achieving safety. Analyzing
such strategies across domains, [10] has identified four main
categories of approaches to achieve safety. In this section, we
discuss each of these categories in turn along with specific
approaches that extend machine learning formulations beyond
risk minimization for safety. In doing so, we must be aware of
the timescale under which different applications operate and
impact people: not all strategies are applicable in real-time
applications such as ones in cyber-physical systems.



A. Inherently Safe Design

Inherently safe design is the exclusion of a potential hazard
from the system (instead of controlling the hazard). For
example, excluding hydrogen from the buoyant material of
a dirigible airship makes it safe. (Another possible safety
measure would be to introduce apparatus to prevent the
hydrogen from igniting.)

In the machine learning context, we would like robustness
against the uncertainty of the training set not being sampled
from the test distribution. The training set may have various
quirks or biases that are unknown to the user and that will not
be present during the test phase. Highly complex modeling
techniques used today, including extreme gradient boosting
and deep neural networks, may pick up on those data vagaries
in the learned models they produce to achieve high accuracy,
but might fail due to an unknown shift in the data domain
[26].

The models are so complex that it is very difficult to
understand how they will react to such shifts and whether
they will produce harmful outcomes as a result. Two related
ways to introduce inherently safe design is by insisting on
models that can be interpreted by people and by excluding
features that are not causally-related to the outcome [27]–
[30]. By examining interpretable models, features or functions
capturing quirks in the data can be noted and excluded, thereby
avoiding related harm. Similarly, by excluding non-causal
variables, phenomena that are not a part of the true ‘physics’
of the system can be excluded and related harm avoided. We
note that post hoc interpretation of complicated uninterpretable
models, appealing for other reasons, does not assure safety via
inherently safe design.

The desire for neither interpretability nor causality of mod-
els is captured in the standard risk minimization formulation
of machine learning. Extra regularization or constraints on
H beyond those implied by structural risk minimization are
needed to learn such models. There may be performance loss
in accuracy by doing so when measuring accuracy with a
common training and testing data probability distribution, but
the reduction in epistemic uncertainty by doing so increases
safety. Both interpretability and causality may be incorporated
into a single learned model, e.g. [31], and causality may be
used to induce interpretability, e.g. [32]. In cyber-physical
applications with very large outcome spaces such as those
employing reinforcement learning, appropriate aggregation of
states in outcome policies can make the machine learning
interpretable [33].

B. Safety Reserves

A second strategy for achieving safety is through multiplica-
tive or additive reserves, known as safety factors and safety
margins, respectively. In mechanical systems, a safety factor is
a ratio between the maximal load that does not lead to failure
and the load for which the system was designed. Similarly the
safety margin is the difference between the two.

For the purposes of machine learning with uncertainty,
whether that uncertainty is in the training data matching the

test distribution or in the instantiation of the test set, we can
parameterize the unknown with the symbol θ. Let the risk
of the risk-optimal model if the θ were known be R∗(θ).
Along the same lines as safety factors and safety margins,
robust formulations find h while constraining or minimizing
maxθ

R(h,θ)
R∗(θ) or maxθ (R(h, θ)−R∗(θ)). Such formulations

can capture uncertainty in the class priors and uncertainty
resulting from label noise in classification problems [34], [35].
They can also capture the uncertainty of which part of the X
space the actual small set of test samples comes from: we do
not care as much about average test error for medical diagnosis
problems or self-driving cars if a model will only be used on
a handful of patients or road conditions as we do about the
maximum test error.

A different sort of safety factor comes about when consid-
ering fairness and equitability. In certain prediction problems,
the risk of harm for members of protected groups should not be
much worse (up to a multiplicative factor) than the risk of harm
for others [36]–[38]. Features indicating a protected group,
such as race and gender, are dimensions in the X space; we can
partition the space into the sets Xp,Xu ⊂ X corresponding to
the protected and unprotected groups respectively. The safety
factor known as disparate impact constrains the following to
a minimum value such as 4/5:∫

Xp

∫
Y L(x, h(x), y)fX,Y (x, y)dydx∫

Xu

∫
Y L(x, h(x), y)fX,Y (x, y)dydx

.

Under such a constraint, the risk of harm for protected groups
is not much more than for unprotected groups.

C. Safe Fail

The third general category of safety measures is ‘safe fail,’
which implies that a system remains safe when it fails in its
intended operation. Examples are electrical fuses, so-called
dead man’s switches on trains, and safety valves on boilers.

A technique used in machine learning when predictions
cannot be given confidently is the reject option [39]: the
model reports that it cannot reliably give a prediction and does
not attempt to do so, thereby failing safely. When the model
elects the reject option, typically a human operator intervenes,
examines the test sample, and provides a manual prediction.

In classification problems, models are reported to be least
confident near the decision boundary. However, by doing so,
there is an implicit assumption that distance from the decision
boundary is inversely related to confidence. This is reasonable
in parts of X with high probability density and large numbers
of training samples because the decision boundary is located
where there is a large overlap in likelihood functions. However,
as discussed in Section III, parts of X with low density
may not contain any training samples at all and the decision
boundary may be completely based on an inductive bias,
thereby containing much epistemic uncertainty. In these parts
of the space, distance from the decision boundary is fairly
meaningless and the typical trigger for the reject option should
be avoided [40]. For a rare combination of features in a test



sample [41], a safe fail mechanism is to always go for manual
examination.

Both of these manual intervention options are applicable to
decision sciences applications in which the timescale is longer
than in cyber-physical systems. When working on the scale of
milliseconds, only options similar to dead man’s switches that
stop operations in a reasonable manner are applicable.

D. Procedural Safeguards

Finally, the fourth strategy for achieving safety is given the
name procedural safeguards. This strategy includes measures
beyond ones designed into the core functionality of the system,
such as audits, training, posted warnings, and so on. Two
directions in machine learning that can be used for increasing
safety within this category are user experience design and
openness.

In Type A decision sciences applications especially, non-
specialists are often the operators of machine learning sys-
tems. Defining the training data set and setting up evaluation
procedures, among other things, have certain subtleties that
can cause harm during operation if done incorrectly. User
experience design can be used to guide and warn novice and
experienced practitioners to set up machine learning systems
properly and thereby increase safety.

Best of breed machine learning algorithms these days are
open source, which allows for the possibility of public audit.
Safety hazards and potential harms can be discovered through
examination of source code. However, open source software is
not enough, because the behavior of machine learning systems
is driven by data as much as it is by software implementations
of algorithms. Open data refers to data that can be freely used,
reused and redistributed by anyone. It is more common in Type
A applications such as those sponsored or run by governments
than in Type B applications where the data is oftentimes the
key value proposition. Opening data is a procedural safeguard
for increasing safety that is increasingly being adopted in Type
A applications [42]–[44].

VII. CONCLUSION

Machine learning systems are already embedded in many
functions of society. The prognosis is for broad adoption to
only increase across all areas of life. With this prevailing
trend, machine learning researchers, engineers, and ethicists
have started discussing the topic of safety. In this paper,
we contribute to this discussion starting from a very basic
definition of safety in terms of harm, risk, and uncertainty
and building upon it in the machine learning context. We
identify that the minimization of epistemic uncertainty is
missing from standard modes of machine learning developed
around risk minimization and that it needs to be included
when considering safety. We have delineated two types of
applications of machine learning: Type A in which safety is
an important concern and Type B in which it is not so. We
have discussed several strategies for increasing safety that are
especially pertinent in Type A applications.

The strategies for increasing safety that we mentioned in
Section VI are not a comprehensive list and are far from fully
developed. This paper can be seen as laying the foundations
for a research agenda motivated by Type A applications and
safety within which further strategies can be developed and
existing strategies can be fleshed out. In some respects, the
research community has taken risk minimization close to
the limits of what is achievable. Safety, especially epistemic
uncertainty minimization, represents a direction that offers new
and exciting problems to pursue. As it is said in the Sanskrit
literature, ahim. sā paramo dharmah. (non-harm is the ultimate
direction). Moreover, not only is non-harm the first ethical
duty, many of the safety issues for machine learning we have
discussed in this paper are starting to enter legal obligations
as well [45].
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and R. Ezry, “An analytics approach for proactively combating voluntary
attrition of employees,” in Proc. IEEE Int. Conf. Data Min. Workshops,
Brussels, Belgium, Dec. 2012, pp. 317–323.

[24] D. Wei and K. R. Varshney, “Robust binary hypothesis testing under
contaminated likelihoods,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process., Brisbane, Australia, Apr. 2015, pp. 3407–3411.

[25] H. Gerard, K. Rao, M. Simithraaratchy, K. R. Varshney, K. Kabra,
and G. P. Needham, “Predictive modeling of customer repayment for
sustainable pay-as-you-go solar power in rural India,” in Proc. Data for
Good Exchange Conf., New York, NY, Sep. 2015.

[26] R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. Elhadad,
“Intelligible models for healthcare: Predicting pneumonia risk and
hospital 30-day readmission,” in Proc. ACM SIGKDD Conf. Knowl.
Discov. Data Min., Sydney, Australia, Aug. 2015, pp. 1721–1730.

[27] A. A. Freitas, “Comprehensible classification models – a position paper,”
SIGKDD Explorations, vol. 15, no. 1, pp. 1–10, Jun. 2013.

[28] C. Rudin, “Algorithms for interpretable machine learning,” in Proc. ACM
SIGKDD Conf. Knowl. Discov. Data Min., New York, NY, Aug. 2014,
p. 1519.

[29] S. Athey and G. W. Imbens, “Machine learning methods for estimating
heterogeneous causal effects,” http://arxiv.org/pdf/1504.01132.pdf, Jul.
2015.

[30] M. Welling, “Are ML and statistics complementary?” in IMS-ISBA
Meeting on ‘Data Science in the Next 50 Years’, Dec. 2015.

[31] F. Wang and C. Rudin, “Causal falling rule lists,”
http://arxiv.org/pdf/1510.05189.pdf, Oct. 2015.

[32] A. Chakarov, A. Nori, S. Rajamani, S. Sen, and D. Vijaykeerthy, “De-
bugging machine learning tasks,” http://arxiv.org/pdf/1603.07292.pdf,
Mar. 2016.

[33] M. Petrik and R. Luss, “Interpretable policies for dynamic product
recommendations,” in Proc. Conf. Uncertainty Artif. Intell., Jersey City,
NJ, Jun. 2016, p. 74.

[34] F. Provost and T. Fawcett, “Robust classification for imprecise environ-
ments,” Mach. Learn., vol. 42, no. 3, pp. 203–231, Mar. 2001.

[35] M. A. Davenport, R. G. Baraniuk, and C. D. Scott, “Tuning support
vector machines for minimax and Neyman-Pearson classification,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 32, no. 10, pp. 1888–1898, Oct.
2010.

[36] S. Hajian and J. Domingo-Ferrer, “A methodology for direct and indirect
discrimination prevention in data mining,” IEEE Trans. Knowl. Data
Eng., vol. 25, no. 7, pp. 1445–1459, Jul. 2013.

[37] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkata-
subramanian, “Certifying and removing disparate impact,” in Proc. ACM
SIGKDD Conf. Knowl. Discov. Data Min., Sydney, Australia, Aug. 2015,
pp. 259–268.

[38] S. Barocas and A. D. Selbst, “Big data’s disparate impact,” California
Law Rev., vol. 104, 2016.

[39] K. R. Varshney, R. J. Prenger, T. L. Marlatt, B. Y. Chen, and W. G.
Hanley, “Practical ensemble classification error bounds for different
operating points,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 11, pp.
2590–2601, Nov. 2013.

[40] J. Attenberg, P. Ipeirotis, and F. Provost, “Beat the machine: Challenging
humans to find a predictive model’s “unknown unknowns”,” ACM J.
Data Inf. Qual., vol. 6, no. 1, p. 1, Mar. 2015.

[41] G. M. Weiss, “Mining with rarity: A unifying framework,” SIGKDD
Explor. Newsletter, vol. 6, no. 1, pp. 7–19, Jun. 2004.

[42] A. Sahuguet, J. Krauss, L. Palacios, and D. Sangokoya, “Open civic
data: Of the people, by the people, for the people,” Bull. Tech. Comm.
Data Eng., vol. 37, no. 4, pp. 15–26, Dec. 2014.

[43] E. Shaw, “Improving service and communication with open data: A
history and how-to,” Ash Center, Harvard Kennedy School, Tech. Rep.,
Jun. 2015.
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