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Abstract
We introduce an automatic agent that, through linguistic com-
munication with a human, can check constraints for object
layouts as well as learn new constraints. This is applied to a
surgical instrument preparation task, where the system inter-
acts with an expert to learn both general instrument arrange-
ment regulations and special layouts customized to a partic-
ular doctor. When supervising a non-expert human preparing
the tools for a surgery, the system can provide suggestions by
giving verbal feedback about how to improve the setup while
simultaneously highlighting corresponding objects through a
graphical interface.

Introduction
In recent years the application of artificial intelligence tech-
nologies to the field of medicine has been actively studied.
Example AI systems have been successfully applied for dis-
ease diagnosis, to help reduce errors related to human fa-
tigue, to generally improved health care, and for educational
purposes in medical schools. In this paper we propose a cog-
nitive agent that works in operating rooms, specifically an
agent that can help with the surgery preparation process. It
does this by giving advice as a surgical technician prepares
instruments on a tray.

Usually, before a surgery, an assistant or nurse will set
out the instruments used in a surgery in the order in which
they are commonly used. A well organized setup can expe-
dite the exchange of instruments between the assistant and
the doctor, and obviate searching the tray for an out-of-place
instrument. This saves time, which can be critical during a
procedure. On the other hand, a disorganized instrument lay-
out can have a significant adverse effect on the outcome of
an operation.

An example of a somewhat disorganized layout is shown
in Figure 1. Note that this image is sparser than a real sur-
gical tray, but is fairly representative of a dental tray. In this
example, a large pair of scissors v0 is misplaced between
two smaller pairs of scissors (v2 and v4). As a result, when
the assistant casually tries to grab a small pair of scissors, he
might accidentally grab a large pair instead.

Becoming a well-trained technician requires memorizing
the necessary instruments for different surgeries, as well as

Figure 1: Rectified image of surgical instrument arrange-
ment.

extensive training in how to set up a tray properly. In addi-
tion, sometimes particular doctors may have preferences for
specific tools or the order of different tools. However, even
well-trained technicians may make mistakes due to fatigue
caused by the large number of operations in a day. Moreover,
in some cases well-trained assistants may not be available
(e.g., emergency situations, battle fields) and lesser trained
personnel attempt to fill in.

Taking these concerns into consideration, we propose a
cognitive agent that can learn how to properly arrange a tray
as a set of rules acquired through spoken interaction with
one or more human experts. Having been taught the rules, it
can then supervise a non-expert human while they prepare
surgical instruments, like a “super spell checker”.

Specifically, images of instruments on a tray are sensed
by an overhead-mounted camera, further processed by com-
puter vision modules, and finally represented as a set of log-
ical predicates. This discretized state is checked against a set
of setup rules, essentially a collection of first order logic for-
mulae. Those rules violated by current state are reported to
the human partner (e.g., non-expert assistant) in the form of
a natural language suggestion augmented by highlighting the



corresponding objects on the screen. To train or customize
the system, setup rules are taught using linguistic input from
human experts (e.g., well trained surgical technicians). The
experts’ spoken descriptions for layout rules are translated
to formal representations (i.e., FOL formula) by detecting
specific language patterns, and then stored for later use.

Related Work
An operating room is an example of environment which is
high paced, stressful, and full of uncertainty. To ease the
burden on surgeons and their assistants, researchers from
HCI and the medical field have tried to build cognitive
agents to aid surgical procedures. For example, the authors
in (Seagull FJ 2008 Aug) have identified four pillars for
an “operating room of the future” where innovative tech-
nologies can contribute to patient safety in the operating
environment. Similarly, (Ellner and Joyner 2012) describes
methods for applying information technology to improve
safety and quality for surgical patients. The use of paper
checklist in operating room is studied in detail in (Zhang
et al. 2014) and used to inform the design of a cogni-
tive agent (e.g., digital checklist) to improve the interac-
tion and communication between surgery team members.
This is taken further by the authors in (Wu et al. 2013;
2011) who have created a dynamic checklist using both a
tablet and a large display. However, in contrast to this previ-
ous work focused on displaying information, our agent acts
like a supervisor. It aims to prevent human errors and give
advice to non-experts under emergency situation when ex-
perts are in short supply.

Another closely related research topic is knowledge ac-
quisition from interactions. Although surgical instrument
layout follows certain general rules, the instruments and
their arrangement varies somewhat based on the class of
surgery, and is even customized to specific surgeons on occa-
sion. These additional constraints need to be induced on top
of “factory settings” in a natural way. One actively studied
human-computer interaction area in recent years has been
Learning from Demonstration (LfD) (Akgun et al. 2012;
Argall et al. 2009; Atkeson and Schaal 1997; Bentivegna,
Atkeson, and Cheng 2004; Cakmak and Thomaz 2012).
Here the agents can acquire knowledge through human il-
lustrations (e.g., steps to perform actions, examples of pre-
vious unknown objects). Some of these systems focus on
action knowledge acquisition (Matuszek et al. 2013; Misra
et al. 2015; She and Chai 2016; She et al. 2014), and some of
them focus on object and sequence naming (Chai et al. 2014;
Connell 2014). However, none address the acquisition of
proper spatial relations between objects or other configura-
tional constraint rules.

System Architecture
A brief system work flow is shown in Figure 2. Next we will
explain the key system components in detail.

Vision Processing
The real-time image of the tray is captured by an overhead
camera and processed by a set of vision modules. The im-

Figure 2: The system receives input via speech and vision.

age is first geometrically rectified to make the tray rectan-
gular. Next, pixels in the raw image are separated into back-
ground or objects by forming a color model for the majority
of the area (i.e., surgical instruments are usually placed on
a cloth with single color that contributes most of the pixels
in the image). The pixels belonging to objects are grouped
by connected components to form potential objects (Connell
et al. 2012; Connell 2014). After removing small items and
ones protruding beyond the tray boundary, the orientation
and aligned bounding box are determined for each remain-
ing object. These are plotted in Figure 1.

Figure 3: Each object is analyzed to yield a collection of
three widths.

In addition, the rough shape of the object is captured by
calculating the width of the tip, center, and bottom of each
object separately. This, along with the position of each sub-
part, can be seen in Figure 3. Using these measurements, as
well as the overall bounding box, a heuristic classifier is ap-
plied to ascertain the identity of each potential object. Each
of the known surgical instruments is represented by a simple
vector model of the its parameters, so rule-based matching
is fairly straightforward.

Given a set of recognized objects, an environment de-
scription is built to capture information important to the
domain. For the surgical instrument arrangement applica-
tion, the important information includes state terms describ-



ing either 1) a single object (e.g., object type: scissors(v0),
forcep(v0)), or 2) relations between objects (e.g., spatial
relation: parallel(v0, v1) meaning v0 is parallel with v1,
centeralign(v0, v2) meaning v0 and v2 are center aligned), or
3) relations between an object and the tray (e.g., object loca-
tion on the tray: at part(v0, L) meaning v0 is at the left part
of the tray). Each such state predicate is formed by instan-
tiating a pre-defined state atom using one or more real-time
detected objects.

The set of current pre-defined state atoms is listed in Fig-
ure 4. Each state atom is associated with a function that
can tell, when the atom is instantiated with certain objects,
whether it is true or not relative to the perceived environ-
ment. For example, the predicate “parallel(x,y)” is associ-
ated with function (xorient − yorient) < δ?True : False,
which is true if the orientations of x and y are similar, and
false otherwise. For the scene in Figure 1 “parallel(v0, v2)”
is true while “parallel(v5, v6)” is false.

Figure 4: The set of state atoms that are used both in the
discrete state representation and the First-Order Logic con-
straints.

Some predicates have more complicated geometric in-
terpretations. For instance, the “keepdistance” relation says
whether two objects have been placed too close together. As
show in Figure 5 this is based on the standard width d1 of a
human finger. Objects are too close when the user cannot in-
sert his fingers to grasp one object without hitting the other
one. This predicate depends on the dimensions of the two
objects, their separation, and their relative orientation.

The final result of visual processing is a discretized sym-
bolic representation embodied by a set of logical state predi-
cates. That is, the complete environment description is the
conjunction of all the state terms that are currently true.
By using such a conjunction of state terms to represent a
scene, the system is able to check the environment against
the collection of setup constraints and thereby identify the
constraints that are violated.

Language Processing
Human voice is captured through a microphone and then the
Microsoft ASR Engine under Windows 7 is used to perform
speech recognition. To improve accuracy, we constrain the
acoustic utterances with a defined language grammar. This
is composed of a set of CFG-style rules, each specifying

Figure 5: Many semantic predicates depend on the scene ge-
ometry.

how syntax elements are expanded. An example grammar is
shown in Figure 6. The first rule in the example means “this
is a type of sentence that describes an object” and the second
rule means “the DescribeObject sentence is composed of
drawing the agent’s attention (Attn) followed by propound-
ing an object description (obj)”. Another benefit of utilizing
a language grammar is that each recognized utterance can be
parsed by any chart parser (e.g., Earley parser, CYK parsing)
to generate a tree, which can have embedded task-related in-
formation. More details about a similar language grammar
and parse tree analysis can be found in (Connell 2014).

Figure 6: Example language grammar covering both intent
and syntax.

But pure parsing is not enough. All utterances are further
processed by a series of language understanding modules to
extract sentence meaning. This includes several different as-
pects such as intention, the main objects being talked about,
and setup constraints. Some example sentences and their re-
sulting outputs are shown in Figure 7.

In particular, an intention recognizer is used to capture the
purpose behind an utterance. That is, for example, whether
the human is describing an object (i.e., DescribeObject),
introducing a constraint rule (i.e., IntroConstraint), or just
wants to say hello (i.e., Greeting). Capturing human intent
helps the agent decide what response should it give (e.g.,



Figure 7: Some example sentences and their derived mean-
ings.

when the human is describing an object it should change its
attention to that object, when human says hello it should re-
turn a greeting). Due to our narrow domain, currently we
just define a fixed set of intentions which are embedded in
the language grammar. Thus the intent can be conveniently
recovered from the top label of the parsing tree.

Besides recognizing human intent, the agent also needs
to understand the object descriptions in a human utterance
(i.e., Object Grounding). Specifically, the noun phrases (in
our case, phrases describing specific instruments or the tray)
need to be mapped to physical objects detected in the scene.
For example, the “gauze pad” should be grounded to v7 in
Figure 1, and “the leftmost scissors” should be grounded to
v4. To achieve this, we define grounding functions associ-
ated with specific words that assign a score telling how well
a particular object matches with this word. For example, the
word “scissors” matches better with objects v0, v2, and v4
in Figure 1 than with the other objects. And the word “left-
most” assigns higher scores for objects that are farther to the
left. The score for a noun phrase (e.g., “leftmost scissors”)
is then calculated by adding the individual scores for the de-
scriptive terms. The highest scoring object is then assumed
to be the referent for the noun phrase.

Our system also keeps track of another piece of informa-
tion important for dialog: the Focus Object. By Focus Ob-
jects we mean the objects that are the center of attention in
the current dialog turn. For instance, in the phrase “the den-
tal pick to the right of the hemostat”, the “dental pick” is
the focus object, while the “hemostat” is a landmark used to
identify that focus object. Keeping track of the focus object
is useful for reference resolution. For example, when the hu-
man says “they should be grouped together”, the human is
trying to introduce a constraint (i.e., some objects should be
placed near each other). However, to construct a constraint
rule from this sentence, the objects that “they” refers to must
be correctly identified. This turns out to be the focus objects
of the most recent dialog turn. In our case, the focus object is
either inherited from previous turn, or switched to a new ob-
ject if the human decides to describe a different instrument.

For utterances trying to introduce a setup constraint,
like “the scissors should be grouped together”, we will
also generate a first order logic formula (“Semantic” in
the example). The problem of translating such natural lan-

guage statements to a logic representation has been actively
studied by the NLP community. Typical methods include
learning this mapping from a large set of parallel data,
where each language sentence is paired with a desired logic
form (Kwiatkowski et al. 2011; Zettlemoyer and Collins
2009). Yet, given our narrow domain, we currently just look
for specific language patterns that are commonly used by
people when introducing constraints. We associate a FOL
template with each of these. In this way, when the pattern
is detected in a sentence, its full semantic meaning can be
constructed by simply filling the template with content ex-
tracted from elsewhere in the parsing tree. This is discussed
in more detail below.

Constraints and Reasoning
In our system, knowledge of how to arrange the surgical in-
struments is formulated as a set of constraints that the ob-
ject layout should satisfy. Example constraints for a spe-
cific surgery include the number of each type of instru-
ment needed, whether instruments of the same type should
be close to each other or in some use-based order, and the
canonical locations that different tools should be placed on
the tray (e.g., bowls with liquids should situated far from
areas that have frequent interactions with the surgical assis-
tant).

The representation for a constraint should 1) be able to
capture the semantics of the constraint, and 2) support valid-
ity checking (i.e., whether the constraint holds in the layout)
as well as violation identification (i.e., be able to determine
which objects are responsible). Here we utilize First-Order-
Logic (FOL) sentences to represent constraints. Example
FOL sentences and their semantics in the tray environment
are shown in Figure 8. Each FOL constraint is composed of
a number of terms connected by logic symbols (e.g., & and ,
− > infer, − negation). Variables (e.g., x, y) in the terms are
bounded by quantifiers (e.g., all, exist) and can be instanti-
ated with objects recognized from the scene. The terms used
in constraints share the same set of state descriptors as was
shown in Figure 4.

To perform reasoning, we use the NLTK package (Loper
and Bird 2002) and theorem prover Prover9 (McCune 2005
2010). Given an environment description and a FOL con-
straint, the prover can tell whether each constraint is valid in
the environment (i.e., the formula is true under every inter-
pretation of variable assignments). Such a prover can check
the validity of a constraint but, if a FOL formula is shown
to be invalid in an environment, we cannot immediately tell
which object(s) triggered this violation. To remedy this, we
negate the constraint in question and find the interpretations
of this that are satisfied in the environment. The objects in-
volved in the bindings from these interpretations are then
deemed the culprits. We use these objects, together with the
violated constraint, to generate feedback to the human.

Dialog Management
The task for Dialog Management is to decide what actions
the agent should take in different dialog states. The design of
our dialog manager follows (Chai et al. 2014) and consists
of three components: state, policy, and actions. The dialog



Figure 8: Example FOL constraints and their semantic interpretation.

state is characterized by the parsing result, human intention,
object grounding, and focus identification. The dialog policy
consists of 12 rules, where each is a state-action pair. During
interaction, the agent will identify the current dialog state,
match it against the policy to find the best rule, and then re-
trieve actions to execute from the right hand side of the rule.
Our current space of agent actions includes verbal feedback
moves like greeting, making a confirmation, describing how
to improve the layout, and explaining problems with its lan-
guage understanding (e.g., cannot find focus object, failed to
induce a FOL constraint, or totally don’t understand). In ad-
dition, actions can be system internal operations like check-
ing the current environment against the FOL constraints, or
updating the set of known constraints.

Response Generation
Once the dialog manager decides what action(s) to take, Re-
sponse Generation is responsible for executing them. If the
layout is good enough, the agent will just tell the human that
things are satisfactory. If violations are detected, instead, our
agent will create a natural language description of its con-
cern along with a visual indication of the problematic ob-
jects. Note that, if there are multiple violations, it is gener-
ally a bad idea to inundate the user with all the problems at
once. To help structure the interaction more cleanly, we just
randomly choose one violation out of the list (but indicate
that there are more). Perhaps a better solution would be to
employ an arbitration scheme to impose an order on these.
For instance, fixing a “parallel” violation often serendipi-
tously fixes a related “keepdistance” violation. Thus it would
make sense to point out the “parallel” violation first.

Once a problem has been identified, a linguistic descrip-
tion of this violation is generated through a two step pro-
cess. First, because the agent needs to help the user iden-
tify which objects to fix, a referring expression is generated
for each violated object. Referring expression generation is
itself an active research topic in NLP (Fang et al. 2013;
Fang, Doering, and Chai 2014; Krahmer and van Deemter
2012). We utilize a strategy similar to (Haas 1992), where
information about object type, absolute locations (i.e., left,
right, top, bottom of the tray), and relative locations within
a group of the same type of objects is used to form a unique
description for each object. Thus two pairs of scissors might
be denoted by “the rightmost scissors at the bottom left” and
“the leftmost scissors”. Second, several language templates
are predefined for each type of violation. At run time, the
agent randomly chooses one template and fills it with the re-
ferring expressions just generated. Considering two pairs of

scissors, a violation might finally be expressed as “the right-
most scissors at the bottom left is too close to the leftmost
scissors”.

Finally, when an associated a template has been filled,
the complete description is sent to a speech synthesizer to
provide verbal feedback to the human. In addition, the spe-
cific objects that trigger a violation are highlighted on the
screen. For example, looking ahead to the second image of
Figure 10 the two pairs of scissors are too close to each other,
which is a violation of the “keep distance” rule. Therefore
the agent highlights these two objects on the screen (green
and magenta) to draw the user’s attention to the correct area.

Performance of Implemented System
A video demonstration our Tracy system can be viewed
at (She and Connell 2016). Figure 10 shows a scenario from
this video where the agent assists a non-expert to set up
the surgical tray through dialog. When asked for advice, the
agent analyzes the current tray setup with an overhead cam-
era to generate a state representation such as in Figure 9. It
then compares this against a set of layout rules to generate
feedback for the user. For example, as shown in left panel
of Figure 10, the scalpels and scissors are not well orga-
nized. The agent first complains that the two scalpels are not
placed parallel, and labels them on the screen (green and ma-
genta). After this problem is fixed by the human, the agent
goes on to describe the second problem: that the two pairs
of scissors are too close to each other. Once all the problem
are fixed (i.e., the environment satisfies every constraint in
agent’s knowledgebase), the agent reports that the setup is
fine.

Figure 9: Example state representation for Figure 10.

In Figure 11 an expert (e.g., surgical assistant) teaches
the agent more setup factors through language interaction.
In this case, the particular operation requires more pairs of



Figure 10: A constraint checking situation from the demo video.

Figure 11: Teaching the system new constraints (from the demo video).

scissors than normal. In addition, for ease of access, the scis-
sors should all be in the same portion of the tray. The human
imparts this knowledge to the system by conversing with the
agent, as shown in the left panel. In the middle panel, Tracy
automatically detects the lack of a vital instrument. Then,
when an additional pair of scissors is added (right panel),
it complains that it was placed inappropriately. This proves
it was able to understand and apply the added constraints it
was taught.

Conclusion
In this work we have integrated many disparate AI technolo-
gies into a working real-time system, and there is a publicly
viewable demonstration video. The system visually parses
an instrument layout and develops an internal symbolic rep-
resentation of the situation. Using this it is able to critique
an instrument layout and provide corrective suggestions us-
ing speech and graphics. It is also able to accept and apply
brand new constraints and surgery-dependent requirements.
Imparting new rules simply by speaking like this gives non-
technical users the invaluable ability to refine and extend the
system in the field, something usually not possible for non-
programmers.

Of course there are many ways the system could be ex-

tended. For instance, the bulk of the grounding is currently
hand-coded. We are in the process of implementing a hand
tracker that can determine pointing locations as well as gen-
eral regions indicated by circling motions. Pointing would
allow us to build new object models by indicating a name
for some object, e.g. “this is a forceps”. We could also use it
for deictic corrections such as “this scalpel should be closer
to the other one” to help tune constraints. Finally, region in-
dication could be useful for designating (possibly unnamed)
“home” locations for objects, e.g. “the gauze pads go over
here”.

The system could also be ported to perform a similar tuto-
rial/checking function in other domains. The most obvious is
how to properly “plate” food at a high end restaurant. Rele-
vant instructions might be that the broccoli spears should be
aligned and on the left. Similarly, the split radishes should
adorn the upper margin of the plate, while the boiled arti-
choke is centered. Some of these specialized terms them-
selves might also be grounded through interactive teaching.

In general, our agent is one example of a more general
class of problems where a Cognitive System watches over
the shoulder of a human to help ensure compliance with
safety standards and promote industrial best practices. There
will likely be many more such systems in the future.
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