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Abstract

We define the k-dimensional lattice closure of a polyhedral mixed-integer set to be the

intersection of the convex hulls of all possible relaxations of the set obtained by choosing up

to k integer vectors π1, . . . , πk and requiring 〈π1, x〉, . . . , 〈πk, x〉 to be integral. We show that

given any collection of such relaxations, finitely many of them dominate the rest. The k-

dimensional lattice closure is equal to the split closure when k = 1. Therefore the k-dimensional

lattice closure of a rational polyhedral mixed-integer set is a polyhedron when k = 1 and our

domination result extends this to all k ≥ 2. We also construct a polyhedral mixed-integer

set with n > k integer variables such that finitely many iterations of the k-dimensional lattice

closure do not give the integer hull. In addition, we use this result to show that t-branch split

cuts cannot give the integer hull, nor can valid inequalities from unbounded, full-dimensional,

convex lattice-free sets.

1 Introduction

Cutting planes (or cuts, for short) are linear inequalities satisfied by the integral points in a poly-

hedron. In practice, cutting planes are used to give a tighter approximation of the convex hull

of integral solutions of a mixed-integer program (MIP) than the LP relaxation. A widely studied

family of cutting planes is the family of Split cuts, and special classes of split cuts, namely Gomory

mixed-integer cuts and Zero-half Gomory-Chvátal cuts, are very effective in practice and are used

by commercial MIP solvers.

A split cut for a polyhedron P ⊆ Rn is a linear inequality cTx ≤ d that is valid for

P \ {x ∈ Rn : π0 < πTx < π0 + 1}

for some π ∈ Zn and π0 ∈ Z (we call {x ∈ Rn : π0 < πTx < π0 + 1} a split set). If P is the

continuous relaxation of a mixed-integer set and π has non-zero coefficients only for the indices

that correspond to integer variables, then the resulting inequality is valid for the mixed-integer set.

An important theoretical question for a family of cuts for a polyhedron is whether only finitely

many cuts from the family imply the rest. Cook, Kannan and Schrijver [11] proved that the split

closure of a rational polyhedron – the set of points that satisfy all split cuts – is again a polyhedron,
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thus showing that only finitely many split cuts for a rational polyhedron imply the remaining split

cuts. Furthermore, they also give a polyhedral mixed-integer set with unbounded split rank – the

convex hull of points cannot be obtained by finitely repeating the split closure operation starting

from the natural polyhedral relaxation of the mixed-integer set. Earlier, Schrijver [26] showed that

the set of points in a rational polyhedron satisfying all Gomory-Chvátal cuts is a polyhedron, and

Dunkel and Schulz [21] and Dadush, Dey and Vielma [13] proved that this result holds, respectively,

for arbitrary polytopes, and compact convex sets.

Recently there has been a significant amount of research on generalizing split cuts in different

ways to obtain new and more effective classes of cutting planes. Andersen, Louveaux, Weismantel

and Wolsey [3] studied lattice-free cuts in the context of the two-row continuous group relaxation

and demonstrated that these cuts generalize split cuts. They obtain lattice-free cuts from two

dimensional convex lattice-free sets, and observe that split cuts are obtained from a family of

two-dimensional lattice-free polyhedra with two parallel sides. Basu, Hildebrand and Köeppe [8]

showed that the triangle closure (points satisfying cuts obtained from maximal lattice-free triangles

in R2) of the two-row continuous group relaxation is a polyhedron, and we showed in [18] that the

quadrilateral closure is also a polyhedron. Furthermore, Andersen, Louveaux and Weismantel [2]

showed that the set of points in a rational polyhedron satisfying all cuts obtained from convex,

lattice-free sets with bounded max-facet-width is a polyhedron.

As a different generalization of split cuts, Li and Richard [24] defined t-branch split cuts which

are obtained by considering t split sets simultaneously, where t is a positive integer. In particular,

a t-branch split cut for a polyhedron P is a linear inequality valid for P \ ∪ti=1Si where Si is a

split set for i = 1, . . . , t. The 1-branch split cuts are equivalent to the family of split cuts studied

by Cook, Kannan, and Schrijver. Li and Richard also constructed a polyhedral mixed-integer set

that has unbounded 2-branch split rank, i.e., repeating the 2-branch split closure operation does

not yield the convex hull of the points in the mixed-integer set. Polyhedral mixed-integer sets with

unbounded t-branch split rank for any fixed t > 2 were given in [16]. We proved in [18] that the

t-branch split closure of a rational polyhedron is a polyhedron for t = 2. We later extended this

result to any integer t > 0 in [19]. Furthermore, we also studied cuts obtained by simultaneously

considering t convex lattice-free sets with bounded max-facet-width, and showed that the associated

closure is a polyhedron.

In this paper, we study an alternative method of generalizing split cuts and prove that the

associated closures are also polyhedral, if one starts from a rational polyhedron. Cook, Kannan,

and Schrijver [11] gave an alternative definition (to the one given earlier) of split cuts: they define

a split cut for P ⊆ Rn to be a linear inequality valid for

{x ∈ P : πTx ∈ Z} =

∞⋃
π0=−∞

{x ∈ P : πTx = π0}

for some π ∈ Zn. We generalize this idea by considering valid linear inequalities for sets of the form

{x ∈ P : πT1 x ∈ Z, . . . , πTk x ∈ Z}, (1)

for some {π1, . . . , πk} ⊆ Zn where k is a fixed positive integer. We call these cutting planes k-

dimensional lattice cuts (we will explain the motivation for this name shortly). Clearly, when
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k = 1, the resulting cuts are split cuts, according to the definition of Cook, Kannan and Schrijver.

In this paper, we prove that for a rational polyhedron and a fixed integer k, the k-dimensional

lattice closure of P – the set of points satisfying all k-dimensional lattice cuts – is a polyhedron. In

fact, we prove the following more general result: Given a rational polyhedron P , a fixed positive

integer k, and an arbitrary collection L of tuples of the form (π1, . . . , πk) with πi ∈ Zn, we show

that there exists a finite F ⊆ L with the property that for any (π1, . . . , πk) ∈ L, there is a tuple

(µ1, . . . , µk) ∈ F such that

conv({x ∈ P : µT1 x ∈ Z, . . . , µTk x ∈ Z}) ⊆ conv({x ∈ P : πT1 x ∈ Z, . . . , πTk x ∈ Z}).

In other words, the k-dimensional cuts obtained from the tuple (µ1, . . . , µk) imply all such cuts

obtained from (π1, . . . , πk). Together with the fact that

conv({x ∈ P : µT1 x ∈ Z, . . . , µTk x ∈ Z})

is a polyhedron for any integral µ1, . . . , µk, the polyhedrality result above follows.

Dash, Dey and Günlük [14] defined a generalization of 2-branch split cuts called crooked cross

cuts. Furthermore, Dash, Dey and Günlük [15] studied 2-dimensional lattice cuts and showed that

they were equivalent to the family of crooked cross cuts. The results in this paper show that the

crooked cross closure of a rational polyhedron is also a polyhedron.

We also construct a polyhedral set that has unbounded rank with respect to the k-dimensional

lattice closure. This latter result implies that the same polyhedral set has unbounded rank with

respect to k-branch split cuts, which was earlier proved in [16]. More generally, this implies that

this polyhedral set has unbounded rank with respect to cuts obtained from all unbounded, full-

dimensional, maximal, convex lattice-free sets.

In the next section, we formally define split cuts and k-dimensional lattice cuts in the context

of polyhedral mixed-integer sets. In Section 3, we use the notion of well-ordered qosets to define a

dominance relationship between lattice cuts. In Section 4, we define lattice closures, and show that

the lattice closure of a rational polytope is a polytope, and we extend this result to unbounded

polyhedra in Section 5. In Section 6, we show that for any n > 1, there is a polyhedral mixed-

integer set with n integer variables and one continuous variable such that the integer hull cannot

be obtained by finitely iterating the k-dimensional lattice closure for k < n.

2 Preliminaries

For a given set X ⊆ Rn, we denote its convex hull by conv(X). Let P ⊆ Rn be a rational polyhedron

(all polyhedra in this paper are assumed to be rational). Let 0 ≤ l ≤ n and I = {1, . . . , l}. In what

follows, we will think of I as the index set of variables restricted to be integral. A set of the form

P I = {x ∈ P : xi ∈ Z, for i ∈ I}

is a polyhedral mixed-integer set, and we call P the linear relaxation of P I . Given (π, π0) ∈ Zn×Z,

where the last n− l components of π are zero, the split set associated with (π, π0) is defined to be

S(π, π0) = {x ∈ Rn :π0 < πTx < π0 + 1}.
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We refer to a valid inequality for conv(P \ S(π, π0)) to be a split cut for P derived from S(π, π0).

As π ∈ Zl × {0}n−l, it follows that

Zl × Rn−l ⊆ Rn \ S(π, π0),

and therefore split cuts derived from the associated split sets are valid for the mixed-integer set P I .

Let S1 = {S(π, π0) : π ∈ Zl × {0}n−l, π0 ∈ Z}; in other words S1 is the set of all possible split

sets in Rn that lead to valid inequalities for P I . Let S ⊆ S1. We define the split closure of P with

respect to S as

SC(P,S) =
⋂
S∈S

conv (P \ S) .

We call SC(P,S1) the split closure of P . Cook, Kannan and Schrijver [11] proved that SC(P,S1) =

SC(P,F) for some finite set F ⊂ S1. Later Andersen, Cornuéjols and Li [1] extended this result

by showing that the same result holds if one replaces S1 with an arbitrary set S ⊆ S1.

Given a positive integer t, we define a t-branch split set in Rn to be a set of the form ∪ti=1Si,

where Si ∈ S1. Note that we allow repetition of split sets in this definition. Let St denote the set

of all possible t-branch split sets in Rn, and let T ⊆ St. We define

Cl(P, T ) =
⋂
T∈T

conv (P \ T ) ,

and call Cl(P, T ) the t-branch split closure of P with respect to T . We proved in [19] that for any

T ⊆ St there exists a finite subset F of T such that for any T ∈ T , there is a T ′ ∈ F satisfying

conv(P \ T ′) ⊆ conv(P \ T ). In other words, given any family T of t-branch split sets, there is a

finite subfamily where cuts obtained from an element of T are dominated by cuts from an element

of the finite sublist. This result generalizes Averkov’s result [4] on split sets. Further, our result

above implies that the Cl(P, T ) is a polyhedron for any T ⊆ St, thus generalizing the split closure

result of Cook, Kannan and Schrijver.

Cook, Kannan and Schrijver [11] gave an alternative definition of the split closure which is

equivalent to the one above:

SC(P,S1) =
⋂

π∈Zl×{0}n−l

conv
(
{x ∈ P : πTx ∈ Z}

)
(2)

As discussed in the introduction, a natural way of generalizing this definition of the split closure is

as follows. Let Πk be the collection of all tuples of the form (π1, . . . , πk) where πi ∈ Zl×{0}n−l for

i = 1, . . . , k. As x ∈ Zl × Rn−l implies that πTi x is integral, it follows that for any Π̃ ⊆ Πk, P I is

contained in the set

Cl(P, Π̃) =
⋂

(π1,...,πk)∈Π̃

conv
(
{x ∈ P : πT1 x ∈ Z, . . . , πTk x ∈ Z}

)
.

Now consider k = 2 and let π1, π2 ∈ Zn and q be a nonzero integer. It is easy to see that

{x : πT1 x ∈ Z, πT2 x ∈ Z} = {x : πT1 x ∈ Z, (π2 + qπ1)Tx ∈ Z}.
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In other words, (π1, π2) does not uniquely define the set

{x ∈ Rn : πT1 x ∈ Z, πT2 x ∈ Z}. (3)

Furthermore, the set in (3) is a mixed-lattice, and we will next delve into basic lattice theory in

order to understand representability issues for a set of the form (3).

2.1 Lattices

For a linear subspace V of Rn, V ⊥ denotes the orthogonal complement of V , i.e., V ⊥ = {x ∈
Rn : xT y = 0 for all y ∈ V }. The projection of a set S ⊆ Rn onto V is ProjV (S) = {x ∈ V :

∃y ∈ V ⊥ such that x + y ∈ S}. Let {c1, . . . , cm} be a set of rational vectors in Rn. The span of

{c1, . . . , cm} is the linear subspace of Rn consisting of all linear combinations of the set of vectors:

span(c1, . . . , cm) = {x ∈ Rn : x = a1c1 + · · ·+ amcm, ai ∈ R}.

The lattice generated by {c1, . . . , cm} is the set of all integer linear combinations of these vectors:

Lat(c1, . . . , cm) = {x ∈ Rn : x = u1c1 + · · ·+ umcm, ui ∈ Z}.

Throughout this paper, we will be interested only in rational lattices and rational linear subspaces,

i.e., lattices and subspaces that are generated by rational vectors.

The dimension of the lattice L = Lat(c1, . . . , cm), denoted by dim(L), is equal to the dimension

of the linear subspace spanned by the vectors in L and there always exists exactly dim(L) linearly

independent vectors that generate the lattice L. Any set of linearly independent vectors in L that

generate L is called a basis. Every basis of a lattice has the same cardinality, and any lattice with

dimension two or more has infinitely many bases. If {b1, . . . , bk} is a basis of L, the matrix whose

columns are b1, . . . , bk is commonly called a basis matrix of L.

If L ⊆ Rn is a lattice, then its dual lattice is denoted by L∗ and is defined as

L∗ = {x ∈ span(L) : yTx ∈ Z for all y ∈ L},

and it has the property that

(L∗)∗ = L.

In the definition of L∗ above, it suffices to only consider a set of y ∈ L that generate L; i.e.,

Lat(b1, . . . , bk)
∗ = {x ∈ span(b1, . . . , bk) : bTi x ∈ Z for i = 1, . . . , k}.

If B is a basis matrix of L, then B(BTB)−1 is a basis matrix of L∗.

We define a mixed lattice in Rn as a set of the form L + span(L)⊥ where L is a lattice in

Rn. For a mixed lattice M = L + span(L)⊥, we say that L is the underlying lattice and M has

lattice-dimension dim(L).

For π ∈ Zn \ {0}, let

M(π) = {x ∈ Rn : πTx ∈ Z}.
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Note that M(π) is a rational mixed-lattice, as

M(π) = {x ∈ Rn : x = q
π

||π||2
+ v, q ∈ Z, v ∈ V }

where V = span(π)⊥ and ‖·‖ denotes the usual Euclidian norm. We say thatM(π) is a mixed-lattice

in Rn defined by π and its lattice-dimension is 1. We define

M1
n = {M(π) : π ∈ Zn \ {0}}

and

Mk
n =

{
∩kj=1 Mj : Mj ∈M1

n for all j ∈ {1, . . . , k}
}
.

Clearly all M(π) contain Zn and therefore any M ∈Mk
n contains Zn. Conversely, any mixed lattice

M ⊂ Rn of lattice dimension k that contains Zn is an element of Mk
n. Throughout the paper we

will use Mk instead of Mk
n when n is clear from the context.

Note that the expression in (2) can be written as⋂
π∈Zn\{0}

conv(P ∩M(π)).

Furthermore, the set in (3) can be written as M(π1)∩M(π2) and is a mixed-lattice. More generally,

any M = ∩ki=1M(πi) ∈Mk can be written as

M = L+ span(π1, . . . , πk)
⊥ where L = Lat(π1, . . . , πk)

∗.

Therefore the lattice-dimension of M is at most k (and may be strictly less than k). Note that

given any basis {π′1, . . . , π′k} of the lattice Lat(π1, . . . , πk), we can write M = ∩ki=1M(π′i) and

thereby obtain many alternate representations of the mixed lattice M .

2.2 Lattice cuts for mixed-integer sets

Given a polyhedron P ⊂ Rn and M⊆Mk, we define the closure of P with respect to M as

Cl(P,M) =
⋂

M∈M
conv(P ∩M).

Now consider a mixed-integer set

P I = {x ∈ Rn : x ∈ P, xi ∈ Z for i = 1, . . . , l}.

Any mixed-lattice M ∈ Mn leads to valid inequalities for P I if M ⊇ Zl × Rn−l in which case

M ∈ Ml as its lattice dimension can be at most l. Furthermore, if M = ∩ki=1M(πi), then the

last n − l components of πi need to be zero for all i = 1, . . . , k, i.e., πi ∈ Zl × {0}n−l. We refer to

Cl(P,Mk) as the k-dimensional lattice closure of P .
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2.3 Unimodular transformations

A linear function f : Rn → Rn is a unimodular transformation if it is one-to-one, invertible and

maps Zn to Zn. Any such function has the form f(x) = Ux where U is a unimodular matrix (i.e.,

an integral matrix with determinant ±1). Let M ∈ M1 be a mixed-lattice with lattice dimension

1, i.e, M = {x ∈ Rn :πTx ∈ Z} for some nonzero π ∈ Zn. Then

f(M) = {Ux ∈ Rn : πTx ∈ Z} = {Ux ∈ Rn : (πTU−1)Ux ∈ Z} = {x ∈ Rn : γTx ∈ Z},

where γT = πTU−1. Therefore f(M) is a mixed-lattice with lattice-dimension 1, and if M ′ =

∩kj=1Mj where Mj ∈ M1, then f(M ′) = ∩kj=1f(Mi) ∈ Mk. In other words, a unimodular

transformation maps a mixed lattice with lattice-dimension k to a mixed-lattice with the same

lattice-dimension. Affinely independent vectors stay affinely independent under invertible linear

transformations and consequently the dimension of a polyhedron stays the same after a unimod-

ular transformation. Furthermore, if B ⊂ Rn is a ball of radius r, then f(B) contains a ball of

radius r̄ = r/α, where α is the spectral norm of U−1.

If B is a basis matrix of a k-dimensional lattice L, and U is a k × k unimodular matrix, then

BU is also a basis matrix of L. Conversely, given any two basis matrices B1, B2 of a k-dimensional

lattice, there exists a k × k unimodular matrix U such that B1U = B2. More generally if the

columns of a matrix B generate a basis L, then so do the columns of BU where U is a unimodular

matrix; furthermore, there exists a unimodular matrix U ′ such that the first dim(L) columns of

BU ′ form a basis of L, and the remaining columns are zero. This final property can be used to

show that for any k-dimensional rational linear subspace V of Rn, there is a unimodular matrix U

such that f(x) = Ux maps V to the linear subspace Rk × {0}n−k. See [27, Chapter 4] for details

on unimodular matrices and lattices.

Given a rational lattice L, a nonzero vector in the lattice such that its Euclidean norm is the

smallest among all nonzero vectors in the lattice always exists, and it is called a shortest lattice

vector. Every lattice has a Minkowski-reduced basis; we do not define it formally here except to

note that one of the vectors in a Minkowski-reduced basis is a shortest lattice vector. Therefore, if

the columns of a matrix B generate a lattice L, then we can assume there is a unimodular matrix

U such that the first dim(L) columns of BU form a basis of L, and the first column of BU is a

shortest lattice vector L.

3 Well-ordered qosets

The main component of our proof technique involves establishing a dominance relationship between

the members ofMk with regards to their effect on a given polyhedron P . Some of the results we use

to this end are based on more general sets and ordering relationships among their members. In an

earlier paper [19] we used a similar approach to prove that the t-branch split closure is polyhedral

for any integer t > 0. We next review some related definitions and results from this earlier work

and relate it to lattice closures of polyhedra.
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For a given polyhedral set P and M ′,M ′′ ∈Mk, we say that M ′ dominates M ′′ on P if

conv(P ∩M ′) ⊆ conv(P ∩M ′′).

In other words, M ′ dominates M ′′ on P when all valid inequalities for P that can be derived using

M ′′ can also be derived using M ′. Consequently, given a subset of mixed lattices M ⊂ Mk if

M ′,M ′′ ∈ M, then all valid inequalities that can be derived using M can also be derived using

M\ {M ′′}.
We say that Mf ⊆M is a dominating subset for P , if for all M ∈M, there exists a M ′ ∈Mf

such that M ′ dominates M on P . Note that for such a dominating subset Mf ⊆M, it holds that

Cl(P,M) = Cl(P,Mf ).

Furthermore, if Mf is finite, then it follows that Cl(P,M) is a polyhedral set.

We use this concept of domination on a given polyhedral set P to define the following binary

relation �P on any pair of mixed lattices M,M ′ ∈Mk:

M ′ �P M if and only if conv(P ∩M ′) ⊆ conv(P ∩M). (4)

Note that the relation �P defines a quasi-order on Mk as it is (i) reflexive (i.e., M �P M for

all M ∈ Mk), and (ii) transitive (i.e., if M �P M ′ and M ′ �P M ′′, then M �P M ′′ for all

M,M ′,M ′′ ∈Mk). This relation however does not define a partial order as it is not antisymmetric

(i.e., M �P M ′ and M ′ �P M , does not necessarily imply M = M ′ for all M,M ′ ∈ Mk). The

binary relation �P together with Mk defines the quasi-ordered set (qoset) (Mk,�P ). We next

give an important definition related to general qosets.

Definition 1. Given a qoset (X,�), we say that Y is a dominating subset of X if Y ⊆ X and

for all x ∈ X, there exists y ∈ Y such that y � x. Furthermore, the qoset (X,�) is called fairly

well-ordered if X ′ has a finite dominating subset for each X ′ ⊆ X.

We proved the next result in [19] for fairly well-ordered qosets that have a common ground set

based on results from Higman [22].

Lemma 2. If (X,�1), . . . , (X,�m) are fairly well-ordered qosets, then there is a finite set Y ⊆ X
such that for all x ∈ X there exists y ∈ Y such that y �i x for all i = 1, . . . ,m.

Using Lemma 2 on fairly well-ordered qosets, we next prove a result on lattice closures of

polyhedra in the next section.

4 Lattice closure of bounded polyhedra

Given a collection of polyhedra Q1, . . . , Qp ⊆ Rn and a collection of mixed lattices M ⊆Mk
n, we

define the closure of P = ∪pi=1Qi with respect to M as follows:

Cl(P,M) =
⋂

M∈M
conv

(
P ∩M

)
8



Using Lemma 2, we next show that given a collection of polyhedra, if a collection of mixed lattices

have a finite dominating set for each polyhedra separately, then it has a finite dominating set for

the union of the polyhedra as well.

Lemma 3. Let Q1, . . . , Qp be a finite collection of polyhedra in Rn and let k ≥ 0. Let the qoset

(Mk
n,�Qi) be fairly well-ordered for i = 1, . . . , p. Then any subset of Mk

n has a finite dominating

subset for ∪pi=1Qi.

Proof. LetM be an arbitrary subset ofMk
n, and note that the qoset (M,�Qi) is fairly well-ordered

for i = 1, . . . , p. Applying Lemma 2 with these qosets, we see that M has a finite subset Mf such

that for each M in M, there is an M ′ ∈ Mf such that M ′ �Qi M for all i = 1, . . . , p. In other

words, conv(Qi ∩M ′) ⊆ conv(Qi ∩M) for i = 1, . . . , p. This, combined with the fact that

conv
(
(∪pi=1Qi) ∩M

)
= conv

(
∪pi=1 conv(Qi ∩M)

)
,

implies that

conv
(
(∪pi=1Qi) ∩M

′) ⊆ conv
(
(∪pi=1Qi) ∩M

)
.

Lemma 4. Let B ⊆ Rn be a full-dimensional ball with radius r > 0 and let M ∈Mk. If M∩B = ∅,
then M = M(π) ∩M ′′ for some M ′′ ∈Mk−1 and π ∈ Zn with ‖π‖ ≤ k/r.

Proof. Assume that M has lattice dimension m ≤ k. There exists integral vectors {π1, . . . , πm}
such that M = ∩mi=1M(πi) where {π1, . . . , πm} form a Minkowski-reduced basis of Lat(π1, . . . , πm).

Therefore, M = L+ V ⊥ where L = Lat(π1, . . . , πm)∗ and V = span(π1, . . . , πm).

Let B′ be the projection of B onto V and note that B′ is a ball with the same dimension as

V and has the same radius as B. As B ∩M = ∅, we have B′ ∩ L = ∅ and consequently a result

of Banaszczyk [6] (also see [7, Theorem 18.3,21.1]) implies that there exists a nonzero v ∈ L∗ such

that

max{vTx :x ∈ B′} −min{vTx :x ∈ B′} ≤ 2m.

If the maximum above is attained at a point x̄ ∈ B′, then the minimum is attained at the point

x̄− 2r
v

||v||
∈ B′

where r is the radius of the ball B and therefore of the ball B′. Consequently

vT 2r
v

||v||
= 2r||v|| ≤ 2m

and

||v|| ≤ m/r.

Remember that {π1, . . . , πm} form a Minkowski-reduced basis of L∗ = Lat(π1, . . . , πm) and therefore

π1 is a shortest nonzero vector in L∗. As v ∈ L∗, we have ‖π1‖ ≤ ‖v‖ ≤ m/r ≤ k/r. Setting

M ′′ = M(π2) ∩ . . .M(πm) ∈Mk−1 completes the proof.
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The following result was proved by Cook, Kannan and Schrijver for full-dimensional polyhedra,

and extended to pointed polyhedra that are not necessarily full-dimensional in [19, Lemma 14]. We

will use this technical lemma in the proof of our next result.

Lemma 5. Let P and Q be pointed polyhedra such that Q ⊂ P . Then there exists a constant r > 0

such that any inequality that cuts off a vertex of Q that lies in the relative interior of P excludes a

dim(P )−dimensional ball B ⊂ P of radius r.

Lemma 6. Let P ⊆ Rn be a polytope and M ′ ∈ Mk be a mixed-lattice. Let M ∈ Mk be such

that P ∩ M 6= ∅, and M is dominated by M ′ on all facets of P but not on P . Then there is

a constant κ, that depends only on P and M ′, such that there is an M̃ ∈ Mk that satisfies (i)

aff(P ) ∩ M = aff(P ) ∩ M̃ , (ii) M̃ = M(π) ∩ M2 where ‖π‖ ≤ κ and M2 ∈ Mk−1, and (iii)

P 6⊂M(π) .

Proof. Let Q = conv(P ∩M ′). If Q = ∅ then M ′ dominates all M ∈ Mk on P and therefore

the claim holds. We therefore only consider the case when Q is nonempty; in this case Q is a

polytope. As M ′ does not dominate M on P , P 6⊂ M and there exists a valid inequality cTx ≤ µ

for conv(P ∩M) that is not valid for Q. As Q is a polytope, max{cTx : x ∈ Q} is bounded and

has an extreme point solution x∗ ∈ Q. Note that the inequality cTx ≤ µ is violated by x∗.

For any facet F of P it is true that conv(P ∩W ) ∩ F = conv(F ∩W ) for any set W ⊂ Rn.

Therefore, as M ′ dominates M on any facet F of P , we have

conv(P ∩M ′) ∩ F = conv(F ∩M ′) ⊆ conv(F ∩M) = conv(P ∩M) ∩ F.

Therefore, cTx ≤ µ is valid for conv(F ∩M ′) for any facet F of P . Consequently, x∗ cannot be

contained in any facet of P , but must be in the relative interior of P . Applying Lemma 5 with

Q = conv(P ∩M ′), we conclude that there exists a ball B (of radius r for some fixed r > 0) in the

relative interior of P such that

B ⊆ {x ∈ P : cTx > µ},

and the dimension of B is the same as that of P . Therefore B ∩M = ∅ as cTx ≤ µ is valid for

conv(P ∩M).

If P is full-dimensional, then aff(P )∩M = M and as the ball B is also full dimensional, Lemma

4 implies that M = M(π) ∩M2 where ‖π‖ ≤ κ = k/r and M2 ∈ Mk−1. Clearly P 6⊂ M(π). We

next consider the case when P is not full-dimensional.

Let dim(P ) = t < n. In this case there exists a unimodular transformation σ(x) : Rn → Rn –

with σ(x) = Ux for a unimodular matrix U – which maps aff(P ) to the affine subspace {x ∈ Rn :

xt+1 = α1, . . . , xn = αn−t}, where α ∈ Rn−t is rational, and therefore α ∈ 1
∆Zn−t for some positive

integer ∆ (i.e., each component of α is an integral multiple of 1/∆). Note that both the unimodular

matrix U and the number ∆ depend on the polyhedron P . As B has the same dimension as P ,

we have σ(B) = E × {α}, where E ⊆ Rt contains a full-dimensional ball B̄ of radius r̄ > 0, and

r̄ depends on r and the unimodular matrix U , see Section 2.3. Let Mσ = σ(M) and P σ = σ(P );

then Mσ is a mixed lattice with the same lattice dimension as M . As σ(B ∩M) = σ(B)∩Mσ = ∅,
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we have (B̄ × {α}) ∩Mσ = ∅. In addition, as P ∩M 6= ∅, we have P σ ∩Mσ 6= ∅ and therefore,

there exists a point (y0, α) ∈Mσ where y0 ∈ Rt. Furthermore, as P 6⊂M , we have P σ 6⊂Mσ.

Let the lattice dimension of M be m ≤ k. Then there exist integral vectors {γ1, . . . , γm} such

that Mσ = ∩mi=1M(γi). As P σ ∩Mσ 6= ∅, we have P σ ∩M(γi) 6= ∅ for all i. Let γi =

(
µi
νi

)
where µi ∈ Zt and νi ∈ Zn−t. As P σ 6⊂ Mσ, we have P σ 6⊂ M(γj) for some j. Combined with

P σ ∩M(γj) 6= ∅, this implies that µj 6= 0. Therefore Lat(µ1, . . . , µm) is a lattice with dimension

at least one. Based on the discussion in Section 2.3, we can assume that µ1 is a shortest nonzero

vector in Lat(µ1, . . . , µm). Then,

(Rt × {α}) ∩Mσ = {x ∈ Rn : γT1 x ∈ Z, . . . , γTmx ∈ Z, xt+1 = α1, . . . , xn = αn−t}

= {y ∈ Rt :µT1 y + νT1 α ∈ Z, . . . , µTmy + νTmα ∈ Z} × {α}

= {y ∈ Rt :µT1 y + (ν1 + τ1)Tα ∈ Z, . . . , µTmy + (νm + τm)Tα ∈ Z} × {α}

where τi ∈ ∆Zt for i = 1, . . . ,m. The last equality follows from the fact that with τi defined as

above, τTi α is an integer. We choose τi such that νi + τi = (νi mod ∆) (where we apply the mod

operator componentwise). Consequently, each component of νi + τi is contained in {0, . . . ,∆− 1},
for i = 1, . . . ,m. Letting

M∆ =
m⋂
i=1

M(γ̃i), where γ̃i =

(
µi

νi mod ∆

)
for i = 1, . . . ,m,

we have

(Rt × {α}) ∩Mσ = (Rt × {α}) ∩M∆,

and therefore (y0, α) ∈M∆. Let βi = (νi mod ∆)Tα. Then (y, α) ∈M∆ if and only if µTi y+βi ∈ Z
for i = 1, . . . ,m, and therefore µTi y0 + βi ∈ Z. Consequently, for any y ∈ Rt we have

µTi y + βi ∈ Z ⇔ µTi y + βi − (µTi y0 + βi) ∈ Z

⇔ µTi (y − y0) ∈ Z

for i = 1, . . . ,m. Therefore we can write

(Rt × {α}) ∩M∆ =
(
y0 + {y ∈ Rt :µT1 y ∈ Z, . . . , µTmy ∈ Z}

)
× {α}

=
(
y0 + M̂

)
× {α}

where M̂ is a mixed lattice in Rt with M̂ = ∩mi=1M(µi).

As (B̄×{α})∩Mσ = ∅, we have B̄ ∩ (y0 + M̂) = ∅. Therefore (B̄− y0)∩ M̂ = ∅. As B̄− y0 is a

full-dimensional ball in Rt with radius r̄, Lemma 4 implies that M̂ = M(ρ)∩M ′ where M ′ ∈Mm−1

and ‖ρ‖ ≤ m/r̄. But ρ lies in Lat(µ1, . . . , µm) and µ1 is a shortest nonzero vector in this lattice,

and therefore ‖µ1‖ ≤ m/r̄.

11



Note that ‖ν1 mod ∆‖ ≤ ∆
√
n− t. As

γ̃1 =

(
µ1

ν1 mod ∆

)
,

it follows that there exists a constant κ̄ that depends only on P and M ′ such that ‖γ̃1‖ ≤ κ̄. As

P σ ∩M(γ̃1) 6= ∅ and µ1 6= 0, we have P σ 6⊂M(γ̃1). Let σ−1(x) stand for inverse transformation of

σ(x), i.e., σ−1(x) = U−1x. It is easy to see that

σ−1(M∆) =
m⋂
i=1

M(Uγ̃i).

As P σ 6⊂M(γ̃1) we also have P 6⊂M(Uγ̃1). Furthermore,

‖Uγ̃1‖ ≤ ‖U‖‖γ1‖ ≤ κ̄‖U‖.

Setting κ = κ̄‖U‖, we see that κ depends only on P and M ′ and M̃ = σ−1(M∆) has the desired

property with π = Uγ̃1 and M2 =
⋂m
i=2M(Uγ̃i).

Lemma 7. If P ⊂ Rn is a rational polytope and k is a positive integer, then conv(P ∩M) is a

polytope for all M ∈Mk.

Proof. Let the lattice-dimension of M be t ≤ k and M = ∩ti=1M(πi) where πi ∈ Zn for i = 1, . . . , t.

Then

P ∩M = {x ∈ P : πT1 x ∈ Z, . . . , πTt x ∈ Z}.

Let Di = {bα−i c, . . . , dα
+
i e} where α−i = min{πTi x :x ∈ P} and α+

i = max{πTi x :x ∈ P}. Therefore,

P ∩M = {x ∈ P : πT1 x ∈ D1, . . . , π
T
t x ∈ Dt}

and consequently P ∩M is the finite union of bounded polyhedra implying that conv(P ∩M) is a

bounded polyhedron.

We now prove the main result of this section.

Theorem 1. Let P be a rational polytope and let M ⊆ Mk where k is a positive integer. Then

the set M has a finite dominating subset for P . Consequently, Cl(P,M) is a polytope.

Proof. If P ∩M = ∅ for some M ∈ M, then the result trivially follows as the set Mf = {M} is a

finite dominating subset ofM for P . We therefore assume that P ∩M 6= ∅ for all M ∈M. We will

prove the result by showing that (Mk,�P ) is fairly well-ordered by induction on the dimension of

P .

Let M ⊆ Mk. If dim(P ) = 0, then P consists of a single point. Then for any element M

of M, we have P ∩M = P , and the set Mf = {M} is a finite dominating subset of M for P .

Let dim(P ) > 0, and assume that for all polytopes Q ⊆ Rn with dim(Q) < dim(P ), the qoset

(Mk,�Q) is fairly well-ordered. Let F1, . . . , FN be the facets of P . As dim(Fi) < dim(P ), the

12



qosets (M,�F1), . . . , (M,�FN
) are fairly well-ordered. Lemma 2 implies that there exists a finite

set Mf = {M1, . . . ,Mp} ⊆ M with the following property: for all M ∈ M there exists Mi ∈ Mf

such that for all j = 1, . . . , N we have

Mi �Fj M.

In other words, the elements of Mf are the dominating mixed-integer lattices in M for all facets

of P simultaneously. Applying Lemma 6 with the polytope P and the mixed-lattice Mi we obtain

a number κi for i ∈ {1, . . . , p}, bounding the norm of the π vector described in the lemma. Let

ω = maxi{κi} and let M̂ ⊆ M consist of elements of M that are not dominated on P by an

element of Mf . Then, for any M ∈ M̂, there exists M ′ ∈Mk−1 and ‖π‖ ≤ ω such that P ∩M =

P ∩ (M(π) ∩M ′). Picking one such π and M ′ for each M ∈ M̂, we define the following functions

g(M) = M ′, and h(M) = π for M ∈ M̂.

For any fixed π ∈ Zn with ‖π‖ ≤ ω, consider the set

Mπ = {M ∈ M̂ : h(M) = π}.

If Mπ 6= ∅, then for any M ∈Mπ, we have

P ∩M = (P ∩M(π)) ∩ g(M).

As P is a polytope not contained in M(π), P ∩M(π) is the union of a finite number of polytopes,

say Q1, . . . , Ql, where dim(Qi) < dim(P ). By the induction hypothesis, the qoset (Mk−1,�Qi) is

fairly well-ordered for i = 1, . . . , l, and therefore Lemma 3 implies that the set {g(M) : M ∈ Mπ}
has a finite dominating subset, say M′π, for (P ∩M(π)) = ∪li=1Qi. For each element M ′ of M′π
we now choose one M ∈Mπ such that g(M) = M ′ to obtain a finite subsetMπ,f ofMπ. Clearly,

Mπ,f is a dominating subset of Mπ for P .

As each M ∈ M is either dominated by some element of Mf on P , or M ∈ Mπ for some π

with ‖π‖ ≤ ω, we have shown that

Mf ∪
( ⋃
‖π‖≤ω

Mπ,f

)
is a finite dominating subset of M for P .

5 Lattice closure of general polyhedra

In this section we extend our results to unbounded polyhedra. If a rational polyhedron P is

unbounded then by the Minkowski-Weyl theorem, P = Q+ C where Q is a rational polytope and

C is a rational polyhedral cone different from {0}, see [10]. Without loss of generality, we assume

that C = {
∑t

i=1 λiri : λi ≥ 0 for i = 1, . . . t} where r1, . . . , rt are integral vectors in Rn. Let

Q̄ = Q+

{ t∑
i=1

λiri : 0 ≤ λi ≤ 1 for i = 1, . . . t

}
, (5)
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and note that P = Q̄ + C. Let X = Zl × Rn−l for some positive l ≤ n. By Meyer’s Theorem, if

P ∩X is nonempty, then

conv(P ∩X) = conv(Q̄ ∩X) + C,

see [10]. In other words, the mixed-integer hull of P can essentially be obtained from the mixed-

integer hull of Q̄. We next observe that Meyer’s result holds for general mixed-lattices and not just

for X = Zl × Rn−l. It is possible to show this directly by applying Meyer’s result to an extended

formulation of P where the new variables are declared to be integral and then projecting down

the extended formulation to the space of the original variables. Instead, we present a direct proof

below.

Lemma 8. Let P ⊆ Rn be an unbounded rational polyhedron, such that its Minkowski-Weyl de-

composition is P = Q+C and let Q̄ be defined as in (5). For any M ∈Mk, such that P ∩M 6= ∅

conv(P ∩M) = conv(Q̄ ∩M) + C.

Proof. We first show that P ∩M = (Q̄ ∩M) + C̄ where

C̄ =

{ t∑
i=1

λiri :λi ∈ Z+ for i = 1, . . . t

}
.

Let x ∈ P ∩M . Then, as P = Q+ C, there exists q ∈ Q and λ1, . . . , λt ≥ 0 such that

x = q +
t∑
i=1

λiri.

Thus, we can write

x =

(
q +

t∑
i=1

(λi − bλic)ri
)

+
t∑
i=1

bλicri.

This implies that x = q̄ + c̄, where q̄ ∈ Q̄ and c̄ ∈ C̄. As C̄ ⊆ Zn ⊆ M , we have c̄ ∈ M .

Furthermore, as x ∈ M and M is a mixed-integer lattice we also have q̄ ∈ M . Therefore, we

conclude that x ∈ (Q̄ ∩M) + C̄.

Now assume x ∈ (Q̄ ∩M) + C̄. Then x = q̄ + c̄ for some q̄ ∈ Q̄ ∩M and c̄ ∈ C̄. As q̄ ∈M and

C̄ ⊆ M , we observe that x ∈ M . On the other hand, Q̄ ⊆ P and C̄ ⊆ C. Since C is the recession

cone of P , we conclude that x ∈ P . Therefore, x ∈ P ∩M .

Therefore P ∩M = (Q̄ ∩M) + C̄. Taking convex hulls in both sides we obtain conv(P ∩M) =

conv(Q̄ ∩M) + conv(C̄). As C = conv(C̄), the proof is complete.

Notice that Lemma 5 implies that if Q̄∩M = ∅ then P ∩M = ∅. As Q ⊂ P , the reverse is also

true and therefore we observe that P ∩M = ∅ if and only if Q̄ ∩M = ∅. Consequently, we have

the following corollary of Lemma 5.

Corollary 9. Let P ∈ Rn be an unbounded rational polyhedron with Minkowski-Weyl decomposition

P = Q + C and let Q̄ be defined as in (5). If M ⊆ Mk then Cl(P,M) = ∅ if and only if

Cl(Q̄,M) = ∅. Furthermore, if Cl(P,M) 6= ∅ then Cl(P,M) = Cl(Q̄,M) + C.
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We now prove the main result of this paper.

Theorem 2. Let P be a rational polyhedron and let M⊆Mk where k is a positive integer. Then

the set M has a finite dominating subset for P . Consequently, Cl(P,M) is a polyhedron.

Proof. As the result holds for bounded polyhedra, we only consider the case when P is unbounded.

Furthermore, if P ∩M = ∅ for some M ∈M, then {M} is a finite dominating subset and the result

follows. We therefore assume that P ∩M 6= ∅ for all M ∈M.

Assume P has the Minkowski-Weyl decomposition P = Q + C and let Q̄ be defined as in (5).

As P ∩M 6= ∅ for M ∈ M, it follows from Lemma 8 that Q̄ ∩M 6= ∅ for all M ∈ M. Let M1,M2

be two arbitrary elements in M. Lemma 8 implies that conv(P ∩Mi) = conv(Q̄ ∩Mi) + C for

i = 1, 2. If M1 dominates M2 on Q̄ then

conv(Q̄ ∩M1) ⊆ conv(Q̄ ∩M2)⇒ conv(P ∩M1) ⊆ conv(P ∩M2).

As Q̄ is a polytope, Theorem 1 implies that M has a finite dominating subset for Q̄, say

Mf ⊆ M. Every element M ∈ M is dominated by an element of M ′ ∈ Mf on Q, and therefore

M is dominated by M ′ on P . This implies that Mf is a finite dominating subset of M for P and

Cl(P,M) = Cl(P,Mf ).

6 Rank

Consider a mixed-integer set P I = {x ∈ Rn : x ∈ P, xi ∈ Z for i = 1, . . . , k} where P ⊂ Rn is a

given polyhedron and 0 ≤ k ≤ n. Let M = {M ∈ Mk : M ⊇ Zk × Rn−k}. Any mixed-lattice

M ∈M leads to valid inequalities for P I and the closure of P with respect to M

Cl(P,M) =
⋂

M∈M
conv(P ∩M) = P I

as Zk × Rn−k ∈ M. Now consider M ∩Mk−1, the subset of mixed-lattices in M with lattice

dimension at most k − 1. In this section we will show that there exists a polyhedron P for which

Clq(P,M∩Mk−1) 6= P I ,

for any finite q > 0. Here for X ⊆M, we define Cl1(P,X) = Cl(P,X) and

Clq(P,X) = Cl(Clq−1(P,X), X)

for q > 1. In other words, we will show that applying the closure operation repeatedly does not

give the set P I if one restricts the mixed lattices to have lattice dimension less than the number of

integer variables in the set P I .
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6.1 The sets S and P (h)

Let e1, . . . , en be the n unit vectors in Rn. Let S be an n-dimensional simplex of the following form:

S = {x ∈ Rn :
n∑
i=1

xi ≤ n, xi ≥ 0 for i = 1, . . . , n}.

It is well-known that S does not contain any integer points in its interior. Furthermore, the vertices

of S are 0 and ne1, . . . , nen, which are all integral, and all the inequalities in the definition of S

above are facet-defining.

Remember that given a point x∗ ∈ Rn and a hyperplane H = {x ∈ Rn : aTx = b}, the Euclidean

distance of x∗ from H is |aTx∗ − b|/||a||. Note that the point

p = (1/2, . . . , 1/2) ∈ S (6)

has distance 1/2 from the facets of S defined by the nonnegativity inequalities and distance
√
n/2

from the facet defined by
∑n

i=1 xi ≤ n. For x ∈ S, let d(x) denote the distance of x from the closest

facet of S. More precisely,

d(x) = min{x1, . . . , xn, (n−
n∑
i=1

xi)/
√
n}.

Using this notation, d(p) = 1/2 for all n ≥ 1.

For any positive real number h, consider the set

P (h) = conv
(
S × {0} , {(p, h)}

)
⊂ Rn+1

and let P (h)I = P (h) ∩ (Zn × R). As p lies in the interior of S it is easy to see that for any h > 0

P (h)I = (S ∩ Zn)× {0} and conv(P (h)I) = S × {0}.

6.2 Lattice rank of P (h)

Let

M = {M ∈Mn−1
n+1 : M ⊇ Zn × R}. (7)

We will show that Clq(P (1),M) 6= P (1)I for any finite q ≥ 1. We will prove this by showing that

for any q ≥ 1 there exists a point (p, γ) ∈ P (1) with γ > 0 in Clq(P (1),M). We will need the

following two lemmas to prove this fact.

Lemma 10. Let x ∈ S and h > 0. If d(x) ≥ γ, then (x, 2γh/n) ∈ P (h).

Proof. If γ = 0 the claim holds trivially, therefore we will assume γ > 0 and consequently x is

contained in the interior of S. Let v0 = 0 and vi = nei for i = 1, . . . , n. Then {v0, . . . , vn} is the

set of vertices of S, and x =
∑n

i=0 βivi where
∑n

i=0 βi = 1 and βi ≥ 0 for i = 0, . . . , n. Clearly,
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xi = βin. As d(x) ≥ γ, for all i = 1, . . . , n we have xi ≥ γ and therefore βi ≥ γ/n. Furthermore, as

(n−
∑n

i=1 xi)/
√
n ≥ γ, we have

β0 = 1−
n∑
i=1

βi = 1− 1

n

n∑
i=1

xi = (n−
n∑
i=1

xi)/n ≥ γ/
√
n.

The point p ∈ S defined in equation (6) can be written as p =
∑n

i=0 αivi where α0 = 1/2,

αi = 1/2n for i = 1, . . . , n and
∑n

i=0 αi = 1. Let τ = 2γ/n. As βi ≥ γ/n and αi ≤ 1/2 we have

βi ≥ ταi for i = 0, . . . , n. Then

x =

n∑
i=0

βivi + τ(p−
n∑
i=0

αivi) = τp+

n∑
i=0

(βi − ταi)vi.

Note that τ > 0 and βi − ταi ≥ 0 for all i and τ +
∑n

i=0(βi − ταi) = 1. In other words, x is a

convex combination of p and the vertices of S. Then, using the same multipliers we see that the

point

(x, τh) = τ(p, h) +
n∑
i=0

(βi − ταi)(vi, 0)

is in P (h) and the result follows.

Lemma 11. Let n ≥ 2 be a fixed integer. Then for any v ∈ Rn \ {0}, there exists a point

x ∈ S ∩ (Zn + span(v)) such that d(x) ≥ 1/2n.

Proof. Let v = (v1, . . . , vn). We can assume that |vn| ≥ |vi| for i = 1, . . . , n − 1 (by renumbering

variables if necessary). Furthermore, as multiplying v by a nonzero scalar does not change the set

span(v), we can assume that ||v||1 = 1 and that vn > 0. Then

n∑
i=1

|vi| = 1⇒ 1 ≥ |vn| = vn ≥ 1/n.

Now consider the point x̄ = (1, . . . , 1, 0) that lies on the facet of S defined by xn ≥ 0. It strictly

satisfies the remaining facet-defining inequalities of S as (i) it has a distance of one from the

hyperplanes xi = 0 for i = 1, . . . , n − 1 associated with the non-negativity facets and (ii) it has a

distance of 1/
√
n from the hyperplane associated with

∑
i xi ≤ n. Furthermore, as vn > 0, it follows

that x̄+ αv strictly lies inside S for small enough α > 0 and also belongs to Zn + span(v). For an

α > 0 such that x̄+αv ∈ P , the distance of x̄+αv from the hyperplane xi = 0 for i = 1, . . . , n− 1

equals its ith component, which equals

1 + αvi ≥ 1− α|vi| ≥ 1− α,

and the distance from
∑n

i=1 xi = n equals

n−
∑n

i=1(x̄+ αv)i√
n

=
1− α

∑n
i=1 vi√
n

≥ 1− α||v||1√
n

=
1− α√
n
.
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Finally the distance of x̄+ αv from the hyperplane xn = 0 equals

αvn ≥
α

n
.

Therefore if we set α = 1/2, then the distance of x̄+ αv from any of the facets of S is at least

min{1

2
,

1

2
√
n
,

1

2n
} =

1

2n
.

The last ingredient we need for our result is the so-called Height Lemma [17] which shows that

intersection of an arbitrary number of pyramids sharing the same base is a full-dimensional object

provided that their apexes have bounded norm. In the statement below, the points s1, s2, . . . , sn

form the base of the pyramids and the points in U are the apexes.

Lemma 12 (Height Lemma[17]). Let s1, s2, . . . , sm ∈ Rm be affinely independent points in the

hyperplane {x ∈ Rm : ax = b} where a ∈ Rm \ {0} and b ∈ R. Let b′ > b and κ > 0 be

such that U = {x ∈ Rm : ax ≥ b′, ‖x‖ ≤ κ} is non-empty. Then there exists a point x in⋂
q∈U conv(s1, s2, . . . , sm, q) satisfying the strict inequality ax > b.

Theorem 3. Let P = P (1) and M = {M ∈Mn−1
n+1 : M ⊇ Zn×R}. Then Clq(P,M) 6= P I for any

q ≥ 1.

Proof. Recall that conv(P I) = S × {0}. We will show that for any h > 0, there is an h′ > 0 such

that Cl(P (h),M) contains P (h′). This implies that for any t ≥ 1, Clt(P,M) ⊇ P (h) for some

h > 0 and the result follows.

Let M = ∩n−1
i=1 M(πi) ∈ M. As M ∈ M, we have Zn × R ⊂ M , and therefore, πi =

(
π′i
0

)
where π′i ∈ Zn for i = 1, . . . , n− 1. As span(π′1, . . . , π

′
n−1) has dimension strictly less than n, there

exists a nonzero vector v ∈ Rn such that v is orthogonal to π′1, . . . , π
′
n−1. As (π′i)

T v = 0 for all

i = 1, . . . , n−1, it follows that for all y ∈ Zn and α ∈ R, the point y+αv satisfies (π′i)
T (y+αv) ∈ Z

for i = 1, . . . , n−1. Therefore, (Zn+span(v))×R is contained in M . In addition, as S×{0} ⊆ P (h)

we have

(S ∩ (Zn + span(v)))× {0} ⊆ P (h) ∩M.

Therefore, by Lemma 11, there is a point xM ∈ S ∩ (Zn + span(v)) such that d(xM ) ≥ 1/2n. Then,

we can use Lemma 10 (by letting γ in the Lemma to 1/2n) to conclude that (xM , h/n2) ∈ P (h).

As xM ∈ S ∩ (Zn + span(v)), we have (xM , 0) ∈ P (h) ∩M , and therefore (xM , h/n2) ∈ P (h) ∩M .

Let pM = (xM , h/n2). Therefore, for each M ∈ M, we have constructed a point pM ∈ P (h) ∩M
with pMn+1 = h/n2.

Recall that S is an integral polyhedron and S × {0} = conv(P I). Therefore conv(P (h) ∩M) ⊇
conv(P I) contains S ×{0} as well as the point pM . We can now apply Lemma 12 with m = n+ 1,

and s1, . . . , sm standing for the vertices of S×{0}, a = em+1, b = 0, and b′ = h/n2. As pM ∈ P (h),
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it is contained in a bounded set of the form U for all M ∈ M. We can therefore infer that there

exists a point

x̄ ∈
⋂

M∈M
conv(s1, s2, . . . , sm, pM ) ⊆

⋂
M∈M

conv(P (h) ∩M)

such that x̄m+1 > 0. Note that the point (x̄1, . . . , x̄m) must be contained in the interior of S as

x̄ ∈ P (h). Therefore, for some h′ > 0, the point

(p, h′) ∈ conv({x̄, s1, . . . , sm}) ⊆ Cl(P (h),M)

where p is defined in equation (6). But as the convex hull of s1, . . . , sm and (p, h′) equals P (h′), we

have Cl(P (h),M) ⊇ P (h′). The result follows.

6.3 t-branch split cuts

In [16], Dash and Günlük show that the t-branch split closure of P (1) does not give the convex

hull of integer points after a finite number of iterations if t < n. In this section we show that their

result follows from Theorem 3.

For a given mixed-integer set P I = {x ∈ Rn : x ∈ P, xi ∈ Z for i = 1, . . . , l} where P ⊂ Rn is

a polyhedron, recall that a t-branch split cut is a valid inequality for P \ ∪ti=1Si where Si = {x ∈
Rn : βi < πTi x < βi + 1} for some πi ∈ Zl × {0}n−l and βi ∈ Z, for all i = 1, . . . , t. Note that

P \ ∪ti=1Si = P ∩
(
∩ti=1 (Rn \ Si)

)
Observe that

Rn \ Si ⊃ {x ∈ Rn : πTi x ∈ Z} = M(πi).

Consequently,

P \ ∪ti=1Si ⊃ P ∩
(
∩ti=1 M(πi)

)
= P ∩M

for some mixed lattice M that contains Zl × Rn−l.
The (n− 1)-branch split closure of P = P (1) defined in the previous section is

Cl(P, T ) =
⋂
T∈T

conv(P \ T )

where T is the collection of all T = ∪n−1
i=1 Si where Si ∈ S1 for i = 1, . . . , n− 1. Let M be defined

as in equation (7). As we have already observed that P \T ⊃ P ∩M for some M ∈M we conclude

that

Cl(P, T ) ⊃ Cl(P,M).

Furthermore, the inclusion above also holds after applying the closure operator repeatedly, and

consequently we have the following corollary to Theorem 3:

Corollary 13. Let P = P (1). Then Clq(P, T ) 6= P I for any q ≥ 1.

In the next section we extend this result to more general sets.
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6.4 Lattice-free cuts

A set F ⊂ Rk is called a strictly lattice-free set for the integer lattice Zk if F ∩Zk = ∅. For a given

mixed-integer set P I = {x ∈ Rn : x ∈ P, xi ∈ Z for i = 1, . . . , k} where P ⊂ Rn is a polyhedron,

clearly

conv(P I) ⊆ conv(P \ (F × Rn−k)) ⊆ P.

Consequently, starting with [5, 3], there has been a significant amount of recent research studying

lattice-free sets to generate valid inequalities for mixed-integer sets. We next present a result that

relates cuts from unbounded strictly lattice-free sets that contain a rational line to lattice cuts. We

then observe that P (1) has unbounded rank with respect to cuts from such lattice-free sets.

Proposition 14. Let P ⊂ Rn be a polyhedron and let F ⊂ Rk be such that F ∩ Zk = ∅. If the

lineality space of F contains a non-zero rational vector, then P \ (F × Rn−k) ⊇ P ∩M ′ for some

mixed lattice M ′ ∈M = {M ∈Mk−1
n : M ⊃ Zk × Rn−k}.

Proof. As the lineality space of F contains a non-zero rational vector, we can assume that there

is one with integral components that are coprime. Let v be such a vector. Then the set F =

Q + span(v) for some Q ⊂ span(v)⊥. Note that if F ∩ (Zk + span(v)) 6= ∅, then there exists a

point p ∈ F such that p = z + αv for some z ∈ Zk and α ∈ R. In this case, the integral point

z = (p − αv) ∈ F , a contradiction. Consequently, F ∩ (Zk + span(v)) = ∅. Now consider a basis

{b1, . . . , bk} of the lattice Zk such that bk = v. The projection of the lattice Zk onto span(v)⊥ is

a lattice of dimension k − 1 with basis {b′1, . . . , b′k−1} where b′i denotes the projection of bi onto

span(v)⊥. Call this lattice L. Then Zk + span(v) = L + span(v) and thus F ∩ (L + span(v)) = ∅.
Furthermore, note that L + span(v) is a mixed-lattice of lattice dimension k − 1 that contains Zk

and therefore it is an element of Mk−1
k . Consequently

P \ (F × Rn−k) ⊇ P ∩ ((L+ span(v)× Rn−k) = P ∩M ′

where M ′ ∈M.

Using Theorem 3 we get the following corollary to the previous result.

Corollary 15. Let L be the set of all strictly lattice free sets in Rn that have a lineality space

containing a non-zero rational vector. Let P (1) be defined as in Section 6.1 and

Cl(P (1),L) =
⋂
F∈L

conv(P (1) \ (F × R)).

Then, Clq(P (1),L) 6= P (1)I for any q ≥ 1.

Note that the above result still holds when lattice-free irrational hyperplanes are included in the

set L. This is due to the fact that if H is such a hyperplane, its lineality space contains a non-zero

vector v (which may be irrational) and therefore Rn \H ⊃ Zn + span(v). Therefore, Lemma 11 as

well as the proof of Theorem 3 still apply.

In addition, it is not hard to see that Corollary 13 is a special case of Corollary 15 as each (n−1)-

branch split set contained in T is a strictly lattice-free set and has a lineality space containing a

non-zero rational vector.
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7 Concluding remarks

Dash, Dey and Günlük [15] studied 2-dimensional lattice cuts. In this paper, we generalized this

idea and studied k-dimensional lattice cuts for any positive k. In [15], it was shown that the family

of 2-dimensional lattice cuts is the same as the family of crooked cross cuts, and thus the respective

closures are the same object. Therefore, our main result showing that the k-dimensional lattice

closure of a rational polyhedron is a polyhedron implies the same result for crooked cross closures.

We also showed that iterating the k-dimensional lattice closure (for a particular polyhedron)

finitely many times does not yield the integer hull. This result is quite strong and it implies a

number of previous results. It implies a similar result for split cuts proved by Cook, Kannan and

Schrijver [11], and a similar result for t-branch split cuts proved in [16].

Any full-dimensional, maximal, convex lattice-free set that is unbounded is known to be a

polyhedron where the recession cone equals its lineality space and is rational [25, 9]. There is a lot

of recent work on deriving valid inequalities for polyhedral mixed-integer sets of the form P I (in

the previous section) by subtracting the interiors of maximal convex lattice-free sets from P and

convexifying the remaining points.

Remark 16. Our result in the previous section implies that finitely many iterations of the closure

of P (1) with respect to the family of all unbounded, full-dimensional, maximal, convex lattice-free

sets do not yield the integer hull of P (1).

In earlier discussions, Santanu S. Dey suggested obtaining valid inequalities for a polyhedral

mixed-integer set P I = P ∩(Zl×Rn−l) from lower dimensional maximal, convex, lattice-free sets as

follows. Let πi ∈ Zl × {0}n−l for i = 1, . . . , k where k < l. Let x̄ ∈ P I , then z̄ = (πT1 x̄, . . . , π
T
k x̄) ∈

Zk, and consequently z̄ is not contained in the interior of any lattice-free set in Rk. Let T ⊂ Rk be

a maximal, convex lattice-free set, for example T can be a lattice-free triangle when k = 2. Any

linear inequality valid for conv(P \ C), where

C = {x ∈ Rn : (πT1 x, . . . , π
T
k x) ∈ T},

is valid for P I . As k < l, there exists a rational vector v ∈ Rl × {0}n−l orthogonal to all πj for

j = 1, . . . , k and therefore C is an unbounded lattice-free set in Rn (with respect to the mixed-

lattice Zl × Rn−l). Therefore, the remark above implies that such inequalities cannot be iterated

finitely many times to obtain conv(P (1)I) when k < l. For example, for n = 3 and k = 2, finitely

many iterations of the closure of P (1) with respect to triangle-inequalities do not give conv(P (1)I).
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set, Mathematical Programming 145 (2014), 327–348.
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