
RC25637 (WAT1611-043) November 10, 2016
Mathematics

Research Division
Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

IBM Research Report

Faster Algorithms for Security Games on Matroids

Mourad Baïou
CNRS and Université Clermont II

Campus des Cézeaux, BP 125, 63173 Aubière Cedex
France

Francisco Barahona
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598 USA

Faster algorithms for security games on matroids

Mourad Bäıou1 and Francisco Barahona2

1 CNRS and Université Clermont II, Campus des Cézeaux, BP 125, 63173 Aubière
Cedex, France

2 IBM T. J. Watson research Center, PO Box 218, Yorktown Heights, NY 10589,
USA

Abstract. Given a matroid M defined by an independence oracle on
a ground set E, the Matroid Base Game is played by two players: the
defender chooses a basis B and (simultaneously) the attacker chooses an
element e ∈ E. The attacker incurs in a cost c(e) for choosing an element
e, and if e ∈ B then there is a probability p(e) that the attacker will
detect the defender. The defender has to find a bases-selection strategy
that minimizes the average probability of being detected. The attacker
has to find a probabilistic selection strategy that maximizes the average
detection probability minus its average cost.
An algorithm to compute Nash-equilibrium mixed strategies was given
in [21]. Its time complexity is O(|E|10IO), where IO is the time that it
takes one call to the independence oracle. Here we present an algorithm
that requires O(|E|6IO) time. For graphic matroids, i.e., when the de-
fender chooses a spanning tree in a graph G = (V,E), and the attacker
chooses an edge, we give an algorithm that takes O(|V |5) time. This
type of game is extended to common bases of two matroids. For this
case we give a strongly polynomial algorithm, settling a question that
was left open in [21]. We also treat the case when the defender chooses
a rooted arborescence in a directed graph D = (V,A), and the attacker
chooses an arc, we use this structure to give an algorithm that requires
O(|V ||A |3 log(|V |2/|A |) log |A |) time.

1 Introduction

Given a matroid M defined by an independence oracle on a ground set E, the
Matroid Base Game is played by two players: the defender chooses a basis B
and (simultaneously) the attacker chooses an element e ∈ E. The attacker pays
a penalty c(e) for choosing an element e, this might come from a cost or from
the degree of difficulty of choosing the different elements. If e ∈ B then there
is a probability p(e) that the attacker will detect the defender. The defender
has to find a bases-selection strategy that minimizes the average probability of
being detected. The attacker has to find a probabilistic selection strategy that
maximizes the average detection probability minus its average penalty. This type
of games was studied in [12] for graphic matroids, i.e., when the defender chooses
a spanning tree in a graph, and the attacker chooses an edge. The case when M
is a uniform matroid was studied in [14], and the general case was studied in [21].

This type of games falls in the category of Security Games, here the detection
probability gives a measure of the security of the system. Also the structure of
the solution gives insight on the behavior of the players. See [1], [11], [12], [14],
and [21] for applications to Network Security and Steganography.

In a recent paper [21], an algorithm to compute Nash-equilibrium mixed
strategies was given. Its time complexity is O(|E|10IO), where IO is the time
that it takes one call to the independence oracle. Here we present an algorithm
that requires O(|E|6IO) time. For graphic matroids, i.e., when the game is played
in a graph G = (V,E), a characterization of the Nash-equilibrium was given in
[12], but no algorithm was presented. For this case we give an algorithm that
takes O(|V |5) time, to the best of our knowledge this is the first algorithm that
takes advantage of the graphic structure. Also for the graphic case, the special
case when p(e) = 1 and c(e) = 0, for each edge e, was studied in [1] and [11].
Algorithms to compute the attacker’s strategy are given in these two papers, but
the computation of the defender’s strategy was left open.

This game is extended in [21] to the case when the defender chooses a common
basis of two matroids. A (weakly) polynomial time algorithm is given, leaving
open the question of whether it exists a strongly polynomial time algorithm.
Here we give a strongly polynomial algorithm for this case. Then we study the
game where the defender chooses a rooted arborescence in a directed graph,
and the attacker chooses an arc. We take advantage of this structure to give
an algorithm faster than the straightforward application of the common basis
algorithm.

This paper is organized as follows. In Section 2 we give some definitions,
notation, and review results on matroid polyhedra and Newton’s method for
ratio optimization. In Section 3 we treat the Matroid Base Game. Section 4
is devoted to graphic matroids. In Section 5 we treat common bases of two
matroids. Rooted arborescences are treated in the Appendix.

2 Preliminaries

Here we define some notation, and review some results to be used in the subse-
quent sections. For a matroid M with ground set E, we use m to denote m = |E|.
Its rank function r gives for each set S ⊆ E, the maximum cardinality of an in-
dependent set included in S. A function f : 2E → IR is called submodular if
f(S ∪ T) + f(S ∩ T) ≤ f(S) + f(T), for all S, T ⊆ E. The rank function is sub-
modular. For a vector y : E → IR, and S ⊆ E, we use y(S) to denote

∑
e∈S y(e).

For F ⊆ E the incidence vector of F , xF : E → IR, is defined by xF (e) = 1 if
e ∈ F , and xF (e) = 0 otherwise. For A ⊆ E we use Ā to denote E \A.

For a graph G = (V,E), and a family {S1, . . . , Sp} of disjoint subsets of V ,
we denote by δ(S1, . . . , Sp) the set of edges with both endpoints in different sets
{Si}. We use n to denote |V | and m to denote |E|.

For a directed graph D = (V,A), and S ⊂ V , we use δ+(S) to denote
δ+(S) = {(i, j) ∈ A | i ∈ S, j /∈ S}. Also we use n to denote |V | and m to
denote |A |.

2.1 Matroid Polyhedra

Here we review some classic results about polyhedra associated with matroids.
Let M be a matroid with ground set E, let P (M) be the convex hull of incidence
vectors of independent sets of M , and let r denote the rank function of M .
Edmonds [6] proved the following two theorems.

Theorem 1 The polytope P (M) is
P (M) = {x |x ≥ 0, x(S) ≤ r(S) for all S ⊆ E}.

Theorem 2 For u ∈ IRE+,
max{x(E) |x ∈ P (M), x ≤ u} = min{r(A) + u(Ā) |A ⊆ E}.

For the graphic case, it follows from a theorem of Tutte & Nash-Williams
[22,16] that the dominant of the convex hull of incidence vectors of spanning
trees of a graph is described as below.

Theorem 3 The dominant of the spanning tree polytope of a graph G = (V,E)
is defined by
x(δ(S1, . . . , Sk)) ≥ k − 1 for all partitions {S1, . . . , Sk} of V, and x ≥ 0.

Suppose now that M1 and M2 are two matroids on the same ground set
E. Let r1 and r2 be their respective rank functions. Let P be the convex hull
of incidence vectors of common independent sets. For S ⊆ E, let r(S) be the
maximum cardinality of a common independent set included in S. Edmonds [6]
proved the following two theorems.

Theorem 4 The polytope P is
P = {x |x ≥ 0, x(S) ≤ r1(S), x(S) ≤ r2(S) for all S ⊆ E}.

Theorem 5 For u ∈ IRE+,
max{x(E) |x ∈ P, x ≤ u} = min{r(A) + u(Ā) |A ⊆ E}.

For a directed graph, Edmonds [8] proved that the dominant of the convex
hull of incidence vectors of rooted arborescences is described as follows.

Theorem 6 If D = (V,A) is a directed graph, and r ∈ V is a fixed vertex, the
dominant of the convex hull of incidence vectors of arborescences rooted at r is
defined by

x(δ+(S)) ≥ 1, for S ⊂ V , r ∈ S, and x ≥ 0.

2.2 Newton’s method for ratio maximization

Let F be a family of subsets of E. Let f : F → IR+ and g : F → IR+

two functions. In the subsequent sections we need a subroutine for finding
max{f(S)/g(S) |S ∈ F}. This can be done with Newton’s method as follows,
see [5].

Newton’s method

Step 0. Pick any set Ŝ ∈ F with g(Ŝ) > 0. Set µ = f(Ŝ)/g(Ŝ).

Step 1. Find S̄ ∈ F such that f(S̄)− µg(S̄) = max{f(S)− µg(S) |S ∈ F}.
Step 2. If f(S̄)− µg(S̄) > 0, then f(S̄)/g(S̄) > f(Ŝ)/g(Ŝ).

In this case set µ = f(S̄)/g(S̄), Ŝ ← S̄, and go to Step 1.
If f(S̄)− µg(S̄) = 0, stop, Ŝ is an optimal solution.

Notice that in Step 1, it is possible to have S̄ = Ŝ, thus the maximum is always
greater than or equal to zero. The value µ increases at each iteration, thus the
number of iterations is finite. We give bounds for the number of iterations in the
following sections.

3 The Matroid Base Game

We assume that M is a matroid with ground set E, given by an independence
oracle. The defender chooses a basis B, and (simultaneously) the attacker chooses
an element e. If the attacker chooses e, and e ∈ B, there is a probability p(e) > 0
that the attacker will detect the defender. Also there is a cost c(e) for the attacker
to choose element e. The defender has to minimize the average probability of
being detected. The attacker has to maximize the average detection probability
minus its average cost. Let y(B) be the probability that the defender chooses
basis B. For the attacker, let x(e) be the probability of choosing element e. Let P
be a diagonal matrix that contains the probabilities {p(e)}, and x a row vector,
then xP is a row with components {x(e)p(e)}. Let D be a matrix whose rows
correspond to the elements of E, and whose columns are the incidence vectors
of all bases. Let y be a column vector whose components are {y(B)}. Then Dy
is a column whose component associated with an element e is the probability
that the element e is used by the defender. Thus xPDy is the probability that
the attacker finds the defender. Let c be a column so that c(e) is the cost for
the attacker of choosing element e. We have to concentrate on the following
two-person game:

max
x

min
y

xPDy − xc (1)∑
e

x(e) = 1,
∑
B

y(B) = 1, x ≥ 0, y ≥ 0. (2)

Von Neumann’s classic Minimax Theorem [17] shows the existence of a Nash-
equilibrium for this type of games. This can be computed by solving a linear pro-
gram. One difficulty here is that this linear program has an exponential number
of variables, that could be treated with the ellipsoid method [10]. Here we give
polynomial combinatorial algorithms to compute both strategies.

3.1 Computing the Nash-equilibrium payoff

If we fix y we have

max
x

xPDy − xc,
∑
e

x(e) = 1, x ≥ 0.

And its dual is

min
µ
µ, µ ≥ p(e)

∑
{y(B) | e ∈ B} − c(e), for each element e.

Then (1)-(2) is equivalent to

min
µ,y

µ

µ− p(e)
∑
{y(B) | e ∈ B} ≥ −c(e), for each element e,∑

B

y(B) = 1, y ≥ 0.

This can be written as

min
µ,y

µ (3)∑
{y(B) | e ∈ B} ≤ µ+ c(e)

p(e)
, for each element e, (4)∑

B

y(B) = 1, y ≥ 0. (5)

Here we are looking for the minimum value of µ such that there is a convex
combination of incidence vectors of bases that satisfies the element-capacities
{(µ+ c(e))/p(e)}. We consider this in the sequel.

Define u(e) = (µ+ c(e))/p(e) for e ∈ E. For a vector y satisfying (4)-(5) we
define z(e) =

∑
{y(B) | e ∈ B}. We should have z(E) = r(E). From Theorem 2

we have

max{z(E) : z(S) ≤ r(S), for S ⊆ E, 0 ≤ z ≤ u} = min{r(A) + u(Ā) : A ⊆ E}
(6)

Since we should have z(E) = r(E), this implies r(E) ≤ r(A) + u(Ā) =
r(A) + µ p′(Ā) + q(Ā), for all A ⊆ E, where p′(e) = 1/p(e), q(e) = c(e)/p(e).

Thus we have to find the minimum value of µ such that µ p′(Ā) ≥ r(E) −
r(A)− q(Ā), for A ⊂ E. This is

µ̂ = max
A⊂E

r(E)− r(A)− q(Ā)

p′(Ā)
. (7)

As seen in Section 2, we can apply Newton’s method. In each iteration we
need to maximize r(E)− r(A)− q(Ā)−µp′(Ā), or minimize r(A)− q′(A), where
q′(A) = q(A) + µp′(A). This can be solved with Narayanan’s algorithm [15]. Its

time complexity is O(m3ρ2IO), where ρ is the rank of the matroid, and IO is
the time that it takes one call to the independence oracle. So we assume that its
complexity is O(m5IO). In sub-section 3.3 we show that Newton’s method takes
at most m iterations, so it takes O(m6IO) time to compute the Nash-equilibrium
payoff of the game.

3.2 Computing both mixed strategies

Once the value µ̂ has been computed, we need a solution of (6). This can be
found with the Greedy algorithm [7], as below. For a vector z̄, we say that a set
S ⊆ E is tight, if z̄(S) = r(S).

Greedy Algorithm

Step 0. Start with any feasible vector z̄, set Ē = E, A = ∅.
Step 1. Pick any e ∈ Ē. Let Se = argmin{r(S)− z̄(S) | e ∈ S}, and α = r(Se)−

z̄(Se). If α ≤ u(e) − z̄(e), set z̄(e) ← z̄(e) + α, A ← A ∪ Se. Here A is
a tight set, Se becomes tight after adding α to z̄(e), and it follows from
submodularity that the union of tight sets is also tight.
If α > u(e)− z̄(e), set z̄(e) = u(e). In both cases set Ē ← Ē \ e.

Step 2. If Ē = ∅, we have z̄(A) = r(A), and z̄(Ā) = u(Ā). It follows from
Theorem 2 that we have an optimal solution, and we stop.
If Ē 6= ∅ go to Step 1.

Here the computing time is dominated by the time that it takes to find the
minimum in Step 1. This can be done with Narayanan’s algorithm [15]. Since
we have m iterations, the greedy algorithm takes O(m6IO) time.

Let z̄ be a solution of (6). We have to express z̄ as a convex combination
of incidence vectors of bases. For that we propose to use Orlin’s method [18] to
minimize a submodular function. We define f(S) = r(S)− z̄(S) for S ⊆ E, then
Orlin’s method minimizes f and express z̄ as a convex combination of incidence
vectors of bases. This method has time complexity O(m5EO +m6), where EO
is the time that it takes to evaluate f , thus we assume EO = O(mIO), and we
have an O(m6IO) algorithm.

At this point we have z̄ =
∑
{ȳ(B)zB |B ∈ B}, and

∑
ȳ(B) = 1, ȳ ≥ 0.

Here zB is the incidence vector of the basis B, and B denotes the set of bases
of M . Let A be a solution of (7) then the attacker’s strategy is given by

x̄(e) =

µ̂p′(e)

r(E)− r(A)− q(Ā)
if e ∈ Ā,

0 otherwise.

Thus
∑
e∈Ā x̄(e) = 1.

We have to see that x̄ and ȳ are solutions of (1)-(2). The Greedy algorithm
produced a vector z̄ with z̄(Ā) = u(Ā), and for each e ∈ Ā,

∑
{ȳ(B) | e ∈ B} =

z̄(e) = u(e). Therefore

x̄PDȳ − x̄c =
∑
e∈Ā

p(e)
µ̂p′(e)

r(E)− r(A)− q(Ā)

µ̂+ c(e)

p(e)
−
∑
e∈Ā

µ̂p′(e)

r(E)− r(A)− q(Ā)
c(e)

=
∑
e∈Ā

µ̂2p′(e)

r(E)− r(A)− q(Ā)
= µ̂

3.3 Analysis of Newton’s method

Here we plan to show that Newton’s method takes at most m iterations. Recall
that each time one has to solve

minimize r(A)− q(A)− µp′(A), (8)

for A ⊆ E. If µ1 and µ2 are the values of µ in two consecutive iterations, then
µ2 > µ1. The key is in the following lemma.

Lemma 7 Let A1 and A2 be solutions of (8) for µ1 and µ2 respectively. Then
we can assume that A1 ⊂ A2.

Proof. It follows from Theorem 2 that a solution of (8) for µ, can be obtained
by solving

max z(E) (9)

z(S) ≤ r(S), for S ⊆ E, (10)

0 ≤ z(e) ≤ u(e), for e ∈ E. (11)

Here u(e) = q(e) + µp′(e). This can be solved with the greedy algorithm above.
Let ui(e) = q(e)+µip

′(e), for e ∈ E, i = 1, 2. Since µ2 > µ1, we have u2 ≥ u1.
Let A1 be the solution obtained for µ1, and z̄1 be the associated vector. We have
z̄1(A1) = r(A1). Then for µ2 we can start the algorithm with z̄ = z̄1, and treat
the elements of E starting with the elements in A1, since this is a tight set, it
will be included in the tight set A produced by the algorithm. ut

Since we propose to solve (8) with the algorithm of [15], we should set q(e) =
M , for e ∈ A1, where M is a big number, then A1 will be included in the solution
for u2. Notice that in all intermediate iterations of Newton’s method we have
A2 6= A1, and we have equality only at the end.

4 The graphic case

Here we assume that for an undirected graph G = (V,E), the defender picks a
spanning tree T with probability y(T), and the attacker picks an edge e with

probability x(e). We take advantage of this structure to give an O(n5) algorithm.
Recall that n = |V |, m = |E|. Here (3)-(5) becomes

min
µ,y

µ∑
{y(T) | e ∈ T} ≤ µ+ c(e)

p(e)
, for each edge e, and

∑
y(T) = 1, y ≥ 0.

Here we are looking for the minimum value of µ such that there is a convex
combination of incidence vectors of spanning trees that satisfies the edge capac-
ities {(µ+ c(e))/p(e)}. In other words, we have to minimize µ so that the vector
with components {(µ+c(e))/p(e)} belongs to the dominant of the spanning tree
polytope. It follows from Theorem 3 that we have to solve

minµ

µ p′(δ(S1, . . . , Sk)) + q(δ(S1, . . . , Sk)) ≥ k − 1, for all partitions {S1, . . . , Sk} of V ,

where p′(e) = 1/p(e), q(e) = c(e)/p(e). Thus the payoff is

µ̂ = max
k − 1− q(δ(S1, . . . , Sk))

p′(δ(S1, . . . , Sk))
, (12)

where the maximum is taken among all partitions {S1, . . . , Sk} of V . We use
Newton’s method, thus qiven µ̄ at each iteration we solve

min µ̄p′(δ(S1, . . . , Sk)) + q(δ(S1, . . . , Sk))− (k − 1). (13)

This reduces to n minimum cut problems, as shown in [2]. Theorem 16 in the
Appendix shows that Newton’s method takes at most n iterations. Therefore
the computing time of this part of the algorithm is dominated by the time that
it takes to solve n2 minimum cut problems. Thus this part takes O(n5) time.

Let δ(S1, . . . , Sk) be a solution of (12). To obtain the attacker’s strategy we
set

x̄(e) =

µ̂p′(e)

k − 1− q(δ(S1, . . . , Sk))
if e ∈ δ(S1, . . . , Sk),

0 otherwise.

The defender’s strategy can be obtained from a maximum packing of span-
ning trees with capacities {(µ̂+ ce)/pe}. This can be done with the algorithm of
[3], or with the algorithm of [9]. This last algorithm requires O(n3m log(n2/m))
time. Let ȳ be the vector obtained, then as in Section 3, it is easy to see that

x̄PDȳ − x̄c = µ̂.

5 Matroid Intersection

Here we assume that we have two matroids M1 and M2, and that the defender
picks a common basis. This case was studied in [21], and a (weakly) polynomial

algorithm was given, leaving open the question of whether it exists a strongly
polynomial algorithm. Here we show that an approach similar to the one in
Section 3 is strongly polynomial. Again we have to solve

min
µ,y

µ (14)∑
{y(B) | e ∈ B} ≤ µ+ c(e)

p(e)
, for each element e, (15)∑

B

y(B) = 1, y ≥ 0. (16)

This time B represents a basis of both matroids, and we are looking for the
minimum value of µ such that there is a convex combination of incidence vectors
of common bases that satisfies the element-capacities {(µ+ c(e))/p(e)}.

Define u(e) = (µ + c(e))/p(e) for e ∈ E. For a vector y satisfying (15)-(16)
we define z(e) =

∑
{y(B) | e ∈ B}. We should have z(E) = r(E). This time r(S)

is the maximum cardinality of a common independent set included in S, S ⊆ E.
From Theorem 5 we have

max{z(E) : z(S) ≤ ri(S), for all S ⊆ E, i = 1, 2, 0 ≤ z ≤ u} = (17)

= min{r(A) + u(Ā) : A ⊆ E}.

Since we should have z(E) = r(E), we obtain r(E) ≤ r(A) + u(Ā) = r(A) +
µ p′(Ā) + q(Ā), for A ⊆ E, where p′(e) = 1/p(e), q(e) = c(e)/p(e). Thus we have
to find the minimum value of µ such that µ p′(Ā) ≥ r(E) − r(A) − q(Ā), for
A ⊂ E. Thus the payoff is

µ̂ = max
A⊂E

r(E)− r(A)− q(Ā)

p′(Ā)
. (18)

In order to apply Newton’s method, we need to maximize r(E)− r(A)− q(Ā)−
µp′(Ā), or

minimize r(A)− q′(A), (19)

where q′(S) = q(S) + µp′(S). Cunningham [4] gave a strongly polynomial al-
gorithm that solves (19), so we need a bound for the number of iterations of
Newton’s method, this is given below.

Theorem 8 Newton’s method takes O(m2 logm) iterations to solve (18). The
proof of this is given in the next sub-section.

Thus we have a strongly polynomial algorithm to compute the Nash-equilibrium
payoff of the game. Once the value µ̂ has been computed, we need a solution of
(17). Cunningham [4] gave a strongly polynomial algorithm for this. Let z̄ be
the vector obtained, we have to express z̄ as a convex combination of incidence
vectors of common bases. That can be done with the algorithm in Theorem 41.13
of [20], that is strongly polynomial. This gives the defender’s strategy. The at-
tacker’s strategy is obtained with a formula similar to the one in Section 3. Thus
this game is solvable in strongly polynomial time. For rooted arborescences we
give a faster algorithm in the Appendix.

5.1 Proof of Theorem 8

Here we plan to give a strongly polynomial bound for the number of iterations
of Newton’s method. For a ground set E, let F be a family of subsets of E. Let
f : F → IR+ and g : F → IR+ be two functions. Newton’s method is used to
find max{f(S)/g(S) |S ∈ F}. Consider the special case when

f(S) =
∑
e∈S

a(e), and g(S) =
∑
e∈S

b(e), (20)

for S ∈ F , where a : E → IR+ and b : E → IR+ are two weight functions for the
elements of E. For this case it was shown in [19] that it takes takes O(m2(logm)2)
iterations, where m = |E|. This bound was improved to O(m2 logm) in [23]. In
our case we have to solve

max
A⊂E

r(E)− r(A)− q(Ā)

p′(Ā)
,

so neither the numerator nor the denominator are like in (20), and we cannot
just apply the above results. However the proof in [23] can be adapted, we give
the details below.

For A ⊂ E, we define f(A) = r(E)−r(A)−q(E)+q(A) (the numerator), and
g(A) = p(E)− p(A) (the denominator). Let Ai be the set obtained at iteration
i, and fi = f(Ai), gi = g(Ai), δi+1 = fi/gi, hi = fi − δigi. The following three
lemmas were proved in [19].

Lemma 9 Let t be the index of the last iteration, then h1 > h2 > . . . > ht and
g1 > g2 > . . . > gt−1 ≥ gt

Lemma 10 For all i, hi+1/hi + gi+1/gi ≤ 1.

Lemma 11 Let c ∈ IRp be a nonnegative vector. Let {y1, . . . , yq} be a set of
vectors in {−1, 0, 1}p. If for all i = 1, . . . , q − 1,

0 < yi+1 · c ≤ (1/2)yi · c,

then q = O(p log p).

We have used a · b to denote the inner product between the vectors a and b.
Now we need the following two lemmas.

Lemma 12 There are at most O(m logm) iterations k such that hk+1 ≥ (1/2)hk.

Proof. Let k1 < k2 < . . . < kq be all indices k such that hk+1 ≥ (1/2)hk. Since
hi+1/hi + gi+1/gi ≤ 1, we have 0 < gki+1 ≤ (1/2)gki . Since {gi} is decreasing,
gki+1

≤ gki+1, we have

0 < gki+1
≤ (1/2)gki .

In order to apply Lemma 11 we have to write gki = yi ·c, where c is a nonnegative
vector, and yi is a vector with components in {−1, 0, 1}. So we define c as a vector

with components {p(e)} and with a last component equal to p(E). Then yi is
a vector that has a component −1 for each element e ∈ Ai, a component 0 for
each element e /∈ Ai, and a component equal to 1 in the position m + 1. Then
Lemma 11 implies that there are at most O(m logm) vectors yi. ut
Lemma 13 There are at most O(m2 logm) iterations k such that hk+1 ≤ (1/2)hk.

Proof. Let k1 < k2 < . . . < kq be all indices k such that hk+1 ≤ (1/2)hk. Here

hi = fi − δigi = fi −
fi−1

gi−1
gi.

Since {hi} is decreasing, hki+1 ≤ hki+1 ≤ (1/2)hki . Thus

fki+1
−
fki+1−1

gki+1−1
gki+1

≤ 1

2

(
fki −

fki−1

gki−1
gki

)
.

The sequence {gi} is decreasing, so gki+1−1 < gki−1. Therefore

fki+1
gki+1−1 − fki+1−1gki+1

≤ 1

2

(
fkigki−1 − fki−1gki

)
.

Let si = fkigki−1 − fki−1gki , then

0 < si+1 ≤ (1/2)si,

for i = 1, . . . , q.
In order to use Lemma 11 we have to write si = yi ·c, where c is a nonnegative

vector, and yi is a vector with components in {−1, 0, 1}. To simply notation let
R = r(E)− q(E), P = p(E), also we write A′i instead of Aki . Then

si = (R− r(A′i))P − (R− r(A′i))p(A′i−1) + Pq(A′i)− q(A′i)p(A′i−1) (21)

−(R− r(A′i−1))P + (R− r(A′i−1))p(A′i)− Pq(A′i−1) + q(A′i−1)p(A′i).

For the first term in (21) we create a vector c1 with components |R−1|P, |R−
2|P, . . . , |R− r(E)|P , and a vector y1 with all components equal to zero, except
for the component in position r(A′i), where we put sg(R−r(A′i)). Here sg(x) = 1
if x ≥ 0, and sg(x) = −1 otherwise.

Now we treat the last term of (21), the other six terms are treated in a similar
way. We create an m×m matrix M whose coefficient in row r and column s is
Mr,s = |q(er)p(es)|. We also create an m×m matrix Y whose coefficient in row
r and column s is Yr,s = sg

(
q(er)p(es)

)
if er ∈ A′i−1 and es ∈ A′i, and Yr,s = 0

otherwise. Then M · Y = q(A′i−1)p(A′i), where M · Y =
∑
i,jMi,jYi,j . Finally

we create a vector c8 consisting of all rows of M , and a vector y8 containing all
rows of Y .

Assuming that the vectors c2, . . . , c6 and y2, . . . , y6 have been created in
a similar way, we define the vectors c = [c1, . . . , c8], yi = [y1, . . . , y8]. Then
si = yi · c. The number of components of c is O(m2), then Lemma 11 implies
q = O(m2 logm). ut

Then Theorem 8 follows from lemmas 12 and 13.
Acknowledgments. We are grateful to H. Narayanan and to S.T. Mc-

Cormick for some helpful discussions.

References

1. H. Aziz, O. Lachish, M. Paterson, and R. Savani, Wiretapping a hidden net-
work, in Internet and Network Economics, Springer, 2009, pp. 438–446.

2. F. Barahona, Separating from the dominant of the spanning tree polytope, Oper-
ations research letters, 12 (1992), pp. 201–203.

3. , Packing spanning trees, Mathematics of Operations Research, 20 (1995),
pp. 104–115.

4. W. H. Cunningham, Optimal attack and reinforcement of a network, Journal of
the ACM (JACM), 32 (1985), pp. 549–561.

5. W. Dinkelbach, On nonlinear fractional programming, Management Science, 13
(1967), pp. 492–498.

6. J. Edmonds, Submodular functions, matroids, and certain polyhedra, Combinato-
rial structures and their applications, (1970), pp. 69–87.

7. , Matroids and the greedy algorithm, Mathematical programming, 1 (1971),
pp. 127–136.

8. , Edge-disjoint branchings, Combinatorial algorithms, 9 (1973), pp. 91–96.
9. H. N. Gabow and K. Manu, Packing algorithms for arborescences (and spanning

trees) in capacitated graphs, Mathematical Programming, 82 (1998), pp. 83–109.
10. M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its

consequences in combinatorial optimization, Combinatorica, 1 (1981), pp. 169–197.
11. A. Gueye, J. C. Walrand, and V. Anantharam, Design of network topology in

an adversarial environment, in Decision and Game Theory for Security, Springer,
2010, pp. 1–20.

12. , A network topology design game: How to choose communication links in an
adversarial environment, in Proc. of the 2nd International ICST Conference on
Game Theory for Networks, GameNets, vol. 11, 2011.

13. J. Hao and J. B. Orlin, A faster algorithm for finding the minimum cut in a
directed graph, Journal of Algorithms, 17 (1994), pp. 424–446.

14. A. Laszka and D. Szeszlér, Hide and seek in digital communication: the
steganography game, in Proceedings of the 9th Hungarian-Japanese Symposium on
Discrete Mathematics and its Applications, Fukuoka, Japan, 2015, pp. 126–136.

15. H. Narayanan, A rounding technique for the polymatroid membership problem,
Linear algebra and its applications, 221 (1995), pp. 41–57.

16. C. S. J. Nash-Williams, Edge-disjoint spanning trees of finite graphs, Journal of
the London Mathematical Society, 1 (1961), pp. 445–450.

17. J. v. Neumann, Zur theorie der gesellschaftsspiele, Mathematische Annalen, 100
(1928), pp. 295–320.

18. J. B. Orlin, A faster strongly polynomial time algorithm for submodular function
minimization, Mathematical Programming, 118 (2009), pp. 237–251.

19. T. Radzik, Fractional combinatorial optimization, in Handbook of combinatorial
optimization, Springer, 2013, pp. 1311–1355.

20. A. Schrijver, Combinatorial optimization: polyhedra and efficiency, vol. 24,
Springer Science & Business Media, 2002.

21. D. Szeszlér, Security games on matroids, Mathematical Programming, (2016),
pp. 1–18.

22. W. T. Tutte, On the problem of decomposing a graph into n connected factors,
Journal of the London Mathematical Society, 1 (1961), pp. 221–230.

23. Q. Wang, X. Yang, and J. Zhang, A class of inverse dominant problems un-
der weighted l∞ norm and an improved complexity bound for Radzik’s algorithm,
Journal of Global Optimization, 34 (2006), pp. 551–567.

6 Appendix

6.1 Analysis of Newton’s method in the graphic case

Here we show that for the graphic case, Newton’s method requires at most n
iterations to solve (12). We need the following two lemmas.

Lemma 14 Let u(e) = µ̄p′(e) + q(e), for e ∈ E. If δ(S1, . . . , Sk) is a solution
of (13), and if {T1, . . . , Tr} is a partition of some set Sj, 1 ≤ j ≤ k, then

u(δ(T1, . . . , Tr)) ≥ r − 1.

Proof. If u(δ(T1, . . . , Tr)) < r − 1, then we could replace Sj with {T1, . . . , Tr}
and we would obtain a better solution of (13). ut

Lemma 15 Let µ1 and µ2 be two consecutive values of µ produced by Newton’s
method. If δ(S1, . . . , Sk) is a solution of (13) for µ1, and if δ(T1, . . . , Tr) is a
solution of (13) for µ2, then for each i = 1, . . . , k, there is an index j(i) such
that Si ⊆ Tj(i).

Proof. Let us(e) = µsp
′(e) + q(e), for e ∈ E, s = 1, 2. Suppose that for some

index i, we have Si ∩ Tjl 6= ∅, for l = 1, . . . , p, p ≥ 2. Lemma 14 implies

u1(δ(Si ∩ Tj1 , . . . , Si ∩ Tjp)) ≥ p− 1.

Since µ2 > µ1 we have

u2(δ(Tj1 , . . . , Tjp)) > u1(δ(Tj1 , . . . , Tjp)) ≥ u1(δ(Si ∩ Tj1 , . . . , Si ∩ Tjp)) ≥ p− 1.

Then we could combine {Tj1 , . . . , Tjp} into one set and obtain a better solution
of (13). A contradiction. ut

This lemma shows that the cardinality of the partition produced by Newton’s
method decreases at each iteration. Thus we have the following.

Theorem 16 In the graphic case Netwon’s method takes at most n iterations.

6.2 Rooted Arborescences

Here we assume that for a directed graph D = (V,A) with a root node r,
the defender chooses an arborescence rooted at r, and the attacker picks an
arc. Arborescences can be seen as common bases of two matroids, here we take
advantage of their structure to derive a faster algorithm.

As before, we have to solve

min
µ,y

µ∑
{y(A) | a ∈ A} ≤ µ+ c(a)

p(a)
, for each arc a,∑

A∈A
y(A) = 1, y ≥ 0.

Here y(A) is the probability of choosing arborescence A that is rooted at r. Also
A is the set of all arborescences rooted at r. We are looking for the minimum
value of µ such that there is a convex combination of incidence vectors of ar-
borescences that satisfies the arc capacities {(µ + c(a))/p(a)}. In other words,
the vector with components {(µ+ c(a))/p(a)} should belong to the dominant of
the Arborescence polytope. It follows from Theorem 6 that we have to solve

minµ

µ p′(δ+(S)) + q(δ+(S)) ≥ 1, S ⊂ V , r ∈ S,

where p′(a) = 1/p(a), q(a) = c(a)/p(a). Thus the payoff is

µ̂ = max
1− q(δ+(S))

p′(δ+(S))
. (22)

Here the maximum is taken among all sets S ⊂ V , with r ∈ S. We use Newton’s
method, then at each iteration, qiven µ̄ we solve

max 1− q(δ+(S))− µ̄p′(δ+(S))

or

min µ̄p′(δ+(S)) + q(δ+(S))− 1.

This reduces to a minimum cut problem that can be solved with the algorithm
of Hao & Orlin [13] that takes O(nm log(n2/m)) time. Newton’s method takes
O(m2 logm) iterations, the proof of this is similar to the proof of Theorem 8.
Thus this part takes O(nm3 log(n2/m) logm) time.

Let Ŝ be a solution of (22). The attacker’s strategy is given by

x̄(a) =

µ̂p′(a)

1− q(δ+(Ŝ))
if a ∈ δ+(Ŝ),

0 otherwise.

The defender’s strategy can be obtained from a maximum packing of arbores-
cences with capacities {(µ̂+ c(a))/p(a)}. This can be done with the algorithm of
[9] that requires O(n3m log(n2/m)) time. Thus the computing time is dominated
by the time required by Netwton’s method that is O(nm3 log(n2/m) logm).

