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AN ALGORITHM FOR BUS NETWORK DESIGN

FRANCISCO BARAHONA, JOÃO P. M. GONÇALVES, RICHARD SANTIAGO,
AND CHAI WAH WU

Abstract. We consider the problem of designing the public bus tran-
sit network of a medium size city. The goal is to produce bus routes so
that the overall travelling time of the passengers is minimized. Our ap-
proach consists in breaking down the original problem into two smaller
subproblems or phases. In the first phase we generate a large set of good
candidate routes. We describe and implement five different route gen-
eration heuristics and compare their performance. In the second phase
we take the candidate routes as input and use an integer programming
model to choose the final set of routes. For the second phase we compare
the commercial solver CPLEX with a Lagrangian relaxation approach.
It turns out that this second method is much faster to produce solutions
of similar quality.

1. Introduction

As stated by Ceder & Wilson [5] and many others, the bus planning
process is usually divided into the following activities: bus network de-
sign, setting frequencies, timetable development, bus scheduling, and driver
scheduling. The reason for this breakup is the complexity of each of these
tasks. This makes very difficult to treat all of them in one single model.
Here we give an algorithm for the first task, namely, we develop a procedure
that produces the routes for the buses that cover the transport demand of
a medium size city.

In our case, we have a network whose nodes correspond to street corners,
and whose arcs correspond to the streets. Some preprocessing is required
to identify all forbidden crossings, forbidden turns and unusable streets.
Then for every arc we assume that we have the time that it takes for a
bus to drive through, and for a person to walk through. We also have an
origin-destination (OD) matrix that specifies the demand for transportation
between a selected set of pairs of nodes. Also in our case there are three
terminal nodes, so that each route corresponds to a cycle in this graph going
through one of the terminals. A route should take at most thirty minutes,
and when generating the routes we use a penalty to discourage left turns.
Our objective is to minimize the total travel time. This includes the time
walking and the time in a bus for the different users. Several other objective
functions have been considered in recent and older literature. Some examples
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of these include minimizing the passenger waiting time, number of transfers,
operating costs, fleet size, and many others.

Our approach consists in breaking down the original problem into two
smaller subproblems that we call route generation phase and route opti-
mization phase. In the former we study and compare different heuristics
for generating a large set of candidate routes. In the latter, we take the
candidates routes as an input and we formulate an integer linear program to
choose the final set of routes. For this model we first tried the commercial
solver CPLEX [8], but due to the large computing time we had to switch
to a Lagrangian relaxation approach that was much faster and produced
solutions of similar quality.

There is a large number of articles written on Transit Network Design, we
mention just a few of the different techniques used to attack this problem.
Heuristics for route generation have been presented in Ceder & Wilson [5],
Baaj & Mahmassani [1], and many others. Integer programming techniques
have been used in Bussieck et al [4], Claessens et al [6], Goossens et al [13].
Column generation has been used by Schöbel & Scholl [16] and Borndörfer
et al [3]. Meta-heuristics have also been widely used, see Fan et al [11], [12],
and Zhao et al [17], for instance. For a more complete set of references see
the surveys by Desaulniers & Hickman [10], Kepaptsoglou & Karlaftis [14]
and Schöbel [15].

The rest of the paper is organized as follows. Section 2 describes our two-
step approach. In Section 3 we show our Lagrangian relaxation method.
Section 4 reports computational results with a dataset corresponding to a
medium size city in the US. We end with conclusions in Section 5.

2. Our Approach

We break down the original problem into two smaller subproblems: the
route generation phase and route optimization phase. In the former, we look
for ways (or heuristics) to generate “good” candidate routes. In the latter,
given a fixed (large) number of (previously generated) candidate routes, we
use an integer programming model to choose the final routes out of the
candidate ones. We next discuss each of these two phases in more detail.

2.1. Route Generation. We implement and compare different heuristics
for generating candidate routes. Our route generation process breaks down
into two stages: route skeletons creation and route skeletons expansion. This
two-phase generation procedure is very similar to the one discussed in [1]
by Baaj and Mahmassani. However, some of our route expansion heuristics
are different from the ones discussed there. Moreover, [1] does not deal with
the additional constraint that every route has to pass through one of the
terminals.

In the first stage of the generation process we try to create three different
skeletons for each OD pair. A skeleton is just a (directed) cycle that includes
an OD pair, or one node from an OD pair and a terminal. We create
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such three skeletons as follows. Given an OD pair, we look at the different
terminals and pick the one that leads to the shortest cycle including the OD
pair and the terminal. If this cycle does not exceed the maximum allowed
duration for a route, we add it to the set of route skeletons. In a similar
way, we take the origin of the OD pair, look at the different terminals, and
pick the one that leads to the shortest cycle containing the origin and the
terminal. If this cycle does not exceed the maximum allowed duration we
add it to the set of skeletons. Finally, we repeat the same procedure for the
destination node. One of our data-sets had 160 OD pairs, thus if we can
successfully add all the generated skeletons, we end up with a total of (160
+ 320 =) 480 route skeletons.

The second stage of the generation process is the expansion stage. Here,
we expand the initial skeletons to actual routes. The expansion process
consists of two steps: node(s) selection and node(s) insertion. In the former,
we use different heuristics to decide what is (are) the node(s) to be added
next to the current route in expansion. In the latter, we have a procedure
for adding a node (or nodes) to a route in current expansion. We discuss
the node insertion process first.

Given an initial route skeleton or a route under current expansion, we say
that a given node is fixed if it is an OD node (i.e. a node from an OD pair)
or a terminal, and nonfixed otherwise. We use this terminology since the
idea is that once a fixed node is added to a route under current expansion,
it will never be removed from that route in posterior insertion steps. On
the other hand, nonfixed nodes can potentially be removed from the route
at later insertion steps.

The insertion step works as follows. Assume we have a route under current
expansion and we want to add a node v to it (see Figure 1). Then, we first
find the node w in the current route that is closest to v (see Figure 1a). We
have two possible cases: w is either fixed or nonfixed. If w is a nonfixed
node (i.e. w is neither a terminal nor an OD node) we look at the fixed
node in the route preceeding w (denote it by u1) and proceeding w (denote
it by u2). That is, the segment u1a1a2...aiwai+1...apu2 is part of the route,
where all the nodes ai are nonfixed and the nodes u1, u2 are fixed. Then,
we perform the insertion by removing all the arcs in the route connecting
u1 with u2 (i.e. the arcs (u1, a1), (a1, a2), . . . , (ap, u2)), and adding the two
new segments P1 := u1b1b2...blv and P2 := vc1c2...cl′u2, where P1 and P2

denote the shortest paths from u1 to v and from v to u2 respectively (see
Figure 1b). In the case that w is a fixed node, we repeat the same procedure
as above and identify the fixed preceeding and proceeding nodes u1 and u2

respectively. Also, let P1 be the shortest path from u1 to v, P2 the shortest
path from v to u2, Q1 the shortest path from v to w, Q2 the shortest path
from w to v, R1 the shortest path from w to u2, and R2 the shortest path
from u1 to w. Notice that R1 is just the segment in the route joining w and
u2, and R2 the segment in the route joining u1 and w. Then we compare the
paths P1Q1R1 and R2Q2P2 and use the shortest of the two alternatives to
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expand the route. That is, if P1Q1R1 is shorter than R2Q2P2, we perform
the insertion by removing all the arcs in the route connecting u1 and w (i.e.
R2), and then adding P1Q1 (see Figure 1c). On the contrary (i.e. R2Q2P2

shorter than P1Q1R1), we perform the insertion by removing all the arcs in
the route connecting w and u2 (i.e. R1), and then adding Q2P2 (see Figure
1d).

u1 w

v

u2

(a) Route before inserting v

u1 w

v

u2

P1 P2

(b) w nonfixed

u1 w

v

u2

P1 Q1

R1

(c) w fixed and P1Q1R1 shorter

u1 w

v

u2

P2Q2

R2

(d) w fixed and R2Q2P2 shorter

Figure 1. Node insertion

Finally, in the case we want to add two different nodes (e.g. an OD pair)
v1, v2 to the route instead of only one, we repeat the above (adding a single
node) procedure for both v1 and v2 separately. This completes the discussion
about the node(s) insertion process.

We now discuss the node(s) selection stage. Recall that this step consists
of deciding what is (are) the node(s) to be added next to the route in current
expansion. We always start with a route skeleton and keep adding nodes
until no more can be added. We consider several heuristics based on the
idea of either adding the node or pair that is closest to the route (hence
having longer routes that contain a larger number of OD nodes) or adding
the node or pair with the highest demands (thus having routes that could
be potentially shorter but that contain OD nodes and OD pairs with high
demand). By a node’s demand (or demand associated to a node) we mean
the sum of the demands of all OD pairs that contain such node. Several of
these ideas came motivated from the work in [1]. We consider the following
five node(s) selection strategies:

(1) Random Shuffle (RS): Repeat the following twice: Shuffle the OD
pairs in a random order. Go over the sorted list of OD pairs and
try to add first the OD pair. If this fails (i.e. inserting the OD pair
violates the maximum allowed duration), try to add the OD origin



AN ALGORITHM FOR BUS NETWORK DESIGN 5

node. If the latter insertion also fails, try to add the OD destination.
Move to the next OD pair in the sorted list and repeat.

(2) Greedy on the Distance (GD): Try to add the OD node that is
closest to the current route in expansion. If it cannot be added stop
expanding the route.

(3) Greedy on the Pairs Demand (GPD): Presort the OD pairs by
demand in decreasing order. Go over the whole sorted list trying to
add the OD pairs. Then, go again over the whole list and try to add
the OD origin nodes in the cases where the corresponding OD pair
could not be added before. Finally, go one more time over the list
and try to add the OD destinations in the cases where neither the
OD pair nor the OD origin could be previously added.

(4) Greedy on the Nodes Demand (GND): Presort the OD nodes
by demand in decreasing order. Go over the whole sorted list trying
to add the nodes.

(5) Greedy on the nodes demand/distance ratio (GNDDR): Try
to add the OD node that maximizes the ratio: (node demand / node
distance from the route). If it cannot be added stop expanding the
route.

Finally, after completing the generation process, we do some postprocess-
ing where we delete routes that are duplicated and routes that do not satisfy
the minimum duration constraint. Notice that we never generate routes that
exceed the maximum time allowance given the way the insertion step works
(i.e. before performing the node(s) insertion we always check whether this
would lead to exceeding the maximum time allowance).

2.2. Route Optimization. Recall that in the route optimization phase,
given a set of candidates routes (previously generated in the route generation
phase) the goal is to choose a subset of N routes that minimizes the total
travelling time of the passengers. We do this by formulating an integer
linear programming model, and solve it using both CPLEX and Lagrangian
relaxation. Several comparisons of the performance of these two methods
are presented in Section 4.2.

In this phase we have a walking graph GW = (V,AW ) and a bus routes
graph GR = (V,AR). The former comes from the original input data of the
problem, where each arc (u, v) = a ∈ AW corresponds to going from u to v
by walk. The bus routes graph is built after running the route generation
phase by putting together all the arcs of the generated routes. That is,
if we generated routes (where we see routes as subsets of subsequent arcs)
R1, R2, . . . , RM , we let AR be the union of the Ri’s, where if an arc a be-
longs to p different candidate routes we include p different copies of a in the
set AR, one for each candidate route. So we can think of AR as containing
M disjoint (or non-overlapping) routes. This fact will be important when
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formulating the integer program. We now introduce the rest of the notation
for the variables and parameters.

xka : n◦ of people riding a bus on arc a for OD pair k

wk
a : n◦ of people walking on arc a for OD pair k

yr : takes the value 1 if route r is used
ur : bus capacity in route r
ca : time it takes to travel arc a by bus
ea : time it takes to travel arc a by walk
δ−R(u): set of arcs in AR entering u

δ−W (u): set of arcs in AW entering u

fk: demand for OD pair k
ok: origin node of OD pair k
dk: destination node of OD pair k
GW = (V,AW ): walking graph
GR = (V,AR): bus routes graph
Ar: set of arcs in route r
δ+R(u): set of arcs in AR leaving u

δ+W (u): set of arcs in AW leaving u

Then the integer program can be written as follows:

min
∑
k

∑
a∈AR

cax
k
a +

∑
k

∑
a∈AW

eaw
k
a(1)

subject to

∑
a∈δ−R (v)

xka +
∑

a∈δ−W (v)

wka −
∑

a∈δ+R(v)

xka −
∑

a∈δ+W (v)

wka =


fk, if v = dk

−fk, if v = ok

0, otherwise

,(2)

for all k, for all v ∈ V∑
k

xka ≤ uryr , ∀r, ∀a ∈ Ar(3)

xka ≤ fkyr , ∀k, ∀r, ∀a ∈ Ar(4) ∑
r

yr ≤ N(5)

0 ≤ xka ≤ min{ur, fk}, xka ∈ Z, ∀k, ∀r, ∀a ∈ Ar(6)

0 ≤ wka ≤ fk, wka ∈ Z, ∀k, ∀a ∈ AW(7)

yr ∈ {0, 1}, ∀r(8)

Indeed, notice that the objective is just the total travelling time of the
passengers, i.e., total walking time plus total bus riding time. Regarding the
constraints, we have that (5) imposses that the number of chosen routes can
be at most N . Constraint (3) makes sure that for each route r and each arc
a belonging to route r, the bus capacity ur for that route is not exceeded.
Constraint (4) guarantees that if there is flow through arc a in route r
then yr should be greater than zero. Finally, (2) are the well-known flow
conservation constraints. A simplification in this model is that it assumes
that users can enter/leave a bus at any street corner. This is because the
bus stops have not been defined. If the bus stops had been defined, then the
nodes of the bus routes graph would be the bus stops.
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3. Lagrangian Relaxation

As an alternative to use a commercial integer programming solver, we
tried Lagrangian relaxation. We start by explaining the basics of this. Given
a linear program

min cx(9)

subject to

Ax = b(10)

Dx = r(11)

x ≥ 0,(12)

we can multiply the constraints (10) by a set of Lagrangian multipliers π
and solve

θ(π) = min cx− πAx+ πb

subject to

Dx = r

x ≥ 0.

Then for any vector π, the value θ(π) is a lower bound for the minimum in
(9)-(12). Moreover the maximum of θ(π) over all π, is exactly the value of
the minimum in (9)-(12). This procedure is effective if removing constraints
(10) makes the resulting linear program much easier to solve. Here we say
that constraints (10) have been dualized.

In our case, removing constraints (2) makes the problem considerably
easier, we explain this below. The flow conservation constraints (2) are
dualized with multipliers πkv , for v ∈ V and all k. Let m be the number
of OD pairs. Let π = (πkv ) ∈ Rm|V | be the resulting vector of Lagrangian
multipliers. We have to solve:

θ(π) = min
∑
k

∑
a∈AR

gkax
k
a +

∑
k

∑
a∈AW

hkaw
k
a +

∑
k

fk(π
k
dk
− πkok)(13)

subject to∑
k

xka ≤ uryr , ∀r, ∀a ∈ Ar(14)

xka ≤ fkyr , ∀k, ∀r, ∀a ∈ Ar(15) ∑
r

yr ≤ N(16)

0 ≤ xka ≤ min{ur, fk}, xka ∈ Z, ∀k,∀r, ∀a ∈ Ar(17)

0 ≤ wka ≤ fk, wka ∈ Z, ∀k, ∀a ∈ AW(18)

yr ∈ {0, 1}, ∀r.(19)
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Here for each arc a = (u, v) ∈ AR, gka = ca + πku − πkv . And for each
a = (u, v) ∈ AW , hka = ea+π

k
u−πkv . This is called the Lagrangian subproblem.

In the next subsection we give a simple method to solve this.

3.1. Solving the Lagrangian subproblem. For any fixed vector of La-
grangian multipliers π, we have to solve (13)-(19). First notice that variables
wka only appear in (18), thus if hka < 0 we set wka = fk, and wka = 0 other-
wise. Also if gka ≥ 0 we should set xka = 0, so in what follows we have to
concentrate on the remaining variables.

Because of constraint (16) we have to find N variables yr that take the
value one. Consider a route r and suppose that yr = 1. We have to study
constraints (14) to find the values for the variables x. Consider an arc a in
route r. We treat the variables xka with the procedure below.

Step 0. Set αa = 0, U = ur, L = {k | gka < 0}, xka = 0 for all k.
Step 1. If L = ∅ stop. Otherwise let l = argmin{gka | k ∈ L}. Remove l

from L.
Step 2. If fl ≤ U set xla = fl, otherwise set xla = U . Set U ← U − xla,

αa ← αa + glax
l
a. Go to Step 1.

This gives tentative values for the variables xka and the number αa is their
possible contribution to the objective function. Then for the route r we
define βr =

∑
a∈Ar

αa. This is the contribution to the objective function
obtained by setting yr = 1. Thus we should order the values {βr} and pick
the N smallest values. This gives the set of routes whose variables should
take the value one. For those routes, we use the tentative values defined
above for the variables x. All other variables y and x should take the value
zero. This procedure is easy to implement and computationally fast.

3.2. Solving the Lagrangian dual problem. For a given vector π we
have seen how to compute the lower bound θ(π). Now we have to see how
to improve this lower bound, this is called the Lagrangian dual problem. For
that we use the Volume algorithm which is an extension of the subgradient
method, it produces primal solutions as well as dual solutions, see [2]. It
can be seen as a fast way to approximate Dantzig-Wolfe decomposition [9].
The name “volume” is inspired by the fact that the primal values come from
computing the volumes below the faces of the dual problem. A description
of the algorithm is below.

Volume algorithm

Step 0. [Initialization ]

Let π∗ be a vector of Lagrangian multipliers.
Solve (13)-(19) with π := π∗. Let (x̂0, ŵ0, ŷ0) be an optimal
solution.
Let z∗ = θ(π∗). Set t := 0 and (x̄0, w̄0, ȳ0) := (x̂0, ŵ0, ŷ0).

Step 1a. [Subgradient Displacement]
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Let v̄t = b−A1x̄t −A2w̄t,
where A1x+A2w = b is the system (2).
Perform a subgradient displacement:

π̄ := π∗ + stv̄t ,

where the step size st is discussed below.
Step 1b. [Solving the Subproblem]

Solve (13)-(19) with π := π̄.
Let (x̂t+1, ŵt+1, ŷt+1) be an optimal solution, and zt+1 = θ(π̄).

Step 2. [Primal Update]

Compute

(20) (x̄t+1, w̄t+1, ȳt+1) := α (x̂t+1, ŵt+1, ŷt+1) + (1− α) (x̄t, w̄t, ȳt).

The value of α is discussed below.
Step 3 . [Dual-Test]

Perform the Dual-Test:

(21) if zt+1 > z∗, then update z∗ := zt+1, π
∗ := π̄.

Step 4 . [Loop]

Check stopping criteria. Do t := t+1 and go to Step 1a.
�

The step size in Step 1a is given by

st = λ
T − z∗

‖v̄t‖2
,

where 0 < λ < 2, and T is a target value. A more complete discussion on
how to choose λ appears in [2].

To choose the value of α, an initial value 0.1 is used. Then every 50
iterations, the progress in the objective value is monitored. If the increase
is less than 1% and α > 10−5, then α is divided by 2.

The stopping criteria was based on a maximum number of iterations, a
time limit, and a bound for the gap between the lower bound θ(π) and the
value of an integer solution produced by the procedure below (whichever
was attained first).

We used the implementation of the Volume algorithm that is in COIN-OR
[7].

3.3. Producing a heuristic solution. Every ten iterations of the Volume
algorithm we use the (fractional) vector ȳt to produce a 0 − 1 vector that
defines the set of routes to be open. This heuristic is as follows. For each
route r let νr be the component of ȳt associated with route r, we add a
random number µr ∈ [0, 1] to νr to produce the value γr. Then we pick the
largest N values {γr}, this defines which routes should be open. Given a
set of open routes, we treat the OD pairs sequentially. For each of them we
find a shortest (time) path from origin to destination, using the walk arcs
and the route arcs that are not full. We send flow through this path until
an arc is saturated, or until the demand of the OD pair is satisfied. In the
former case, we have to look for a new shortest path, and continue until the
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demand is satisfied. Once the demand of the OD pair is satisfied, we treat
the next OD pair.

4. Computational Results

We now present and discuss the results of our computational experiments.
We had to deal with a city of about 55000 inhabitants in the US. Our
network has a total of 2487 nodes and 5192 arcs, where three of the nodes
are terminals. Our OD-matrix contained travel demand among centroids of
different zones. Statistics show that the demand is low, and buses run with
only a small occupancy. Thus the OD-matrix had very low values, and we
ignored all the ones below a certain threshold. We repeated this procedure
for two data sets, one for peak hours and the other for off peak. The first
dataset has a total of 160 pairs while the second one has 157. We want to
design a total of 16 routes (i.e. N = 16). Our bus routes have a minimum
duration of 20 mins and a maximum duration of 30 mins. All buses had
a capacity of forty passengers, and in our routings this capacity was never
reached. All travel times are in minutes. All experiments were performed on
a 2.33 GHz Intel Xeon E5410 machine with 32 GB of RAM, running Linux.

We are mainly interested in the following two questions:

(1) What are good heuristics for generating candidate routes?
(2) Is the Volume algorithm a better alternative than CPLEX when

solving the integer program?

4.1. Heuristics Performance. We generate candidate routes following
each of the five heuristics described in Section 2.1. We do this for the two
different datasets of customer demands (i.e. peak hours and off peak). We
present the total number of generated routes for each case in Table 1. Recall
that we delete duplicated routes and routes that do no meet the minimum
duration criterion of 20 minutes.

Table 1. Number of generated routes

RS GD GPD GND GNDDR

# Routes
Dataset 1 302 138 173 169 123
Dataset 2 248 114 135 120 119

In order to study which sets of candidate routes lead to a better solution,
we use the Volume algorithm to solve the corresponding integer program (see
Section 2.2) associated to each set of candidate routes. We justify this choice
(i.e. using Volume instead of CPLEX) later on Section 4.2 where we show
that the Volume algorithm runs much faster than CPLEX for instances of
this size, and moreover, it also tends to give a better solution than CPLEX.

We run the Volume algorithm with the following stopping criteria (whichever
it is reached first): a maximum of either 3 hours, 40 000 iterations, or a 3%
gap between the integer solution value and the lower bound. We describe
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in Table 2 the results obtained for the first dataset of customer demands,
where for each set of candidate routes we show the total travelling time, the
best lower bound found, the relative gap between these two, the share (in
percentage) of total available memory used by the algorithm, and the total
elapsed time (in hh:mm format) before the algorithm stopped.

Table 2. Heuristics comparison (first dataset)

Volume Algorithm (parameters: 3 hours, 40 000 iter, 3% gap)
RS GD GPD GND GNDDR

# Routes 302 138 173 169 123
Travel time 599 729 618 712 595 934 598 629 608 308

Lower bound 574 763 593 712 578 841 578 105 590 746
Relative gap 4.5% 4% 3% 3.5% 3%

Memory 0.5% 0.3% 0.3% 0.3% 0.3%
Time 3:00 2:30 2:50 2:55 2:00

We can observe from Table 2 that the best results are given by the heuris-
tics GPD (Greedy on the Pairs Demand), GND (Greedy on the Nodes De-
mand) and RS (Random Shuffle), in this order.

Now, we create a new set of candidate routes by combining the N chosen
routes (recall that in our case N = 16) from each of the five different heuris-
tics discussed above. Certainly, we know that the objective value for this
new set of candidate routes will not be worst than the best value attained
for each of the heuristics separately. However, there is no obvious reason
to think that the N optimal routes from each case will “complement” each
other and give an improvement over each of the heuristics considered sepa-
rately. Surprisingly, this seems to be the case with our data.

Table 3. Combination of optimal routes (first dataset)

# Routes 80 80 80
Travel time 581 043 574 675 568 787

Lower bound 562 735 562 794 562 989
Relative gap 3% 2% 1%

Time 3:00 4:00 5:00

We can observe on Table 3 how by running the Volume algorithm for 3
hours in this new candidate set, we obtain an objective value that is 2.5%
better than the best solution we previously had. In addition, we also see how
the lower bound in this case is better (i.e. lower) than the ones obtained for
each of the heuristics separately, leading to think that the objective value
could be further improved. In this spirit, we run the Volume algorithm for
an additional 1 and 2 hours respectively, and observe how in fact this is the
case. That is, we see how the total travelling time decreases further, and
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how the relative gap with the lower bound is closed to 1%. Moreover, notice
that there is an almost 5% improvement between the best solution found by
combining the N optimal routes from each of the heuristics (with value 568
787) and the one found by optimizing for each heuristic separately (with
value 595 934).

We perform the same computational experiments for our second dataset
of customer demands. The network data (i.e. nodes, arcs, terminals, etc)
stays the same, but we now have a different set of OD pairs (and different
demands) containing a total of 157 pairs. Table 4 shows the results obtained
for this case.

Table 4. Heuristics comparison (second dataset)

Volume Algorithm (parameters: 3 hours, 40 000 iter, 3% gap)
RS GD GPD GND GNDDR

# Routes 248 114 135 120 119
Travel time 472 146 480 593 463 629 482 336 472 907

Lower bound 450 000 466 596 451 051 472 200 460 332
Relative gap 5% 3% 3% 2% 3%

Memory 0.4% 0.3% 0.3% 0.3% 0.3%
Time 3:00 1:10 2:15 1:55 1:45

Notice that for this new dataset of demands the number of generated
routes for each heuristic is lower than for the previous dataset (see Table
1). Hence, the Volume algorithm tends to run faster than before, since its
running time is proportional to the number of candidate routes that we are
optimizing over. In addition, we can observe how the heuristics GPD, RS,
and GNDDR give the best results in this order. We create again a new
set of candidate routes by combining the N optimal routes chosen for each
heuristic. Table 5 shows the results obtained after running Volume over
this new set of candidate routes. We can observe how by combining the
optimal routes we get again something strictly better, although in this case
the improvement is not as significant as for the previous dataset.

Table 5. Combination of optimal routes (second dataset)

# Routes 80 80 80
Travel time 462 476 461 946 457 654

Lower bound 445 231 445 868 445 916
Relative gap 4% 3.5% 2.5%

Time 3:00 4:00 5:00

We conclude this section by pointing out that our computational results
seem to imply the following:
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(1) GPD gives the best results among the different heuristics for gener-
ating candidate routes.

(2) Combining the optimal routes from the five different heuristics and
optimizing again gives something strictly better than the best value
found by optimizing over each candidate set separately.

4.2. CPLEX vs Volume algorithm. We now focus on the route opti-
mization part of the problem and compare the performance of two different
software approaches: CPLEX and the Volume algorithm. Recall that in the
optimization part we are interested in finding the N optimal routes out of
a larger number M (usually N << M) of candidate routes.

We present in Table 6 the results obtained after running CPLEX on the
five different sets of candidate routes (see Table 1) generated from the first
dataset of customer demands. We run CPLEX with a time limit of 10 hours
for the integer programming optimizer (notice that this does not include the
time that it takes to solve the LP relaxation) and a 5% optimality gap.

Table 6. CPLEX performance (first dataset)

CPLEX stopping parameters: 10 hr optimizer, 5% gap
RS GD GPD GND GNDDR

# Routes 302 138 173 169 123
Travel time 829 851 888 908 930 000 656 578 598 194

Optimality gap 45% 50% 60% 14% < 1%
Memory 75% 39% 45% 45% 35%

Total Time (LP time) 15:00 (5:00) 18:00 (8:00) 28:00 (18:00) 12:00 (2:00) 14:30 (7:00)
# variables 4 900 000 2 700 000 3 200 000 3 100 000 2 300 000

By comparing these results with the ones obtained by running the Volume
algorithm on the same instances (see Table 2), we observe two interesting
facts. First, it seems clear that Volume runs much faster than CPLEX for
problems of this size. In particular, just solving the LP relaxation in CPLEX
seems to take a long time, and in most cases just solving the LP in CPLEX
takes even longer than solving the whole problem using Volume. Second, it
seems to be the case that Volume gives a much better solution than CPLEX,
even though as we mentioned before, it runs for a much shorter amount of
time. We should also notice that while Volume uses less than 1% of the total
amount of available memory, CPLEX requires 35% or more of the available
memory.

We present in Table 7 a case by case comparison between CPLEX and
Volume for each of the five sets of candidate routes generated from the first
dataset. We show the difference (in %) between the best solution found
and between the running times. For instance, in the case of RS heuristic
(second column of the table), we write in the first row “Vol 40%” to denote
that the travelling time found by Volume is 40% better than the one found
by CPLEX, and we write in the second row “Vol 500%” to denote that the
running time of Volume is five times faster than the one of CPLEX.
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Table 7. Volume vs CPLEX comparison (first dataset)

RS GD GPD GND GNDDR
Travel time Vol 40% Vol 43% Vol 53% Vol 10% CPLEX 3%

Running time Vol 500% Vol 600% Vol 1400% Vol 400% Vol 1000%

We repeat the same computations for the second dataset of demands.
That is, we run CPLEX on the five different sets of candidate routes gen-
erated from the second dataset and compare these results with the ones
obtained by running Volume over the same instances (see Table 4). We
present in Table 8 the results obtained with CPLEX and in Table 9 the
comparison between CPLEX and Volume.

Table 8. CPLEX performance (second dataset)

CPLEX (parameters: 10 hr optimizer, 5% gap)
RS GD GPD GND GNDDR

# Routes 248 114 135 120 119
Travel time 830 000 478 832 695 365 495 862 468 939

Optimality gap 85% 2% 53% 5% 1%
Memory 70% 38% 38% 38% 38%

Total Time (LP time) 19:00 (9:00) 13:00 (7:00) 18:30 (8:30) 15:00 (7:30) 17:00 (9:00)
# variables 4 200 000 2 300 000 2 600 000 2 400 000 2 300 000

Table 9. Volume vs CPLEX comparison (second dataset)

RS GD GPD GND GNDDR
Travel time Vol 76% CPLEX <1% Vol 50% Vol 5% CPLEX <1%

Running time Vol 600% Vol 1100% Vol 800% Vol 800% Vol 1000%

We can observe again how the Volume algorithm is much faster than
CPLEX for this problem. Also, how Volume either gives a (usually much)
better solution than CPLEX or in the cases where CPLEX outperforms
Volume how this difference is very small (less than 1%).

5. Conclusions

We considered the problem of designing the public bus transit network
of a medium size city. The goal is to design a total of N routes so that
the overall travelling time of the passengers is minimized. Our approach
consisted in breaking down the original problem into two subproblems: route
generation and route optimization. In the former we are interested in finding
heuristics to generate good candidate routes. In the latter we formulate an
integer program that chooses N optimal routes out of a larger number of
candidates routes, and we study efficient ways to solve this integer program
for our given data.
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Our computational results seem to imply that the GPD (Greedy on the
Pairs Demand) heuristic is a good way to generate candidate routes. This
heuristic is very simple to implement and consists in initially presorting the
OD pairs by demand in decreasing order, then try to add first as many pairs
as possible, and finally add as many single nodes as possible. In addition, the
best results were achieved by first optimizing separately over the candidate
set generated by each heuristic, and then combining these five sets of optimal
routes into a new set of candidate routes.

On the route optimization part we solve the integer program with both
CPLEX and the Volume algorithm and compare their performances. Our
computational results in this case suggest that Volume is a better choice
than CPLEX for approaching this problem. In particular, Volume was much
faster than CPLEX in all the instances that we considered. It also gave
much better solutions than CPLEX in many of the instances, while in the
few cases where CPLEX outperformed Volume this difference was very small
(less than 1% in two cases and 3% in one case). Also the amount of memory
that Volume requires is much less than the memory used by CPLEX.
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