
RC25641 (WAT1611-055) November 15, 2016
Computer Science

Research Division
Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

IBM Research Report

Low-Synchronization, Mostly Lock-Free, Elastic Scheduling
for Streaming Runtimes

Scott Schneider, Kun-Lung Wu
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598 USA

Low-Synchronization, Mostly Lock-Free,
Elastic Scheduling for Streaming Runtimes

Scott Schneider
IBM T.J. Watson Research Center

scott.a.s@us.ibm.com

Kun-Lung Wu
IBM T.J. Watson Research Center

klwu@us.ibm.com

Abstract
We present the scalable, elastic operator scheduler in IBM
Streams 4.2. Streams is a distributed stream processing sys-
tem used in production at many companies in a wide range
of industries. The programming language for Streams, SPL,
presents operators, tuples and streams as the primary ab-
stractions. A fundamental SPL optimization is operator fu-
sion, where multiple operators execute together in the same
process. Streams 4.2 automatically performs fusion at sub-
mission time, because we discovered that in practice, cus-
tomers did not have the expertise to do so. However, this
presented a new problem: potentially thousands of operators
would execute together in the same process, with no user
guidance for thread placement. We needed a way to auto-
matically figure out how many threads to use, with arbitrarily
sized applications on a wide variety of hardware, and with-
out any input from programmers. Our solution has two com-
ponents. The first is a scalable operator scheduler that mini-
mizes synchronization, locks and global data, while allowing
threads to execute any operator and dynamically come and
go. The second are elastic algorithms to dynamically adjust
the number of threads to optimize performance, using the
principles of trust and establishing trends. We demonstrate
our scheduler’s ability to scale to over a hundred threads, and
our elasticity algorithm’s ability to adapt to diferent work-
loads on an Intel Xeon system with 176 logical cores, and an
IBM Power8 system with 184 logical cores.

1. Introduction
Parallel and distributed systems are no longer limited to ex-
pert developers for niche application domains. The emer-
gence of multicore processors has made parallelism main-
stream. The increasing reliance on cloud infrastructure
forces developers to contend with distributed systems. As
developers are expected to program parallel and distributed
systems, programming languages and runtime systems must
adapt so that non-experts can obtain high performance.

Solutions for online stream processing are at the forefront
of this trend. Such systems are distributed and highly parallel
in order to meet the throughput and latency requirements of
real time data analytics. IBM Streams [12, 22] is one such
system that is used in production at dozens of companies,
in a wide variety of industries, including aviation, medicine,
transportation, banking and telecommunications.

The main means of programming for Streams is through
the Streams Processing Language (SPL) [10, 11]. SPL offers
three main abstractions: operators, tuples and streams. Oper-
ators process continually arriving tuples, and communicate
exclusively by sending and receiving tuples over ordered
streams. The programming model is asynchronous dataflow.

At runtime, operators execute inside PEs (processing el-
ements). Each PE is a separate operating system process.
Streams that cross PE boundaries communicate using the
network, allowing PEs to execute across distributed hosts.
The process of assigning operators to PEs is called fusion.

Prior to Streams 4.2, operator fusion and thread place-
ment was handled exclusively by developers at compile time.
Through operator config options, developers could specify
which operators should be fused together into PEs. Oper-
ators without fusion directives would end up in their own,
isolated PE. Threads were manually added to PEs through
the use of threaded port configuration options on operators,
which specified that a separate thread should execute that
particular operator input port. In general, the same thread
would execute all downstream operators until it encountered
a threaded port. Through these controls, expert developers
could finely tune application performance when they had a
deep understanding of their application’s runtime behavior
and deployment system [19].

Experience in the field showed such experts were rare;
few developers had the required constellation of skills. De-
velopers need deep knowledge of SPL semantics, a full un-
derstanding of their application’s runtime behavior and full
awareness of the production systems. We encountered real
deployments of applications with thousands of unfused op-
erators that became thousands of PEs running on a handful
of hosts with a modest number of cores. Such deployments
suffer from excessive PE-to-PE communication in the appli-
cation, and massively over-subscribed systems.

We have also observed the difficulty that experts had
optimizing large applications. Such experts have the ability
to find the right places to insert threads, but doing so is time
consuming: the search space is large, and the time allotted
for performance improvement is small.

In Streams 4.2, operator fusion and thread placement is
handled automatically. Fusion occurs when applications are
deployed, and threads are placed at runtime. Our goal is not

1 2016/11/16

to automatically achieve the “best” fusion and thread place-
ment, but a reasonable one that is good enough for most ap-
plication deployments, which developers and administrators
can use as a baseline for performance refinement. Other dis-
tributed streaming systems used in production [4, 9, 14, 21]
assume a static number and assignment of threads. Exist-
ing solutions in the literature are still prone to load imbal-
ance [23], or do not have scalability as a primary goal [16].

We present the new scheduler and elastic thread adapta-
tion algorithms in Streams 4.2 that solve this problem. Under
automatic fusion, large SPL applications with many opera-
tors will have PEs with many operators. (The fusion process
itself is outside of this paper’s scope.) Our scheduler must
scale to hundreds of threads and thousands of operators, still
maintain tuple order on streams between operators, and al-
low any thread to execute any operator so that we can elasti-
cally add and remove threads. Maintaining tuple order is fun-
damentally a PE-global concern, but naive use of PE-global
state will hinder scalability. Our elasticity algorithms must
be able to seek the optimal thread level under many different
kinds of applications, workloads and systems. Specifically,
the contributions of this paper are:
• Scheduling algorithms for an ordered streaming runtime

that scale to hundreds of threads by minimizing synchro-
nization, global data and locks.

• Elasticity algorithms that can optimize the number of
threads in a streaming runtime by establishing trust in
measurements and discovering performance trends.

• Evaluation of the scheduler’s scalability and the elastic-
ity algorithm’s accuracy on large multicore systems with
over a hundred threads on two separate processor archi-
tectures.

2. Background
2.1 IBM Streams and SPL
The language for Streams is SPL, which provides an asyn-
chronous dataflow programming model. SPL offers three
main abstractions: operators, tuples and streams. Operators
contain logic for processing incoming tuples, and potentially
producing output tuples. Programmers can create their own
custom logic in SPL, but SPL also provide libraries of pre-
defined operators for both standard operations (such as filer-
ing or aggregation) and specialized operations (such as pro-
cessing time series data or interacting with external systems
such as databases or HTTP servers). Streams are typed con-
nections between operators that carry tuples from the send-
ing operator’s output ports to the receiving operator’s input
ports. Operators exclusively communicate over streams; op-
erators can have local state, but no shared global state.

Figure 1 is an example SPL composite operator—it is
not a full application, but a reusable component that pro-
duces a stream of failed login attempts on a particular sys-
tem. The source operator is a FileSource that produces tu-
ples on the stream Lines, where each tuple is a line from
/var/log/messages. The lines are unstructured and stored in

composite LoginFailures(output Failures) {
type

LogLine = timestamp time, rstring hostname, rstring srvc,
rstring msg;

Failure = timestamp time, rstring uid, rstring euid,
rstring tty, rstring rhost, rstring user;

graph
stream<rstring line> Lines = FileSource() {

param format: line;
file: "/var/log/messages";

}
@parallel(width=7)
stream<LogLine> ParsedLines = Custom(Lines) {

logic onTuple Lines: {
list<rstring> tokens = tokenize(line, " ", false);
rstring date = makeDate(tokens[1]);
rstring time = makeTime(tokens[2]);
timestamp t = makeTimestamp(date, time);
submit({time = t, hostname = tokens[3],

srvc = tokens[4], msg = flatten(tokens[5:])},
ParsedLines);

}
}
stream<LogLine> FailuresRaw = Filter(ParsedLines) {

param filter:
findFirst(srvc, "sshd", 0) != -1 &&
findFirst(msg, "authentication failure", 0) != -1;

}
@parallel(width=4)
stream<Failure> Failures = Custom(FailuresRaw) {

logic onTuple FailuresRaw: {
list<rstring> tokens = parseMsg(msg);
submit({time = FailuresRaw.time,

uid = tokens[0], euid = tokens[1],
tty = tokens[2], rhost = tokens[3],
user = size(tokens) == 5 ? values[4]: ""},

Failures);
}

}
}

Figure 1: SPL example. The composite looks for failed logins from
system messages.

simple strings (rstrings in SPL). In order to transform un-
structured to structured data, we invoke a Custom operator,
which allow SPL developers to specify custom logic. For
every tuple, the logic in the Custom operator performs an ini-
tial parse of the line, producing a LogLine tuple. After ini-
tial parsing, a Filter operator filters out all tuples that are
not from the sshd service, and which are not failed login at-
tempts. Another Custom operator parses the sshd service mes-
sage to produce Failure tuples which can identify the user
names and remote hosts that initiated the failed login. These
tuples are sent as output to the Failures stream.

The two Custom operators have @parallel annotations,
which are directives similar to OpenMP [15] pragmas. When
applied to an operator invocation, @parallel creates data
parallel replicas of the operator, and automatically handle
splitting the tuples to the replicas and creating new streams.
Pipeline and task parallelism also regularly appear in SPL
programs. Pipeline parallelism occurs naturally, as operators
can independently process different tuples. Task parallelism
occurs when the same tuples are sent to different subgraphs.

Example SPL applications are available on GitHub [7, 8],
in Hirzel et al. [11] and the documentation is online [20].
2.2 Threading models
Streams 4.2 introduces threading models. The threading
model prior to version 4.2, where developers had to manu-

2 2016/11/16

ally place threads, is now called manual. A threading model
that places threaded ports between every operator is called
dedicated, as each operator input port has its own dedicated
thread. The dynamic threading model allows any thread to
execute any operator, which also enables runtime elasticity
by being able to dynamically add and remove threads.

No one threading model is wholly superior. The man-
ual threading model has the lowest latency, as there are no
queues between operators, and no tuple copies, but it is
single-threaded by default. Dedicated has multiple threads,
and in the common case, can use synchronization-free sin-
gle producer, single consumer queues between threads. But,
the number of active threads scales linearly with the number
of operators with the dedicated model. When the number
of operators greatly outnumbers the available logical cores,
it is not acceptable. The dynamic threading model offers a
middle ground: multithreaded by default, and the number of
threads can elastically adapt to maximize throughput. How-
ever, because any thread can execute any operator, there is
necessarily more thread synchronization.

In Streams 4.2, developers can control the threading
model from SPL through the @threading annotation. For ex-
ample, we can invoke the LoginFailures composite from
Figure 1 and write its tuple to a file while specifying the
dynamic threading model:
@threading(model=dynamic)
composite Main {
graph

stream<Failure> Failures = LoginFailures() {}
() as Sink = FileSink(Failures) {
param file: "failures.txt";

}
}

Or, we can instead make the results available as a web
service while using the dedicated threading model:
@threading(model=dedicated)
composite Main {
graph

stream<Failure> Failures = LoginFailures() {}
() as Sink = TCPSink(Failures) {
param role: server; port: "http";

}
}

We present the operator scheduler and elastic thread man-
ager which implements the dynamic threading model. We
experimentally compare it against manual and dedicated,
showing that it provides a middle-ground: scalable paral-
lelism by default, which can adapt to systems at runtime.
2.3 Constraints
Because Streams is an existing product with customers who
use it in production, we must design our operator scheduler
under the constraint of maintaining backwards compatibil-
ity. There are three main concerns: API compatbility, tuple
ordering, and existing threads.

Figure 1 shows two types of operators. The FileSource

and Filter operators are implemented in C++, and are
invoked from SPL. In C++, developers write their tuple-
processing logic in member functions that implement the
process(Tuple&) interface. In order to send result tuples to

downstream operators, they invoke the submit(Tuple&) in-
terface. Operators can also be implemented in Java, with a
similar interface. We cannot change this interface, or require
operators implemented in C++ or Java to call any additional
functions. This requirement means that all of our schedul-
ing decisions must happen when operators explicitly call
submit()—our operator scheduler is non-premptible.

The other kind of operators in Figure 1 are Custom opera-
tors, where the logic is implemented directly in SPL. In prin-
ciple, it would be possible for the compiler to insert hooks
for a scheduler to approximate preemption between explicit
calls to submit(). However, such an approach is brittle, and
would still not allow preemption for operators implemented
in a native language, which includes the standard library.

Any operator scheduler must also preserve global tuple
order. The programming model for SPL is that operators can
depend on the order in which operators see tuples, but they
cannot depend on the order in which operators execute. SPL
semantics are that streams are first-in, first-out queues, so all
operators that receive tuples from a particular stream should
see them in the same order the upstream operator sent them.
Maintaining this order is inherently a PE-global issue.

Finally, there are threads we cannot control: operator
threads, requested threaded ports, and PE input ports. Op-
erators can create their own threads, which are managed by
the operators themselves. Our scheduler cannot remove such
threads—but it can get such threads to execute other opera-
tors on its behalf. Source operators are the most common
kind of operators which create their own threads: they nec-
essarily have at least one thread which retrieves data from
outside the system (or generates it on the fly), and submits
new tuples downstream. Requested threaded ports are those
explicitly requested by developers. PE input ports are the
point where tuples enter the PE from operators in other PEs.
Each PE input port has its own thread which is responsible
for receiving data from the network, deserializing the tuple,
and executing the receiving operators with that tuple. These
threads must exist at runtime, and cannot be removed. Our
dynamic scheduler must be able to work correctly even in
the presence of threads it does not control.

3. Related Work
The work of Tang and Gedik [23] is a different solution to
our current problem, and was implemented in a research
prototype of Streams. Their solution does not introduce a
scheduler, but instead tries to find the right places to inject
threaded ports at runtime. Their work uses a model to make
the search space tractable, injects the threaded ports, moni-
tors the resulting performance, and adjusts decisions accord-
ingly. The benefit over the approach presented in this paper
is reduced thread synchronization because a single thread
executes a particular set of operators. The difficulty is that
because threads are fixed to executing a particular subsec-
tion of the stream graph, it is more prone to imbalance. We

3 2016/11/16

also purposefully separated the scheduling from the elastic-
ity so that both parts could be simpler.

C-Stream [16] is, similar to this work, an elastic stream-
ing runtime. It is implemented as a C++11 library. Unlike in
SPL, operators in C-Stream use a pull-based model: opera-
tor implementations explicitly request incoming tuples from
their input ports. Operators are executed as co-routines so
that the runtime can suspend operators when they request or
send data. C-Stream’s runtime elastically changes the num-
ber of threads based on utilization: when overall thread uti-
lization is low, it decreases the number of threads, and when
the overall utilization is high, it increases them. The work
presented in this paper changes the number of threads based
on measured throughput. C-Stream also elastically changes
the amount of data parallelism, while in SPL, data paral-
lelism is currently fixed at runtime. C-Stream has a plug-
gable scheduler, allowing for different policies, but it was
not designed explicitly for high scalability; C-Stream exper-
iments scale to 12 threads. The scheduler algorithms pre-
sented in this paper were designed based on what techniques
could scale to over 100 threads.

Storm [21] is a distributed streaming platform imple-
mented in Java. Storm’s worker process is similar to Stream’s
PE [24], and spouts and bolts are analogous to SPL’s oper-
ators. Worker processes contain executors, which execute
multiple spouts or bolts of the application. Executors have
two threads, one for processing application logic, and one
for sending result tuples out to other worker processes. The
assignment of spouts and bolts to executors is static, unlike
in our scheduler, and the number of threads is not elastic.
Heron [9] is a re-implementation of Storm that retains the
same API, but changes the internal architecture. The heron
instance is akin to the worker process, and is constrained to
running a single spout or bolt. The heron instance still has
two threads, but one thread is a gateway thread responsible
for all communication. The other thread is responsible for
executing the spout or bolt. Again, unlike our solution, the
number of threads cannot change at runtime, and threads
cannot change which spouts or bolts they execute. Unlike
Streams in general, users do not have control over threads.

Naiad [14] is a distributed system designed for data paral-
lel, streaming and iterative workflows. Messages have logi-
cal timestamps and location-generation metadata that allows
the system to reason about message order and priority. Work-
ers in Naiad execute vertices (similar to operators), commu-
nicating through shared queues. Workers can execute differ-
ent vertcies, but there is no thread-level elasticity.

Cilk [1, 5], with its work-stealing scheduling, is one of
the most influential schedulers for task-based multithreaded
parallelism. However, task-based parallelism is fundamen-
tally different than a stream graph. In task-based parallelism,
tasks create new tasks to be executed, which forms a de-
pendency graph at runtime. In streaming, the graph is ex-
plicit and static. While executing a streaming operator will

create work for other streaming operators, each operator is
likely to get more work. With task-based parallelism, work-
stealing allows idle threads to “steal” a subgraph and execute
it independently. We did experiment with ideas inspired by
work-stealing, but they always ended up creating more load
imbalance, and incurring unnecessary synchronization.

The novelty of the work presented in this paper is in the
combination of a dynamic and elastic operator scheduler in
a streaming runtime that can scale to hundreds of threads.

4. Design
Our operator scheduler has two main goals: scalability and
elasticity. As the number of threads increases, the scheduler
must scale. We also must be able to add and remove threads
dynamically, so that we can discover the best number of
threads at runtime. The rest of this section elaborates on
these requirements, and presents the scheduling and elasticty
algorithms which satisfy them.
4.1 Scheduling
We have the following requirements from a PE-global oper-
ator scheduler:
1. The PE must be able to add and remove scheduler threads

at runtime. This property enables elasticity, and means
that threads cannot be statically assigned to operators.

2. Tuple order must be maintained. Formally, if operator
A emits tuples a0, a1, ..., an on an output port, and
operator B has an input port subscribed to A’s output
port, operator B must see the same tuples in the order a0,
a1, ..., an. Note that in the absence of this requirement,
our scheduler could follow a generic thread pool pattern.

3. The scheduler must scale as we add threads. Not only is
global locking not an option, we also need to minimize
scheduler threads touching global data.

4. We cannot change the pre-existing operator API. We have
a significant amount of user applications that must still
work correctly under our new scheduler without having
to make any changes to user code.

These requirements are in tension. The first requirement
means that any thread must be able to execute any opera-
tor, and in particular, that if a thread executes an operator,
a different thread may execute it next time. The second re-
quirement, maintaing tuple order across operators, is inher-
ently a PE-global problem. Both require some communica-
tion across threads. In order to meet the third requirement,
we must eliminate unnecessary global communication, and
find a way to delay necessary communication. The fourth
requirement means that the scheduler can only take control
when an operator voluntarily submits a tuple.

These requirements push us towards a design where each
operator input port has a single-producer, single consumer
lock-free FIFO queue of tuples. The scheduler maintains a
lock-free free list of operator input ports; when an operator
input port is on this queue, it may be free to execute. To de-
termine if an operator input port is actually free to execute,
we check a flag associated with its queue. Checking this flag

4 2016/11/16

struct SPSCEnforcer {
lockfree::spsc_queue<Tuple> queue;
atomic<bool> prodLocked;
atomic<bool> consLocked;

bool prodTryLock() {
bool expected = false;
return prodLocked.compare_exchange_strong(expected,

true,
memory_order_acquire);

}
void prodUnlock() {
prodLocked.store(false, memory_order_release);

}
bool consTryLock() {
bool expected = false;
return consLocked.compare_exchange_strong(expected,

true,
memory_order_acquire);

}
void consUnlock() {
consLocked.store(false, memory_order_release);

}
bool push(Tuple& tuple) {
if (prodTryLock()) {
if (queue.push(tuple))
return true;

prodUnlock();
}
return false;

}
};

unordered_map<Port*, SPSCEnforcer*> queues_table;
lockfree::queue<Port*> freePorts;

Figure 2: Data structures.

ensures that only a single thread will execute an operator in-
put port at a time. By maintaining this property, we maintain
our tuple order requirement: upstream threads will necessar-
ily enqueue their tuples in submission order, and if only a
single thread pops tuples from this queue to execute them,
they must be processed in order.

Obtaining an operator input port by popping it from the
free list is not enough to guarantee a scheduler thread’s ex-
clusive access to that input port. There are two opportunities
where a thread will try to get exclusive access to an input
port: from the main scheduler loop, by popping it off the free
list, and when pushing a tuple into that input port’s queue.
The following sections present our algorithms in detail.

We present our algorithms in C++, rather than using
generic psuedo-code. Lock-free algorithms depend on syn-
chronization primitives, whose particulars can change de-
pending on the underlying hardware. Rather than defining
our own semantics, we find it clearer to borrow the atom-
tic interfaces defined in C++11 [3], and the lock-free lists
defined in the Boost.Lockfree package [2].
4.1.1 Data structures and initialization
Figure 2 shows the data structures used in our schedul-
ing algorithms. The SPSCEnforcer structure wraps a single-
producer, single-consumer lock-free queue. It contains the
flags (prodLocked and consLocked) which enforce when it is
safe to produce or consume a tuple from the queue.

The lock-free queues we use are from the Boost.Lockfree
package. In our presented algorithms, we use two functions
from their interface:

bool push(const T& item); // adds item to queue

void schedule(const atomic<bool>& suspended,
const atomic<bool>& shutdown,
const atomic<bool>& portsClosed) {

Tuple tuple;
while (findWorkBlocking(tuple, suspended,

shutdown, portsClosed)) {
execute(tuple);
SPSCEnforcer* q = queues_table[tuple.port()];
while (q->queue.pop(tuple)) {
execute(tuple);
if (suspended.load(memory_order_acquire) ||

shutdown.load(memory_order_acquire) ||
portsClosed.load(memory_order_acquire))

break;
}
q->consUnlock();
while (!freePorts.push(tuple.port())) {}

}
}

Figure 3: Main scheduling loop.

bool pop(T& item); // writes head of queue to item

Both functions return true if the operation succeeded, and
false if the operation failed. As for all lock-free data struc-
tures, operation failure can mean either it is unable to alter
the data structure further (it is either full or empty), or that it
experienced contention with another thread.

We do not define Tuple and Port in this paper. A Tuple

contains all of the data for the tuple to be processed, as well
as meta-data related to executing it, such as the destination
input port. (In Streams, we also support punctuations, but
we only show tuples for simplicity.) A Port knows how to
execute the operator it is associated with, given a tuple.

The queues_table and freePorts structures are global to
the PE. The PE initializes both during startup, before any
threads start executing tuples. During each operator’s initial-
ization phase, it registers each input port with the PE. The
PE creates an association between that input port and its
SPSCEnforcer, stored in queues_table. It also adds that input
port to freePorts. After initialization, queues_table is read-
only; it is not a lock-free data structure, but as long as we do
not modify it, we can use it as a global look-up table.
4.1.2 Main scheduling loop
After initialization, the PE launches the scheduler threads,
which execute the algorithm in Figure 3. The values suspended,
shutdown and portsClosed are local to each thread. The first,
suspended, is for when the PE tells a thread that it is sus-
pended. It is naturally a thread local value, and revalvant for
elasticity (see Section 4.2). The other two values, shutdown
(for indicating an explicit shutdown request by the PE) and
portsClosed (for indicating that all input ports have pro-
cessed their final punctuations, and there will be no more
tuples to process) are inherently PE-global concepts. How-
ever, each scheduler thread checking the same global value
as a condition to continue processing severely limits scabil-
ity when the number of threads is in the dozens or hundreds.
Doing so requires that the cache line which contains those
values must bounce around all of the cores in the system.

Instead, we create a local value for each thread, and
when we need to update these values, we iterate through
all threads, updating them all. This process incurs a cost at

5 2016/11/16

shutdown, but that is far more preferrable than paying the
cost every iteration of the scheduling loop.

These local values illustrates the primary means through
which our scheduler achieves scalability: limit global data as
much as possible. As the number of threads in a single node
reaches the hundreds, we must start to view multithreaded
programming through the lens of distributed systems. With
that view, global data between threads is the same as sending
messages across hosts.

The main logic in Figure 3 continually calls findWorkBlocking(),
which looks through the global freePorts free list for a free
operator input port with a tuple to execute. If it ever returns
false, then one of the stopping conditions has been met, the
loop will exit, and the thread will return.

The common case, when it returns true, indicates two
things: we have a tuple to execute, and we have exclusive ac-
cess to that operator’s input port. We do not define execute();
given a tuple, it knows how to execute that tuple on the op-
erator it was submitted to. But, after executing that tuple, we
do not immediately go back to the global free list. We paid a
cost by touching global data; we now need to amortize that
cost. Since we know we have exclusive consume access to
this input port, we can go ahead and pop off and execute all
of the tuples from its queue.

The first time we fail to pop a tuple from this queue means
that the queue is empty. We unlock it, place it in the back
on the global freePorts list, and look for more global work.
Pushing recently executed input ports to the back of the free
list favors executing the least recently executed operators.
4.1.3 Finding work
The algorithms for finding global work, Figure 4, are split
into blocking and non-blocking functions. The blocking al-
gorithm, findWorkBlocking(), is mostly concerned with what
to do if the thread has been suspended, or no work can be
found. Both suspend() and block() should use synchroniza-
tion primitives that prevent the thread from consuming re-
sources. In Streams, we Pthread mutexes and condition vari-
ables. Runtime systems which try to avoid synchronization
sometimes try to use system calls like nanosleep() for such
purposes. In our experience, such attempts to avoid synchro-
nization primitives end up costing more.

If we can’t find any work, we follow an exponential back-
off pattern calling block(). DELAY_THRESHOLD is a scheduler
parameter with a tradeoff: lower thresholds will favor lower
latency, and higher thresholds will favor consuming less re-
sources when data is not flowing. In Streams, we block for
up to ten milliseconds. Note that findWorkBlocking() will
only return false when the PE is shutting down.

The function findWorkNonBlocking() is where the sched-
uler actually looks over the free lists for global work. It finds
an operator input port that satisfies three properties:
1. Exists on the free list.
2. Is not taken by another thread.
3. Has a tuple in its queue.

bool findWorkBlocking(Tuple& tuple,
const atomic<bool>& suspended,
const atomic<bool>& shutdown,
const atomic<bool>& portsClosed) {

long delay = 1;
while (!shutdown.load(memory_order_acquire) &&

!portsClosed.load(memory_order_acquire)) {
if (suspended.load(memory_order_acquire))
suspend();

if (findWorkNonBlocking(tuple))
return true;

block(delay);
if (delay < DELAY_THRESHOLD)

delay *= 10;
}
return false;

}

bool findWorkNonBlocking(Tuple& tuple) {
Port* first = NULL;
if (freePorts.pop(first)) {
SPSCEnforcer* q = queues_table[first];
if (q->consTryLock()) {
if (q->queue.pop(tuple))
return true;

q->consUnlock();
}
while (!freePorts.push(first)) {}

Port* port = first;
while (freePorts.pop(port)) {

q = queues_table[port];
if (q->consTryLock()) {
if (q->queue.pop(tuple))

return true;
q->consUnlock();

}
while (!freePorts.push(port)) {}

if (port == first)
break;

}
}
return false;

}

Figure 4: Looking for global work.

We must satisfy these three properties while iterating over
a lock-free list that other threads may also simultaneously
iterate over, and has no deterministic “end.” The algorithm
performs a priming read of the list, so that it can remember
the input port it saw first. Every operator input port it pops
off the list that does not meet the following two requirements
is pushed to the back of the list. If any pop of the free list
fails, or if we recognize the first input port we saw, then we
stop searching the list, return false, and the outer algorithm
in findWorkBlocking() will block for a period of time.

Note that a thread is not guaranteed to find work if it
exists. Of course, pops of the free list may fail because the
list is empty, but they may also fail if there was interference
from another thread. We stop looking for work the first
time this happens. A principle that we apply throughout
our algorithms is that if we encounter contention during an
operation, and we do not need to complete that operation
for correctness, we abandon it and do something else. A
failed operation due to contention on one thread means a
successful operation on another thread, so even though a
particular thread is not guaranteed to find work if it exists,
some thread will find work if it exists.

6 2016/11/16

void push(Tuple& tuple) {
SPSCEnforcer* q = queues_table[tuple.port()];
if (!q->push(tuple))
reSchedule(q, tuple);

}

void reSchedule(SPSCEnforcer* q, Tuple& tuple) {
while (!q->push(tuple) && !isFinished()) {
if (q->consTryLock()) {
Tuple reTuple;
int processed = 0;
while (q->queue.pop(reTuple)) {
execute(reTuple);
++processed;
if (processed > RESCHED_LIMIT ||

isFinished() || isSuspended())
break;

}
q->consUnlock();

}
}

}

Figure 5: Pushing work into an operator input port’s queue, and
potentially executing work for it.

Because we abandon our search the first time we see
the first port again, it’s also possible, on a given call to
findWorkNonBlocking(), that there are input ports we never
tested. They may have been added to the free list by another
thread after we started. Again, we favor abandoning our
search early, rather than trying to determine if there are any
operator input ports that we “missed.”
4.1.4 Pushing tuples
All prior algorithms are concerned with executing tuples—
taking work out of the system. The algorithms in Figure 5
are concerned with pushing tuples into operator input port
queues—adding work into the system. When an operator
submits a tuple downstream, it will eventually call push()

from Figure 5. If the push into the operator input port’s
queue fails, we assume that the queue is full, so we call
reSchedule(). Again, it is possible that the queue is not full,
and that instead we conflicted with another thread that had
acquired the prodLocked flag for that queue. Rather than try-
ing to distinguish these two cases, we execute reSchedule()

immediately, which handles both.
The rationale behind reSchedule() is simple: this thread

cannot continue until it pushes the current tuple into this
operator’s input port queue, but the queue is (likely) full.
Rather than blocking and waiting for another thread to free
up the queue for us, we do it ourself. Executing another
operator input port inside reSchedule() is why we need to
also place a lock on the input port queues: it is not practical
for us to find this input port on the free list, as that would
require a linear and destructive walk. Adding the lock allows
the pushing thread to get exclusive access to the consume
side of the input port queue without touching global data.
Unlike in schedule(), we do not clear out the entire queue,
but rather stop after having processed RESCHED_LIMIT tuples.
Our goal is to clear out enough work so that we can push the
original tuple and move on; we leave most of the execution
to when schedule() grabs this operator input port off the free
list. In Streams, RESCHED_LIMIT is 1/4 of the queue size.

In the early phase of designing these algorithms, we ex-
perimented with reSchedule() calling findWorkNonBlocking()

either immediately, or after a certain number of loop itera-
tions. The resulting performance was poor, due to load im-
balance and scalability limitations because we were touching
global data unnecessarily. It is better to attempt to add the
tuple to the queue, or to get permission to clear out the queue
ourself if it’s full, rather than executing unrelated work.

Note that rather than directly checking thread local val-
ues, we indirectly call functions isFinished() and isSuspended()

to determine if processing should continue. The function
reSchedule() may be executed by an operator thread; schedule(),
findWorkBlocking() and findWorkNonBlocking() can only be
executed by scheduler threads. Because the PE does not have
full control over operator threads, they do not have the ap-
propriate thread local values. Consequently, isFinished()

and isSuspended() look at the appropriate thread local value
if available, and fall back to the global value if not.
4.1.5 Discussion
The use of the free list—a linear walk, pop from the back,
push to the front—is simple, almost to the point of seeming
naive. But the scheduling policy it implements is roughly
Least Recently Used. Our design was pushed in this direc-
tion because of its dependence on lock-free data structures
to scale. But, prior work by Sahin [16] showed that for a
streaming scheduler, LRU does perform well. At the least, it
exhibits no pathological behavior in their experiments.

We have simplifed our presentation of the algorithms in
several ways. In Streams, our scheduler also handles punc-
tuations. We actually use fixed size lock-free queues, which
have a slightly different interface. It is possible to use non-
fixed sized lock-free queues in our algorithms, but we would
need some other mechanism to limit memory growth and
induce back-pressure. Such a mechanism could be a size

field in SPSCEnforcer that was updated on pushes and pops.
It would not represent the “true” size of the operator input
port queue, as it would not be updated atomically with the
lock-free pushes and pops. Rather, when the size is over a
threshold, it would indicate the queue is “full enough”, and
cause a call to reSchedule().

Our single-producer, single-consumer queue is not ac-
tually from Boost.Lockfree. Our implementation is specif-
ically designed to avoid needing dynamic memory alloca-
tion by reusing the same memory in the queue. Our imple-
mentation is pushed in this direction because our tuples are
stack-allocated. In order to save tuples for later processing,
we must copy the entire tuple. In systems where tuples are
dynamically allocated by default, operator queues could in-
stead be multiple-producer, single-consumer. Early versions
of our implementation did use such operator queues, but
that also required dynamic memory allocation on each tu-
ple copy. Avoiding the dynamic memory allocation proved
to be more important than allowing multiple producers.

7 2016/11/16

struct ThreadRecord {
uint64_t lastTime;
double firstThput;
double lastThput;
bool trusted;

};
vector<ThreadRecord> recs;
int levelBelow = 0;
int level = 1;
int levelAbove = 2;
uint64_t time = 0;

Figure 6: Elasticity data structures.

In Streams we track which scheduler threads are “active.”
Operators can contain arbitrary user code; operators are al-
lowed to never return. Scheduler threads set a flag when
looking for work to indicate it is not stuck in operator code.
4.2 Elasticity
The scheduler algorithms were designed so that the PE could
add and remove scheduler threads at runtime. The purpose
of adding and removing threads at runtime is so that the
PE can automatically determine the number of threads that
maximizes throughput, saving users from figuring it out.
We adapt our approach from prior work on elasticity in a
streaming context [6, 17, 18]. The main idea in our elasticity
approach is in recognizing performance trends, and trusting
observed performance data.
4.2.1 Data structures and initialization
Figure 6 shows the data structures and persistent values used
in our elasticity algorithm. We define a thread level as when
the PE uses that number of threads to execute operator input
ports. For every thread level, we store a ThreadRecord in the
vector recs (the 0th element is unused). In a ThreadRecord,
we need to remember the last time that we were at this thread
level (lastTime), the first throughput value that we trust for
this level (firstThput), the last throughput value that we saw
for this level (lastThput), and whether or not we trust the
data at this level (trusted). Initially, all levels are untrusted.

We need to remember our current thread level (level),
and we use variables to track our levels below (levelBelow)
and above our current level (levelAbove) so that we are not
limited to linear functions for increasing and decreasing
our thread level. Finally, we track logical time (time) for
distinguishing when we recorded throughput observations.
4.2.2 Elasticity algorithm
The PE periodically measures the aggregate throughput
across all operators, and then calls updateThreadLevel() in
Figure 7 with the latest throughput. The period of time be-
tween changing the thread level must be long enough for the
change to have made a difference in throughput, but short
enough to be adaptive to changes in workload. In Streams,
we use a period of 10 seconds. The elasticity algorithm per-
forms three steps:
1. Determine if the workload has changed; if it has, record

that all prior observations are not trustworthy.
2. Record the latest observations.
3. Determine if the latest throughput implies that we should

change the thread level.

int updateThreadLevel(double thput) {
if (changeInLoad(thput))
for (int i = 0; i < recs.size(); ++i)
recs[i].trusted = false;

recs[level].lastTime = time++;
recs[level].lastThput = thput;
if (!recs[level].trusted)
recs[level].firstThput = thput;

recs[level].trusted = true;

if (((trendBelow(thput) && !trustAbove()) ||
trendAbove(thput) ||
(level == 1 && !trustAbove()))

&&
isCPUUsageAcceptable())

increaseLevel();
else if (!trustBelow() || !trendBelow(thput))
decreaseLevel();

return level;
}

bool trendBelow(double thput) {
if (level == 1)
return false;

if (!recs[levelBelow].trusted)
return false;

if (thput > recs[levelBelow].lastThput &&
(thput - recs[levelBelow].lastThput >
SENS * recs[levelBelow].lastThput))

return true;
return false;

}

bool trendAbove(double thput) {
if (!recs[levelAbove].trusted)
return false;

if (recs[levelAbove].lastThput > thput &&
(recs[levelAbove].lastThput - thput >
SENS * thput))

return true;
return false;

}

bool trustBelow() {
if (level == 1) return false;
return recs[levelBelow].trusted;

}

bool trustAbove() {
if (level == recs.size() - 1) return false;
return recs[levelAbove].trusted;

}

Figure 7: Elasticity algorithm.

We do not present changeInLoad(); it is similar to Algo-
rithm 3 in Gedik, et al. [6]: given a throughput, historical
throughputs at that level and a threshold, determine if the
new throughput is different enough to consider it a change
in workload. If it is, then we indicate that we not trust any
of our previously recorded data. The threshold, SENS, is also
used in trendBelow() and trendAbove(). Values closer to 0
favor being more sensitive to detecting changes, and values
closer to 1 favor stability. In Streams, the value is 0.05, or
reacting to differences of more than 5%.

After recording the current observations, we determine if
they indicate we should change our thread level. Our algo-
rithm assumes that the throughput versus thread level per-
formance curve will have three phases: improvement as the
thread level increases; a thread level that maximizes through-
put; and past that thread level, throughput either plateaus
or degrades. Our goal is to find the thread level that maxi-
mizes throughput. We use observed throughput to construct

8 2016/11/16

this performance curve at runtime. The following rules guide
us towards finding the maximum point of this curve:
1. If relative performance between this and the level below

indicates an upward trend, and we do not trust our data
from above, increase the thread level.

2. If relative performance between this and the level above
indicates an upward trend, increase the thread level.

3. If this thread level is 1, and we do not trust data from
above this level, increase the thread level.

4. If we do not trust the data below this level, then decrease
the thread level.

5. If there is no performance trend going from below to this
level, then decrease the thread level.

6. If none of the above conditions are met, the thread level
does not change.
These rules will cause the thread level to converge on the

level at which there is performance improvement below, no
performance improvement above, and we trust the data both
above and below. That thread level maximizes throughput.
4.2.3 Discussion
We intentionally have a bias to seek out thread levels we do
not trust so we can construct our performance curve. We also
have a bias to seeking upwards before seeking downwards.
However, our bias towards seeking upwards will not cause us
to go too far in the direction of performance degradation, be-
cause at that point, we will have evidence of it. The special-
case at thread level 1 is needed to kick-off the search process.
Finally, combining the first step of updatedThreadLevel()

which untrusts data if we detect workload changes, with the
exploration both up and down if we don’t trust data, will
cause us to find new settling points after workload changes.

So far, all of our elasticity discussion has had the goal of
maximizing the performance of a single PE. But a secondary
goal is to not oversubscribe a single system—multiple, com-
peting greedy actors can overload a system, harming perfor-
mance and reliability for all. We expect multiple PEs to run
on the same host, and we use two mechanisms to prevent an
oversubscribed system. First, the thread level for a PE can-
not increase past the number of available logical processors
that the PE can execute on. Second, before increasing the
thread level, we check isCPUUsageAcceptable(). If it is not,
even if we have evidence that increasing the thread level will
improve performance, we do not increase the thread level.
The function can be implemented using any mechanism that
observes total system usage. In Streams, we use /proc/stat

to calculate total system CPU usage. If it is greater than 80%
of system capacity, we do not increase further.

Our scheduling discussions in Section 4.1.5 introduced
active threads. Keeping track of which threads are active
matters when we try to suspend them: if they are not active,
they cannot be suspended. After a measuring period, we
always check if threads that were supposed to be supsended
actually were suspended. If they were not, we mark such
threads as unsuspendable, and put off making any changes to

the thread level until we have a measurement period where
all actions that were supposed to happen did happen.

Finally, there is a minimum thread level for each PE. In
order to avoid deadlock introduced by our scheduler, we
have to ensure that the number of scheduler threads never
drops below one more than the maximum number of input
ports that a single operator has. Operators are allowed to
block indefinitely; some standard operators such as Gate and
Switch depend on this behavior in their implementations, as
does the protocol for establishing guaranteed tuple process-
ing in Streams [13]. By ensuring that we always have more
threads than the number of input ports for a particular oper-
ator, we ensure that our scheduler will not cause deadlock.
Note that we cannot guarantee that a PE will not deadlock;
because the programming model allows users to write arib-
trary blocking operators, and the stream graphs can have cy-
cles, it is always possible. Our aim here is to prevent dead-
lock introduced by our scheduler.

5. Experimental Results
Our experiments test three claims. First, we test the claim
that our operator scheduler scales as the number of threads
increases. Second, we test the claim that our elasticity al-
gorithm discovers the thread level with the best throughput.
Finally, test our claim that the dynamic operator scheduler
is a reasonable default, with performance between the two
extremes of manual and dedicated threading.

All experiments have a source operator that generates
tuples as fast as the downstream operators can process them.
The cost of processing each tuple is fixed in an run; tuple
processing cost is measure in floating point operations. We
vary the tuple processing cost across different runs. We fix
the total amount of operators in each experiment to 1,000.
We vary the graph structure so that the experiments have
varying amounts of data and pipeline parallelism. During
each run, we measure total application throughput every 5
seconds as seen by the sink operator.

In all experiments dynamic static uses our operator sched-
uler, but with a fixed number of threads. We vary the num-
ber of threads under dynamic static to explore the perfor-
mance curve as the number of threads increases. Our elas-
ticity algorithms are active under dynamic elastic. Because
the measured throughput will change as the elasticity algo-
rithms explore different thread levels, we only measure the
final 5 samples, or 25 seconds, to represent the level the
elasticity algorithms have settled on. Under manual, a single
thread executes all operators, and under dedicated, a differ-
ent thread executes each operator. Note that under dedicated,
there are 1,000 threads active on the system.

We present experiments on two systems, both running
RedHat Linux 7.1, kernel version 3.10.0. Our Xeon system
has 4 Intel Xeon E7-8880 v4 processors at 2.2 GHz. Each
processor has 22 cores, and each core is 2-way SMT, giving
176 logical cores. Our Power8 system has 2 IBM Power8
8247-22L processors at 3 GHz. Each processor has 12 cores,

9 2016/11/16

Src W1 W2 W1000 Snk… Src W1 W2 W1000 Snk…

Src

W1

W2

W1000

Snk
…

Xeon

Src

W1

W2

W1000

Snk
…

Power8

Xeon Power8

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Xeon

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Power8

0 50 100 150 200
threads

0

1

2

3

4

5

6

7

th
ro

u
g
h
p
u
t

1e5 Xeon: w 1, d 1000, cost 1

manual

dedicated

dynamic elastic

dynamic static

0 50 100 150 200
threads

0

1

2

3

4

5

th
ro

u
g
h
p
u
t

1e5 Xeon: w 1, d 1000, cost 100

manual

dedicated

dynamic elastic

dynamic static

0 50 100 150 200
threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

th
ro

u
g
h
p
u
t

1e5 Xeon: w 1, d 1000, cost 1000

manual

dedicated

dynamic elastic

dynamic static

Src W1 W2 W1000 Snk… Src W1 W2 W1000 Snk…

Src

W1

W2

W1000

Snk
…

Xeon

Src

W1

W2

W1000

Snk
…

Power8

Xeon Power8

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Xeon

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Power8

0 50 100 150 200
threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

th
ro

u
g
h
p
u
t

1e5 Power8: w 1, d 1000, cost 1

manual

dedicated

dynamic elastic

dynamic static

0 50 100 150 200
threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

th
ro

u
g
h
p
u
t

1e5 Power8: w 1, d 1000, cost 100

manual

dedicated

dynamic elastic

dynamic static

0 50 100 150 200
threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

th
ro

u
g
h
p
u
t

1e4 Power8: w 1, d 1000, cost 1000

manual

dedicated

dynamic elastic

dynamic static

Src W1 W2 W1000 Snk… Src W1 W2 W1000 Snk…

Src

W1

W2

W1000

Snk
…

Xeon

Src

W1

W2

W1000

Snk
…

Power8

Xeon Power8

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Xeon

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Power8

0 50 100 150 200
threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

th
ro

u
g
h
p
u
t

1e6 Xeon: w 1000, d 1, cost 1

manual

dedicated

dynamic elastic

dynamic static

0 50 100 150 200
threads

0

1

2

3

4

5

6

7

8

9

th
ro

u
g
h
p
u
t

1e5 Xeon: w 1000, d 1, cost 10000

manual

dedicated

dynamic elastic

dynamic static

0 50 100 150 200
threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

th
ro

u
g
h
p
u
t

1e5 Xeon: w 1000, d 1, cost 100000

manual

dedicated

dynamic elastic

dynamic staticSrc W1 W2 W1000 Snk… Src W1 W2 W1000 Snk…

Src

W1

W2

W1000

Snk
…

Xeon

Src

W1

W2

W1000

Snk
…

Power8

Xeon Power8

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Xeon

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Power8

0 50 100 150 200
threads

0.0

0.5

1.0

1.5

2.0

2.5

th
ro

u
g
h
p
u
t

1e6 Power8: w 1000, d 1, cost 1

manual

dedicated

dynamic elastic

dynamic static

0 50 100 150 200
threads

0

1

2

3

4

5

6

7

8

th
ro

u
g
h
p
u
t

1e5 Power8: w 1000, d 1, cost 10000

manual

dedicated

dynamic elastic

dynamic static

0 50 100 150 200
threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

th
ro

u
g
h
p
u
t

1e5 Power8: w 1000, d 1, cost 100000

manual

dedicated

dynamic elastic

dynamic static

Figure 8: Xeon and Power8 results for 1,000 operators in pure pipeline and data parallel graphs.

and each core is 8-way SMT. But, in our system, one core
has been disabled, so the system has a total of 184 logical
cores. All experiments use IBM Streams version 4.2.0.1.
5.1 Pure pipeline
The top two rows of Figure 8 are the results for a 1,000 oper-
ator pipeline. The tuple costs in floating point operations per
tuple are 1, 100 and 1,000, from left to right. Deep pipelines
present an enormous amount of inherent parallelism. The
only limitation in exploiting the inherent parallelism comes
from the overheads from the underlying runtime system.

Both architectures present similar trends. The manual
model, with a single thread, always performs the worst: a
single thread has to execute each operator in the pipeline,
in order. The dedicated model always performs best: even
though the system is over-subscribed with 1,000 threads,
all threads communicate exclusively with single-producer,
single-consumer lock-free and explicity synchronization-
free queues. The system has to perform many context
switches for each thread to be scheduled—over 10 million
for dedicated, versus about 160,000 for dynamic. But those
context switches are amortized over many operator execu-
tions. In the dedicated case, each thread only directly com-
municates with two other threads, rendering most threads
independent of each other. When any particular thread is
scheduled, it is likely to have either production or consump-
tion work. The dynamic model, however, spends proportion-
ally more time pushing tuples into queues and looking for

work. While the dynamic model has been designed to avoid
thread synchronization, it still does sometimes require it.
The dedicated model is able to avoid it entirely.

Note, however, that in this and all other experiments,
because the dedicated model massively over-subscribes the
system, it is not a realistic option for this number of oper-
ators in production applications. The load average on these
systems was as high as 5,000; for the Xeon system, 176 is
fully subscribed, and for the Power8 system, 184 is fully
subscribed. Anecdotally, even performing interactive tasks
through the shell on such systems suffers high latency.

The dynamic model presents an acceptable middle ground.
Performance scales with the number of threads, and the elas-
ticity algorithms are able to find the appropriate thread level
automatically. Note that as the tuple cost increases, the per-
formance difference between dedicated and dynamic de-
creases from between 40–60% to about 75%. The perfor-
mance difference comes from thread synchronization, even
if we have minimized it. As the cost of the work increases,
the relative cost of the synchronization decreases.
5.2 Pure data parallel
The bottom two rows of Figure 8 are the results for a 1,000
width data parallel split. The tuple costs in floating point
operations per tuple are 1, 10,000 and 100,000, from left to
right. Unlike our pure pipeline experiments, all 1,000 data
parallel worker operators communicate directly with the Snk

operator. The Snk operator has local state to track the number

10 2016/11/16

Src W1 W2 W1000 Snk… Src W1 W2 W1000 Snk…

Src

W1

W2

W1000

Snk
…

Xeon

Src

W1

W2

W1000

Snk
…

Power8

Xeon Power8

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Xeon

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Power80 50 100 150 200
threads

0.0

0.2

0.4

0.6

0.8

1.0

th
ro

u
g
h
p
u
t

1e6 Xeon: w 10, d 100, cost 1

manual

dedicated

dynamic elastic

dynamic static

0 50 100 150 200
threads

0

1

2

3

4

5

6

7

8

9

th
ro

u
g
h
p
u
t

1e5 Xeon: w 10, d 100, cost 100

manual

dedicated

dynamic elastic

dynamic static

0 50 100 150 200
threads

0

1

2

3

4

5

6

7

8

th
ro

u
g
h
p
u
t

1e5 Xeon: w 10, d 100, cost 1000

manual

dedicated

dynamic elastic

dynamic static

Src W1 W2 W1000 Snk… Src W1 W2 W1000 Snk…

Src

W1

W2

W1000

Snk
…

Xeon

Src

W1

W2

W1000

Snk
…

Power8

Xeon Power8

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Xeon

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Power8 0 50 100 150 200
threads

0

1

2

3

4

5

6

th
ro

u
g
h
p
u
t

1e5 Power8: w 10, d 100, cost 1

manual

dedicated

dynamic elastic

dynamic static

0 50 100 150 200
threads

0

1

2

3

4

5

6

th
ro

u
g
h
p
u
t

1e5 Power8: w 10, d 100, cost 100

manual

dedicated

dynamic elastic

dynamic static

0 50 100 150 200
threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

th
ro

u
g
h
p
u
t

1e5 Power8: w 10, d 100, cost 1000

manual

dedicated

dynamic elastic

dynamic static

Figure 9: Xeon and Power8 results for 1,000 operators in a mix of pipeline and data parallel.

of processed tuples, and this state must be protected by a
lock—but only when multiple threads will potentially access
the data. (SPL handles this state protection and lock elision
automatically [19].) Because of these structural differences,
the pure data parallel experiments exhibit different trends
than the pure pipeline experiments.

When the cost is 1, there is no effective parallelism to ex-
ploit: it is much faster to execute all 1,000 worker operators
sequenially, as it avoids all thread synchronization costs. The
dedicated model incurs significant overhead as all threads
converge on Snk. Unlike in the pure pipeline case, in the pure
data parallel case, each thread is likely to interfere with each
other thread. Any individual thread only explicitly commu-
nicates with two other threads, but all threads convergining
on Snk causes an enormous amount of interference. Because
the threads are not independent, when any particular thread
is scheduled, it is unlikely to have work to do. The result is
many more context switches and causing most of the time
to be spent spinning inside the kernel. The dynamic model
fares better when it has only a few threads, but even with
one operator scheduler thread, there are two total threads, as
the Src operator also has a thread. The elasticity algorithms,
however, correctly discovers that very few threads are best.

As the cost increases, the relationships flip. The cost of
locking the Snk operator is signicantly less than the cost of
processing a tuple. However, the dedicated model’s fixed
1,000 threads is still far from optimal; it still spends a large
fraction of its execution time on spin locks in the kernel. The
elasticity algorithms are able to discover that the best num-
ber of threads are about 8–10 threads on the Xeon system,
and 16–24 threads on Power8.
5.3 Data parallel and pipeline
The experiments in Figure 9 show a modest degree of data
parallelism (a width of 10) with a substantial amount of
pipeline parallelism (a depth of 100). These parameters are
a more realistic scenario than the extremes of pure data and
pipeline parallelism. Under this more realistic scenario, dy-
namic threading is always the best option across both sys-
tems and all tuple costs. Manual is worst because it is never
able to take advantage of pipeline parallelism. Dedicated

performs better than manual, but never close to dynamic be-
cause while it is able to take advantage of both data and
pipeline parallelism, it still has more opportunity for thread
interference. The elasticity algorithms are able to dynami-
cally figure out when there are too many threads, while the
dedicated model is always stuck with too many threads.
5.4 Elasticity Details
Our prior elasticity results showed end-to-end performance
over many runs. Such results demonstrate that our elasticity
algorithms perform well in a variety of scenarios, but they
do not show behavior. Figure 10 shows the elasticity algo-
rithms during individual runs. The x-axis is time into the
experiment in seconds; the left y-axis is throughput in tuples
per second; the right y-axis is the number of active threads.
Each graph on the same row shows a different run with the
same stream graph and tuple cost. We present a subset of the
spectrum that was explored in previous sections.

Note that the throughput values on these graphs are larger
than in previous sections. The throughputs in previous sec-
tions are end-to-end application throughput, as measured at
the sink. The throughputs reported in Figure 10 are all tuples
processed across all operators in the PE, which will be nec-
essarily larger than throughputs measured at one operator.
Pure pipeline: The top two rows of Figure 10 are the elastic
runs for Xeon and Power8 with a pure pipeline of 1,000
operators and a trivial cost of 1. All runs exhibit the same
trend of a quick ramp-up of threads, then backing off to a
lower thread level. On Xeon, the lower thread level goes
between 72–132 threads. While this is a large variation in
thread level, it is not a large variation in throughput (seen in
both these figures and in the top of Figure 8). The Power8
runs settle on a tighter bound of 128–160, which is again
within a tight throughput bound, and consistent with the
static results from Figure 8.
Pure data parallel: The middle two rows of Figure 10
show pure data parallel runs with 1,000 operators. The Xeon
runs use a cost of 10,000 floating point operators per tu-
ple. Across all runs, the elasticity algorithms explore up
to 16 threads, experience significant performance degrada-
tion, then back off to 8–10 threads. In contrast, the Power8

11 2016/11/16

Src W1 W2 W1000 Snk… Src W1 W2 W1000 Snk…

Src

W1

W2

W1000

Snk
…

Xeon

Src

W1

W2

W1000

Snk
…

Power8

Xeon Power8

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Xeon

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Power8

0 200 400 600 800 1000 1200 1400
seconds into run

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tu
p
le

s
p
e
r

se
co

n
d

1e8 Xeon: w 1, d 1000, cost 1

throughput
0

20

40

60

80

100

120

140

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tu
p
le

s
p
e
r

se
co

n
d

1e8 Xeon: w 1, d 1000, cost 1

throughput
0

20

40

60

80

100

120

140

160

180

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tu
p
le

s
p
e
r

se
co

n
d

1e8 Xeon: w 1, d 1000, cost 1

throughput
0

20

40

60

80

100

120

140

160

180

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tu
p
le

s
p
e
r

se
co

n
d

1e8 Xeon: w 1, d 1000, cost 1

throughput
0

20

40

60

80

100

120

140

160

180

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tu
p
le

s
p
e
r

se
co

n
d

1e8 Xeon: w 1, d 1000, cost 1

throughput
0

20

40

60

80

100

120

140

160

180

a
ct

iv
e
 t

h
re

a
d
s

threads

Src W1 W2 W1000 Snk… Src W1 W2 W1000 Snk…

Src

W1

W2

W1000

Snk
…

Xeon

Src

W1

W2

W1000

Snk
…

Power8

Xeon Power8

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Xeon

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Power8

0 200 400 600 800 1000 1200 1400
seconds into run

0

1

2

3

4

5

6

7

tu
p
le

s
p
e
r

se
co

n
d

1e7 Power8: w 1, d 1000, cost 1

throughput
0

20

40

60

80

100

120

140

160

180

200

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0

1

2

3

4

5

6

7

8

tu
p
le

s
p
e
r

se
co

n
d

1e7 Power8: w 1, d 1000, cost 1

throughput
0

20

40

60

80

100

120

140

160

180

200

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0

1

2

3

4

5

6

7

8

tu
p
le

s
p
e
r

se
co

n
d

1e7 Power8: w 1, d 1000, cost 1

throughput
0

20

40

60

80

100

120

140

160

180

200

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0

1

2

3

4

5

6

7

8

tu
p
le

s
p
e
r

se
co

n
d

1e7 Power8: w 1, d 1000, cost 1

throughput
0

20

40

60

80

100

120

140

160

180

200

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0

1

2

3

4

5

6

7

8

tu
p
le

s
p
e
r

se
co

n
d

1e7 Power8: w 1, d 1000, cost 1

throughput
0

20

40

60

80

100

120

140

160

180

200

a
ct

iv
e
 t

h
re

a
d
s

threads

Src W1 W2 W1000 Snk… Src W1 W2 W1000 Snk…

Src

W1

W2

W1000

Snk
…

Xeon

Src

W1

W2

W1000

Snk
…

Power8

Xeon Power8

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Xeon

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Power8

0 200 400 600 800 1000 1200 1400
seconds into run

0.0

0.5

1.0

1.5

2.0

2.5

tu
p
le

s
p
e
r

se
co

n
d

1e6Xeon: w 1000, d 1, cost 10000

throughput
0

2

4

6

8

10

12

14

16

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0.0

0.5

1.0

1.5

2.0

tu
p
le

s
p
e
r

se
co

n
d

1e6Xeon: w 1000, d 1, cost 10000

throughput
0

2

4

6

8

10

12

14

16

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tu
p
le

s
p
e
r

se
co

n
d

1e6Xeon: w 1000, d 1, cost 10000

throughput
0

2

4

6

8

10

12

14

16

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tu
p
le

s
p
e
r

se
co

n
d

1e6Xeon: w 1000, d 1, cost 10000

throughput
0

2

4

6

8

10

12

14

16

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0.0

0.5

1.0

1.5

2.0

2.5

tu
p
le

s
p
e
r

se
co

n
d

1e6Xeon: w 1000, d 1, cost 10000

throughput
0

2

4

6

8

10

12

14

16

a
ct

iv
e
 t

h
re

a
d
s

threads

Src W1 W2 W1000 Snk… Src W1 W2 W1000 Snk…

Src

W1

W2

W1000

Snk
…

Xeon

Src

W1

W2

W1000

Snk
…

Power8

Xeon Power8

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Xeon

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Power8

0 200 400 600 800 1000 1200 1400
seconds into run

0.0

0.5

1.0

1.5

2.0

2.5

tu
p
le

s
p
e
r

se
co

n
d

1e5Power8: w 1000, d 1, cost 1000000

throughput
0

20

40

60

80

100

120

140

160

180

200

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0.0

0.5

1.0

1.5

2.0

2.5

tu
p
le

s
p
e
r

se
co

n
d

1e5Power8: w 1000, d 1, cost 1000000

throughput
0

20

40

60

80

100

120

140

160

180

200

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0.0

0.5

1.0

1.5

2.0

2.5

tu
p
le

s
p
e
r

se
co

n
d

1e5Power8: w 1000, d 1, cost 1000000

throughput
0

20

40

60

80

100

120

140

160

180

200

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0.0

0.5

1.0

1.5

2.0

2.5

tu
p
le

s
p
e
r

se
co

n
d

1e5Power8: w 1000, d 1, cost 1000000

throughput
0

20

40

60

80

100

120

140

160

180

200

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0.0

0.5

1.0

1.5

2.0

2.5

tu
p
le

s
p
e
r

se
co

n
d

1e5Power8: w 1000, d 1, cost 1000000

throughput
0

20

40

60

80

100

120

140

160

180

200

a
ct

iv
e
 t

h
re

a
d
s

threads

Src W1 W2 W1000 Snk… Src W1 W2 W1000 Snk…

Src

W1

W2

W1000

Snk
…

Xeon

Src

W1

W2

W1000

Snk
…

Power8

Xeon Power8

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Xeon

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Power80 200 400 600 800 1000 1200 1400
seconds into run

0

1

2

3

4

5

6

tu
p
le

s
p
e
r

se
co

n
d

1e7 Xeon: w 10, d 100, cost 1000

throughput
0

20

40

60

80

100

120

140

160

180

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0

1

2

3

4

5

6

tu
p
le

s
p
e
r

se
co

n
d

1e7 Xeon: w 10, d 100, cost 1000

throughput
0

20

40

60

80

100

120

140

160

180

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0

1

2

3

4

5

6

tu
p
le

s
p
e
r

se
co

n
d

1e7 Xeon: w 10, d 100, cost 1000

throughput
0

20

40

60

80

100

120

140

160

180

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0

1

2

3

4

5

6

7

tu
p
le

s
p
e
r

se
co

n
d

1e7 Xeon: w 10, d 100, cost 1000

throughput
0

20

40

60

80

100

120

140

160

180

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0

1

2

3

4

5

6

tu
p
le

s
p
e
r

se
co

n
d

1e7 Xeon: w 10, d 100, cost 1000

throughput
0

20

40

60

80

100

120

140

160

180

a
ct

iv
e
 t

h
re

a
d
s

threads

Src W1 W2 W1000 Snk… Src W1 W2 W1000 Snk…

Src

W1

W2

W1000

Snk
…

Xeon

Src

W1

W2

W1000

Snk
…

Power8

Xeon Power8

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Xeon

Src

W1,1

W2,1

W10,1

Snk
…

W1,2 … W1,100

W2,2 … W2,100

W10,2 … W10,100

Power8 0 200 400 600 800 1000 1200 1400
seconds into run

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

tu
p
le

s
p
e
r

se
co

n
d

1e7Power8: w 10, d 100, cost 1000

throughput
0

20

40

60

80

100

120

140

160

180

200

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

tu
p
le

s
p
e
r

se
co

n
d

1e7Power8: w 10, d 100, cost 1000

throughput
0

20

40

60

80

100

120

140

160

180

200

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

tu
p
le

s
p
e
r

se
co

n
d

1e7Power8: w 10, d 100, cost 1000

throughput
0

20

40

60

80

100

120

140

160

180

200
a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

tu
p
le

s
p
e
r

se
co

n
d

1e7Power8: w 10, d 100, cost 1000

throughput
0

20

40

60

80

100

120

140

160

180

200

a
ct

iv
e
 t

h
re

a
d
s

threads

0 200 400 600 800 1000 1200 1400
seconds into run

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

tu
p
le

s
p
e
r

se
co

n
d

1e7Power8: w 10, d 100, cost 1000

throughput
0

20

40

60

80

100

120

140

160

180

200

a
ct

iv
e
 t

h
re

a
d
s

threads

Figure 10: Individual elasticity runs, comparing throughput and the number of active threads.

runs use a more expensive cost of 100,000 to show how the
elasticity algorithms behave with the same stream graph,
but with a different cost. These runs show a large variabil-
ity and repeated oscilation between 130–184 threads. This
oscillation is caused by the high variability in the measured
throughput—even during time periods where the thread level
is stable, the throughput still changes siginificantly. The vari-
ability is caused by the stream graph’s sensitivity to too
many threads. As discussed in Section 7, our elasticity algo-
rithms react to differences of more than 5%. If we tuned the
sensitivity so that it did not overreact to the changes in this
run, it would not be sensitive enough in other scenarios. A
better alternative is designing a mechanism for remember-
ing some history. After detecting throughput changes, our
elasticity algorithms currently wipe away all historical data.
We will explore mechanisms for remembering some data to
avoid such oscillations.
Data parallel and pipeline: The bottom two rows of Fig-
ure 10 are the elastic runs for Xeon and Power8 with a data
parallel width of 10, a pipeline depth of 100, and a cost of
1,000 floating point operations per tuple. Because of the dif-
ference in architectures, this set of experiments shows the

value in elastic adapatation. On Power8, it is best to max
out the system with 184 threads. However, on Xeon, the
elastic algorithm also explores up to the maximum number
of available threads, 176, but it quickly determines that 80
threads yields the best performance. That the same applica-
tion has such different needs on different architectures shows
the value of having an elastic runtime.

6. Conclusions
We presented the design of the dynamic, elastic operator
scheduler from IBM Streams 4.2. We achieved scalability to
over 100 threads by not just avoiding thread synchronization,
but by not touching global data as much as possible. Mod-
ern systems that we would usually think of as one “node”
are, internally, distributed systems. In order for thread-level
parallelism to scale, we must think of thread communica-
tion the same as messages in classical distributed systems.
Finally, we note that our ability to add a dynamic and elas-
tic scheduler to a mature product with existing customers is
thanks to the programming model. Because SPL’s program-
ming model enforces no shared state between operators, our
runtime has enormous flexibility in how it executes stream-
ing applications.

12 2016/11/16

References
[1] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,

Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An effi-
cient multithreaded runtime system. In Proceedings of the Fifth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPOPP ’95, New York, NY, USA, 1995. ACM.

[2] Boost.Lockfree. http://www.boost.org/doc/libs/1_61_0/doc/

html/lockfree.html. Retrieved June 6, 2016.
[3] C++ std::atomic. http://en.cppreference.com/w/cpp/atomic/

atomic. Retrieved June 6, 2016.
[4] Apache Flink. http://flink.apache.org. Retrieved Nov., 2016.
[5] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The Im-

plementation of the Cilk-5 Multithreaded Language. In Programming
Language Design and Implementation (PLDI), 1998.

[6] Bugra Gedik, Scott Schneider, Martin Hirzel, and Kun-Lung Wu.
Elastic scaling for data stream processing. IEEE Transactions on
Parallel and Distributed Systems (TPDS), 2014.

[7] IBM Streams Demo. https://github.com/IBMStreams/streamsx.

demo.logwatch. Retrieved Nov., 2016.
[8] IBM Streams Samples. https://github.com/IBMStreams/samples.

Retrieved Nov., 2016.
[9] Heron. https://twitter.github.io/heron. Retrieved Nov., 2016.

[10] Martin Hirzel, Henrique Andrade, Buğra Gedik, Gabriela Jacques-
Silva, Rohit Khandekar, Vibhore Kumar, Mark Mendell, Howard Nas-
gaard, Scott Schneider, Robert Soulé, and Kun-Lung Wu. IBM
Streams Processing Language: Analyzing big data in motion. IBM
Journal of Research and Development, 57(3/4), 2013.

[11] Martin Hirzel, Scott Schneider, and BuÄ§ra Gedik. SPL: An exten-
sible language for distributed stream processing. Technical Report
RC25486, IBM Research, July 2014.

[12] IBM Stream Computing. http://www.ibm.com/analytics/us/en/

technology/stream-computing. Retrieved Nov., 2016.
[13] Gabriela Jacques-Silva, Fang Zheng, Daniel Debrunner, Kun-Lung

Wu, Victor Dogaru, Eric Johnson, Michael Spicer, and Ahmet Erdem
Sariyuce. Consistent Regions: Guaranteed Tuple Processing in IBM
Streams. In Very Large Data Bases Conference (VLDB), 2016. To
appear.

[14] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard,
Paul Barham, and Martín Abadi. Naiad: A timely dataflow system.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, New York, NY, USA, 2013. ACM.

[15] OpenMP. http://openmp.org/. Retrieved Oct., 2016.
[16] Semih Sahin. C-stream: A coroutine-based elastic stream processing

engine. Master’s thesis, Bilkent University, June 2015.
[17] Scott Schneider. The ElasticLoadBalance Operator.

https://developer.ibm.com/streamsdev/2015/01/27/

elasticloadbalance-operator.
[18] Scott Schneider, Henrique Andrade, Bugra Gedik, Alain Biem, and

Kun-Lung Wu. Elastic scaling of data parallel operators in stream
processing. In IEEE International Parallel and Distributed Processing
Symposium, 2009.

[19] Scott Schneider, Bugra Gedik, and Martin Hirzel. Language runtime
and optimizations in IBM Streams. IEEE Database Engineering
Bulletin, 38(4), 2015.

[20] SPL Reference. http://www.ibm.com/support/knowledgecenter/

SSCRJU_4.2.0/com.ibm.streams.ref.doc/doc/spl-container.

html. Retrieved Nov., 2016.
[21] Apache Storm. http://storm.apache.org. Retrieved Nov., 2016.
[22] StreamsDev: IBM Streams Developer Community. https://

developer.ibm.com/streamsdev. Retrieved Nov., 2016.
[23] Yuzhe Tang and Bugra Gedik. Auto-pipelining for data stream pro-

cessing. IEEE Transactions on Parallel and Distributed Systems
(TPDS), 24(11), 2013.

[24] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy,
Jignesh M. Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade,
Maosong Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal, and
Dmitriy Ryaboy. Storm@twitter. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, SIG-

MOD ’14, New York, NY, USA, 2014. ACM.

13 2016/11/16

http://www.boost.org/doc/libs/1_61_0/doc/html/lockfree.html
http://www.boost.org/doc/libs/1_61_0/doc/html/lockfree.html
http://en.cppreference.com/w/cpp/atomic/atomic
http://en.cppreference.com/w/cpp/atomic/atomic
http://flink.apache.org
https://github.com/IBMStreams/streamsx.demo.logwatch
https://github.com/IBMStreams/streamsx.demo.logwatch
https://github.com/IBMStreams/samples
https://twitter.github.io/heron
http://www.ibm.com/analytics/us/en/technology/stream-computing
http://www.ibm.com/analytics/us/en/technology/stream-computing
http://openmp.org/
https://developer.ibm.com/streamsdev/2015/01/27/elasticloadbalance-operator
https://developer.ibm.com/streamsdev/2015/01/27/elasticloadbalance-operator
http://www.ibm.com/support/knowledgecenter/SSCRJU_4.2.0/com.ibm.streams.ref.doc/doc/spl-container.html
http://www.ibm.com/support/knowledgecenter/SSCRJU_4.2.0/com.ibm.streams.ref.doc/doc/spl-container.html
http://www.ibm.com/support/knowledgecenter/SSCRJU_4.2.0/com.ibm.streams.ref.doc/doc/spl-container.html
http://storm.apache.org
https://developer.ibm.com/streamsdev
https://developer.ibm.com/streamsdev

	Introduction
	Background
	IBM Streams and SPL
	Threading models
	Constraints

	Related Work
	Design
	Scheduling
	Data structures and initialization
	Main scheduling loop
	Finding work
	Pushing tuples
	Discussion

	Elasticity
	Data structures and initialization
	Elasticity algorithm
	Discussion

	Experimental Results
	Pure pipeline
	Pure data parallel
	Data parallel and pipeline
	Elasticity Details

	Conclusions

