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Abstract
In previous work we have introduced a novel processing-in-
memory embedded device that achieves high power efficiency by
moving computation to data, and with a carefully designed microar-
chitecture eliminating much of the hardware support and complex-
ity of conventional processors. It relies on sophisticated compiler,
runtime, and support software to deliver high performance.

In this work we describe the design and implementation of a
compiler for this accelerator that uses the new OpenMP 4.0 accel-
erator model to offload and parallelize programs. We exploit ar-
chitectural features such as VLIW and vector capabilities, hide la-
tency to memory, and reuse data using the large vector register files.
We achieve high computational efficiency, linear performance scal-
ing, and superlinear performance per watt scaling on memory- and
compute-bound kernels. Most importantly, we are able to achieve
these results using standard, portable pragmas and no accelerator-
specific program code. We believe our work is an important step
toward building next-generation, power-efficient computing sys-
tems.

1. Introduction
Techniques from embedded devices have long been employed in
the design of high-performance systems. The BlueGene series uses
low-frequency, low-power embedded processor cores that con-
sistently outperforms high-frequency, high-power microproces-
sors [7]. A high level of integration was also used so that many
more cores in a chip could provide high aggregate performance.

Powerful fast computing systems drive important problems in
fields such as energy science, climate modeling, and systems biol-
ogy. To continue improving performance next-generation systems
must be power-efficient. Dennard scaling no longer provides im-
provements in clock frequency at a constant power density with-
out seriously compromising transistor reliability. To achieve per-
formance improvements it has become necessary to improve upon
the inefficiencies of Petascale systems. Figure 1a shows the power
consumption of a BlueGene/Q node running an optimized version
of the compute-bound double precision matrix-matrix multiply ker-
nel, DGEMM. Just 14% of total energy is spent executing floating-
point operations. Overheads include the energy spent within the
integer pipelines, the fetch unit, the decode unit, and the issue logic

(marked Core: Other). Access to external memory and the on-chip
caches account for 45% of total consumption (labelled DRAM,
Cache, Nest).

A second pressing concern is the limited external memory band-
width available to applications due to constraints in the number of
pins on the chip. Today’s supercomputers only provide 0.2 bytes
per second (bytes/sec) bandwidth to DRAM for every floating-
point operation per second (flop/sec) on the core [9]. The energy
to read operands of a floating-point operation from DRAM is pro-
jected to reduce at a much slower pace than the energy to perform
the operation [21]; hence, either this historically low ratio of band-
width to compute is likely to reduce even further, or the skewed
allocation in Figure 1a will get worse as more energy is budgeted
to DRAM and caches.

The Active Memory Cube (AMC) [3] is a novel processing-in-
memory embedded accelerator created in response to these chal-
lenges that places compute elements directly under a 3D stack of
DRAM layers known as the Hybrid Memory Cube (HMC) [10].
Thirty-two light-weight vector processing lanes in the base layer of
the AMC are directly connected to 8 GB of DRAM using through-
silicon vias (TSVs), providing energy-efficient compute and dra-
matic improvements in bandwidth and latency over existing mem-
ory devices. An AMC also acts as an external memory device and
is designed to operate in conjunction with a traditional general-
purpose processor. A proposed AMC chip is projected to provide
a peak of 320 Gflops/s in the vector lanes balanced with a peak
memory bandwidth of 320 GB/s.

Figure 1b shows the breakdown of power consumption on a sin-
gle modeled AMC chip running a hand-optimized, assembly ver-
sion of DGEMM. The power-efficient microarchitecture of the pro-
cessing lanes increases the fraction of power spent on the DGEMM
floating-point operations from 14% to 36%.

A major reason for the AMC’s energy efficiency is due to the
exclusively on-chip communication, resulting in a low energy per
bit expended to transfer data from the DRAM layers to the pro-
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Figure 1: Energy consumption of DGEMM running on (a) Single
node of BlueGene/Q at 72 W and (b) Active Memory Cube in 14
nm technology at 9 W.



Table 1: Energy consumption breakdown of DGEMM within a
lane.

ALU+VRF LSU/LSQ IF/DEC/IS PCU/PRV Other
73% 8% 7% 3% 9%

cessing lanes. A second reason is due to a direct path from memory
to a large vector register file in lieu of power-hungry data caches.
However, this has important ramifications for the programmer, who
must now be aware of, and explicitly hide, the latency to DRAM.
Similarly, for kernels such as DGEMM that exhibit reuse, the pro-
grammer must stage data within the large register files to achieve
high performance.

Consider the energy consumption of the various components
within an AMC lane as charted in Table 1. A remarkable 73% of
total energy is consumed by the arithmetic pipelines and the register
files. The instruction fetch and decode units achieve their efficiency
due to an instruction set architecture that operates on vectors of
up to 32 elements, requiring that programs be vectorized by the
user. The lane does not perform dynamic scheduling or issue of
instructions in hardware. Instead, the AMC architecture exposes
all pipelines and their latencies for software scheduling and for
software exploitation of instruction-level parallelism.

The number of ports in the various register files, and hence the
power consumed, is contained by evenly distributing all register
files across the multiple functional units in a lane. Careful place-
ment of operands in the register files and instructions in the slices
is needed to minimize copy operations between slices. The com-
plexity and power of a lane is further reduced by replacing the tradi-
tional instruction cache with a software-managed instruction buffer.
In cases where a program is a too large to fit within the buffer, the
program itself must ensure that the relevant instruction blocks are
loaded into the buffer before execution. Finally, the exploitation of
the multiple lanes within the AMC is also done in software.

It is not reasonable to expect a programmer to satisfy the above-
mentioned software requirements resulting from the need to make
hardware energy-efficient. A strong compiler is therefore crucial to
effective utilization of the resources in the AMC.

In this paper we make the following contributions.

1. We present the first end-to-end compiler for a stacked processing-
in-memory (PIM) heterogeneous system addressing the unique
power efficiency tradeoffs of the AMC. Our compiler ac-
cepts standard C, C++, and Fortran programs augmented with
OpenMP 4.0 accelerator directives rather than specialized lan-
guages like CUDA.

2. We show that hiding latency to memory at compile time is
paramount for performance in this regime and achievable by our
compiler. This is an alternative to a hardware threading model
and may be preferred within the context of stacked 3D mem-
ory where latency is between 60 to 200 processor cycles. We
show that our compiler is able to exploit static data reuse using
vector registers alone without the use of traditional caches. By
organizing 3D memory within NUMA domains we achieve low
power in hardware but our compiler is also able to exploit data
affinity for high performance.

3. We report the performance benefits and tradeoffs of compiler
optimizations within the novel context of a stacked PIM.

4. Using a power model for the AMC we project that several
compute- and memory-bound kernels run in only 9 to 15 watts.
Our compiler achieves a power efficiency of 27.4 Gflop/s/W
on DGEMM with just 144 watts when simulating 16 AMCs in
a node. This is an order-of-magnitude improvement compared
to the 2.1 Gflop/s/W on the BlueGene/Q (45 nm technology),
about 2.2 Gflop/s/W on the Xeon Phi at 22 nm technology [13],

(a) Logic and memory layers of
the AMC (16 lanes and vaults
depicted). (b) Logic base.

Figure 2: The Active Memory Cube.

3.23 Gflop/s/W on the Texas Instruments Keystone II DSP at 28
nm [16], and around 5 Gflop/s/W on GPUs [8].

5. The compiler optimized code is highly efficient, expending
64% to 73% of power in a lane on compute. In contrast, modern
out-of-order high performance microprocessor cores consume
50% of total core power in front end units. We also report
good scaling of power efficiency as lanes within an AMC are
gradually activated.

The rest of the paper is organized as follows. Section 2 gives
an overview of the salient features of the AMC and Section 3
lists the specific challenges in compiling for the AMC. Section 4
introduces the OpenMP 4.0 accelerator model used to program
lanes within the accelerator and our implementation of it. We then
describe in Section 5 the high-level and backend transformations
and optimizations developed to produce high quality code given
the aforementioned constraints. Section 6 describes experimental
results, followed by Related Work in Section 7. We conclude in
Section 8.

2. The AMC architecture

Figure 3: A Vector Processing Lane.

The AMC is a proposed 3D cube composed of 8 GB of DRAM
layers stacked on a logic base consisting of a grid of 32 independent
compute elements known as processing lanes (see Figure 2). The
cross section of stacked memory elements on top of one processing
lane is termed a vault and holds 256 MB of data. A set of eight



neighboring vaults forms a quadrant. Any processing lane may
access any vault through a high-speed interconnect but the latency
is lower if lanes access only vaults within their local quadrant. The
lowest latency is achieved when all lanes access only their local
vaults. The lanes and DRAM are modeled at 1.25 GHz.

An AMC also serves as an external memory chip through a link
that connects directly to the high-speed interconnect. Memory is
kept coherent with the host’s data caches. This shared memory ar-
chitecture greatly simplifies and improves efficiency of communi-
cation between the two compute chips.

Memory addresses generated by programs running on the pro-
cessing lanes are POWERTM-architecture effective addresses with
standard memory protection facilities. Address translation miss
events are handled by the operating system running on the host.

An example compute node in a system would hold a multi-core
host processor and up to 16 AMC chips. While a lane in an AMC
may access data from other AMCs, this is an expensive operation
that involves participation of the host processor. Therefore, the
normal mode of operation requires that data be located within the
memory of the AMC containing that lane. This is not a significant
restriction as typical MPI domain sizes in scientific applications
tend to smaller than the 8 GiB capacity of an AMC. Operating
system support facilitates data allocation within a particular AMC,
a quadrant within an AMC, or a vault within a quadrant.

2.1 Processing Lane
A lane is a vector processor consisting of four slices as illustrated in
Figure 3 that shares many similarities to scalar, clustered DSPs. A
vector instruction serially performs the same operation on every el-
ement of its vector operands. Each slice contains an arithmetic unit,
a load/store unit, and associated register files. The arithmetic unit
has an integer and a double-precision floating-point pipeline. The
load/store unit executes update-form memory operations that take
a base address and stride as arguments, as well as more powerful
scatter/gather operations.

Each slice has sixteen 32-element vector registers, four 32-
element mask registers, and thirty-two scalar registers. Mask regis-
ters are used to predicate a vector instruction, allowing execution of
programs with control flow. Branch instructions are also provided
for coarser-grain control flow. A slice’s vector registers may be read
by the other three slices but access to scalar and mask registers are
restricted to the owner slice.

A lane instruction is coded in long-instruction form with sub-
instructions, or atoms, designated for the four slices in the lane as
well as the single branch unit. Atoms execute in lock step for up
to 32 iterations as indicated by the repeat field. Branch instructions
and scalar instructions on one slice, overlapped with vector instruc-
tions on another, execute just once—at the last and first instructions
respectively—regardless of the value of the repeat field. Each lane
stores up to 512 long-instructions in a lane instruction buffer (LIB).

As noted previously, the functional units fully expose their
pipelines to the user; for correct execution, sufficient delays, as de-
termined by the latencies of the functional units, must be inserted
in the instruction stream between the issue of producer and con-
sumer instructions. As the memory access time is unpredictable,
the hardware provides an interlock that stalls the entire lane when
a use of an as yet unavailable memory value occurs.

3. Challenges in Compiling for the AMC
The unique features of the AMC make it a challenging target for
compilation.

• Programming a heterogeneous system is an onerous task, typi-
cally requiring non-standard extensions to specify program of-
floading and data movement. We desire a programming model

for the AMC system that has a low learning curve and requires
minimal code modifications. Offloaded sections must also be
easily parallelizable across lanes.
• A single lane supports vector execution with programmable

length vector operations. Our compiler must exploit this feature
for high performance. Support for scatter-gather and predicated
execution is also required during vectorization.
• The exposed pipeline architecture requires that the compiler

track and optimize hardware resources during scheduling, in-
cluding latency to memory. The compiler must aggressively
schedule code to fully exploit the VLIW capabilities of the lane.
• Scalar and mask register files are not accessible across slices

so sharing requires expensive copies. A good mapping of in-
structions to slices is important to minimize this penalty. This
is a challenging problem when the offloaded code consists of a
mix of scalar and vector code. We must also deal with a phase-
coupling problem since slice mapping, scheduling, and register
allocation are interrelated.
• Due to the direct path from DRAM to the lanes it is important

for performance that the compiler use the large vector register
files to exploit data reuse. Additionally, register spilling is con-
sidered expensive and must be minimized. Finally, the band-
width and latency of accesses vary based on whether a lane ref-
erences a local or a remote quadrant and so data placement is a
primary concern.
• The lane instruction buffer is of a fixed size and so a software

instruction cache is necessary to allow execution of arbitrary
size programs.

4. Programming Model

Listing 1: DGEMM offloaded and parallelized on the AMC.

1 double A[P][R];
2 double B[R][Q];
3 double C[P][Q];
4

5 void main() {
6 // Initialize arrays
7

8 // Copy arrays A, B, and C to AMC 0 if not already resident and
9 // offload loop nest for acceleration

10 #pragma omp target map(to: A[0:P∗R], B[0:R∗Q]) \
11 map(tofrom: C[0:P∗Q])
12 // Execute iterations of loop i in parallel on 16 lanes of the AMC
13 #pragma omp parallel for num threads(16)
14 for (int i=0; i<P; i++)
15 for (int j=0; j<Q; j++)
16 for (int k=0; k<R; k++)
17 C[i][j] += A[i][k] ∗ B[k][j]
18

19 // Computed array C is available on the host
20 }

We use the recently introduced OpenMP 4.0 accelerator model [18]
to offload and parallelize code for the AMC using directives.

The programming model defines a default host device acting
as the master and one or more target device accelerators that are
selectively invoked by the programmer. Each device is associated
with an independent data environment, i.e., a collection of variables
accessible to it. Variables must be communicated explicitly, or
mapped, from the host’s data environment to that of the target that
requires access.



A structured code block that may be offloaded to the target is
explicitly identified by the target directive. The AMC compiler sup-
ports blocks that may contain serial and parallel code, one or more
imperfectly nested loops, and statements that may include simple
and SIMD function calls. Since large code sections are handled
transparently by a software instruction-cache, the flexibility of the
target directive allows the programmer to choose an appropriate re-
gion of code for AMC execution so as to amortize the overhead of
invoking the accelerator and to increase data reuse within the target
section.

The format of the target directive is as follows:

#pragma omp target [clauses]
structured block

where the optional clauses are of type device and map.

Device clause. The device clause uses an integer expression to
identify a particular AMC in the system as the target for offloading.

Map clause. One or more map clauses specify scalar and array
variables that may be accessed by code in the structured block, and
an optional direction of communication that is used to optimize
data movement. Our compiler automatically maps statically allo-
cated variables referenced within the target region onto the AMC
but relies on the programmer to identify indirect accesses.

The OpenMP 4.0 model is designed for both shared and dis-
tributed memory environments. On the shared memory AMC ar-
chitecture, data communication may be eliminated in certain cases:
if a program uses processing lanes within a single AMC, and all of
its data is already resident within the associated DRAM, then the
map clause is ignored by our runtime and there is no overhead for
data communication.

Listing 1 shows the matrix-matrix multiply kernel, DGEMM,
written using OpenMP 4.0 directives. The nested loop is offloaded
onto 16 lanes of the AMC, with iterations of the i loop distributed
across the lanes. The compiler generates calls to allocate memory
in the AMC’s memory space and copy into it the values in arrays
A, B, and C. In addition, array C is copied back from the AMC
onto the host once the nested loop completes execution. To avoid
the overhead of data transfer, the user must explicitly allocate the
three arrays in AMC 0’s DRAM.

5. A Compiler and Runtime for the AMC
The AMC compiler is built on an industrial-strength C, C++ and
Fortran compiler and accepts programs written in any of the three
languages. Figure 4 shows its overall structure, highlighting the
phases that are significant for generating AMC code.

The compiler frontend processes the input program to mark
code regions associated with OpenMP target directives. An out-
lining and duplication phase creates a new function for each target
region. Calls to the runtime are inserted before each target region
to acquire one or more AMC lanes.

At this stage the host and AMC procedures follow a different
compilation path, one customized for each target, until the respec-
tive object codes are linked, along with the OpenMP runtime and
the software I-Cache handler, to produce a single fat binary.

In what follows, we highlight specific high-level and backend
transformations that help optimize code for the AMC. We only pro-
vide an overview, and not the details of the finely-tuned heuristics
developed for this accelerator.

5.1 High-level Compiler Transforms
In this section we describe the high-level optimizations used to
generate high performance AMC code.

Figure 4: Overview of the compilation steps for the AMC.

5.1.1 Integrated Loop Optimization Using a Polyhedral
Framework

The polyhedral framework is a powerful framework to optimize
loop nests. In the polyhedral model, loop statements and their data
accesses are represented as a polytope and compiler transforma-
tions are represented as linear transformations of these polytopes.
This representation provides a powerful framework for program
analysis and for applying sequences of common transformations,
which we use for parallelization and vectorization.

The compiler is capable of analyzing loop nests and program
blocks marked with the OpenMP target pragma to discover oppor-
tunities for vectorization. This allows vectorization even when a
candidate has not been explicitly identified by the user. In a typi-
cal case, several loop transformations are applied to vectorize the
innermost loop of a nest:

Blocking.
Blocking is important for aggressive scheduling by a software
pipeliner. The innermost loop is blocked by the vector length.
By default a vector of 32 iterations is selected but if the trip
count is known at compile time to not be a multiple of 32, a
suitable smaller size is selected to avoid a residue loop, when
possible. With a statically known vector length the scheduler is
able to generate efficient, tightly packed codes. A less efficient
residual loop is generated for residual loop iterations.

Unrolling.
Loop unrolling exposes instruction level parallelism in the loop
body and can improve code scheduling especially when the
loop body is small. We perform loop unrolling after vectoriza-
tion and blocking, taking special care not to degrade perfor-
mance. For example, preserving unit-stride memory references
after unrolling achieves best performance on the AMC.

Data access pattern analysis.
We analyze array references using the polyhedral representation
to determine whether they are affine, and use this information
during code generation. A memory operation is translated into



one of the following types according to its reference pattern in
the loop nest:

• Regular vector load/store. When a subscript is an affine
function of the innermost loop, vector update-forms of the
load/store instruction are generated.
• Gather/scatter. When the subscript is not affine or constant,

a load/store is translated into gather/scatter.
• Expanded scalar load/store. When a scalar is privatized

in a vectorized loop, the scalar must be expanded so that it
has a separate location for each element of a vector. In this
case, the scalar is expanded to the innermost loop and later
mapped to a vector register. A final store operation correctly
writes only the last element of the vector to the original
scalar variable.

It is difficult to generate good code by applying each of these
transformations independently. One of the challenges is to pass the
semantics of one transformation to another. For example, the resid-
ual loop after blocking or unrolling has to be marked so that later
transformations can ignore it for performance optimization. Also,
loop unrolling poses challenges because of the modulo operation in
the loop bounds expression.

Our solution is to apply all these transformations together in
the last stage of the polyhedral framework, where they operate on
the polytope representation of the loop nest and transform it into
the intermediate representation used by the subsequent compiler
passes. By combining a set of loop transformations in a single
translation step, we are able to minimize code size while retaining
high quality code in a majority of cases.

Listing 2: Illustration of integrated loop optimization. VL is the
vector length, UF, the unroll factor, and NS, the number of stages
after software pipelining.

1 // Block size is a constant product of the selected vector length
2 // and unroll factor
3 int BLOCK SIZE = VL ∗ UF;
4 int UB = N >= BLOCK SIZE ∗ NS ? (N − N % (VL ∗ UF)) : 0;
5 // Main loop, software pipelined for high performance
6 for (int i=0; i<UB; i+= BLOCK SIZE) {
7 vectorized loop body 0 of length VL;
8 ...
9 vectorized loop body UF−1 of length VL;

10 }
11 // Predicated execution of residual iterations
12 for (int i=UB; i<N; i+=VL) {
13 int P0 = [i,i+1,...,i+VL−1] < N;
14 P0: vectorized loop body;
15 }

Integrated loop generation is illustrated in Listing 2. In the
transformed loop, there is only one main loop and one residual
loop. The new upper bound of the main loop is chosen to be a
multiple of the product of the vector length and unroll factor if
there are enough iterations for vectorization, unrolling and software
pipelining. The remaining iterations are executed in the residual
loop.

With statically known constant vector length unrolling and a
guaranteed minimum iteration count, aggressive software pipelin-
ing may be readily applied. The residual loop on the other hand,
may have fewer opportunities for optimization because of its un-
known vector length and smaller number of iterations. If iteration
counts are known to be small, software pipelining and loop un-
rolling are disabled and only the residual loop is generated.

When the vector length of the residue loop is unknown at com-
pile time, the scheduler must add no-operation instructions (no-ops)
to ensure sufficient delay between producer and consumer instruc-
tions resulting in increased code size. An alternative approach that
trades minimal performance for code size is to extend the number
of vector iterations to 32 and guard the operation with a predicate.

5.1.2 Handling Reductions
Reduction to a scalar variable is handled by first reducing partial
results to a vector register in the main loop, before finally reduc-
ing the elements of the register to a scalar with a newly generated
reduction loop. This allows software pipelining to proceed unaf-
fected.

Reduction to elements in an array is a common calculation
pattern in real applications. To correctly execute such reductions
in parallel, locks or critical sections are usually used to make
sure that every load-add-update sequence is atomically executed.
However, introducing this synchronization disables vectorization.
An alternative approach is to use additional temporary arrays to
store the results in the loop, and then perform owner updates in
another loop nest. But this introduces extra load and stores for array
elements that may adversely impact performance.

The AMC architecture provides an instruction for performing an
atomic memory floating-point store-with-add operation that we use
to efficiently implement reductions on array elements. The com-
piler uses pattern matching to discover these situations; alterna-
tively, user-provided directives could be used to help identify these
cases.

5.2 Backend Compiler Transforms
In this section we briefly describe a few of the important backend
passes of the AMC compiler.

Once a low-level AMC instruction stream has been generated,
the main task is to first schedule, and then perform register allo-
cation. Since a lane encapsulates four identical slice units, there
is freedom in placing instructions.. An assignment pass is used to
intelligently partition instructions onto slices before scheduling.

Slice assignment places constraints, both in time and space, on
the scheduling of instructions. Meanwhile, it is difficult to opti-
mally place an instruction on a particular slice without schedul-
ing and resource usage information from the entire program. Ide-
ally, this phase-coupling problem is solved by whole-program, in-
tegrated assignment and scheduling; however, this is computation-
ally expensive. We instead separate the two passes, but introduce
a global slice assignment technique that is superior to one with a
basic-block-only perspective.

5.2.1 Slice Assignment
While an instruction may be executed on any of the four slices, its
placement may increase execution time if it is on the critical path
and a predecessor needs to be copied. On the other hand, in some
cases, it may be beneficial to copy register values across slices in
order to exploit instruction level parallelism (ILP)–this is typically
true for high fanout producers. In many cases it may be desirable
to introduce copies and increase the length of the static program
schedule if it avoids expensive register spills due to overloading
of a register file on any particular slice. We designed our slice
assignment algorithm to first exploit ILP and then minimize register
spills, before reducing slice-to-slice data transfers.

In our first implementation slice assignment was integrated with
scheduling at a basic-block scope, but we found it to perform poorly
on target sections containing substantial serial codes interspersed
with vector regions. A good algorithm must determine the best
slice assignment for an instruction taking into account its effect



on predecessors and successors within the same and other basic
blocks.

Our globally aware slice-assignment phase maps instructions to
slices and inserts any necessary data transfer instructions. This is
followed by acyclic code scheduling and software pipelining of
loops, which strictly respects the selected assignment.

We build on an efficient and fast multilevel graph partitioning
algorithm [11] with estimate-based heuristics to make good par-
titioning judgements. Since the algorithm considers dependencies
across basic blocks, we find it performs well on a mix of scalar
and vector code in relatively large programs. Although the slice as-
signment algorithm is a distinct pass, we find that it rarely inhibits
the scheduler from achieving high performance within vectorized
loops.

5.2.2 Scheduling
Vector loops are software pipelined for maximum performance
while acyclic code is scheduled by a backtracking list scheduler.

We have implemented software pipelining [20] of loops to in-
crease the utilization of the functional units in a lane. Unlike tradi-
tional methods, we pipeline successive vector iteration blocks con-
sisting of at most 32 iterations of the original loop. The lanes have
an exposed pipeline, and so the scheduler ensures that all the la-
tency requirements of dependent instructions are met at issue time.
Architectural constraints enforce specific register file access rules
that must also be satisfied to generate a correct program.

We use heuristics based on the Swing Modulo Scheduling algo-
rithm [15], which schedules instructions based on a greedy strategy
enforcing resource constraints. Iterative backtracking is used to es-
cape from dead-end states. Heuristics are employed to hide latency
to memory, control register pressure, minimize the length of the
critical path, and control the amount of instruction-level parallelism
that is exploited.

5.2.3 I-Cache Partitioning
To support arbitrary sized target regions within the 512-element
LIB, we have designed and implemented a software-based I-
Cache [5]. The I-Cache operates by treating the LIB as eight equal
sized slots of 64 instructions each. The target region is partitioned
into 64-instruction blocks and loaded on demand by a handler res-
ident in slot 0. The I-Cache algorithms and the handler code are
carefully tuned to minimize the overhead introduced by the soft-
ware I-Cache.

Many programs execute in phases: if a loop nest belonging to a
phase completely fits within the LIB, the overhead of the I-Cache
is low, and this feature allows the execution of large programs on
the AMC without involvement of the host processor.

5.3 Data Environment Management
Each lane has an effective-to-real-address translation (ERAT) table
with up to eight entries. When memory is accessed on a lane, the
hardware references this table and if the access cannot be trans-
lated, an exception is thrown to allow the host operating system to
install the missing entry. However, this is a high overhead event,
and so we prefer to pre-load the ERAT entries ahead-of-time.

The compiler scans AMC code regions and determines variables
that are directly accessed. For each variable in the list the compiler
uses the static declaration to determine its size and invokes a run-
time library call to install the corresponding ERAT entry.

While the compiler can automatically detect direct data accesses
in the target construct, it relies on the map clauses specified by the
user to (a) identify indirect accesses, (b) direct or indirect accesses
in any functions that are called within the target region, and (c)
array slices, when only smaller sections of an array need to be
accessed within the AMC.

The compiler also processes map clauses and target update
directives to record information about the direction of data transfer
and inserts runtime calls to perform copies. The runtime in turn
checks if the data is already resident within the target AMC and
only performs the copy if needed.

5.4 Optimizing Memory References
As with most architectures the memory subsystem requires careful
treatment in order to achieve high performance. In this section we
describe scheduling techniques, operating system support, and code
transformations that optimize access to memory.

5.4.1 Hiding Latency to DRAM
Due to the direct path from DRAM to the register files, all memory
references within a lane initiate a request at the load-store unit that
is fed into a queue at the lane, traverses an on-chip network, and is
serviced at a DRAM vault. The latency of this operation depends
on the utilization of the load-store queue, the traffic on the network,
the location of the vault that contains the requested data, and any
bank conflicts at the destination vault. Optimizing for each of these
factors is critical for high performance.

The scheduler hides latency of an access by enforcing a sepa-
ration of a predetermined number of cycles between the issue of a
load instruction and its first use. Recall that the hardware has inter-
locks for load dependencies, which stalls the entire lane if a con-
sumer attempts to read a data value that has not yet arrived. By ex-
plicitly separating a load from its first use, and by scheduling other
instructions in the intervening period, program stalls can be signif-
icantly reduced. Software pipelining is well suited for scheduling
instructions within this interval.

During scheduling we also track the instantaneous occupancy
of the load-store queue to ensure that it never exceeds its capacity.
The issue of load or store instructions may be deliberately delayed
if the scheduler detects the possibility of a highly loaded queue.
This approach is able to considerably reduce lane stalling due to a
full load-store queue.

The compiler also recognizes the vector store-with-add pattern
and generates an atomic store-add operation that is processed near
the vaults, thus avoiding an extra load operation.

5.4.2 Lowering Memory Latency by Exploiting Data Affinity
The latency of a sequential access to DRAM varies from 50 to 180
cycles or more depending on whether a lane accesses its local or
remote quadrant and on the congestion in the interconnect network.

The operating system exports routines to allow memory al-
location within a specific quadrant to exploit this characteristic.
Our runtime map phase is able to automatically partition one-
dimensional arrays onto local quadrants but we rely on the pro-
grammer to manually place more complex data structures within
the desired regions. Subsequently, the compiler can exploit the
lower latency to decrease the scheduled interval between the is-
sue of loads and their first use, often achieving a lower iteration
pipelining period, and therefore, lower execution time.

5.4.3 Data Reuse using Vector Register Files
As noted previously, power hungry data caches are replaced on
the AMC with large vector register files. Each lane is equipped
with 64 thirty-two element vector registers. For loops that exhibit
data reuse, it may be possible to exploit the large register file to
reduce traffic to memory. Currently we rely on a combination of
manual refactoring through standard loop transformations and low-
level compiler support for this purpose. These loop transformations
can be added to our polyhedral framework with an appropriate cost
model.



Listing 3: DGEMM rewritten to exploit reuse.

1 #pragma omp target map(to: A[0:P∗48], B[0:48∗32]) \
2 map(tofrom: C[0:P∗32])
3 // Parallelize iterations of loop ’i’ across 16 lanes and pipeline
4 // iterations of the loop.
5 #pragma omp parallel for num threads(16)
6 for (int i=0; i<P; i++) {
7 // Fully vectorize and eliminate loop ’j’
8 for (int j=0; j<32; j++) {
9 // Array B is staged at startup into 48 vector registers

10 // and reused for the entire duration of the loop nest.
11 C[i][j] += A[i][0] ∗ B[0][j] + \
12 A[i][1] ∗ B[1][j] + \
13 ...
14 A[i][47] ∗ B[47][j];
15 }
16 }

Table 2: Lines of code in regions offloaded to the AMC.

App LoC App LoC App LoC
DAXPY (C) 4 DGEMM (C) 12 DET (C) 58
LULESH (C++) 259 NEKB. (F77) 134

We illustrate the optimization using Listing 3, which is a rewrit-
ten version of DGEMM. Loops j and k have been tiled (tile itera-
tors not shown) with tile sizes 32 and 48 respectively. The compiler
fully vectorizes loop j and eliminates the control flow. Thereafter,
elements of array B are loaded into 48 vector registers; this code is
invariant within the loop nest and is hoisted out, achieving the de-
sired staging of data within vector registers. Finally, the scheduler
pipelines iterations of loop i.

6. Experimental Results
We evaluate performance by running compiled binaries on a full
system simulator that models a host and the AMC. We use a func-
tional simulator for the host to allow us to simulate an operating
system and real programs. The AMC is modeled by a timing accu-
rate simulator that precisely represents lanes, the memory intercon-
nect, vault controllers, and DRAM [3]. Since the AMC’s DRAM is
also used as the external memory for the host processor there is no
data communication overhead for acceleration.

Kernels & Applications. We added OpenMP directives to accel-
erate codes important to the supercomputing community, focus-
ing on vectorizable codes suitable for our accelerator (Table 2).
DAXPY is a memory-bound kernel that stresses the memory sub-
system of the AMC. DGEMM is a double-precision matrix-matrix
multiply kernel often used to benchmark HPC machines. It tests
the ability of the compiler to exploit vector registers for data reuse
to achieve high floating-point utilization. DET is a compute-bound
kernel that formulates the elemental volume by calculating the de-
terminant of three matrices. It tests the ability of the scheduler to
map an odd number of compute strands (three determinant calcula-
tions) onto the four slices of a lane.

LULESH [14] and NEKBONE [6] are two applications released
by the supercomputing community. We studied the CalcKinemat-
icsForElems function in LULESH, which performs a hydrodynam-
ics calculation. It tests the ability of the compiler to vectorize
scatter-gather operations and stresses the memory subsystem due
to random accesses. NEKBONE is a fluid dynamics Fortran code
that solves a Poisson equation using a Conjugate Gradient solver.
We focus on the axi subroutine since it dominates execution time.
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Figure 5: Flop efficiency improvement relative to unpipelined loop
due to compiler optimizations, for (b) NEKBONE, and (a) remain-
ing applications.

The code exhibits reuse but the length of vectors is only 9, exposing
alignment issues in traditional SIMD units.

Compiler Optimizations on a Lane. We measure performance as
the flop efficiency of a lane, calculated as the number of floating-
point operations retired per cycle per lane divided by 8 (four slices
times two flops for a multiply-add operation). We first evaluate the
effect of various compiler optimizations, applied when possible, in-
cluding software pipelining, unrolling with pipelining, and exploit-
ing reuse. We then run on 32 lanes with and without exploiting data
affinity. Figure 5 reports these results normalized to a non pipelined
loop compiled using an optimized backtracking list scheduling al-
gorithm.

Software pipelining universally improves performance 20-50%
due to a tighter packing of instructions. Large improvements in-
dicate codes with high instruction-level parallelism. In the case of
LULESH, pipelining is only possible because the compiler unrolls
small inner loops and inlines all function calls within the offloaded
loop. Due to high register pressure we applied manual loop fission
to generate two loops. NEKBONE cannot exploit pipelining be-
cause the innermost loop has only 9 iterations. Register pressure
within DET and LULESH preclude an even tighter packing.

Nevertheless, in all cases observed performance is between 38-
95% of predicted performance due to stalling in the LSU (62% of
execution time for DAXPY, 10-17% for DET and LULESH, and
4% for DGEMM). Stalling worsens significantly as more lanes are
activated. Unrolling with pipelining not only provides more vector
instructions that help better hide latency, but additional instruction-
level parallelism that can be exploited in the case of DAXPY, DG-
EMM, and NEKBONE (1.83×, 5.44×, and 2.50× improvement
respectively). DET and LULESH were not unrolled because they
cause spilling, which degrades performance considerably.

DGEMM exhibits significant improvement in performance
when reuse is exploited (3.63× over unrolled) as stress on the
memory subsystem is relieved. We performed manual loop distri-
bution and interchange in NEKBONE to exploit reuse and pipelin-
ing, with Figure 5b showing improvements of 4.34-5.51× over
the unrolled case. These results show that our compiler is able to
exploit reuse within vector registers that is traditionally handled
within a cache hierarchy on general-purpose machines.

Performance when all lanes are active and data affinity is not
exploited shows a slight drop in performance for DGEMM (95%
of the best single lane version) and significant deterioration for the
others (43-67%). Exploiting affinity, when possible, helps negate
some of this loss. DET actually achieves higher performance than
the single lane case, indicating that affinity may be beneficial even
with one lane active.

Scaling Across Lanes. Next, we study scaling on the 32 lanes
of the AMC, charting flop efficiency and the average load latency
observed at a lane, as well as speedup relative to one lane in
Figure 6. We keep the per lane workload constant (weak scaling),
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Figure 6: Performance curves for the kernels on the AMC.

except for LULESH, where the total work is kept constant (strong
scaling).

DAXPY. We achieve excellent scaling on up to five lanes (4.45×)
but then speedup tapers off and is limited to 5× on eight lanes. Note
that we are exploiting quadrant affinity so the kernel is restricted to
the memory bandwidth of only eight vaults. DAXPY is a memory
bound kernel so we see high bandwidth pressure at the vaults,
resulting in an 80% increase in load latency with eight lanes as
compared to one. However, the advantage of quadrant affinity is
that we can achieve the same behavior on the next quadrant of
eight lanes, i.e., excellent initial scaling followed by a tapering off.
We achieve a speedup of 9.8× with sixteen lanes and 19.5× when
all lanes on the AMC are active. Extrapolated to sixteen AMCs in
a node, we achieve a read and write bandwidth of 2.1 TB/s and
1.0 TB/s respectively, nearly 8× than achieved if using the node’s
host processors alone.

DGEMM. This kernel is compute-bound and exerts very little
pressure on the memory subsystem after exploiting data reuse.
Therefore when exploiting quadrant affinity, the eight vaults per
quadrant easily satisfy the bandwidth requirements of DGEMM.
Speedup with eight lanes is 7.95× and with 32 lanes, 31.48×. This
is attributed to the excellent schedule, which is both able to tightly
pack the ALU instructions across the floating point units of the four
slices in a lane while also hiding memory latency. We achieve a flop
efficiency of 77%, which compares favorably to the 83% of peak
performance achieved by careful hand optimization.

A node is expected to sustain 3.9 teraflop/s, and at 9 W per
AMC (refer Figure 8), a power efficiency of 27.4 Gflop/s/W with-
out accounting for power consumed by the host.

DET. This kernel is neither memory-bound like DAXPY nor
compute-bound like DGEMM but is somewhere in between (3:1
ALU to LSU ratio). As mentioned earlier, there are only three deter-
minant computations, however, our scheduler is able to efficiently
pipeline the loop across all four slices. Register pressure heuristics
while scheduling are critical for DET so that register use is bal-
anced across slices and a less aggressive ALU utilization is selected
to avoid spilling.
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Figure 7: Software I-Cache behavior of two applications.

We see linear speedup for all lanes, made possible because we
are able to exploit affinity, as otherwise the inter-quadrant links
become a performance bottleneck leading to longer observed load
latencies and stalling at the lanes.

LULESH. By pipelining two iterations in both cases, the com-
piler achieves a flop efficiency of 27.2% and 22.5% on a single
lane despite spilling 12 and 8 vector registers in the two loops re-
spectively.

Figure 6 shows strong scaling for LULESH compiled for mul-
tiple lanes using a single pipeline stage. Performance is affected
by the AMC wide random accesses of the gather operations. The
compiler can only hide a load latency of 192 cycles (size of LSQ),
so as the observed latency increases beyond this value, perfor-
mance drops appreciably. Nevertheless, a speedup close to 25× is
achieved with 32 lanes.

NEKBONE. We present initial results for NEKBONE on a single
lane. Although only nine of the 32 elements of vector registers can
be used, it presents no issues for vectorization or code generation
(unlike SIMD). The compiler exploits the iteration counter to only
issue nine elements for vector operations, producing efficient code.
We observe a flop efficiency between 13.2% and 16.8% for the
seven loops.

Software I-Cache Analysis. LULESH and NEKBONE are excel-
lent demonstrations of the utility of the software I-Cache. Figure 7
shows the I-Cache behavior of NEKBONE (labelled unrolled in
Figure 5b). Recall that an AMC program that is too large to com-
pletely fit within the LIB is partitioned into blocks of 64 lane in-
structions. The compiler generates 13 such blocks for NEKBONE.
The graph shows the number of invocations of each of the blocks,
where a block invocation occurs whenever there is a block-to-block
control flow event. Hit and miss events are also marked. We mea-
sure cache performance at the block instead of the instruction gran-
ularity since a miss event is an inter-block control flow that requires
the loading of an entire 64-instruction target block.

As shown in Figure 7, although the offloaded section of NEK-
BONE overflows the LIB, the loop nest is packed into seven blocks,
each of which maps to a distinct location in the LIB, achieving a
greater than 95% hit rate and an overhead of only 3.08% of execu-
tion time. Similarly, LULESH shows negligible I-Cache overhead
because the “hot” loop easily fits within the LIB and the handler is
only activated to load the residual loop.

Another application we studied is SNAP, which has 41 blocks
within the offloaded loop, all of which are accessed in every iter-
ation. With only seven slots in the LIB, blocks have to be loaded
repeatedly by the handler, resulting in a high I-Cache overhead of
44.76%. One way to diminish the overhead is to explore ways to
distribute the outer loop to limit the number of blocks within each
loop. Another option is to prefetch instruction blocks so as to hide
the cost of a miss. A more involved approach is to split a program
across multiple lanes and to execute it in a streaming manner.

In summary, the advantage of the software I-Cache is that costly
host invocations are avoided. It can also enable aggressive software
pipelining, which increases code size due to the prologue and



epilogue, but can generate a highly performant kernel that can still
fit within the LIB.

Power Analysis. To gauge the energy efficiency of the AMC we
provide an evaluation of the power for the four kernels. The power
of the AMC was evaluated for a 14 nm SOI FinFET technology
node with a base chip frequency of 1.25 GHz and a C4 Vdd volt-
age of 0.656 V. The voltage of the DRAM stack was 1.0 V. The
base chip timing was modeled at 1.5 sigma slow, with added fre-
quency and voltage guard bands to account for worst case clock
jitter, power grid IR drop and noise, and product lifetime. The
power model includes lanes, I/O links, on-chip interconnect net-
work, vault controllers and the DRAM stack. Technology scaling
assumptions used by actual products were used to derive power
and a target of 90% installed clock gating was assumed for the
lanes, leaving 10% of the AC power non-gateable. The AMC power
model is based on performance statistics from the AMC simulator
with a set of utilization equations representing the activity behavior
of each AMC component. Power gating of the compute lanes was
applied whenever the lanes were not active. I/O links were assumed
gated throughout the AMC parts of the execution.
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Figure 8: Power consumption of the studied kernels within the
entire AMC.

The power breakdown of the AMC when running the kernels
with 32 lanes is illustrated in Figure 8. DGEMM exhibits very good
reuse of the data in the register files thus requiring a low memory
bandwidth. This results in a full 47% of the AMC power being
spent to perform useful computation in the lanes, as opposed to
transferring data to and from memory. Due to the higher memory
bandwidth used by the other kernels, the nest and DRAM consume
a larger fraction of the total AMC power but a healthy 26% to 36%
of the power is still being spent for useful computation in the lanes.

The AMC compute lane was architected for power efficiency.
Traditional processor cores consume significant power in the in-
struction fetch, decode, issue and branch units. The vector nature
of the AMC compute lane allows these units to be active as few as
one out of every 32 cycles, significantly reducing the AC power.
This fact is illustrated by the relative compute lane power break-
downs of Figure 9. The majority of the lane power, as much as
81%, is spent performing effective computation and data transac-
tions in the ALU, VRF and LSU part of the lane while as little as
7% of the power is spent in the instruction fetch, decode, issue and
branch part of the pipeline. This is in stark contrast to modern out-
of-order high performance microprocessor cores where such front
end units can consume over 50% of the total core power.

Figure 10 illustrates how the Gflop/s/W efficiency scales with
the active lanes. Efficiency improves superlinearly for DAXPY,
DET and DGEMM. This is due to the amortization of the constant
power fraction of the AMC, such as I/O link power, leakage and
non-gateable AC power, over the increased flops provided by the
larger number of active lanes. Only LULESH displays a slight re-
duction in flops at higher lane counts resulting in a more linear scal-
ing of Gflop/s/W. The fact that the Gflop/s/W efficiency for most of
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Figure 9: Breakdown of power consumed within a lane.
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Figure 10: Superlinear scaling of performance per watt with num-
ber of active lanes.

the applications continues to increase without noticeable slacken-
ing, which is not typical in other compute architectures, demon-
strates the effectiveness of the high bandwidth AMC architecture
and also the ability to exploit data affinity in local quadrants.

7. Related Work
3D PIM. The idea of using processing capability in the base logic
layer of a stack such as the HMC has recently been investigated [23,
24]. They incorporate cores of existing processor architectures in
the base layer and hence cannot approach the energy-efficiency of
the AMC. Standard compiler techniques suffice in these cases. The
AMC’s lane architecture is more similar to a DSP, specifically de-
signed with the energy-efficiency goal of Exascale computing. As
far as we are aware, ours is the first to explore novel architecture/-
compiler tradeoffs within this context.
OpenMP 4.0. Since the recent introduction of this accelerator
model [18] implementations have been released for the GPU [4],
Xeon Phi, and the Keystone II DSP [16]. Our work provides evi-
dence on the suitability of this platform independent approach for a
non-traditional microarchitecture. A key distinction is the freedom



of our runtime to execute a target region on the host if the AMC
is busy. This is possible because data is shared and our compiler
generates optimized code for both targets.
Vector VLIW scheduling. Several approaches to software pipelin-
ing for DSPs [15, 20] target only scalar instructions; we target both
scalar and vector operations, including variable length vectors. The
challenge is to schedule the mix across functional units without an
explosion in generated lane instructions. We also use aggressive
register pressure heuristics to prevent spilling at all costs.
Latency hiding. Variable memory latencies due to caches have
been a particular challenge to static VLIW scheduling. Various so-
lutions use hardware threads or prefetch units [22]. Some architec-
tures provide large register files and deep LSQs to hide worst-case
latency. The AMC avoids this to improve energy efficiency. We
show that techniques in our software pipelining stage can manage
LSQ capacity and hide latency effectively.
Data reuse. Loop transformations to exploit data reuse through
register tiling [12] can be applied to the AMC’s vector register file.
In this work we have shown how a subsequent software pipelining
stage can exploit tiled code for high performance.
Slice mapping. Instruction mapping onto clustered functional units
of DSPs has been studied in the context of cyclic [17] and acyclic
codes [19]. Previous techniques integrate mapping with schedul-
ing [2, 17] due to their phase coupling relation. We consider this
prohibitively expensive. Instead, we use two distinct passes with a
global graph partitioning based mapping similar to Aletà [1] ex-
tended for multiple basic blocks. We achieve superior mapping of
an offloaded region containing scalar, vectorized and residue loops.

8. Conclusions
The Active Memory Cube implements a processing-in-memory ar-
chitecture designed for Exascale computing that gains power effi-
ciency by moving computation to data. It is strongly influenced by
principles of embedded design, achieving power efficiency using a
microarchitecture that eliminates much of the complexity of con-
ventional processors and instead relies on sophisticated compiler,
runtime, and support software to deliver performance.

In this work we have described a compiler that uses the OpenMP
accelerator model to offload and parallelize programs on AMC
lanes. Our compiler exploits VLIW and vector capabilities, scat-
ter/gather, predication, fully utilizes functional units via software
pipelining, performs global slice assignment, hides memory latency
and exploits data reuse through vector registers, exploits data affin-
ity, and transparently handles codes of arbitrary size. Our experi-
ments show high computational efficiency, linear performance scal-
ing, and superlinear performance per watt scaling on memory- and
compute-bound kernels. We are able to achieve these results using
standard, portable pragmas and no accelerator-specific code.

The ideas described in this work can be extended to an AMC for
an embedded application incorporating a simple host processor on
the logic layer. A device delivering hundreds of Gflops/s for 10 W
or less is possible based on extrapolation of our results.
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