
RC25646 (WAT1610-056) October 14, 2016
Mathematics

Research Division
Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

IBM Research Report

Optimal Generalized Decision Trees via Integer Programming

Matt Menickelly, Oktay Günlük, Katya Scheinberg*, Jayant R. Kalagnanam
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598 USA

*Lehigh University

Optimal Generalized Decision Trees via Integer Programming

Matt Menickelly Oktay Günlük Katya Scheinberg Jayant R. Kalagnanam

Abstract

Decision trees have been a very popular

class of predictive models for decades due

to their interpretability and good perfor-

mance on categorical features. However,

they are not always robust and tend to

overfit the data. Additionally, if allowed

to grow large, they lose interpretability. In

this paper, we present a novel mixed inte-

ger programming formulation to construct

optimal decision trees of specified size. We

take special structure of categorical fea-

tures into account and allow combinato-

rial decisions (based on subsets of values of

such a feature) at each node. We show that

very good accuracy can be achieved with

small trees using moderately-sized training

sets. The optimization problems we solve

are easily tractable with modern solvers.

1 Introduction

Decision trees (DTs, for short) are a class of predic-

tive models that predict an output label for given

input data based on a sequence of binary “tests” or

decisions. There has been a large amount of litera-

ture on DTs since the 1980’s (see the recent survey

[6] and references therein). DTs are one of the most

popular tools of machine learning and data analysis

due to several important advantages they hold over

other predictive models. One such advantage is their

easy interpretability as the connection between the

input and the resulting output is transparent. More-

over, they often naturally result in feature selection,

since only a part of the input is typically used in the

decisions. Another advantage is that DTs can work

Preliminary work. Under review by AISTATS 2017. Do
not distribute.

with both numerical and categorical data directly.

Most other popular classifiers, such as linear classi-

fiers or neural networks, assume the data is numer-

ical. Moreover, these classifiers treat the numerical

features as unbounded continuous quantities, regard-

less of the actual range of values these features can

take. In particular, a categorical feature that can

take three values is often represented by a group of

three binary variables, so that only one of the vari-

ables is equal to 1 and the other two are 0. Then,

a linear classifier or a neural network (let us call

them “numerical classifiers”) will treat the group of

three variables as three continuous variables, which

can take any combination of values - essentially ig-

noring the valuable information that only three val-

ues of the triple are possible. The numerical classi-

fiers hope to recover this lost information by observ-

ing enough data and fitting the model accordingly.

However, it is not a trivial task, especially for linear

classifiers, and may require a more complex model

than what is really necessary. On the other hand,

DTs can be viewed as “logical” classifiers, where one

can explicitly use the fact that variables can only

take binary values. Indeed it has been established

in practice that DTs are most effective for integer

and categorical data.

There are also disadvantages to the known DT pre-

dictors; in particular, they are not always robust

with respect to the training data and they might re-

sult in poor prediction on out-of-sample data. The

poor prediction is often a result of overfitting and

this usually happens when the tree is too large.

Hence, small trees are often desirable to avoid over-

fitting and also for the sake of interpretability. As-

suming that for a given data distribution there ex-

ists a small DT that can achieve good accuracy, the

small DTs that are computed by a typical DT al-

gorithm (such as CART [3, 10]) may not achieve

such accuracy, due to the heuristic nature of the al-

gorithms. Moreover, it is usually impossible to es-

tablish a bound on the difference of expected loss

of the DT produced by a heuristic algorithm and

an optimal DT. Another weakness of most known

DTs is that decisions that involve categorical fea-

tures are only based on whether or not that feature

takes one particular value. For example, if a categor-

ical feature represents a person’s marital status and

can take the values “single”, “married”, “divorced”,

“separated”, “widowed”, or “has domestic partner”,

a typical DT will make decisions based on a feature

being “single” or not, while a more appropriate de-

cision may be “either single or divorced” or not.

In this paper, we aim to find optimal small DTs

for binary classification problems that produce in-

terpretable and accurate classifiers for the data for

which such classifiers exist. We allow complex

branching rules using subsets of values of categori-

cal features (e.g. “either single or divorced” or not),

rather than only one value (“single” or not); hence,

our small trees are more powerful than the standard

DTs. Note that current DT algorithms do not natu-

rally extend to such generalized branching. For ex-

ample, consider a categorical variable that can take

` values. Then, there are 2(`−1) possible subsets of

values of this feature that can be used for branch-

ing - a greedy method of choosing a branching rule,

such as those used in CART, has to consider all such

subsets.

While finding an optimal DT (even without the gen-

eralized decisions) is known to be an NP-hard prob-

lem, that does not mean that it is always impractical

to try to solve this problem using the modern tech-

niques that have gone way beyond simple Branch &

Bound (B & B) enumeration [7]. Thus, in this pa-

per, we propose a global optimization approach for

classification DTs, which is based on a novel mixed

integer linear programming (MILP) formulation of

the optimal DT problem. As such, we can utilize

significant advances in the power of modern MILP

solvers [2, 1]. Moreover, since we directly optimize

the empirical loss of a DT, even suboptimal feasi-

ble solutions tend to yield classifiers that outperform

those learned by other DT algorithms. While we do

not propose any particular algorithm for solving the

formulation, we show that by using a state-of-the-

art MILP B&B-based solver, we can obtain optimal

or nearly optimal trees of small depth for a variety

of standard data sets.

It is well known in the optimization community

that the true computational difficulty of an NP-

hard problem can vary tremendously depending on

its MILP formulation. Different formulations of the

same problem can result in many orders of magni-

tude speed-up in solution time when a B&B method

is applied. The main idea in this paper is to utilize

the particular structure of the class of problems for

which DTs are deemed most suitable to produce a

tractable MILP formulation. In particular, we con-

sider a binary classification problem, which means

that the output nodes (leaves) of our DTs gener-

ate binary output. Our problem formulation takes

particular advantage of this fact. Also, while our for-

mulation can be generalized to continuous data, it is

designed for the case when the input data is binary.

Hence, for most of the paper, we will consider in-

put data as being a binary vector with the property

that features are grouped so that only one feature

can take the value 1 in each group for each data

sample. Our formulation explicitly takes this struc-

ture into account, while allowing decisions based on

a subset of features from one group. In this paper

we focus on constructing small DTs with up to three

levels of decisions, which makes the resulting model

clearly interpretable and easily usable by humans.

The MILP formulation, in principle, can work for

binary trees of any depth, but the depth has to be

decided a priori. Our computational results show

that the small trees we construct have much better

prediction accuracy than popular heuristic methods

such as C4.5 [10] and random forests [4]. Extensions

to larger trees and larger data sets are a subject of

future research.

The rest of the paper is organized as follows: In the

next section we describe the main ideas of our ap-

proach and the structure of the data for which the

model is developed. In Section 3 we describe an ini-

tial MILP model and several techniques for strength-

ening this formulation. We present some computa-

tional studies and comparisons in Section 4. Finally,

we suggest some possible extensions in Section 5.

2 Setting

For the majority of the paper, we will consider

datasets {(ai, yi) : i ∈ 1, 2, . . . , N} where ai ∈
{0, 1}d is a binary vector, and yi ∈ {−1,+1} is

the class label associated with a negative or posi-

tive class, respectively. Additionally, assume that

the set of features {1, . . . , d} can be partitioned into
2

Figure 1: Three possible tree topologies: depth 2,

depth 2.5 and depth 3.

G nonoverlapping groups, {g1, g2, . . . , gG}, so that

for all our data samples (a, y), the binary subvector

agj contains one and only one 1, for each group gj .

For example, let a represent a census data with G

categorical features. One such feature, say the j-th,

may represent a person’s occupation/employment

type out of a list of `j possible types (e.g., as

in the adult data set from UCI Machine Learn-

ing Repository [8], “Tech-support”, “Craft-repair”,

“Other-service”, “Sales”, “Exec-managerial”, “Prof-

specialty”, “Handlers-cleaners”, etc.). Then agj is a

binary subvector with 1 indicating which of the `j
occupation types apply to a given individual.

We note that any typical form of data can be rep-

resented by the binary vectors as described. For ex-

ample, not only a categorical, but also an integer

feature that takes ` possible values can be, and often

is, represented as a set of ` binary features, where 1

indicates which value the original feature takes and

the rest are 0. Also, any feature that is originally

binary can be represented by a group of two binary

features - itself and its complement, hence defining a

group with one and only one 1. Finally, a real-valued

feature can be, when appropriate, made into a cate-

gorical one by “bucketing” - that is breaking up the

range of that feature into segments and considering

segment membership as a categorical feature. This

is not uncommon with some data sets; for example,

while the age of a person is a continuous variable, it

is often more robust, say for advertising purposes, to

represent individual by age groups such as “teens”,

“young adults”, “middle aged” and “seniors”. For

the real-valued data that should not be bucketed,

DTs may not be the best choice of classifiers. How-

ever, later in the paper, we will extend our model to

handle these real-valued variables directly.

Let us now consider the DT models we aim to learn

from our data. First, we select a fixed binary DT

structure like the ones in Figure 1. The structure

consists of decision nodes - intermediate nodes and

the root - and the prediction nodes - the leaves. Each

Figure 2: A decision tree example

decision node corresponds to a branching rule that

has to take the following form: given a set of features

that all belong to the same group, branch to the left

if the set of features contains a 1 (for a given data

sample), otherwise branch to the right. For example,

a branching rule for the sensus data could read as

follows: if a person’s occupation type is “Sales” or

“Exec-managerial” or “Prof-specialty”, then branch

to the left, otherwise branch to the right. Hence,

the branching rules for each decision node that need

to be learned are the group and the particular set

of features within the group which determine the

direction of branching.

Each leaf corresponds to either a positive or a nega-

tive label, meaning that each sample is assigned the

label of the leaf where it ends up. Notice that the

assignment of the labels to the leaves is fixed, in an

alternating manner, and is not learned. This is done

without loss of generality, since the concepts of “left”

and “right” in the tree are interchangeable. The a

priori choice of the tree topology is also without loss

of generality, in the following sense: by learning an

optimal tree of a given topology we automatically

optimize over all trees whose topology is a subtree

of the chosen topology. This is simply because some

leaves may correspond to an empty set of samples,

so that the branching decision at the preceding deci-

sion node is redundant. However, fixing a tree with

a simple topology results in an easier problem, and

is hence desirable. In our computational results, we

will explore trees with the three topologies shown in

Figure 1.

To give a concrete example, let us consider

a tree in Figure 2 applied to binary vec-

tors (a1, a2, a3, a4, a5, a6) consisting of two binary

groups: {a1, a2, a3, a4} and {a5, a6}. The branch-

ing decision at the root, is based on whether a1 or

a2 are equal to 1. If true, a given data sample is

routed to the left, otherwise (that is if both a1 and
3

a2 are 0 and, hence either a3 = 1 or a4 = 1), the

sample is routed to the right. The branching at

the other two decision nodes are analogous and are

shown in the picture. We can now see that data

sample a1 = (1, 0, 0, 0, 0, 1) is routed to leaf 1 and

data sample a2 = (0, 0, 1, 0, 1, 0) is routed to leaf 3.

Our class of feasible trees, thus, is the set of trees of

a given topology with any assignment of groups and

corresponding sets of features to each of the deci-

sion nodes. The ultimate goal is to find the optimal

assignment that maximizes the number of correct

classifications of all samples in the training set. The

classification of the ith sample is correct provided

the path the sample takes through the tree starting

from the root node ends at the leaf corresponding to

the correct label.

3 Integer Programming Formulation

In this section we provide an integer programming

formulation of the above problem and discuss some

tricks to make it more efficient for the MILP solver.

3.1 The basic formulation

We begin with some notation. Let the set of all sam-

ples be indexed by I = {1, 2, . . . , N} and let I+ ⊂ I
denote the indices i of samples such that yi = 1, de-

note I− = I \ I+. Let the set of groups be indexed

by G = {1, 2, . . . , |G|} and the set of features be in-

dexed by J = {1, 2, . . . , d}, in addition let g(j) ∈ G
denote the group that contains feature j ∈ J and let

J(g) denote the set of features that are contained in

group g. We assume that the topology of the de-

cision tree is given and let the set of the decision

nodes be indexed by K = {1, 2, . . . , |K|} and the

set of leaves be indexed by B = {1, 2, . . . , |B|}. We

denote the indices of leaves with positive labels by

B+ ⊂ B and the indices of leaves with negative la-

bels by B− = B \ B+. For convenience, we let B+

contain even indices, and B− contain the odd ones.

We will now describe our key decision variables and

the constraints on these variables. We use binary

variables vkg ∈ {0, 1} for g ∈ G and k ∈ K to denote

if group g is selected for branching at node k. As

discussed earlier in Section 2, exactly one group is

selected for branching at a node and consequently

we have the following set of constraints:∑
g∈G

vkg = 1 (1)

for all k ∈ K in the formulation.

The second set of variables zkj ∈ {0, 1} denote if

feature j ∈ J is one of the selected features used

for branching at node k ∈ K. Clearly, a feature

j ∈ J can be selected only if the group containing

it, namely g(j), is selected at that node. Therefore

we have the following set of constraints:

zkj ≤ vkg(j) ∀j ∈ J, (2)

in the formulation. Let

S =
{
z ∈ {0, 1}|K|×d, v ∈ {0, 1}|K|×|G| :

(v, z) satisfy inequalities (1) and (2)
}
,

and note that for any (v, z) ∈ S one can construct a

corresponding decision tree in a unique way and vice

versa. We next relate these variables (and therefore

the corresponding decision tree) to the samples.

We use variables cib ∈ {0, 1} for b ∈ B and i ∈ I

to denote if sample i is routed to leaf node b. This

means that cib = 1 only when the sample i exactly

follows the right or left branches of the decision

nodes that lead to leaf node b. With this in mind,

we define the following expression

L(i, k) =
∑
j∈J

aijz
k
j (3)

and make the following observation:

Proposition 1. Let (z, v) ∈ S, then, L(i, k) ∈
{0, 1} for all i ∈ I and k ∈ K. Furthermore,

L(i, k) = 1 if and only if there exists some j ∈ J

such that aij = 1 and zkj = 1.

Consequently, the expression L(i, k) denotes if sam-

ple i ∈ I branches left at node k ∈ K. Similarly, we

also define the expression

R(i, k) = 1− L(i, k) (4)

to indicate that sample i branches right at node k.

To complete the model, we next relate these expres-

sions to the cib variables which denote if sample i ∈ I
is routed to leaf node b ∈ B. As the topology of

the tree is fixed, there is a unique path leading to

each leaf node b ∈ B from the root of the tree.

This path visits a subset of the nodes K(b) ⊂ K

and for each k ∈ K(b) either the left branch or the

right branch is followed. Let KL(b) ⊆ K(b) denote

the nodes where the left branch is followed and let

KR(b) = K(b) \KL(b) denote the nodes where the
4

right branch is followed. Sample i is routed to b only

if it satisfies all the conditions at the nodes leading

to that leaf node. Consequently, we define:

cib ≤ L(i, k) for all k ∈ KL(b) (5)

cib ≤ R(i, k) for all k ∈ KR(b) (6)

for all i ∈ I and b ∈ B. Combining these with∑
b∈B

cib = 1 (7)

for all i ∈ I gives a complete formulation. Let

Q(z, v) =
{
c ∈ {0, 1}N×|B| : such that (5)-(7) hold

}
.

We next show that combining the constraints defin-

ing sets S and Q(z, v) leads to a correct formulation.

Proposition 2. Let (z, v) ∈ S, and c ∈ Q(z, v).

Then, cib ∈ {0, 1} for all i ∈ I and b ∈ B. In addi-

tion, if cib = 1 then sample i belongs to leaf node b.

We therefore have the following integer program-

ming (IP) formulation:

max
∑
i∈I+

∑
b∈B+

cib + C
∑
i∈I−

∑
b∈B−

cib (8a)

s. t. (z, v) ∈ S (8b)

c ∈ Q(z, v) (8c)

where C in the objective (8a) is a constant weight

chosen to deal with class imbalance. For instance,

if a training set has twice as many good examples

as bad examples, we set C = 2, so that every cor-

rect classification of a bad data point is equal to two

correct classifications of good data points.

3.2 Computationally Tractability

While (8) is a correct formulation, it can be im-

proved to enhance computational performance.

3.2.1 Deleting unnecessary variables

Notice that the objective function (8a) uses variables

cib only if i ∈ I+ and b ∈ B+, or i ∈ I− and b ∈ B−.

Consequently, the remaining cib variables can be pro-

jected out from the formulation without changing

the value of the optimal solution. We therefore, only

define cib variables for

{(i, b) : i ∈ I+, b ∈ B+, or, i ∈ I−, b ∈ B−} (9)

and write constraints (5) and (6) only for these vari-

ables. In addition, we delete equation (7).

Also note that the objective function (8a) is maxi-

mizing a (weighted) sum of cib variables. Therefore,

if we replace the integrality constraints cib ∈ {0, 1}
with simple bound constraints 1 ≥ cib ≥ 0, the op-

timal solution would still satisfy cib ∈ {0, 1}. Con-

sequently, we do not require cib to be integral in the

formulation.

3.2.2 Breaking symmetry: Anchor features

If the variables of an integer program can be per-

muted without changing the structure of the prob-

lem, the integer program is called symmetric. This

poses a problem for IP solvers (such as IBM ILOG

Cplex) as the search space increases exponentially,

see Margot (2009). The formulation (8) falls into

this category as there are multiple alternate solu-

tions that represent the same decision tree. In par-

ticular, if the branching condition is reversed at

a node other than a leaf node, and, at the same

time, the sub-trees associated with the right and left

branches of the node are switched, one obtains an

alternate solution corresponding tho the same deci-

sion tree. To avoid this, we designate one particular

feature j(g) ∈ J(g) of each group g ∈ G to be the

anchor feature of that group and enforce that if a

group is selected for branching at a node, samples

with the anchor feature follow the left branch. More

precisely, we add the following equations to the for-

mulation:

zkj(g) = vkj(g) (10)

for all g ∈ G, and all k ∈ K that is not adjacent to a

leaf node. While equations (10) lead to better com-

putational performance, they do not rule out any

decision trees from the feasible set of solutions.

3.2.3 Relaxing some binary variables

The computational difficulty of an IP typically in-

creases with the number of integer variables in the

formulation and therefore it is desirable to declare

as few variables as possible as integral. Consider a

feature selection variable zkj where j ∈ J and k ∈ K
is a node that is not adjacent to a leaf node. We

will next argue that these variables only take values

{0, 1} in an optimal solution even when they are not

explicitly required to be integral.

Proposition 3. Every extreme point solution to (8)

is integral even if the variables zkj , where j ∈ J and
5

k ∈ K is a node that is not adjacent to a leaf node,

are not declared integral in the definition of S.

3.2.4 Strengthening the model

Now consider the inequalities (5)

cib ≤ L(i, k) for all k ∈ KL(b) (11)

for i ∈ I and b ∈ B and remember that
∑

b∈B c
i
b = 1

due to equation (7) for i ∈ I. Consequently, for any

i ∈ I, if L(i, k) = 0 then all cib = 0 if k ∈ KL(b). In

addition, if L(i, k) = 1 then at most one cib = 1 if

k ∈ KL(b). Therefore,∑
b∈B:k∈KL(b)

cib ≤ L(i, k) (12)

is a valid inequality for all i ∈ I. While this inequal-

ity is satisfied by all integral solutions to the set

Q(z, v), it is violated by solutions to its continuous

relaxation. We replace inequalities the inequalities

(5) in the formulation with (12) to obtain a tighter

formulation. We do the same for R(i, k).

4 Computational Results

In all our experiments, we first defined a tree topol-

ogy as depth 2, depth 2.5 and depth 3. Each dataset

was preprocessed to have the binary form assumed

by the formulation, with identified groups of binary

variables. Each dataset/tree topology pair results

in a MILP formulation, which we implemented in

Python 2.7 and then solved with IBM ILOG CPLEX

12.6.1 on a machine with an 8-core 2.5 GHz Intel

Core i7 processor. Throughout this section, we refer

to our method as ODT (Optimal Decision Trees).

In our first set of experiments, we sketch the ac-

curacy of our DTs as a function of the number of

training examples and the depth of the tree. We

use the well known Wisconsin breast cancer dataset

available from the UCI repository [8]. After pre-

processing the data to remove missing values, the

dataset had 695 examples and 90 features, which

could be grouped into 9 groups. We consider the

3 tree sizes mentioned above and 5 training sample

sizes, {100, 200, 300, 400, 500}. For each of the 3× 5

combinations of topology and sample size, we ran-

domly partitioned the 695 examples into a training

set of the given size and a holdout testing set of the

remaining examples. Once the split was generated,

we counted the number of positive instances p (cor-

responding to benign tumors in this dataset) and

the number of negative instances n (corresponding

to malignant tumors) in the training set. We then

set C = p/n in our model to crudely account for

class imbalance. The average training and testing

accuracy of the classifiers learned by running this

experiment 10 times is presented in the bar graphs

in Figure 3.

Figure 3: Average training (yellow) and testing

(blue) accuracy of our classifier on the breast cancer

dataset, varying training sample size and tree topol-

ogy (depth). Left bar is Depth 2, center bar is Depth

2.5, right bar is Depth 3.

100 200 300 400 500

training samples

0.85

0.9

0.95

1

A
cc

ur
ac

y

In this experiment, all instances were solved to

global optimality. We observe that there are natu-

ral and expected tradeoffs in tree topology and frac-

tion of the dataset used for training. In particular,

while a deeper tree and fewer examples lead to bet-

ter training accuracy, deeper trees (depth 3) tend to

overfit the training data and perform worse in test-

ing accuracy.

In Table 1, we list several datasets from the UCI Ma-

chine Learning Repository [8] of moderate size that

contain only integer or categorical features, making

them appropriate for our setting. By “math scores”,

we are referring to the Student Alcohol Consump-

tion dataset, for predicting Portuguese secondary

school students’ failure of a mathematics course [5].

For all datasets, we preprocessed the data, delet-

ing either features or samples (whichever resulted in

fewer deletions) whenever missing entries were en-

countered.

Table 1: Properties of datasets used
Samples Pos/Neg Features Groups

adult 1605 395/1210 122 14

breast can. 695 454/241 90 9

letter 20000 734/19246 320 20

math scores 395 265/130 109 31

mushrooms 8124 4208/3916 111 20

6

Table 2: Comparing ODT to CART and random forests. Training Accuracy/Testing Accuracy
CART RF ODT, Depth 3 ODT, Depth 2.5 ODT, Depth 2

adult (1000) 85.54/61.34 96.13/71.31 77.80/74.12 74.29/72.76 75.21/71.75

breast cancer (500) 74.28/52.62 85.14/56.00 98.75/94.14 97.84/95.07 96.73/94.86

letter (1000) 97.44/93.46 99.10/96.24 97.69/94.88 93.59/91.54 86.90/86.69

math scores (250) 83.40/56.34 99.00/59.86 94.00/88.93 92.70/90.52 92.60/90.69

mushrooms (1000) 92.96/47.46 99.16/46.57 100.00/99.89 99.92/99.79 99.35/99.42

Using our MILP model, we generated trees of the

three sizes for each of the data set. A 4 hour time

limit was given to solve each instance. In the case

when the time limit was reached, a feasible tree was

always obtained, but without a certificate of global

optimality. Nonetheless, these feasible but possibly

suboptimal trees achieve good accuracy as evidenced

in Table 2. For each dataset, we chose a number

of training examples (given in the parenthesis) in-

tended both 1) to give a reasonable balance between

the size of training and testing sets, and 2) provide

a tractable model in terms of numbers of variables

and constraints. We compare against the implemen-

tation of CART [3] and random forest classifiers [4]

in scikit-learn [9]. For each classifier and dataset,

we used a random partition of the data of the size

shown in the table, and ran it 10 times, recording

the average training and testing accuracies.

We do not compare the running times since it is

clear that CART and RF classifiers can be obtained

very quickly. The aim of our computational com-

parison is to show that our trees can be obtained

in a reasonable amount of time and provide much

better accuracy than traditional DTs. By simply

comparing the training and testing accuracy, we see

that the ODT method produces classifiers with good

accuracy that are not prone to overfitting. On the

other hand, CART and RF overfit on all data sets

aside from letter, which is highly imbalanced - hence

the accuracy measure is misleading. Even though

we used the settings in CART and RF algorithms

that are intended to account for class imbalance, the

classifiers learned by these methods did not perform

well in terms of sensitivity and specificity when ap-

plied to the holdout testing set. In contrast, the

classifiers learned by our method tend to balance

sensitivity and specificity well on both training and

testing data. See Table 3 for results on the sensitiv-

ity and specificity of classifiers on the testing data.

We note that increasing the size of the training data

sets for CART and RF did not result in a significant

improvement, hence the training set sizes were not

Figure 4: Comparing test accuracy and time neces-

sary to construct classifier as a function of number

of training samples used to train classifier

10 1 10 2 10 3 10 4

#training samples

65

70

75

80

85

90

95

100

T
e

s
t

a
c
c
u

ra
c
y
 (

%
)

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

T
im

e
 (

s
)

accuracy

time

a defining factor in the comparatively poor accuracy

of these algorithms. We also note that on the math

scores data set the ODTs outperformed all of the

classification results reported in [5].

We tested the empirical complexity and the accu-

racy of our models with respect to the number of

training instances. In Figure 4, using the mush-

rooms dataset, we see that the solution time in-

creases roughly quadratically with the number of in-

stances. In all these runs, a depth 3 tree was trained

using a random sample of the specified size. At the

same time we observe that a perfect depth 3 classi-

fier can be obtained with a training set of 1000 sam-

ples; thus, there is no practical reason to exceed this

threshold. Hence, in our setting, learning is possible

with small or moderate data sets.

Finally, we report in Table 4 the minimum and max-

imum times, over 10 trials, required by CPLEX

to solve the model for different datasets and tree

topologies. Since a time limit of 4 hours was im-

posed, an X in Table 4 denotes that this upper

bound was hit and CPLEX returned the feasible so-

lution of the highest objective value that was found.

We remark from a combinatorial perspective that

even with the proposed shallow depths, the task of

finding an ODT is nontrivial; indeed, consider enu-

merating all possible decision trees for the breast

cancer dataset that could fit on a depth 2 tree. There
7

Table 3: Average Testing Sensitivity/Specificity over 10 trials for CART, random forests, and ODT
CART RF ODT, Depth 3 ODT, Depth 2.5 ODT, Depth 2

adult (1000) 28.85/79.73 5.13/94.88 86.02/70.54 89.12/68.22 87.73/67.00

breast cancer (500) 64.90/40.91 58.94/45.45 97.35/89.44 95.99/93.70 95.66/95.71

letter (1000) 3.69/97.13 0.01/99.97 63.31/94.96 80.61/91.96 89.68/86.58

math scores (250) 54.08/42.55 74.49/29.79 90.33/83.64 92.28/86.21 90.58/90.84

mushrooms (1000) 90.69/9.10 96.95/3.70 100.00/99.77 100.00/99.55 100.00/98.7

Table 4: [Minimum,Maximum] time (in seconds) re-

quired to solve the model over 10 trials.
Depth 2 Depth 2.5 Depth 3

adult (1000) [49,55] [776,4207] [X,X]

breast can. (500) [8,11] [175,659] [4881,7976]

letter (1000) [112,128] [11651,X] [X,X]

math scores (250) [15,26] [1199,4120] [X,X]

mushrooms (1000) [17,62] [115,928] [171,401]

are 9 groups with 10 features per group; thus, at

the root node, there are 9 · 29 possible branching

decisions (due to the anchor features), and at the

two non-root decision nodes, there are 9 · 210 possi-

ble branching decisions, for a total of 93 · 229 possi-

ble trees, approximately 391 billion. For a depth 3

tree, there are 97 · 267 possible trees, approximately

7× 1026.

We note that although in many depth 3 instances,

the solver reached the time limit, we have seen that

the quality of the feasible solution returned is still

satisfactory for learning purposes. Moreover, a di-

rection of future work involves generating random

forests of short (e.g. depth 2 and depth 2.5) ODTs,

which we have seen often outperform single CARTs

as predictors, leading us to believe that random

forests of ODTs have the potential to outperform

random forests of CARTs.

5 Extensions

5.1 Maximize Sensitivity/Specificity

We next describe how to change the model (8) to

build a decision tree that maximizes sensitivity (the

true positive rate, or TPR) while guaranteeing a cer-

tain level of specificity. For example if we would like

to train a classifier with a guaranteed specificity of

0.95 then we add the constraint to the model (8)∑
i∈I−

∑
b∈B−

cib ≥ d(1− 0.95)|I−|e (13)

and change the objective function (8a) to∑
i∈I+

∑
b∈B+

cib. (14)

Likewise, we can produce a model that maximizes

specificity while guaranteeing a certain level of speci-

ficity by switching the expressions in the constraint

(13) and objective (14).

5.2 Handling Real Valued Features

The IP model (8) can be extended to handle real-

valued features in addition to categorical features.

In this case branching decisions are either made

based on a group of categorical features, or, based on

the real-valued features. If real-valued features are

chosen for branching, then the samples are divided

according to a linear classifier optimally chosen by

the extended model.

The extended model has a new binary variable vkcg ∈
{0, 1} to denote if the real-valued features are chosen

for branching at node k ∈ K. In addition, we also

define variables wk ∈ Rn and uk ∈ R for each k ∈
K to denote the linear classifier used for branching.

Finally we define a new binary variable H(i, k) ∈
{0, 1} for i ∈ I, k ∈ K to denote if sample i satisfies

the conditions of the linear classifier at node k.

Using these variables we can write a set of con-

straints relating each H(i, k) to the associated linear

classifier. A second set of constraints can be used to

combine H(i, k) and vkcg variables to determine if a

sample should go left at node k due to the linear

classifier.

We note that this approach can be further extended

to deal with multiple groups of real-valued features.

We are currently in the process of experimenting

with these extensions, however, the purpose of this

paper is to exploit the structure of the categorical

variables, hence we do not include further details

here (see the supplementary material).

References

[1] T. Achterberg and R. Wunderling. Mixed

integer programming: Analyzing 12 years of

progress. In Juenger et al, editor, Facets of

Combinatorial Optimization. Springer, 2009.
8

[2] R. Bixby. A brief history of linear and mixed-

integer programming computation. DOC-

UMENTA MATHEMATICA, pages 107–121,

2010.

[3] L. Breiman, J. H. Friedman, R. A. Olshen, and

C. J. Stone. Classification and Regression Trees.

Chapman & Hall, New York, 1984.

[4] Leo Breiman. Random forests. Mach. Learn.,

45(1):5–32, 2001.

[5] P. Cortez and A. Silva. Using data mining to

predict secondary school student performance.

In A. Brito and J. Teixeira, editors, Proceed-

ings of 5th FUture BUsiness TEChnology Con-

ference, pages 5–12. FUBUTEC 2008, 2008.

[6] S. B. Kotsiantis. Decision trees: a re-

cent overview. Artificial Intelligence Review,

39(4):261–283, 2013.

[7] A. H. Land and A. G Doig. An automatic

method of solving discrete programming prob-

lems. Econometrica, 28(3):497–520, 1960.

[8] M. Lichman. UCI machine learning repository,

2013.

[9] F. Pedregosa, G. Varoquaux, A. Gramfort,

V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-

derplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot, and E. Duchesnay. Scikit-learn: Ma-

chine learning in Python. Journal of Machine

Learning Research, 12:2825–2830, 2011.

[10] J. Ross Quinlan. C4.5: Programs for Machine

Learning. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 1993.

.

9

Supplementary material: Proofs

Proof of Proposition 1

Proof. For any (z, v) ∈ S and k ∈ K, exactly one of

the vkg variables, say vkg′ , takes value 1 and vkg = 0

for all g 6= g′. Therefore, zkj = 0 for all j 6∈ J(g).

Consequently, the first claim follows for all i ∈ I as

L(i, k) =
∑

j∈J a
i
jz

k
j =

∑
j∈J(g′) a

i
jz

k
j = zkji ∈ {0, 1}

where ji ∈ J(g′) is the index of the unique feature

for which aiji = 1. Consequently, L(i, k) = 1 if and

only if zkji = 1 which proves our claim.

Proof of Proposition 2

Proof. Given (z, v) ∈ S, and i ∈ I assume that

sample i should be routed to leaf node b′ (accord-

ing the value of its features and the rules on the

given decision tree defined by (z, v). For all other

leaves b ∈ B \ {b′}, the sample, must have either

L(i, k) = 0 for some k ∈ KL(b) or R(i, k) = 0 for

some k ∈ KR(b). Consequently, cib = 0 for all b 6= b′.

Equation (7) then implies that cib′ = 1 and therefore

cib ∈ {0, 1} for all b ∈ B. Conversely, if cib′ = 1 for

some b′ ∈ B, then L(i, k) = 1 for all k ∈ KL(b) and

R(i, k) = 1 for all k ∈ KR(b).

Proof of Proposition 3

Proof. Consider an extreme point solution (v, z, c)

to the relaxed formulation and assume that the claim

does not hold. Then zkj′ is fractional for some j ∈ J
and k ∈ K where node k is adjacent to leaf nodes

b+(k) and b−(k). Due to inequality (2), vkg(j′) = 1

as zkj′ > 0. Let I0 ⊂ I be the collection of samples

that satisfy the conditions to follow the path lead-

ing to node k. Clearly, cib+(k) and cib−(k) variables

associated with all i ∈ I \ I0 are zero in the solution.

We will now construct two solutions (v, z̄, c̄) and

(v, ẑ, ĉ) by replacing zkj′ with (zkj′ + ε) and (zkj′ − ε),
respectively, for some small ε > 0, and modify-

ing the c variables associated with samples i ∈ I0
accordingly. We will then argue that (v, z, c) =

1/2(v, z̄, c̄) + 1/2(v, ẑ, ĉ) and therefore is not an ex-

treme point solution. Remember that in the formu-

lation we have cib+(k) variables associated with i ∈ I+
and cib−(k) variables associated with i ∈ I− only. In

addition,

cib+(k) ≤ R(i, k) = 1−
∑
j∈J

aijz
k
j ∀i ∈ I0 ∩ I+(15)

cib−(k) ≤ L(i, k) =
∑
j∈J

aijz
k
j ∀i ∈ I0 ∩ I−. (16)

Now consider i ∈ I0. If aij′ = 0, then we do not

change the value of the associated c variable in the

perturbed solutions (v, z̄, c̄) and (v, ẑ, ĉ). If aij′ = 1,

we consider two cases. If i ∈ I+ and cib+(k) = 0,

or, i ∈ I− and cib−(k) = 0, then we again do not

change the value of the associated c variable in the

perturbed solutions. Finally, for the remaining i ∈
I+ we set c̄ib+(k) = cib+(k) + ε and ĉib+(k) = cib+(k) − ε.
Similarly, for the remaining i ∈ I− we set c̄ib−(k) =

cib−(k) − ε and ĉib−(k) = cib−(k) + ε.

It is easy to check that (v, z̄, c̄) and (v, ẑ, ĉ) are fea-

sible solutions and contain (v, z, c) in their convex

hull.

Details on extending the formulation to

include real-valued variables

Given a sample i ∈ I, let the last n features in ai

be real-valued and denote them with aicg ∈ Rn. The

extended model has a binary variable vkcg ∈ {0, 1}
to denote if the real-valued features are chosen for

branching at node k ∈ K. This variable is added

to equation 1 to make sure that only one group is

chosen for branching at any node. We also define

variables wk ∈ Rn and uk ∈ R for each k ∈ K to de-

note the linear classifier used for branching. Sample

i ∈ I moves left at node k ∈ K if 〈wk, aicg〉+ uk > 0

and moves right if 〈wk, aicg〉+ uk < 0.

We now define a new binary variable H(i, k) ∈ {0, 1}
for i ∈ I, k ∈ K to denote if sample i satisfies the

conditions of the linear classifier at node k to go left

and write the following constraints for k ∈ K, i ∈ I:

1−H(i, k) ≥ −(〈wk, aicg〉+ uk) + ε

H(i, k) ≥ 〈wk, aicg〉+ uk + ε
(17)

where ε > 0 is a small perturbation. Clearly

H(i, k) = 1 if and only if 〈wk, aicg〉+ uk > 0. More-

over, these constraints force 〈wk, aicg〉+ uk ∈ (−ε, ε)
to be infeasible.

We finally define the binary variables, Λ(i, k) ∈
{0, 1} to denote if the following two conditions are

satisfied simultaneously: (1) the continuous group

is selected for branching at node k ∈ K, and, (2)

sample i ∈ I satisfies the conditions of the linear

classifier to go left. The following inequalities are

known as the McCormick inequalities and they are

commonly used to represent the product of two bi-
10

nary variables. For all k ∈ K, i ∈ I we write:

Λ(i, k) ≥ vkcg +H(i, k)− 1

Λ(i, k) ≤ vkcg
Λ(i, k) ≤ H(i, k)

Λ(i, k) ≥ 0

(18)

Clearly the variable Λ(i, k) has the desired meaning

that sample i should go left at node k due to the lin-

ear classifier. With this setup, we can easily extend

(8) by redefining L(i, k) from (3) as

L(i, k) =
∑

j∈J\{j:j∈cg}

aijz
k
j + Λ(i, k). (19)

to obtain a correct model that can handle real-valued

features.

We also note that this approach can be extended to

deal with multiple groups of real-valued features. In

this case, one needs to define the variables and con-

straints mentioned above for all cg ∈ {cg1, cg2, . . . }
where each cgl denotes a group of real-valued fea-

tures.

11

