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Abstract—The fast growth of the Android app market moti-
vates the need for tools and techniques to analyze and improve
Android apps. A basic capability in this context is to identify
the libraries present in a given Android app, including their
exact version. The problem of identifying library dependencies
is made difficult by two common build-time transformations,
namely code minimization and obfuscation. Minimization typ-
ically incorporates used library fragments into an app, while
obfuscation renames symbols globally across an app.

In this paper, we tackle both of these challenges via a unified
approach, which abstracts app and library classes into summaries
of their interactions with system libraries. The summarization
technique is resistant to obfuscation, and is amenable to efficient
similarity detection (matching). We lift the class-wise matches
into a set of library dependencies by encoding this problem as a
global constraint/optimization system across all app classes and
available libraries.

We have implemented our approach as the MOBSCANNER
system. We report on the evaluation of MOBSCANNER against 20
Android apps along with a randomly chosen database of over 10K
library versions belonging to 1K unique libraries. MOBSCANNER
is able to pinpoint the exact library versions present across apps
without and with obfuscation/minimization with recall scores of
98% and 85%, respectively.

I. INTRODUCTION

The Android platform has gained tremendous popularity
since it was unveiled in 2007. Currently it holds a global market
share of 78.4% with 1.5M activations of Android devices per
day. In the US alone, there are 76M Android users. The main
Android app market, Google Play, offers over 2M apps with a
history of over 50B downloads to date.

These impressive statistics provide strong motivation to
understand, and improve the quality of Android apps. In this
paper, we focus on a key question in this space, which to our
knowledge has not been previously addressed; namely:

What are the library dependencies of a given Android
application?

We emphasize that library dependencies include the exact li-
brary version, which is crucial information for many interesting
use cases, as we motivate below.
Motivation. There is strong motivation for Android devel-
opers to reuse software components. First, Android apps are
written in Java, which is known for its rich set of libraries.
Second, the mobile app market is highly dynamic, mandating

short development time and fast release cycles. Finally, there
is great potential for reuse given the common needs of many
apps, such as internet communication, UI widgets and login
workflows.

There are also compelling reasons to uncover the library
dependencies of a given application, including the following:
• Security: An application may use a library (version) with

known security vulnerabilities, or even worse, a library
that is confirmed to be offensive if not malicious (e.g.,
an advertising library that make use of sensitive user
information without proper authorization) [7].

• Quality: Many libraries have known functional bugs, such
as performance and memory problems [10]. Knowing the
library dependencies of an application can help isolate
bad behaviors exhibited by the application.

• Optimization: There is also potential for optimization, ei-
ther manually (by notifying the developer) or automatically
(via app rewriting or instrumentation), if it is discovered
that an app depends on an older version of a library and
a safe transformation is possible [17].

• Mining: The ability to automatically extract the library
dependencies of an application opens the door for large-
scale studies on the use of libraries by Android apps,
allowing insight into questions such as what the most
popular libraries are, how their popularity changes across
app categories, and how often a recent version of a library
is used [25], [6].

• Analysis: Finally, we note the relevance of extracting
library dependencies to automated testing and verification
tools. For verification, this provides a means to apply
reusable summaries across library calls rather than reana-
lyzing such calls from scratch each and every time [13].
For testing, knowledge of the libraries used by the app
is a valuable form of fingerprinting for guided selection
of tests (e.g., inputs for security of functional testing that
correspond to known bugs in those libraries) [16].

Indeed, all of these use cases benefit from, if not depend on,
knowing the exact version of a library dependency. For most,
if not all, of these use cases, complete resolution — even if
imprecise — is preferable to missed dependencies. There are
two main reasons. First, false positives can be addressed by
downstream filters, whereas false negatives cannot be corrected.



Second, some of the clients require conservative reasoning. As
an example, in security analysis the scenario of detecting a
false vlunerability (to be eliminated through manual audit) is
better than missing a vulnerability.
Challenges. Interestingly, though it may appear straightfor-
ward to compute the dependencies of an Android app, there are
two serious challenges that complicate this task, sometimes to
the point of rendering nonambiguous identification impossible:
Minimization: Though mobile devices are growing increasingly
more powerful, there is still strong incentive to reduce the size
of Android apps (and mobile apps in general), not only because
of the remaining gap from laptops and PCs but also because
many users still own legacy devices. Hence, Android apps
typically do not include libraries in their entirety, but rather
rely on reachability analysis to determine which parts of the
library are used by the app (at the granularity of class members,
i.e. fields and methods), such that only those class fragments
are incorporated into the image, blurring the boundary between
app and library code.
Obfuscation: To complicate the problem further, the resulting
image often undergoes obfuscation. The motivation is that
unlike web applications, whose server-side code is inaccessible
to users, mobile apps are downloaded onto the end-user’s device.
This aspect lends the user the ability to disassemble and inspect
the app, which might violate sensitive intellectual property and
perhaps even uncover security weaknesses that render other
users vulnerable. Notice, importantly, that obfuscation applies
not only to symbols originating from the source code written by
the developer but also to library symbols, since the boundary
between app and library classes is blurred due to minimization.

By the end of minimization and obfuscation, the app’s image,
in the form of an .apk file, is largely a blob of obfuscated code
with no immediate hints as to which libraries were incorporated
into it. As an illustration, we refer the reader to Figure 1,
which we later discuss in more detail. Notice in particular
the static call site highlighted in red with method identifier
La/a/a/a/a/c; .a. This is in fact a call to another method from
the same Apache Commons Codec class (cf. the clear version
in blue).

In this paper, we present a solution to the challenges
highlighted above in the form of MOBSCANNER, a tool
for identifying the precise versions of libraries used in the
construction of an app. MOBSCANNER employs a combination
of information-retrieval and constraint-solving techniques to
report an effective set of candidate library dependencies
(including their version), even when the app is obfuscated
and/or when the set of potential libraries is very large.
Contributions. This paper makes the following principal
contributions:

1) Identifying library versions: We formulate and address the
problem of identifying, given an Android app, the library
version contained in its image, even in the presence of
code obfuscation and minimization. We are not aware of
previous attempts to address this problem, which — as
we motivate above — has important applications.

2) Technical solution: To address the problem stated above,

we utilize techniques from the area of information retrieval
(Section III), and combine them with constraint solving
and optimization (Section IV). There are potentially other
applications for these tools, and information retrieval
algorithms in particular, which we hope this work will
inspire.

3) Implementation and evaluation: We have implemented
our technique as MOBSCANNER, a system for identi-
fication of the library/version pairs that an Android image
contains. We report on a series of experiments to evaluate
the accuracy of MOBSCANNER (Section V). Our initial
results are promising, and highlight directions for future
research.

II. OVERVIEW

In this section, we explain the challenge in identifying the
library dependencies of Android apps, namely because code
obfuscation and minimization are by now an integral part of
the Android build process. We then outline the main steps of
our technique.
ProGuard and the Android Build Process. The Android
build process packages an app into a single application package
(.apk) file. The .apk file contains all the information necessary
to run the app on either an emulator or a physical device. It
includes compiled .dex files (Java .class files converted to
the Dalvik bytecode format), a binary version of the Android-
Manifest.xml file, compiled resources (resources.arsc) and
uncompiled resource files.

Recently the ProGuard tool, available as an open-source
project,1 has been assimilated into the build process. ProGuard
shrinks, optimizes and obfuscates the code of Android appli-
cations. Code shrinking is achieved via reachability analysis,
such that classes and class members (fields, methods, etc) that
are found not to be reachable from the application entry points
are removed. Obfuscation is accomplished via renaming of
the surviving classes, methods and fields with semantically
obscure names.

Enabling ProGuard for an application is seamless and
painless. With Android Studio or the Gradle build system,
for example, the minifyEnabled switch controls whether
ProGuard is enabled in release builds. The ease of enabling
ProGuard, and the benefit of obtaining a more optimized and
protected app with a smaller image, are the reasons why
many of the apps featured on Google Play are minimized
and obfuscated.

The ProGuard reachability analysis is relatively aggressive
in deciding which parts of the code are accessible from entry
points, operating at a level as low as class members. As a
simple illustration, consider the following synthetic example:

class C { void f() {. . .} void g() {. . .} }
If f() is seen by ProGuard to be transitively invoked by one or
more of the entry-point methods, but the same is not true of
g(), then C will be minimized into

class C { void f() {. . .} }

1http://proguard.sourceforge.net



An analogous transformation is applied by ProGuard in the
case of unused fields.

To ensure that minimization does not eliminate reachable
code from the binary image, thereby causing the app to crash at
runtime, developers can add a manual specification of reachable
code via the -keep annotation. For example, the directive

-keep public class * extends android.app.Service
specifies that all public classes extending the built-in Android
Service class should be treated as reachable.
Identifying Library Dependencies. Both obfuscation and
minimization complicate the task of identifying the exact library
versions that an application is dependent on. Due to obfuscation,
symbols are renamed. Due to minimization, classes and class
members deemed unused are eliminated.

We tackle these challenges via a unified approach that
consists of two main steps, which we discuss in turn. The
input is an app A, where we assume the existence of a
(comprehensive) database D of candidate library/version pairs.
Repositories such as Bintray or Maven Central2 enable the
construction of such a database with relative ease, as we explain
in Section V-C.

The first step, described in Section III, is to compute a
“signature” for each of the classes in A, and compare the
signature against those extracted from the classes of the libraries
contained in D. Intuitively, the signature is a feature vector,
where the features correspond to elements of the code that
are resistant to obfuscation, such as instantiation of a core
(i.e. java.?) or platform (i.e. com.android.?) class or use of a
string constant.

While identification and extraction of obfuscation-resistant
features is relatively straightforward, a key question that
remains is what weights to assign to the different features. As
an intuitive example, we refer the reader to Figure 3. Like the
MD5Crypt class in that example, many other classes are likely
to allocate objects of type java.lang.StringBuilder, which
the compiler instantiates to implement string concatenation.
However, it is much less likely for another class to define a
string constant with value $apr1$. Hence, this feature should
be assigned a much higher weight for the purpose of signature
matching.

To obtain an effective weighting scheme, we build on results
in the area of information retrieval and text mining, specifically
the tf-idf algorithm [20]. This algorithm computes the weight of
a given feature in terms of (i) its intra-class frequency (i.e., its
number of occurrences in the given class) vs (ii) its inter-class
frequency (i.e., the number of other classes where it occurs).
Intuitively, a feature has high discriminative power, and thus
high weight, if it occurs frequently in the given class (e.g.,
the class makes multiple uses of the constant $apr1$) but
infrequently in other classes (e.g., no other class makes use of
this constant).

Given the ability to weight features, and thus perform class-
level matching, the second main challenge — discussed in
Section IV — is to lift the class-wise results to the level of

2https://bintray.com and https://search.maven.org

library/version pairs. Simply declaring all libraries with classes
that match strongly against app classes as dependencies, or
doing so only for libraries with at least k strong matches,
are overly coarse heuristics that are hard to justify. Indeed,
the problem of selecting which library/version pairs to treat
as dependencies calls for global reasoning (rather than e.g.
greedily accounting for one class at a time).

To perform such reasoning efficiently and effectively, we
leverage the power of modern constraint solvers in specifying
a constraint/optimization system that captures the essential
considerations. These include (i) the constraint that two versions
of the same library cannot simultaneously act as dependencies
of the same app, (ii) the goal of “covering”, via the set of
dependencies, a maximal number of app classes for which there
exist strong matches (other classes are assumed to originate
from the app), as well as (iii) the goal of minimizing the overall
imprecision of matching for selected libraries.

These requirements and objectives, and in particular the goal
of maximizing coverage of appropriate app classes, bias toward
high recall, which is preferable to high precision as a design
choice given clients like security analysis and optimization.
Indeed, in Section V we report on our ability to achieve
almost perfect recall for clear apps, and still high recall for
obuscated/minimized apps (98% and 85%, respectively).

III. CLASS MATCHING

Code minimization obviates any attempt to match the code
of an app against complete libraries. On the other hand, though
minimization may eliminate individual members inside a class
(fields or methods), in most cases the majority of class members
is retained due to the coarseness of (static) reachability analysis.
Reasoning at the resolution of single class members is overly
granular, missing the signal due to co-occurrence of multiple
members within the same class.

In light of these observations, we decided to define as the
atomic unit for matching Dalvik classes. A Dalvik class, much
like a Java class, carries metadata on its access flags, parent
class and implemented interfaces, corresponding source file,
annotations, etc. Beyond these, the class definition points to
static and instance fields as well as direct and virtual methods.
Obfuscation-resistant Features. Some of the information
defined via a class is subject to obfuscation transformations, e.g.
the names of classes, methods and fields originating from either
the source code or third-party libraries. However, there are
several categories of symbols that are resistant to obfuscation.

We illustrate the effects of obfuscation in Figure 1, which
presents the bytecode representation of the source code in
Figure 3, from the Apache Commons Codec library, with and
without obfuscation respectively. Quick comparison between
the two versions reveals, for example, that md5Crypt, a static
method from the library, is renamed to a.

Still, as this example highlights, there are two main categories
of symbols that are resistant to obfuscation:
• Symbols from core libraries: By core library we simply

mean any type under either java.? or com.android.?.
There are different contexts in which such symbols



if-eqz v3, 001d
const-string v0, ”$apr1$”
invoke-virtual {v3, v0}, Ljava/lang/String;.startsWith:(Ljava/lang/String;)Z
move-result v0
if-nez v0, 001d
new-instance v0, Ljava/lang/StringBuilder;
invoke-direct {v0}, Ljava/lang/StringBuilder;.<init>:()V
const-string v1, ”$apr1$”
invoke-virtual {v0, v1}, Ljava/lang/StringBuilder;.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
move-result-object v0
invoke-virtual {v0, v3}, Ljava/lang/StringBuilder;.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
move-result-object v0
invoke-virtual {v0}, Ljava/lang/StringBuilder;.toString:()Ljava/lang/String;
move-result-object v3
const-string v0, ”$apr1$”
invoke-static v2,v3,v0,Lorg/apache/.../digest/Md5Crypt;.md5Crypt:([BLString;LString;)LString;
invoke-static v2,v3,v0, La/a/a/a/a/c;.a:([BLString;LString;)LString;
move-result-object v0return-object v0

Fig. 1. Dex bytecode to which the method in Figure 3 compiles without
obfuscation, and delta due to obfuscation (in blue). (Some type signatures
have been simplified for readability.)

manifest. We consider the following contexts for symbol
s defined by a core library:
1) use of s in an extends clause (e.g., Exception in

class C extends Exception);
2) invocation of method s (e.g., StringBuilder.append

in sb.append(str)); and
3) instantiation of an object (e.g., StringBuilder in the

new-instance instruction in Figure 1.
• String constants: It is nontrivial either for obfuscation, for

minimization or for optimization passes to alter string con-
stants while ensuring semantic equivalence to the previous
version. The same is not true of numeric constants, which
often undergo folding during optimization passes. Hence
we focus on string constants alone. These provide useful
signal when matching between app and library classes,
especially if the string is unique (as with ”$apr1$” in the
example).

Each of the above (sub)categories yields a set of features
for class-wise matching. That is, given a database of libraries,
each string constant arising in any of the libraries is defined
as a feature; similarly, each core-library class incident in an
extends clause is mapped to a unique feature, etc.

As an illustration, from the example in Figure 3 — with the
clear and obfuscated bytecodes in Figure 1 — we derive the
features in Figure 2. The leftmost “Feature” column lists the
symbol, and the “Category” column indicates the feature type.
We return to the remaining columns shortly.

Henceforth, we refer to the feature vector extracted from
a class as the class signature. Note, importantly, that class
signatures are not unique. Two distinct classes, c and c′,
may have the exact same signature, or put differently, the
class-to-signature mapping is a surjective yet not bijective
function. The class signature abstracts away most of the class
implementation, preserving only obfuscation-resistant symbols,
and so agreement among different classes on the signature
is possible, and is more likely in the case of small classes
involving few (if any) obfuscation-resistant symbols.

This observation, combined with the observation that dif-
ferent library/version pairs may share classes in common (as
often happens), are addressed by adding appropriate levels of

indirection, as we illustrate schematically here:

(`1, v1) . . .
...

... ↘
...

(`2, v2) → c1 → s
... . . . ↗

...

(`3, v3) → c2
...

surjective surjective

That is, different library/version pairs (`i, vi) may map to the
same class cj per the containment relationship. Furthermore,
different classes may point to the same class signature if they
agree on features and feature values.
Matching Method: the tf-idf Algorithm. Intuitively, match-
ing at the class level proceeds in two steps. First, given a
database D of libraries, we extract obfuscation-resistant features,
as explained above, from the classes c[`] of each of the libraries
` ∈ D. Then, given an app A, we check for pairwise similarity
between the class signature Fc extracted from each of the
classes c ∈ A and the signature Fc[`] (for each of the library
classes c[`]) as an indication whether c is due to `.

The key consideration is to decide how to weight the
different features that we extract. Intuitively, if some class
c defines a unique constant string s, but also invokes
StringBuilder.append, then s provides greater signal
than append, which is used by almost every Java class. Hence,
we would like to assign a higher weight to s.

This judgment has a parallel in the field of natural language
processing, and in particular in the area of text mining. There
the problem is to decide, given term t and document d in
corpus D, how important t is to D. By analogy, the class
signatures are the documents, and the terms are the individual
features.

A simple yet effective method to decide the weighting
scheme for features is the term frequency-inverse doument
frequency (tf-idf) algorithm [20]. Intuitively, the tf-idf value of
a feature increases proportionally to its number of occurrences
in the class signature, but is offset by the frequency of the
feature in the class-signature database, which adjusts for the fact
that certain features are more frequent in general (as illustrated
with StringBuilder.append).

More formally, given feature f , class signature c and database
D of class signatures s.t. c ∈ D:

tf(f,D) =

{
0 if f /∈ c
log(1 + freq(f, c)) otherwise

idf(f,D) = log
(

|D|
|{c∈D : t∈c}|

)
tf-idf(f, c,D) = tf(f, c)× idf(f,D)

In the above, the tf function computes the log frequency
of feature f in class c, where log scale is used to adjust for
highly frequent features (like StringBuilder.append),
which would otherwise dominate any comparison. tf provides
an intra-class view of the features.



Feature Category Frequency tf Score
Clear Obf. Clear Obf.

$apr1$ string constant 3 3 0.65 0.65
java/lang/String : startsWith virtual invocation 1 1 0.32 0.32
java/lang/StringBuilder new instance 1 1 0.32 0.32
java/lang/StringBuilder : append virtual invocation 2 2 0.51 0.51
java/lang/StringBuilder : toString virtual invocation 1 1 0.32 0.32

Fig. 2. Features derived from clear and obfuscated bytecodes in Figure 1, and their corresponding frequencies and (normalized) tf scores

static final String APR1 PREFIX = ”$apr1$”;
public static String apr1Crypt(final byte[] keyBytes, String salt) {

// to make the md5Crypt regex happy
if (salt != null && !salt.startsWith(APR1 PREFIX)) {

salt = APR1 PREFIX + salt;
}
return Md5Crypt.md5Crypt(keyBytes, salt, APR1 PREFIX);

}

Fig. 3. Source code of apr1crypt method from class MD5Crypt in the
Apache Commons Codec library

(`1, v1) (`2, v2) (`3, v3)
c1 0.98 − −
c2 − 0.98 0.99
c3 − 0.96 0.91

Fig. 4. Synthetic example with scores for library/version pairs for classes
c1 − c3

idf complements tf with an inter-class view of the features
by accounting for the frequency of the feature across all class
signatures. The less frequently a feature occurs across the entire
database, the more discriminative it is (as with the example of
a unique constant string).

Finally, the tf-idf function reduces tf and idf, via multipli-
cation, to a numeric weight. The more frequently a feature
f occurs in the class signature, and/or the less frequently it
occurs elsewhere (i.e., in other signatures in the database), the
higher f ’s weight becomes. As a final step, we normalize the
class signature into a unit vector.

An important observation that we exploit is that the idf
value of a feature is not affected by its frequency within a
class signature, yet it requires us to consider all other class
signatures. When adding a given library into the database,
and while the database is still being populated, we cannot yet
compute the idf value of a feature.

Hence, as is standard in the area of text mining [20], we
persist only the tf value of features into class signatures due
to libraries, and subsequently normalize the vector. Later,
when performing the matching against an app, we compute
the (complete) tf-idf value for features in app-induced class
signatures, thereby factoring in frequencies.

Revisiting Figure 2, we have this data for the symbols
extracted from the code in Figure 3 as the “Frequency” and “tf
Score” columns for both the clear and the obfuscated bytecodes.
Note that there is no difference across clear and obfuscated
in the frequency of occurrence of symbols, and so they also
share the same tf score.
Computing Match Scores. Having explained how features
are extracted and how weights are assigned to the different
features, we are now ready to explain how match scores
are computed. Given application A and class signatures

Fig. 5. Raw (left) and thresholded (right; v ≥ 0.95) tf-idf matches for 450
application classes (horizontally) and 250 library classes (vertically), where
white/black indicates a dot-product value of 0/1

{sA1 , . . . , sAn } induced by the classes of A, and class signatures
{s1, . . . , sm} due to the library database (where normally
m� n), score computation reduces to matrix multiplication.

Denote the arity of a class signature by k. Then we multiply
an n× k matrix containing the signatures sAi as rows with a
k × m matrix containing the signatures sj as columns, i.e.:
S = sA1,1 . . . sA1,k

. . .
sAn,1 . . . sAn,k

×
 s1,1 sm,1

...
...

...
s1,k sm,k

 =

 . . .
... sAi · sj

...
. . .


Recall that both the sAi vectors and the sj vectors are
normalized, and so in cell (i, j) in the score matrix S, we
obtain a value v ∈ [0, 1] that indicates the degree of similarity
between class signatures sAi and sj , i.e., v = sAi · sj . This
dot product is commonly known as the cosine distance: a
value of 1 denotes perfect agreement, which means that the
class signatures contain the exact same obfuscation-resistant
features, while a value of 0 denotes orthogonal vectors, i.e.,
class signatures that share no common features.

In practice, a large proportion of values in S are non-zero,
as many features are relatively common across class signatures.
To make the score matrix S actionable, we apply as a final
step a point-wise thresholding function:

t(x) =

{
0 if x < T
x otherwise

In our experiments, we set T = 0.95. Discarding all values
below the threshold lets us concentrate on a smaller set of
likely matches. As a visual illustration, Figure 5 shows (a
fraction of) a matrix S before and after thresholding, where
darker dots represent higher values. Thresholding is useful
for manual interpretation of results, but is also a crucial step
before the automated processing of the result matrix, which
we describe in Section IV.
Discussion. In Section V, we provide empirical validation
for the efficacy of tf-idf. Still, there are obvious limitations to
tf-idf, and most notably the lack of modeling for order between
features.



As an intuitive example, if a class contains a method m,
such that in m there is first reference to string constant c1
and then to c2, then the ordered pair (c1, c2) provides stronger
signal than set {c1, c2}. tf-idf, with the feature set described
above, fails to exploit this additional signal.

Doing so leads naturally to the notion of n-grams, where
our current features are unigrams, ordered pairs are modeled as
bigrams, triplets as trigrams, etc. The number of features grows
exponentially with n, but beyond this source of complexity,
the remaining details of our technique remain unchanged.

In practice, we expect the performance hit due to switching
from unigrams to say bigrams to be tolerable, since class
signatures are already sparse and would become even much
more sparse. There are efficient methods for representation and
multiplication of sparse matrices [27]. Given our successful
experience with unigrams, however, we defer this investigation
to future work.

IV. LIBRARY MATCHING

In the previous section, we addressed the challenge of
matching at the class level. Given this capability, the remaining
challenge is to process the per-class matches into a set of
library/version pairs that the app is hypothesized to depend on.
Constraint and Optimization System. We rely on the
expressive power and efficiency of modern SMT solvers. We
encode the problem of lifting class-level matches to library-level
matches as a constraint/optimization system with a well-defined
set of restrictions and goals.

The problem we are solving is related to the set-cover
problem, and so we adopt similar terminology. Intuitively,
we aim to determine which selection of library/version pairs
results in the best cover of the classes in the application with
high similarity scores. In the following, we also use “cover”
to denote the set of library/version pairs that are selected as
the optimal solution.

In Figure 6, we present the constraint/optimization system
defined for an app A and database D of library/version pairs.
The main semantic constraint is that two versions of the same
library cannot simultaneously serve as dependencies of A. The
optimization goals are that (i) as many of A’s classes (surviving
the similarity filter) as possible are covered by the libraries
selected from D and (ii) the overall “cost” of the cover is
minimal. We clarify the exact meaning of these statements in
the following.

First, as Figure 6 specifies, we define three types of variables.
For each class c, we define a variable vc to denote whether
that class is covered. Naturally classes that are due to the app
itself, and not any of the third-party libraries, should not be
covered. Hence, we create the set V of per-class variables only
for classes surviving the thresholding filter:

V = { vc : ∃(`, v) ∈ D. match(c, (`, v)) > T }

where T denotes the thresholding value as described in
Section III. We also define variables v(`,v) and c(`,v) to denote
whether (`, v) is in the cover and what the cost is for including
it in the cover, respectively.

Moving to the constraints, the first constraint specifies that
a class is covered iff at least one of the library/version pairs
matching against it beyond threshold T is in the cover. Next,
for the cost c(`,v) of (`, v), it is either 0 if (`, v) is not in
the cover or equal to cost(`, v), which we soon return to. The
final constraint is that pairs (`, v) and (`, v′) s.t. v 6= v′ cannot
coexist in the cover.

Finally, there are two optimization goals. The first is to
maximize the number of boolean variables vc set to true.
Naively, we would expect all classes matching against a library
beyond threshold T to be covered, which would be a constraint
rather than a maximization objective. However, there are corner
cases (which we have encountered in practice) that counter
this reasoning. In particular, if class c is covered only by (`, v)
and c′ is covered only by (`, v′), then obviously — due to
the constraint that two library versions cannot coexist in the
cover — one of these classes will not be covered. In reality,
this happens when a spurious match occurs, typically if the
application class is small and models few features. The second
goal is to minimize the overall cost of the cover, which we
explain by describing the cost function. The two goals are
solved in order: From the entire set of solutions that maximize
the cover, the one with the lowest cost is selected.
The cost Function. To illustrate and motivate the cost
function, we make reference to the small synthetic example
in Figure 4. In this example, there are different possibilities
how to cover classes c1 − c3. All of these necessarily involve
(`1, v1), which is the only library/version pair covering c1,
and the remaining question is whether to also select (`2, v2),
(`3, v3) or both.

Intuitively, though (`3, v3) matches against c2 marginally
better than (`2, v2) (0.99 vs 0.98), its match score against c3 is
much lower (0.91 vs 0.96), and so overall (`2, v2) is a better
choice for the cover with little gain out of choosing both (`2, v2)
and (`3, v3). A simple heuristic to capture this reasoning is
to define cost as the aggregate error due to selection of a
library/version pair:

cost(`, v) =
∑
c

(`, v) covers c ? 1−match(c, (`, v)) : 0.0

For the example in Figure 4, we obtain the following:

cost(`1, v1) = 1− 0.98 + 0.0 + 0.0 = 0.02
cost(`2, v2) = 0.0 + 1− 0.98 + 1− 0.96 = 0.06
cost(`3, v3) = 0.0 + 1− 0.99 + 1− 0.91 = 0.1

In light of the (separate) goal of maximizing coverage of
classes, (`1, v1) is selected, and the optimal decision for c2
and c3 is to select (`2, v2).

There is useful intuition behind our cost heuristic. While
it biases toward selection of fewer library/version pairs (in
an attempt to minimize a summation expression), balancing
against the optimization goal of maximizing class coverage,
the choice of which library/version pairs to pick considers
the global (rather than local) consequences of selecting a
given combination of library/version pairs — as the example
illustrates — by computing error w.r.t. all classes.



Variables
vc : boolean true iff class c covered by ≥ 1 library

v(`,v) : boolean true iff version v of library ` is in the cover
c(`,v) : real contribution of version v of library ` to overall cost

Constraints
∀ c. vc ⇔

∨
{(`,v) : (`,v) covers c} v(`,v) c is covered iff a library/version pair∧

covering c is in the cover
∀ `, v. c(`,v) = v(`,v) ? cost(`, v) : 0.0 version v of lib. ` contributes∧

to overall cost iff selected
∀ `, v 6= v′. ¬v(`,v) ∨ ¬v(`,v′) two ver.s of same lib. can’t be in cover

Objectives
max

∑
c

(vc ? 1 : 0) maximize coverage of app classes∧
min

∑
(`,v)

c(`,v) minimize overall cost

Fig. 6. Constraints and optimization goals

Overcoming Nondeterminism Due to Library Versions. Our
definition of the constraint system suffers from nondeterminism
if different library/version pairs yield the exact same cost. A
simple example of this is if the app utilizes classes that are
common (i.e., fully identical) across different versions of a
given library, in which case there is inherent ambiguity in
resolving the actual library/version dependency.

Observe that nondeterminism arises if the output is a set of
library/version pairs. To combat nondeterminism, we have
adopted a solution whereby library/version pairs that are
identical w.r.t. to their cost across all app classes are grouped
into an “equivalence class”. The output is then in terms of
groups of library/version pairs rather individual library/version
pairs, where the meaning (naturally) is that exactly one of
the libraries in the group is hypothesized to be a dependency.
Applying this revision to the formal system in Figure 6 is
straightforward and entails minor changes.

Complexity Analysis. In conclusion of this section, we
analyze the complexity of the constraint system. Given set
C = { c, c′, . . . } of classes such that |C| = m and database
D of library/version pairs such that |D| = n, we make the
following observations:

• There are m class coverage constraints (i.e., vc ⇔ . . .).
• There are n cost constraints (i.e., c(`,v) = . . .).
• Assuming finite bound k on the number of versions a

library has, there are O(k2 · n) conflict constraints (i.e.,
¬v(`, v) ∨ ¬v(`, v′)).

In total, since k is a constant, the size of the constraint system,
C, is linear in m and n: |C| = O(m+ n).

While the encoded problem is in theory NP-hard, we
observed that instances in practice were amenable to efficient
solving. (See Section V-D.) The hard constraints are propo-
sitional formulas, and the optimization objectives reduce to
unweighted MaxSAT/MinSAT problems (as the weights of all
soft constraints are set to 1), for which there exist solving
strategies that are efficient in practice [15].

MOBSCANNER

Bintray JCenter
Local DB of

libraries & their
versions

Lib. feature
extraction (per

class)

Library feature
database

Application class
matching (tf-idf)

20 apps from GitHub
clear & obfuscated

Classes from libs. matched
against app classes

Constraint
solver

List of libraries/versions in app

Fig. 7. MOBSCANNER architecture

V. IMPLEMENTATION AND EVALUATION

In this section, we first describe our prototype implemen-
tation of our technique, and then present the experiments we
conducted to evaluate our approach.

A. Prototype Implementation

We have instantiated our approach as the MOBSCANNER
system. MOBSCANNER implements the class and library
matching algorithms described earlier. Figure 7 visualizes the
MOBSCANNER architecture.

MOBSCANNER makes use of several existing tools for these
tasks, which we discuss in turn. The glue code, integrating
between the different tools and converting between formats, is
a set of Python scripts. In the future, as we scale up the system
to handle a dramatically larget set of libraries, we intend to
transition to Apache Spark.

Per-class obfuscation-invariant features are extracted from
each library upon downloading it, and persisted into a Redis
database. As a simple method to extract features, we use
the textual representation of Dalvik bytecode (as exemplified
in Figure 1), which we obtain by running the Android tool
dexdump on apps. For libraries without a precompiled version
in Dalvik format, we convert them first using the Android dx
tool. From the textual representation, the features are matched
using regular expressions.

There are two reasons for having libraries go through the
intermediate step of dx as opposed to extracting features from
the Java bytecode directly: First, this ensures that the extraction
phase is identical regardless of the original format. Second,



extraction from the Dalvik format is orders of magnitude faster
(though the conversion is costly). This may not affect users
who only make use of the libraries once, but was an important
factor in helping us iterate fast on our experiments.

When an app is submitted to MOBSCANNER, its features are
extracted analogously to the way library features are extracted.
We then utilize the NumPy Python library for matrix multi-
plication [24] to compute the tf-idf scores, and the Z3 solver
[12] (as obtained from https://github.com/Z3Prover/z3 on Mar.
07, 2016) to compute a solution for the constraint/optimization
system.

B. Experimental Design

Our experimental design is informed by the following main
research question:

Can our technique identify the set of libraries present
in the application (including their version) with high
accuracy?

To investigate this question, we have designed our experiments
such that there are two main parameters:
• Library database: We experiment with two library

databases. One version contains only the libraries the
apps are dependent upon, whereas the other contains
(many) other libraries, which exposes more opportunities
for accuracy loss due to false matches.

• Clear vs obfuscated: We apply MOBSCANNERto both
the clear and the obfuscated version of each of the
apps. In doing so, we are able to assess the impact of
obfuscation and minimization on our ability to identify
library dependencies.

Overall, these parameters yield 4 different configurations, which
we evaluate and analyze to respond to our main research
question.

C. Benchmark Applications and Libraries

For our experiments, we aimed for a set of twenty apps, in
clear and obfuscated form, as well as a set of several thousand
library/version pairs. These goals reflect a tradeoff between the
requirement for statistical significance on the one hand, and
the (nontrivial) time and effort expended on each application
to build a clear version, configure ProGuard, and build the
obfuscated version on the other hand.
Clear Applications. We browsed through two publicly
available listings of open-source Android apps.3 Throughout
this process, we downloaded more than 30 apps (the first batch,
in order, under each of the listings), out of which we proceeded
with the first 20 that we were able to successfully compile and
build in both clear and obfuscated form.

Next, we determined the set of library versions in the
clear and obfuscated versions of these apps. Here we note an
important subtlety: While dependency information is specified
by the developer in a dependencies file, that file does not
always contain the precise library version, and may instead

3https://github.com/pcqpcq/open-source-android-apps and https://f-droid.
org/

contain a regular expression defining a range of admissible
versions. Furthermore, in certain cases, where different modules
require different versions of the same library, the dependencies
specified by the developer are overridden by the build system,
which — as a default conflict resolution strategy — picks
the most recent of the requested versions. To determine the
ground truth with certainty, we used the Gradle build system.4

Querying Gradle for dependencies returns unique and precise
results as to which library versions are included in the build.
Obfuscated Applications. To ensure that a ProGuard con-
figuration is available for each of the apps, we applied the
following methodology:

1) If the app has an existing ProGuard configuration, and
complies in release mode with that configuration, then we
adopt the existing configuration without any modifications.

2) Otherwise, we create a fresh configuration according to
the following steps:
a) We list all the packages contained in the clear app (via

a shell command utilizing the dexdump tool).
b) We select, based on manual analysis, the package

names that correspond to application (rather than
library) classes. All classes under these packages are
marked as reachable via the -keep syntax. (The
-keep directive supports the wildcard expression
<pkgname>.?, which has this exact effect.)

c) We check whether the app compiles in release mode,
and also if it can be launched and run in an emulator. If
any of these checks fails (and in particular, if the reason
why the app cannot run in an emulator is an unresolved
symbol), then we continue to the next step. Otherwise
we have obtained a valid ProGuard configuration.

d) Finally, we specify additional packages as reachable
via further manual analysis (typically one package at a
time), and loop back to the previous step.

For all apps, we managed to produce a configuration that
obfuscates all the dependencies. In all cases but two, all
the libraries defined as dependencies were preserved in the
obfuscated/minimized build. In cases where a library was
entirely removed by the minimization pass, we made sure to
reflect that in the ground truth for sound accuracy measurement.
Library Sets. The next challenge is to download libraries
belonging to the apps, as determined by Gradle, as well as a
large set of additional libraries and versions thereof.

In total, Gradle identified 124 unique library/version pairs
across all of our benchmark apps. The versions belong to 87
distinct libraries. To download these libraries, we proceeded
as follows: first, we downloaded all versions we could find on
Maven Central [5] and Bintray JCenter [1]. Then, for library
dependencies absent from these repositories, we searched
for additional repositories specified by the developer(s) in
their build configuration, and obtained all available versions
from there. The additional repositories included Eclipse [3],
Crashlytics [2], and JitPack [4]. Finally, we obtained all
versions of the frequently used Android and Google support

4https://gradle.org/



libraries from the locally installed Maven repositories that
come with the Android SDK. The set comprising all available
versions of the 87 libraries present in the applications contains
1,161 library/version pairs.

To form a larger database, we randomly selected 1,000
libraries from the entire list of libraries available on Bintray
JCenter, for a total of 9,649 library/version pairs. We then
added the 87 libraries present in the apps (all 1,161 versions
of them). This library set forms the data set labeled “Local
DB of libraries & their versions” in Figure 7.

From this set of of 1,087 libraries and 10,810 library/version
pairs, we were able to successfully extract features out of 882
libraries (8,900 library/version pairs) and store them in the
database labeled “Library feature database” in Figure 7. Note
that many library/version pairs were compiled against versions
of Java that are not supported on Android, and therefore could
not be processed with the dx tool. Hence, these library versions
cannot, by definition, be dependencies of Android apps.

Henceforth, we refer to the database containing the 87
libraries used by the apps (all versions thereof), and only those
libraries, as the restricted database. The database containing
all 882 libraries and their versions is dubbed the complete
database.

D. Experiments and Results

As noted earlier, the MOBSCANNER workflow derives —
given the per-class match scores — a set of candidate library
dependencies (with no prior knowledge of the number of de-
pendencies or any other hints). We evaluate the precision, recall
and F-score values achieved by our constraint/optimization-
based technique w.r.t. the restricted and complete database
configurations.

The results are listed in Table I. The column “Deps.” denotes
the total number of (i) library dependencies of the clear app, and
(ii) library dependencies contained in the obfuscated/minimized
version of the app. The column “Classes” denotes the size of
the app expressed as the number of classes, before and after
minimization. The remaining “Pr.”, “Rec.” and “F-1” columns,
grouped under “Clear” and “Obfuscated” (for both settings:
87 and 882 libraries), specify the precision, recall and F-score
values achieved by our technique w.r.t. the clear and obfuscated
versions of each app.

The reason why we maintain two separate columns, “Clr.”
and “Obf.”, when counting the number of libraries present in
the clear and obfuscated versions of the app, respectively, is
minimization. As motivated earlier, in Section II, ProGuard
can potentially eliminate a library from the app if liveness
analysis deems that none of its classes are used in the app. We
expect this to happen rarely in practice, since mostly libraries
specified by the developer as dependencies are actually used,
and indeed the deltas between the “Clr.” and “Obf.” columns
are minor (where it holds invariably that the “Clr.” columns is
greater or equal to the “Obf.” column).

We make the following observations:
Recall: Our technique achieves an impressive recall rate of 98%
for the clear version of the apps and 85% for the obfuscated

version across both the restricted and the complete databases.
In fact, with the exception of 5 apps, recall is perfect for the
clear apps. Under obfuscation, recall remains perfect for 6 of
the 20 apps.
Precision: While precision is not as high as recall, we consider
it tolerable, and in particular, well above the 50% mark. The
fact that precision is lower than recall is to be expected; our
constraint system is geared toward maximizing coverage of
app classes by the available libraries. Thus, given a total of n
classes in the app, m of which coming from libraries, there
are n−m classes that are potential false positives. There is
no equivalent of this problem for recall.

Note also that, consistent with this observation, the constraint
system can be revised to gear toward precision, e.g. by favoring
quality matches to coverage of app classes. We haven’t explored
this design given our deliberate choice of biasing towards high
recall.

We also point out a minor improvement in precision in
the presence of obfuscation. A likely explanation is that this
comes as a byproduct of minimization, which eliminates certain
classes from the clear app that contributed to imprecision.

An interesting and pleasing observation, stemming from
our manual analysis of false positives, is that at least in the
case of the app Jiandan, MOBSCANNER was able to detect
that the authors of the app included fragments from a library
by copy/pasting some of its source code directly into the
application. This not only means that MOBSCANNER is more
precise than the numbers in Table I suggest (which are based
solely on the dependencies reported by Gradle), but also that
it is sufficiently robust to detect partial library inclusion via
copy/pasting.
Resilience to redundant libraries: A final observation, summa-
rizing findings w.r.t. precision and recall, is that the impact on
accuracy of transitioning from the restricted to the complete
database is tolerable. Though there is a decrease of approxi-
mately 5% in precision, and consequently also in the F-score
value, recall remains unaffected and the F-score value is still
acceptable (around 70%).

Our approach is also efficient. On average, matching an app
against libraries took 6.0 and 11.1 seconds with the restricted
and complete databases, respectively, on a commodity machine
with 16 GB of RAM and Intel Core i7 processor. The time
spent on constraint solving was 0.5 seconds and 1.7 seconds
on average, respectively, with a maximum of 6.7 seconds for
the K9 application in the complete database setting.
Discussion. The experimental results are consistent with
our design goal biasing towards high recall. This is in view
of potential clients, like security and optimization, for which
overapproximation is preferable to underapproximation. Still,
even with this bias, precision is tolerable.

VI. RELATED WORK

As stated earlier, we are not aware of existing techniques
to identify the library versions present in an Android app. We
report in on similarities with existing technique developed for
other purposes.



Application Deps. Classes Restricted Library Set (87 unique libs) Complete Library Set (882 unique libs)
Clear Obfuscated Clear Obfuscated

Clr./Obf. Clr./Obf. Pr. Rec. F-1 Pr. Rec. F-1 Pr. Rec. F-1 Pr. Rec. F-1
Android-Ctch.-Detector 9/9 1786/1782 82% 100% 90% 69% 100% 82% 82% 100% 90% 69% 100% 82%
Android-Dev.-Toolbelt 4/4 1423/775 67% 100% 80% 75% 75% 75% 57% 100% 73% 60% 75% 67%
AwkwardRatings 11/11 3436/1846 53% 91% 67% 56% 82% 67% 45% 91% 61% 53% 82% 64%
Beebo 11/10 4142/2821 58% 100% 73% 56% 90% 69% 48% 100% 65% 47% 90% 62%
CameraColorPicker 4/4 1675/977 57% 100% 73% 50% 75% 60% 57% 100% 73% 50% 75% 60%
ChaseWhisplyProject 5/5 3029/1052 63% 100% 77% 50% 60% 55% 63% 100% 77% 50% 60% 55%
Clip-Stack 3/3 1362/815 60% 100% 75% 67% 67% 67% 60% 100% 75% 67% 67% 67%
GivesMeHope 17/14 3114/1526 89% 94% 91% 80% 86% 83% 80% 94% 86% 75% 86% 80%
Jiandan 6/6 2184/1549 40% 100% 57% 43% 100% 60% 41% 100% 57% 43% 100% 60%
K9 11/11 2836/1823 59% 91% 71% 57% 73% 64% 50% 91% 65% 47% 73% 57%
Mizuu 16/16 5494/4601 64% 88% 74% 60% 75% 67% 54% 94% 68% 55% 75% 63%
MultiROMMgr 2/2 1302/749 67% 100% 80% 100% 100% 100% 67% 100% 80% 100% 100% 100%
Netguard 3/3 1742/1104 50% 100% 67% 60% 100% 75% 43% 100% 60% 50% 100% 67%
numixproject 1/1 62/41 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
PocketHub 16/16 4426/2991 63% 94% 75% 65% 81% 72% 54% 94% 68% 52% 81% 63%
Remindly 6/6 1466/880 75% 100% 86% 71% 83% 77% 75% 100% 86% 71% 83% 77%
S-Tools 2/2 1250/681 50% 100% 67% 67% 100% 80% 33% 100% 50% 40% 100% 57%
SoundRecord 5/5 1361/694 71% 100% 83% 80% 80% 80% 71% 100% 83% 80% 80% 80%
StockTicker 15/15 4970/4155 68% 100% 81% 59% 87% 70% 68% 100% 81% 54% 87% 67%
superCleanMaster 9/8 2908/2048 53% 100% 69% 44% 88% 58% 50% 100% 67% 39% 88% 54%

Average 64% 98% 77% 65% 85% 73% 60% 98% 73% 60% 85% 69%

TABLE I
PRECISION AND RECALL STATISTICS FOR RESTRICTED DATABASE OF 87 UNIQUE LIBRARIES/1,161 LIBRARY VERSIONS AND 882 UNIQUE LIBRARIES/8,900

LIBRARY VERSIONS.

Clone detection [9], [22] addresses the problem of identifying
fragments of code that have been duplicated (and possibly
modified) in source code. Some of the statistical techniques
employed are often similar, such as the idea of abstracting
code fragments into vectors that can be compared for similarity.
Our work differs from existing solutions for clone detection in
several important ways. First, we focus on larger units of code
(classes in libraries as opposed to sometimes even fragments
of methods); second, the app/library relation is different from
the relation between clones, which often belong in the same
code base; and third, we must account for (obfuscation)
transformations that deliberately make the code harder to
recognize. Finally, our main challenge is to pinpoint the specific
version of the library that was used rather than identifying code
reuse.

The technique of Software Bertillonage [11], applied also
in the context of a study on code reuse in Android apps [23],
is closely related to our signature construction and matching.
However, because the features (“Objects of Interest” in the
Bertillonage terminology) include many symbols that are not
resistant to obfuscation, it is not directly applicable to our
use case. The techniques proposed for detection of reused
components (similarity and inclusion) are also unlikely to be
sufficient to identify fragments of libraries after minimization,
which we pose as a global constraint/optimization problem.

An existing tool that can partially retrieve obfuscated
symbols is JSNice [21]. From a corpus of unobfuscated code,
JSNice builds a statistical model of the interaction of symbols,
and can query that model to retrieve names most likely to match
obfuscated symbols. While JSNice can counteract some of the
effects of obfuscation, it cannot point to specific sources, as
the statistical model doesn’t differentiate between the different
contributors.

A main challenge that we address, and is particular to
mobile apps, is obfuscation and dead-code elimination. This

complicates detection of third-party dependencies, which is not
a concern for Dependency-Check as it starts from the source
project rather than the packaged app.

Viennot et al. present a scalable crawler for Google Play
called Playdrone [25], [6]. They use it to index and analyze
over 1M Android apps. They decompile the indexed apps
and characterize trends across a large volume of Google Play
apps. In particular, they identify libraries commonly used in
Android apps; for this they compare class names in the apps
with a whitelist of known libraries. While this technique is
sufficient to establish trends given the very large numbers of
apps considered, it (i) fails to extract any library dependencies
from obfuscated apps and (ii) cannot distinguish between
different versions of a library.

Many researchers have adopted static analysis techniques,
such as data-flow analysis (taint analysis in particular), to
identify integrity and privacy violations in Android apps [28],
[19], [18], [14], [8], [26]. As noted earlier, we expect the
above work can benefit from our approach to better pinpoint
the library versions present in the app, creating opportunities
to apply reusable data-flow summaries.

VII. CONCLUSION

We have presented a technique to identify Android library
dependencies in the presence of code obfuscation and min-
imization at the granularity of exact library versions. Our
technique is based on (i) extraction of obfuscation-resistant
features from app classes and libraries, where features are
assigned weights according to the tf-idf algorithm, followed by
(ii) conversion to a hypothesized set of library dependencies
by solving a (global) constraint/optimization problem. We have
implemented our technique as the MOBSCANNER system, and
report on experiments involving 20 apps from the wild, on
which MOBSCANNER achieves a recall rate of 98% when the
apps are clear, and 85% when they are obfuscated.
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