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Cloud computing has made the resources needed to execute large-scale in-memory distributed computations widely available.
Specialized programming models, e.g., MapReduce, have emerged to offer transparent fault tolerance and fault recovery for
specific computational patterns, but they sacrifice generality. In contrast, the Resilient X10 programming language adds failure
containment and failure awareness to a general purpose, distributed programming language. A Resilient X10 application spans
over a number of places. Its formal semantics precisely specify how it continues executing after a place failure. Thanks to failure
awareness, the X10 programmer can in principle build redundancy into an application to recover from failures. In practice
however, correctness is elusive as redundancy and recovery are often complex programming tasks.

This technical report further develops Resilient X10 to shift the focus from failure awareness to failure recovery both from a
theoretical and practical standpoint. We formalize the distinction between recoverable and catastrophic failures. We revisit the
happens-before invariance principle and its implementation. We shift most of the burden of redundancy and recovery from the
programmer to the runtime system and standard library. We make it easy to protect critical data from failure using resilient
stores and harness elasticity—dynamic place creation—to persist not just the data but also its spatial distribution.

We demonstrate the flexibility and practical usefulness of Resilient X10 by building several representative high-performance
in-memory parallel application kernels and frameworks. These codes are 10x to 25x larger than previous Resilient X10
benchmarks. We empirically establish that the runtime overhead of resiliency is less than 8%. By comparing application kernels
written in the Resilient X10 and Spark programming models we demonstrate that Resilient X10’s more general programming
model can enable significantly better application performance for resilient in-memory distributed computations.

1 INTRODUCTION
The explosive growth of compute, memory, and network capacity that is economically available in cloud computing
infrastructures has begun to reshape the landscape of Big Data. The design and implementation of the initial wave
of Big Data frameworks such as Google’s MapReduce (Dean and Ghemawat 2004) and the open-source Hadoop
system (Cutting and Baldeschwieler 2007; White 2009) were driven by the need to orchestrate mainly disk-based
workflows across large clusters of unreliable and relatively low-performance nodes. Driven by increasing system
capability and new compute and data intensive workloads, new programming models and frameworks have begun
to emerge focusing on higher performance, in-memory distributed computing. Systems such as HaLoop (Bu et al.
2010) and M3R (Shinnar et al. 2012) enhanced the performance of MapReduce by enabling in-memory caching of
data in iterative MapReduce workflows. Specialized systems such as Pregel (Malewicz et al. 2010), GraphLab (Low
et al. 2012), MillWheel (Akidau et al. 2013), and many others were built to optimize the performance and
programmability of specific application domains. More recently, the Apache Spark system (Zaharia et al. 2012) and
its underlying Resilient Distributed Dataset (RDD) abstraction and data-parallel functional programming model



1:2 • David Grove, Sara S. Hamouda, Benjamin Herta, Arun Iyengar, Kiyokuni Kawachiya, Josh Milthorpe,
Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier Tardieu

have gained significant traction. The Spark programming model is significantly more general-purpose than prior
Big Data frameworks. However, by design, Spark still presents a heavily restricted programming model. Spark
focuses on functional data-parallel operations over immutable RDDs and declarative SQL-like operations over
DataFrames (Armbrust et al. 2015). Spark hides scheduling, distribution and communication decisions from the
application programmer, and provides a single built-in approach to fault tolerance.

While transparent fault tolerance has obvious benefits, the one-size-fits-all approach has drawbacks too. Many
applications can take advantage of domain-specific strategies for fault management that translate into all kinds
of savings, e.g., time, memory, disk, network, power, etc. Some applications can evaluate or estimate the loss of
precision resulting from a fault and decide to accept this loss. Scientific simulations can often rely on conservation
laws—mass, volume—to fill gaps in data sets. The architecture of an application can also influence the choice
of a fault tolerance approach. For instance, global checkpoints are well suited for bulk synchronous algorithms,
whereas MapReduce workloads are better served by per-task checkpoints.

The Asynchronous Partitioned Global Address Space (APGAS) programming model (Saraswat et al. 2010) has
been demonstrated to enable both scalable high performance (Milthorpe et al. 2015; Tardieu et al. 2014) and high
productivity (Richards et al. 2014) on a variety of High Performance Computing (HPC) systems and distributed
applications. Although originally developed in the context of the X10 language (Charles et al. 2005), the core
concepts of the APGAS programming model can be found in a number of other HPC programming systems
including Chapel (Cha 2016), Habanero (Cavé et al. 2011; Kumar et al. 2014), Co-Array Fortran 2.0 (Yang et al.
2013), and UPC++ (Zheng et al. 2014). Recent work on Resilient X10 (Crafa et al. 2014; Cunningham et al. 2014)
enhanced APGAS with failure containment and failure awareness. An X10 application spans over a number of
places, typically realized as separate operating system processes and distributed over a network of computers. When
places fail, tasks running at surviving places continue to execute. Lost places and tasks are reported to survivors via
software exceptions. Application programmers can implement exception handlers to react to place failures and take
corrective actions. The order of execution of the surviving tasks cannot diverge from the failure-free execution,
even in case of orphan tasks, i.e., tasks that have lost their parent task. This happens-before invariance principle
is crucial to preclude races between orphan tasks and failure handling code. But it does not come for free as it
requires the runtime system to maintain its control state using fault-tolerant algorithms and data structures.

Despite these advances, programming fault tolerance in Resilient X10 remains challenging. There is no built-in
redundancy outside of the happens-before invariance implementation. Tasks at failed places cannot be respawned
magically. Data at failed places is lost. Lost places are no longer available to host tasks or data, creating holes in
the address space. In short, programming fault tolerance is rather difficult and error-prone. Moreover, there is little
point to the exercise if the resilient code is significantly slower than the original. In most scenarios, running the
non-resilient code repeatedly until success is a better trade-off. Beyond these practical concerns, there are also
foundational issues. The formal failure model of Resilient X10 is too permissive: all the places can fail at once. The
guarantees of Resilient X10 are formally valid in this scenario. But there is no way for an application to recover
from such a catastrophic failure. While the Resilient X10 programmer can persist data by using an external data
store, this is a priori a recipe for disaster as the happens-before invariance does not encompass foreign libraries.

In this technical report, we revisit Resilient X10 to extend, improve, or revise aspects of the language, its
semantics, and implementation to establish a practical general framework for efficient in-memory distributed
computing with programmable fault tolerance. Our goal is to evolve Resilient X10 so that it not only enables failure
recovery code to exist in theory, but makes the development of recovery code a rewarding experience. Our work
is driven primarily by our experience in porting existing realistic applications, frameworks, and class libraries to
Resilient X10 and in developing new applications. Our contributions provide dramatic increases to programmers’
productivity and applications’ performance:

• We formalize resilient data stores and revise the failure model and happens-before invariance principle to
accommodate them. We implement two resilient data stores with different trade-offs: a resilient store based
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on Hazelcast and a resilient store implemented in pure Resilient X10. With them, application programmers
can trivially protect from failure application data deemed critical.
• We augment the language, its semantics, and runtime system to permit the dynamic creation of places. The

combination of dynamic place creation with generalized indirect place addressing in the standard library
enables non-shrinking recovery, which significantly reduce the complexity of failure recovery code.
• We identify and address performance bottlenecks in the existing open-source implementation of the

happens-before invariance principle that caused up to 1000x slowdowns on common code patterns.
• We implement and empirically evaluate a suite of representative Resilient X10 application kernels including

typical Big Data problems from the machine learning domain, scientific simulations, and global dynamic
load balancing. Most are based on pre-existing X10 applications with small localized code changes for
resiliency. These codes comprise a significantly more realistic corpus of APGAS programs—10x to 25x
code size increase—than any prior evaluation of Resilient X10. Across all our application kernels, the
overhead imposed by resiliency on non-failing runs was under 8%, and often well under.1

• Where possible, we compare the performance of the X10 kernels to equivalent kernels written using
the Spark programming model to demonstrate that the additional flexibility provided by the APGAS
programming model can yield significant performance benefits.

Section 2 presents the fundamental capabilities that the Resilient X10 system provides to the programmer; it
includes a brief review of the APGAS programming model to provide necessary background. Section 3 illustrates
how these capabilities can be combined to build resilient applications and frameworks. Section 4 describes key
aspects of our implementation. Section 5 presents some of the application kernels we built to gain practical
experience with Resilient X10 and provides an empirical evaluation of their performance. Finally, Section 6 covers
additional related work and Section 7 concludes.

2 PROGRAMMING MODEL
This section presents an overview of the Resilient X10 programming model. The base X10 programming model
(2.1) and the semantics of resilient control (2.4) are not new contributions of this technical report. The failure model
(2.2) follows from prior work but is refined for this technical report. Non-shrinking recovery (2.3) and resilient
stores (2.5) are new contributions.

2.1 X10 Background
The X10 programming language (Charles et al. 2005) has been developed as a simple, clean, but powerful
and practical programming model for scale out computation. Its underlying programming model, the APGAS
(Asynchronous Partitioned Global Address Space) programming model (Saraswat et al. 2010), is organized around
the two notions of places and asynchrony.

Asynchrony is provided through a single block-structured control construct, async S. If S is a statement, then
async S is a statement that executes S in a separate task (logical thread of control). Dually, finish S executes S,
and waits for all tasks spawned (recursively) during the execution of S to terminate, before continuing. Exceptions
escaping from S or tasks spawned by S are combined in a MultipleExceptions instance that is thrown by
finish upon termination. Constructs are provided for unconditional (atomic S) and conditional (when (c) S)
atomic execution.

A place is an abstraction of shared, mutable data and worker threads operating on the data, typically realized
as an operating system process. A single APGAS computation may consist of hundreds or potentially tens of
thousands of places. The at (p) S permits the current task to change its place of execution to p, execute S at p and

1This number does not include the application-level checkpointing overhead, which can be decided arbitrarily and should reflect the expected
mean time between failures (MTBF).
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return, leaving behind tasks that may have been spawned during the execution of S. The termination of these tasks
is detected by the finish within which the at statement is executing. The object graphs reachable from the final
variables used in S but defined outside S are serialized, transmitted to p, and de-serialized to reconstruct a binding
environment in which S is executed. The snippet below shows how finish, async, and at can be combined to
print a message from each place:

1 val msg = "Hello World";
2 finish for (p in Place.places())
3 at (p) async

4 Console.OUT.println(here+" says "+msg);

5 Console.OUT.println("GoodBye!");

The messages from each place will be printed in an arbitrary order, but finish ensures they will appear before
"GoodBye!" is printed.

Variables in one place can contain references (global refs) to objects at other places. GlobalRef(obj) constructs
a global ref to obj in the local heap. A global ref can only be dereferenced at the place of the target object.

Places are assigned numbers starting from zero. The application main method is invoked at place zero. The
method Place.places() returns the set of places at the time of invocation; here evaluates to the current place.

2.2 Failure Model
Resilient X10 (Crafa et al. 2014; Cunningham et al. 2014) builds on X10 by exploiting the strong separation
provided by places to provide a coherent semantics for execution in the presence of failures. It assumes a fail-stop
failure model where the unit of failure is the place. A place p may fail at any time, with the instantaneous loss of its
heap and tasks. The failure is contained. Running tasks and heaps at other places are not affected by the failure of
place p. In particular, if q,p, any at (q) S initiated from place p or any other place before the failure of place p
will execute to completion (see 2.4). Surviving tasks are made aware of failed places as follows. Any at (p) S
executing at a place q will throw a DeadPlaceException (DPE). Any attempt to launch an at (p) S from place q
will also throw a DPE. Global refs pointing to objects hosted at p now “dangle”, but they cannot be dereferenced
since an at (p) S will throw a DPE.

While this failure model makes it possible to reason about execution in the presence of failures, we need more to
reason about failure recovery. Obviously an application cannot recover from a scenario where all places have failed
at once. There is no place left to run recovery code. In other words, not all failures can be recovered from. We have
to draw a line between catastrophic failures and recoverable failures.

For this work, we extend Resilient X10 with the concept of a resilient data store. A resilient store is a safe haven
for data (see 2.5). It is designed to transparently overcome place failures to avoid data loss. A store fails if and only
if it loses data. The condition for a failure depends on the store implementation (see 4.2) and the actual content.
For example, a store can be implemented to tolerate up to n concomitant place failures by maintaining replicas
of each data element in n+1 places. A store can survive any number of infrequent failures over time if it rebuilds
redundancy after each place failure. An empty store never fails. A place failure is defined to be catastrophic if it
causes the failure of a resilient store instance.

Execution of an X10 program begins by executing the main method in a single task in place zero. As a result,
X10 programs are typically structured with place zero containing a master task that coordinates overall execution.
Therefore, Resilient X10 treats the failure of place zero as a catastrophic failure. This model is not unusual; for
example Spark can recover from failed executors but a failure of the driver process (a Spark program’s main) is a
catastrophic failure. In Resilient X10 however, there is no requirement that place zero be a master place for all
aspects of the execution, e.g., scheduling tasks, maintaining directories.
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Our runtime and resilient store implementations do not assume that place zero cannot fail (see 4). While one of
our implementation of the finish construct in Resilient X10 does, we offer an alternative that does not. Except for
this special, opt-in implementation, the runtime state and resilient data are replicated and distributed uniformly
across all the places to protect from the failure of any place including place zero and ensure scalability. In principle,
our implementation supports running X10 as a service2 where a failure of place zero is not considered catastrophic,
but we have not experimented with this configuration.

In summary, a place failure is catastrophic if and only if (i) the failed place is place zero or (ii) the place failure
triggers the failure of a resilient store instance (data loss). In the remainder of this technical report, we only consider
recoverable, i.e., non-catastrophic failures. Thanks to this definition, we can decompose the failure recovery
problem into two independent subproblems: avoiding data loss by means of resilient data store (see 2.5 and 4.2)
and preserving application behavior assuming no data loss (see 3 and 5).

2.3 Non-Shrinking Recovery
All problems in computer science can be solved by another level of indirection. – D. Wheeler

Many APGAS applications contain structured data and structured communication patterns where places exchange
specific data blobs with specific collections of other places. For example, row/column based broadcasts in
distributed matrix operations or boundary data exchange with “neighbors” in a k-dimensional grid in scientific
simulations. Prior work on Resilient X10 (Cunningham et al. 2014) only supported shrinking recovery. When a
place fails, an application can reorganize to continue running with fewer places. However, for X10 applications
with substantial distributed state, this reorganization often incurred a productivity and a performance cost. The
programmer had to code the data movements explicitly and provide algorithms that work with flexible place counts.
Often these algorithms would only imperfectly tolerate reduced place counts, resulting in imbalance that degraded
future performance. To improve productivity and performance, we add to Resilient X10 support for non-shrinking
recovery, i.e., the ability to compensate for lost places with fresh places, therefore greatly reducing the algorithmic
burden for the programmer.

To permit non-shrinking recovery, we have augmented Resilient X10 with elasticity—the ability to dynamically
add places to a running application. Elasticity is also useful by itself in cloud infrastructures where the availability
and cost of resources vary dynamically. New places may be created externally, or may be requested internally
by the running application via asynchronous invocations of System.addPlaces(n) or synchronous invocations
of System.addPlacesAndWait(n). After joining is complete, calls to Place.places() will reflect the new
place(s). Numeric place ids are monotonically increasing and dead place ids are not reused. Higher-level
abstractions, such as the PlaceManager described below, use these runtime calls internally to dynamically manage
places, automatically compensating for lost places.

Because numeric place ids are managed by the runtime system and affected by place failures, they should not be
directly targeted by application programmers. Instead, they should use X10 standard library abstractions such as
PlaceGroup and Team. The PlaceGroup class represents an indexed sequence of places and provides methods
for enumerating the member places and mapping between places and their ordinal numbers in the group. The
Team class offers MPI-like collective operations. As a concrete example, a place p’s neighbors in a structured
grid are usually computed as a simple mathematical function of p’s assigned grid id. Instead of using the place’s
actual numeric id, p.id, a Resilient X10 application should instead define a PlaceGroup pg containing all the
constituent places of the grid and use pg.indexOf(p) as the grid id of p. In conjunction with the PlaceManager
facility described below, consistent use of PlaceGroup indices in this way creates a level of indirection that is
sufficient to enable the bulk of the application code to be used unchanged with non-shrinking recovery in Resilient

2X10 as a service accepts and runs X10 tasks submitted to any place belonging the X10 service instance.



1:6 • David Grove, Sara S. Hamouda, Benjamin Herta, Arun Iyengar, Kiyokuni Kawachiya, Josh Milthorpe,
Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier Tardieu

X10. Many prior systems, including Bykov et al. (2011) and Chuang et al. (2013), have combined elasticity and
logical naming to achieve similar high-level objectives.

The PlaceManager is a new addition to the X10 standard library that encapsulates place management for
both shrinking and non-shrinking recovery. In essence, it implements a PlaceGroup that can be adjusted when
place fails. It exposes two primary APIs to higher-level frameworks and applications. First, it exposes an active
PlaceGroup. Second, it has a rebuildActivePlaces() method that should be invoked when a place failure
is detected to rebuild the active PlaceGroup. Depending on configuration this method simply purges the dead
places from the active PlaceGroup—for shrinking recovery—or replaces the dead places with fresh places—for
non-shrinking recovery. The PlaceManager for non-shrinking recovery orchestrates the process of elastically
requesting new places from the lower level X10 runtime system when necessary to replace dead places. It can be
configured to keep an optional pool of “hot spare” places ready for immediate use. It uses hot spares if available
(replenishing the pool asynchronously), or if none are available it waits for more places to be created. Finally,
rebuildActivePlaces() returns a description of the places that were added/removed from the set of active
places to enable application-level initialization of newly added places and updates.

While we could make the PlaceManager automatically react to place failures, in practice we observed that
controlling the exact timing of the rebuildActivePlaces() invocation explicitly leads to cleaner code and
simpler recovery logic than an implicit asynchronous invocation from the runtime system.

2.4 Resilient Control
X10 permits arbitrary nesting of async/at/finish. Hence when a place p fails it may be in the middle of running
at (q) S statements at other (non-failed) places q. The key design decision in Resilient X10 is defining how to
handle these “orphan” statements. While S has lost its parent place, it still belongs to enclosing finish and at
constructs, e.g.,

1 finish { ... at(p) { ... at (q) S ... } } T

In a failure-free program, the execution of S happens before the execution of T. Resilient X10 maintains the strong
invariant that the failure of a place will not alter the happens before relationship between statement instances at the
non-failed places. This guarantee permits the Resilient X10 programmer to write code secure in the knowledge
that even if a place fails, changes to the heap at non-failed places will happen in the order specified by the original
program as though no failure had occurred. Failure of a place p will cause loss of data and computation at p but
will not affect the concurrency structure of the remaining code. In this example, if place p fails, S may execute or
not depending on the timing of the failure. If S does execute, it will complete before T executes. Similarly, if place
q fails, S may execute fully, partially, or not at all, but again (any surviving tasks spawned by) S will finish before T
executes.

2.5 Resilient Store
In order to enable applications to preserve data in spite of place failures, we extend Resilient X10 with the concept
of a resilient data store realized as a distributed, concurrent key-value map. Since the APGAS programming model
enforces strong locality—each object belongs to one specific place—a resilient data store is also partitioned across
places. Invocations of the set(key, value) and get(key) methods of a resilient store associate a value to a
key or return the value for a key for the current place. Map operations on a given key k at a given place p are
linearizable.

Applications may use a resilient store to checkpoint intermediate results or sets of tasks (completed, in progress,
pending). Upon failure, an application is responsible to replace or reconstruct the lost data using the content of the
resilient store.
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A resilient store ranges over an active PlaceGroup as defined in the previous section. In non-shrinking recovery,
if a fresh place p replaces a dead place q, the map entries for place q are seamlessly transferred to place p. In
short, the store content for place q survives the failure of place q and place p takes ownership of this content. For
shrinking recovery, we support querying the content of the store of a dead place from any surviving place via the
getRemote(place, key) method.

The resilient store implementations (see 4.2) handle the data replication and/or data movement needed to preserve
the data. Using a resilient store is semantically equivalent to transferring objects across places, i.e., an object
retrieved from the store is a deep copy of the object put into the store.

Resilient stores must obey the happens-before invariance principle (see 2.4). Store operations must happen in the
order specified by the failure-free program. In particular, an update operation initiated from a task interrupted by
the death of the hosting place must not linger. It must either mutate the store before any finish waiting for the task
completes or never mutate the store. This property is crucial to ensure that recovery code can be constrained to
happen after any store operations coming from the place whose death triggered execution of the recovery code.

A resilient store implementation in Resilient X10 can of course build upon async and finish to achieve
happens-before invariance trivially. In contrast, integration of an off-the-shelf in-memory data grid in Resilient X10
may require some additional work to fulfill the requirement, such as flushing operation queues before reporting the
death of a place to the X10 application.

3 BUILDING RESILIENT APPLICATIONS
This section illustrates how the core programming model concepts of Section 2 can be combined to define
higher-level fault-tolerant application frameworks. We implement non-shrinking checkpoint/restart, a well-known
technique for transparent fault tolerance in iterative applications. While Resilient X10 is intended to enable
innovation in software fault tolerance, we want to devote this section to the programming model, not the particulars
of an original or atypical fault tolerance algorithm. Moreover, we will use this algorithm as well as variations of
this algorithm to bring fault tolerance to some of the application kernels presented in Section 5.

3.1 Resilient Control
An iterative application typically looks like the following:

1 while(!app.isFinished()) app.step();

The step and isFinished methods respectively specify the loop body and termination condition. Each step may
entail a distributed computation over the active place group of a PlaceManager pm.

Using Resilient X10, we can rewrite this loop to make it fault tolerant. The execute method below takes an
instance of an IterativeApp and executes it resiliently, i.e., using checkpoint/restart to protect from place failures:

1 def execute(app:IterativeApp) {
2 globalCheckpoint(app);

3 var err = false;

4 var i:Long = 1;

5 while(true) {

6 try {

7 finish {

8 if(err) { globalRestore(app); i=1; err=false; }

9 if(app.isFinished()) break;

10 app.step();

11 if(i % N == 0) globalCheckpoint(app);
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Fig. 1. X10 Resilient Iterative Framework

12 i++;

13 }} catch(e:MultipleExceptions) {

14 if(e.isDPE()) err = true; else throw e;

15 }}}

To invoke the execute method, the programmer must provide an instance of an IterativeApp, i.e., implement
the methods listed in Figure 1. The code for step and isFinished is unchanged from the original non-fault-
tolerant loop. The programmer must specify how to checkpoint and restore the local state of the application in
between iterations. The checkpoint method should insert critical application data for the current place into a
hash table. The restore method does the reverse. The programmer may also specify initialization code to run on
dynamically created places by means of the remake method. Importantly, none of these methods need to handle
data distribution of place failures. The globalCheckpoint and globalRestore methods implemented in the
next section orchestrate the invocations of app.checkpoint, app.restore, and app.remake to checkpoint and
restore the global application state.

We now explain how fault tolerance is implemented by the executemethod in details. The code first checkpoints
the initial application state. The loop code cannot recover from a place failure before the completion of this first
checkpoint. This invocation of globalCheckpoint is not in the scope of the try-catch construct. However the
application itself may be capable of replaying its initialization and invoke execute again.

The loop periodically makes checkpoints based on a configurable checkpointing interval N. It detects place
failures and rolls back to the last checkpoint using a single exception handler. The handler distinguishes the
dead place exceptions (using the isDPE helper method) that are transparently handled from other exceptions
that abort the execution. The handler takes care of place failures at any stage of the loop, not only in app.step
or app.isFinished, but also in globalCheckpoint and globalRestore using the same retry strategy for
all failures. For instance, a place failure during the execution of globalCheckpoint sets err to true, which
triggers the invocation of globalRestore when the while loop is reentered. The globalCheckpoint method
implemented below uses double buffering to guard against incomplete checkpoints.

Together execute, globalCheckpoint, and globalRestore handle any combination of non-catastrophic
place failures past the initial checkpoint. This includes not only failures during app.step or app.isFinished,
but also during globalCheckpoint and globalRestore.

3.2 Resilient Data
The globalCheckpoint and globalRestore methods are implemented using the PlaceManager pm and a
resilient store rs:

1 def checkpoint(app:IterativeApp) {
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2 val k = key.equals("red") ? "black" : "red";

3 finish for(p in pm.activePlaces()) at(p) async rs.set(k, app.checkpoint());

4 key = k;

5 }
6 def restore(app:IterativeApp) {
7 val changes = pm.rebuildActivePlaces();

8 rs.recover(changes);

9 app.remake(changes);

10 finish for(p in pm.activePlaces()) at(p) async app.restore(rs.get(key));

11 }

The two methods respectively invoke app.checkpoint and app.restore in every active place to extract the local
state to checkpoint or restore it. Double buffering defends against failures during checkpointing. The checkpointing
key is mutated only after finishing successfully all the local checkpoints. If any of the app.checkpoint()
invocation fails, the control is transferred from the enclosing finish to the exception handler, skipping over the
key = k assignment. Before attempting to restore the last checkpoint, the globalRrestore method makes sure
to rebuild the place group—replace dead places with fresh places—and reorganizes the resilient store accordingly.
It also invokes app.remake to give the application the opportunity to process the changes, e.g., initialize data
structures at the newly added places.

3.3 Discussion
At first, the fault tolerant loop code may seem daunting. After all, we started from one line of code and ended
up with two dozen lines for execute, globalCheckpoint, and globalRestore combined. Most of the code
however—the checkpointing interval logic, the error flag, the while loop, the invocations of step, isFinished,
globalCheckpoint, and globalRestore—would be similar in any checkpoint/restart implementation. The logic
is subtle but orthogonal to Resilient X10. The Resilient-X10-specific code follows a single pattern: the try-catch
construct and the finish construct immediately inside of it. This pattern is enough to cover all non-catastrophic
failure scenarios. Because it is so simple, it is easy to write, read, and maintain. In short, it is robust.

Moreover, the loop code in Resilient X10 can be refined or customized easily ad infinitum, whereas off-the-shelf
checkpoint/restart frameworks typically offer a finite set of configuration flags or parameters. For instance, the
initial checkpoint often has a broader scope than subsequent checkpoints because of immutable data (see 5). The
input data may be reloaded or recomputed instead of checkpointed in memory. The X10 code can be adjusted to
account for these variations. In contrast with off-the-shelf frameworks for transparent fault tolerance, Resilient X10
provides the means to tailor fault-tolerance schemes to specific workloads or application domains with benefits
such as reduced performance overheads, reduced memory footprint, or improved recovery times. We discuss one
such variant in the next section.

3.4 Resilient Iterative Executors
We added this checkpoint/restart framework to X10’s standard library and used it to implement several application
kernels discussed in Section 5. The IterativeExecutor class exposes an execute method that is essentially the
same as the one presented here. We refer to this executor as a global executor; it can be used for algorithms that
perform arbitrary communications as well as regular SPMD-style computations. For SPMD computations, the
step method must start remote tasks at each active place, each task performing a single iteration. We implement
an SPMDIterativeExecutor to better support this application pattern. This executor distributes the computation
over the set of active places. It creates parallel remote tasks that run multiple iterations (up to the checkpointing
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interval) of the isFinished and step methods, which are no longer in charge of distributing the computation. By
doing so, the SPMD executor eliminates the overhead of creating remote tasks at each step.

4 IMPLEMENTATION HIGHLIGHTS
A feature of the X10 system is that a single X10 program can be compiled for execution on a wide variety of
platforms and network transports with varying performance characteristics. X10 is implemented with two backends.
On the managed backend, X10 compiles into Java and runs on (a cluster of) JVMs; on the native backend, X10
compiles into C++ and generates a native binary for execution on scale-out systems. X10’s communication layer
can use multiple underlying network transports including TCP/IP sockets, MPI, and PAMI. Resilient execution
over MPI is supported using MPI User Level Failure Mitigation (ULFM) (Hamouda et al. 2016). This diversity of
implementation is valuable: different combinations are best suited for specific application domains or deployment
scenarios. Therefore, our implementation of Resilient X10 includes both native and managed X10, three network
transports (Java sockets, native sockets, MPI), and full support for Linux, Windows, and macOS.

The key implementation challenge in providing Resilient X10’s happens-before invariant for resilient control
is making X10’s finish construct resilient. This entails adjusting the distributed termination algorithm used by
finish to be failure aware and storing its distributed state in a (potentially specialized) resilient store. Logically, the
resilient store used for finish is distinct from the resilient store used for application data. Three implementations
of resilient finish were described in Cunningham et al. (2014): one that stored all finish state at place zero, one that
used ZooKeeper (Hunt et al. 2010) as an external resilient store, and one that used a custom resilient distributed
store for finish state implemented in X10. The place zero approach is not scalable to large place counts. The use of
a custom store was motivated by results showing that the ZooKeeper-based store was impractically slow, but the
prototype custom store implementation could only survive a single place failure.

In this technical report, we revisit the viability of using an off-the-shelf external distributed store. We implement
resilient finish and the resilient store API on top of the Hazelcast in-memory data grid (Hazelcast, Inc. 2014). The
X10 places are joined into an Hazelcast cluster. We instantiate several Hazelcast distributed fault-tolerant maps
to safeguard both the resilient application state and the runtime state. At this time, this implementation is only
available with the managed backend.

We also continue to develop a pure X10 implementation of Resilient X10. We improved the place zero resilient
finish performance. We developed a scalable resilient store in X10 now capable of rebuilding redundancy on the fly,
hence survive multiple place failures. These artifacts are usable with both backends. In contrast to the Hazelcast
implementation the place zero finish cannot survive the failure of place zero. The resilient store however has no
such limitation when instantiated in combination with Hazelcast finish.

The remainder of this section describes the major enhancements and extensions we have made over the system
of Cunningham et al. (2014). All have already been contributed back to the X10 open source project and will be
included in the next X10 release.

4.1 Resilient Control
All three prior implementations of resilient finish imposed a significant performance penalty on task creation. As a
result, common X10 programming idioms that utilize fine-grained tasks would incur crippling overheads under
Resilient X10 (see Table 1 below). This greatly reduced the practical usefulness of resilient finish by preventing the
unmodified reuse of existing X10 frameworks and applications.

We addressed this weakness by exploiting the insight that only a subset of the tasks actually need to be tracked
resiliently to provide the full Resilient X10 semantics. In particular, the exact number and identity of tasks that were
executing in a failed place is not observable in the surviving places. This insight allows a non-resilient place-local
counter to be used to cheaply track the lifetime of each incoming task and its locally spawned descendants. The
counter starts with a value of one to indicate the liveness of the already started incoming task; it is incremented
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when local children are spawned and decremented when tasks it is tracking complete. Interactions with a resilient
store are only required when (i) a new remote task is spawned or (ii) when a local counter reaches zero, indicating
termination of its local fragment of the task tree. Similarly, the existence of a finish does not need to be resiliently
recorded until it (transitively) contains a non-local task. The combination of these two optimizations virtually
eliminates the performance penalty of resiliency for fine-grained concurrency within a place.

In non-resilient X10, spawning a remote task is mostly asynchronous: the parent task is not stalled waiting for the
remote task to begin executing. More precisely, the parent task continues its own execution as soon as it has initiated
the message send requesting the remote task creation and recorded the initiation of a remote task in the local portion
of the distributed (non-resilient) state of its controlling finish. In all three original resilient finish implementations,
spawning a remote task entailed synchronous interactions with a resilient store. Synchronization with the store
ensured that the termination of the parent task could not be observed by the resilient store before it observed the
initiation of the remote child task. However, as shown in Table 1 below, the additional synchronization greatly
increased the cost of fan out communication patterns. An important additional benefit of the local termination
optimization described above is that it also provides a simple path to supporting asynchronous spawning of remote
tasks that is independent of the implementation details of the resilient store. By incrementing and decrementing the
local counter to simulate the creation of a synthetic additional local task whose lifetime spans the now asynchronous
interactions with the resilient store, the parent task can be allowed to continue (and even terminate) without the
possibility of its termination being prematurely reported to the resilient store resulting in incorrect early exit from
the finish. This recovers the mostly asynchronous spawning of remote tasks enjoyed by non-resilient X10.

An additional optimization can be applied to the place zero resilient finish to reduce the communication traffic
during the spawning of a remote task. If the serialized data for the task is relatively small, the spawning place can
send the task and data to place zero which can update the resilient finish state and then transmit the task and data to
the destination place (2 messages). The original protocol sent the task data only once directly from the source to
destination places, but required a request/response interaction with place zero by both the source and destination
places to update the resilient finish state (5 messages). This optimization is not generally applicable to distributed
resilient stores because it relies on the strong invariant that place zero processes each message exactly once.

Table 1. Performance cost of resilient finish for important communication and concurrency patterns at small and medium
scale. Each number is the slowdown vs. non-resilient finish to perform the same operation with the same number of places
(1.0 indicates no slowdown).

Slowdown factor vs. non-resilient finish

Scenario PPoPP’14 place zero Current place zero PPoPP’14 distributed Hazelcast

8 places 80 places 8 places 80 places 8 places 80 places 8 places 80 places

Local work 945.4 909.9 1.1 1.1 32.9 1149.0 1.0 1.0

Single remote activity 5.8 6.6 4.0 3.9 - - 17.0 30.8

Fan out, message back 19.2 42.6 3.5 3.9 - - 13.5 15.2

Fan out, local work 201.1 297.8 3.0 2.6 - - 11.4 11.9

Fan out, fan out 9.0 192.9 4.8 2.0 - - 10.4 1.2

Tree fan out 6.3 25.1 3.7 7.6 - - 15.4 19.1

Using the microbenchmark suite from Figure 6 of Cunningham et al. (2014) as updated in the X10 2.6.0 release3,
we studied the performance and scalability of resilient finish. Table 1 compares the performance of the PPoPP’14
resilient finish implementations as found in X10 2.4.1 (as cited in Cunningham et al. (2014)) to our current
3see x10.dist/samples/resiliency/BenchMicro.x10
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Fig. 2. Finish microbenchmarks with trivial task bodies. The graphs show the relative worst-case performance of our
implementation of non-resilient, place zero, and Hazelcast finishes for four important concurrency/distribution patterns.
The y-axis of each graph is the slowdown relative to non-resilient finish at 2 places; the x-axis is the number of places. For
all but the top left graph, the amount of work increases with the number of places and the y-axis is logarithmic.

implementations. The first and fourth rows demonstrate the effectiveness of our enhancments to eliminate resiliency
overheads for purely local concurrency. Rows three through six show the impact of mostly asynchronous spawning
of remote tasks. Unfortunately, we were unable to fully reproduce the prior distributed resilient finish results using
the X10 2.4.1 release. All of the microbenchmarks containing remote activities failed to run correctly with its
distributed resilient finish implementation. Even with the assistance of the authors of Cunningham et al. (2014),
we were unable to resolve the failures before the submission deadline. We do note that the PPoPP’14 distributed
resilient finish implementation was later removed in the X10 2.5.0 release.

Figure 2 shows the scaling graphs for our enhanced place zero and Hazelcast resilient finishes compared to
non-resilient finish at 2 places. The top left graph shows the cost of a single remote task. The message reductions
optimizations to place zero finish enable overhead of less than 4x at all scales; overheads for Hazelcast increase
from 13x to 49x. The remaining three graphs represent commonly occurring APGAS work distribution patterns.
Here place zero stays within 10x of the non-resilient finish and Hazelcast within an additional 2x to 5x of the place
zero finish. While these numbers remain high in the absolute, our experimental study demonstrates that they are
now good enough to support the programming model in practice. The overhead of resiliency including resilient
finish but excluding application-level checkpointing remains below 8% for all applications considered (see 5).

4.2 Resilient Stores
We experimented with a number of approaches and decided to focus on two implementations: a resilient store
based on Hazelcast and a resilient store implemented in X10.

We provide a common store API so that the store implementation can be decided at application startup time.
The core API consists of the get(key), set(key, value), and getRemote(place, key) methods discussed
in Section 2.
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4.2.1 Hazelcast-based store. This store is implemented using a distributed Hazelcast map. The resilient store
get and set methods are mapped to Hazelcast’s homonymous methods by appending the place index in the active
place group to the key. Method getRemote also simply maps to Hazelcast’s get method.

Catastrophic failures depends on the Hazelcast configuration. In our experiments, we configure Hazelcast with
one synchronous backup, i.e., one level of redundancy. The store can survive multiple place failures as long as the
failures are distant enough in time for Hazelcast to rebuild its redundancy in-between failures.

4.2.2 X10 Resilient Store. We implement a resilient store in X10 by maintaining two replicas of the data. The
key value pairs at place p (master) are transparently replicated at the next place in the active place group (slave).
Store read operations only access the master replica (local). Write operations require updating both the master and
the slave as follows:

1 finish at (slave) async slaveStore.set(key, value);
2 masterStore.set(key, value);

The resilient finish ensures the slave is updated successfully before the master, thus guaranteeing that no value can
be read from the store before being replicated. If the slave dies before or during the update, the write fails with a
DPE. A lock (not represented) ensures no two writes can overlap.

The store is constructed over the set of active places in a PlaceManager. It has a recover(changes)
method that should be invoked when a process failure is detected. The changes parameter is obtained from
the PlaceManager; it includes the new set of active places, as well as the set of added/removed places since the
last invocation for the PlaceManager’s updateActivePlaces() method. The store replaces each removed place
with an added place at the same ordinal location. Each removed place had previously held a master replica for
its own data, and a slave replica for its left neighbor. These replicas are now lost, however, copies of them are
available at other places, assuming no catastrophic failure happened that caused the loss of two consecutive active
places. The copies are fetched. They provide the initial state of the store at the fresh places.

Like the Hazelcast store, this store can survive any number of place failures, provided failures happen one at
time, with enough time in-between for the store to rebuild the lost replicas.

The store is implemented with less than 500 lines of X10 code, and can be considered an application study in its
own right which demonstrates the expressiveness of the Resilient X10 model. It supports a much richer API than
the core API we discuss in this technical report. In particular, it handles local transactions, where a series of keys
are accessed or updated at once (all in the same place).

4.2.3 Transactions. One of our applications (see 5.2) requires the ability to simultaneously update the local
store and a remote store. We implement the method set2(key1, value1, place2, key2, value2) using a
simple transaction log. The application is such that no conflicting updates can ever occur. The transactions in
progress (logged) are replayed after a place failure, before accessing the store to restore the application state. The
log itself is also implemented as a resilient store.

4.3 Elasticity
Enabling elasticity required enhancements to all levels of the X10 implementation stack: the launching infrastructure
that creates the initial processes, the network transports that bind them together, the core runtime that implements
the PGAS abstractions, and a variety of standard library classes that are built on top of the PGAS abstractions.
Additionally, in a cloud environment, acquiring the necessary computational resources to execute the additional
processes that will become the new places requires negotiation with cluster management software.

Our current implementation fully supports elasticity for Managed X10 including an integration with the Apache
Hadoop YARN (Vavilapalli et al. 2013) cluster resource manager. With a single additional command line ar-
gument, Managed X10 applications can be launched on a YARN-managed cluster and the implementation of
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System.addPlaces(n) will automatically acquire new containers from YARN and launch the new places within
them.

Although much of the runtime implementation is shared by Managed and Native X10, elasticity support for
Native X10 is not yet complete. The primary gap is at the X10RT network layer: none of Native X10’s X10RT
implementations support the dynamic addition of new places after initial application launch. Adding such support
to Native X10’s TCP/IP-based x10rt_sockets transport could be done with modest development effort.

5 APPLICATION STUDIES
We developed a number of resilient application kernels to assess the flexibility of the Resilient X10 programming
model and the capabilities of our implementations. Most codes are derived from existing X10 kernels and
frameworks that were extended to make them resilient.4 This section presents four such resilient application
kernels—Unbalanced Tree Search, KMeans, PageRank, LULESH—chosen to illustrate how different aspects of the
programming model can be combined to achieve flexible resiliency solutions that best meet application needs. Each
subsection describes the kernel, the design decisions made to make it resilient, and experimental results including
direct comparisons with Spark-based implementations for the first three kernels.

5.1 Experimental Setup
All experiments were conducted on a 23-node compute cluster. Each node contains two quad-core AMD Opteron
2356 processors and 12 GiB-16 GiB memory. The cluster is connected via a 4×DDR Infiniband network using IP
over IB. The compute nodes run RHEL 6.9 and the cluster is managed using Apache YARN 2.6.0. For comparisons
with Spark, we used Apache Spark 2.0.1 with --master yarn. Our X10 implementation is a modified version of
X10 2.6.0, the most recent open source release of X10. The JVM for both Managed X10 and Spark was Oracle
Java HotSpot Server version 1.8.0 101.

For each application, we are primarily interested in three scenarios: non-resilient execution, failure-free resilient
execution, and resilient execution with three place failures during a single run. Application parameters were
chosen to achieve runs lasting approximately five minutes. This gives sufficient time to amortize application and
JVM warmup while being short enough to permit a large number of runs to be completed. We inject failures by
killing processes with a timer to guarantee that there is no correlation between the failure time and the ongoing
computation. Failures are spaced by at least 30s to ensure no catastrophic failure occurs. Of course this failure
scenario is unrealistic. Mean time between failures (MTBF) is typically much longer. Our experimental protocol is
intended to stress the runtime system and demonstrate its reliability more effectively than a single-failure scenario
would.

For Resilient Managed X10, we use Hazelcast as the underlying store for both resilient finish and the resilient
data store. This represents a scalable solution based on a production-level fully-distributed store. In the three
failure scenario, Resilient Managed X10 is configured to maintain one “hot spare” place; the PlaceManager will
asynchronously replace the spare place after each failure to minimize future recovery time. For Resilient Native
X10, we use the place zero resilient finish and the X10 resilient store of Section 4.2.2. Because Native X10 does not
support elasticity, the three failure scenario requires starting with three spare places. Therefore, unless otherwise
noted, all experiments use 20 nodes (160 cores) for application execution. For X10, this corresponds to 20 active
X10 places, each with X10 NTHREADS=8. For Spark it corresponds to 20 executors, each with 8 cores. This
enables apples-to-apples comparison of application throughput across all configurations.

Unless otherwise stated, all execution times are the mean of at least 15 runs and the 95% confidence intervals
are less than 1% of the computed averages for X10. Spark performance on 15 runs is less predictable with 95%
confidence intervals ranging from 1% to 7% of the mean.

4We have provided URLs for all the application code in the non-anonymous supplemental material for the submission
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5.2 Global Load Balancing: UTS
Lifeline-based global load balancing (GLB (Saraswat et al. 2011; Zhang et al. 2014)) is a technique for scheduling
large irregular workloads over distributed memory systems. The Unbalanced Tree Search benchmark (UTS (Olivier
et al. 2007)) is the canonical benchmark for GLB. An X10 implementation of UTS using the GLB approach has
been shown to scale to petaflops systems with tens of thousands of cores (Tardieu et al. 2014). Our baseline
UTS implementation is similar but uses multiple threads/workers per place so we can fully utilize a node with
a single place. It is only intended for the managed backend as it uses Java’s MessageDigest API for computing
cryptographic hashes.

UTS measures the rate of traversal of a tree generated on the fly using a splittable random number generator. A
sequential implementation of UTS maintains a queue of pending tree nodes to visit initialized with the root node. It
repeatedly pops a node from the queue, computes and pushes back the children ids if any, until the queue is empty.

The distributed implementation divides this queue among many worker threads by dynamically migrating node
ids from busy workers to idle workers using a combination of stealing and dealing. There is no central scheduler.
An idle worker can request work from a random peer. The code has a simple structure. At the top a finish waits for
all the workers to terminate. Requests and responses are implemented with remote tasks. There is more to the load
balancing than random work stealing, but this does not fundamentally affect the fault tolerance problem.

To add resilience to UTS, the workers checkpoint their progress to a resilient store. Each worker stores how
many nodes it processed so far, as well as the node ids in its queue. The lack of a central scheduler and global
synchronization is important for the performance of the non-resilient algorithm. We want to preserve this property
in the resilient code. Therefore workers independently decide when to checkpoint based on individual progress
and idleness. Before sending work to an idle worker, the sender updates the checkpoints of both the sender and
receivers in one transaction (see 4.2). While the collection of checkpoints is constantly changing and may never
reflect the progress of all workers at one specific point in time, it is always correct, i.e., the aggregated node count
is consistent with the aggregated pending node lists. Upon place failure, all workers abort (possibly doing a last
checkpoint) and fresh workers load the checkpoint and resume the traversal.

For comparison purposes, we have implemented UTS in Spark using a map/reduce strategy. The tree traversal is
divided into rounds. In each round the global pending node list is split into p fragments producing to p independent
tasks that can be scheduled in parallel. Each task traverses up to n tree nodes before returning the updated node
counts and lists to the global scheduler. We tuned p and n to achieve the best performance for our benchmark
configuration.

Table 2. UTS execution times (seconds) and throughput (Mnodes/s) using Managed X10 and Spark

Depth Time Throughput

Sequential X10 14 164.8 6.43

Non-resilient X10 18 267.7 1011.3
Resilient X10 18 268.4 1008.4
Resilient X10 + 3 Failures 18 277.3 976.1

Spark 18 376.8 718.8

Evaluation. Table 2 compares the execution time and the rate of traversal expressed in million nodes per second
per worker of the sequential X10 code, the distributed non-resilient code, the resilient code without and with three
place failures, and the Spark code. We run with managed X10. At scale, we use a tree of about 270M nodes (fixed
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geometric law with seed 19 and depth 18). For the sequential code, we reduce the depth to 14. The throughput of
the sequential code does not depend on the depth.

The sequential code achieves 6.43Mnodes/s in average. The distributed code achieves 98% of the sequential
code efficiency. Adding fault-tolerance adds less than 1% overhead. Each place lost reduces throughput by about
1.1%. The failure-free resilient execution takes 268.4s in average. Each loss increases execution time by about
3s. Roughly half of the 3s is taken to detect the place failure and recover: updating the active place group and
initializing the workers. We attribute the other half to lost work, startup cost, and the cost of rebuilding redundancy.
While the spare place pool mitigates the startup latency, the fresh JVMs have not been trained to run the UTS code.
Hazelcast rebuilds the resilient map redundancy in a few seconds taking resources away from the tree traversal
and increasing the latency of the resilient store. Without a spare place pool, the recovery time increases to 14s per
failure.

In comparison, the Spark implementation only achieves about 70% of the efficiency of the sequential X10 code
(without node failures). This is not surprising. We observe that the generated tasks complete in anywhere between
a few tens of milliseconds to a few seconds leading to a lot of imbalance. Overdecomposition does not improve this
result.

5.3 KMeans Clustering
KMeans clustering is a commonly used kernel for unsupervised learning. We implement a distributed version of
Lloyd’s iterative algorithm (Lloyd 2006) in X10. Our base implementation contains 220 lines of code. Implementing
checkpoint/restore, adding resiliency testing scaffolding, and conforming to the IterativeApp interface of the
global resilient executor framework of Section 3.4 required modifying 15 existing lines of code and adding 70 new
lines. We use KMeans to demonstrate how the Resilient X10 programming model supports application kernels
with substantial immutable distributed data structures (the input data) and modestly sized but rapidly changing
mutable data (the current estimate of the cluster centroids). Thus, the initial checkpoint must persist GBs of input
data while subsequent checkpoints need save very little state. The X10 code checkpoints after every iteration of the
algorithm, since checkpointing time was just under 1% of the iteration time.

For comparison we use two variants of the KMeans algorithm from Spark’s MLLib. The first is the un-
changed algorithm, which is capable of handling input data containing both sparse or dense vectors. The second
is a hand-specialization of the default algorithm to only handle dense vectors, which is a fairer comparison
to our X10 implementation. For both Spark variants we persisted the RDD containing the input data with
StorageLevel.MEMORY_ONLY_2 to match X10’s in-memory persistence strategy for this data.

Table 3. KMeans execution times (seconds)

Total Time Single Step

Managed X10 283.4 5.64
Resilient Managed X10 318.7 5.79
Resilient Managed X10 + 3 Failures 389.5 5.90

Native X10 195.9 3.90
Resilient Native X10 199.4 3.91
Resilient Native X10 + 3 Failures 229.9 3.90

Spark MLLib 473.6 8.92
Spark DenseVector 368.2 6.81
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Evaluation. Table 3 shows the total execution times5 and single step times for 50 steps of the KMeans algorithm
configured to find 300 clusters over an input of 20,000,000 30-dimensional points represented as dense vectors.
The initial checkpoint averaged 21.8 seconds for Resilient Managed X10 and 3.1 seconds for Resilient Native X10.
Spark averaged 27 seconds to persist the input RDD. Checkpointing time accounts for 27.2 of the 35.3 second
gap between Managed X10 and Resilient Managed X10. Runtime overheads, primarily that of the Hazelcast-
based resilient finish, account for the remaining 8.1 seconds (3%) of overhead. These results also illustrate the
advantage of Native X10 for numerically intensive kernels: it significantly outperforms Managed X10, which
in turn outperforms Spark. On the runs with three failures, there is an average 70.8 second (23.6 per failure)
performance drop for Resilient Managed X10. As with UTS, approximately 2 seconds can be attributed to failure
detection and recovering the X10 runtime system. Restoring the application level state from a checkpoint averages
13 seconds a failure. We attribute the remaining 9 seconds to loss work (50% of an iteration is 3 seconds) and JVM
warmup of the newly added place (which takes 3-5 iterations to reach peak performance). Since KMeans is an
SPMD-style algorithm, performance is gated by the slowest place.

5.4 Global Matrix Library: PageRank
The X10 Global Matrix Library (GML) implements distributed linear algebra operations over matrices in a variety
of dense and sparse formats (Hamouda et al. 2015). It includes a set of benchmark codes using common algorithms
for data analytics and machine learning. The core GML library consists of 20,500 lines of X10, 2,100 lines of C++

and 250 lines of Java. To support resilience in GML, snapshot and restore methods were implemented for the key
matrix and vector classes.

We evaluate the cost of resilience for the GML PageRank benchmark using the SPMD resilient executor described
in Section 3.4. Approximately 50 lines of codes were added or modified from the original implementation to
conform with the IterativeApp interface. In contrast, Cunningham et al. (2014) were not able to base their
resilient SpMV kernel on the existing GML code base; they wrote 536 lines of new custom code. We compare with
the Spark/GraphX (Xin et al. 2014) PageRank SynthBenchmark implementation.

Table 4. PageRank execution times (seconds)

Total Time Single Step

Managed X10 292.6 9.75
Resilient Managed X10 440.8 10.4
Resilient Managed X10 + 3 Failures 684.1 14.9

Spark/GraphX 996.8 33.2

Evaluation. We measured the time to compute 30 iterations of PageRank for a randomized link matrix with 5
million pages and 633 million edges using a log-normal distribution of edges with µ 4 and σ 1.3 as per Malewicz
et al. (2010). For Spark/GraphX, the number of edge partitions numEParts was set to twice the total number of
cores.

Table 4 shows the total time and time per iteration.6 The times for Resilient X10 include the time required to
checkpoint data. The first checkpoint for PageRank is very slow at 82.0s, as it includes the immutable link matrix
(about 10GiB for this problem size). Subsequent checkpoints are much faster at 5.1s as they only store the mutable

5For KMeans, the 95% confidence interval for Resilient Managed X10 is 1.5% of the mean and 3.5% for Resilient Managed X10 with failures.
6For PageRank, the 95% confidence interval is 1.6% of the mean for Resilient X10 and 2.9% for Resilient X10 with failures.
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PageRank vector (40MiB). Excluding the checkpointing time, the overhead of resiliency is about 6% over the
non-resilient execution time.

Using a checkpoint time of 5.1s, we used Young’s formula to approximate the optimum checkpoint interval for
each problem size:

√
2 ∗ tcheckpoint ∗MTBF, where MTBF is the mean time to failure (Young 1974). Assuming a

high failure probability—MTBF of 60 seconds for the full cluster—the optimum checkpoint interval is 24.7s or
approximately 3 iterations.

Resilient Managed X10 is around 2.3× faster than Spark/GraphX. For comparison, Kabiljo et al. (2016) report
an Apache Giraph implementation of PageRank is 2× to 4× faster than Spark/GraphX (for a large Twitter graph).

On the runs with three failures, there is an average 244 second performance drop for Resilient Managed X10
(81s per failure). Approximately 2s per failure can be attributed to failure detection and recovering the X10
runtime system. Restoring the application-level state from a checkpoint averages 31.8s per failure. Another 21s is
attributable to the loss of an average of two iterations per failure. We conjecture the significant slowdown of the
average iteration time results from the combination of a cold JVM—GML PageRank is a much larger body of code
than, say, KMeans—and the overhead of the memory management associated with the large amount of resilient
data. Even with 3 failures, Resilient Managed X10 remains around 30% faster than Spark/GraphX running with no
failures.

5.5 Scientific Simulations: LULESH
The LULESH proxy application (Karlin et al. 2013) simulates shock hydrodynamics on an unstructured mesh.
Each place holds a rectangular block of elements, as well as the nodes that define those elements. At each
time step, a series of stencil operations are applied to update node-centered kinematic variables and element-
centered thermodynamic variables. As the stencil operations require element- or node-centered values from a local
neighborhood, it is necessary to exchange boundary or ghost regions between neighboring processes. The ghost
region exchange is implemented between neighbors using global references to pre-arranged communication buffers
and pair-wise synchronized asynchronous get and put operations. LULESH also includes a spectrum of intra-place
concurrent loops that rely on local finish/async patterns. Each iteration, all places agree on an adaptive time step
using a collective allreduce operation. The X10 implementation of LULESH exploits both intra- and inter-node
parallelism, and is around 10% faster than the reference implementation using C++/OpenMP/MPI across a range
from 125 to 4,096 places (750 to 24,576 cores) (Milthorpe et al. 2015).

We modify LULESH to use logical places and the SPMD resilient executor described in Section 3.4, and added
support for checkpoint/restore of all of its per-place data structures. LULESH contains approximately 4,100 lines
of code; supporting resiliency entailed adding 106 new lines and modifying 94 other lines. Our LULESH code
is a significantly more realistic example of a scientific simulation than the 175 line Heat Transfer kernel used in
Cunningham et al. (2014).

Evaluation. Table 5 shows the execution time in seconds using Native X10. We do not report times for LULESH
on Managed X10 because LULESH heavily relies on stack allocation of worker-local temporary arrays for
performance in its parallel for loops. Since Managed X10 does not support this Native X10 feature, LULESH
performs quite poorly on it.

We use a problem size of 353 elements per place running with 8 places.7 At this problem size, LULESH has an
average checkpoint time of 0.097 seconds. Applying Young’s formula and assuming MTBF of 60 seconds yields
an optimal checkpoint interval of 3.4 seconds, which corresponds to checkpointing every 38 steps. For 8 places and
353 elements per place, the simulation takes a total of 2,402 time steps. Resilient X10 takes 6.4 seconds (3%) longer
than non-resilient. Of this, 6 seconds is checkpointing and 0.4 is attributable to resilient finish (0.2%). On the runs

7LULESH requires a cubic number of places; to be consistent with our other experiments we run one place per node and thus have a max of 8
places possible on our 23 node cluster.
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Table 5. LULESH execution times (seconds)

Total Time Single Step

Native X10 210.2 0.0875
Resilient Native X10 216.6 0.0875
Resilient Native X10 + 3 Failures 233.1 0.0890
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X10 Resilient	X10 Resilient	X10	+	3	Failures Spark

Fig. 3. Execution times for all the benchmarks (seconds)

with three failures, there is an average 16.5 second (5.5 per failure) performance drop. Approximately 1.5 seconds
can be attributed to failure detection and recovery of the X10 runtime system, 0.5 seconds to application-level
recovery, and the remaining 3.5 seconds to lost work.

5.6 Summary
Figure 3 summarizes the performance results across all the benchmarks and configurations. We observe that
Resilient X10 always outperforms Spark. This confirms two things. First, the expressivity and level of control
offered by the Resilient X10 programming model does not come at the expense of performance. Even for application
kernels for which the Spark programming model is well suited, e.g., KMeans, Resilient X10 can match or exceed
Spark performance. Second, Resilient X10 can deliver much higher levels of efficiency for applications that are
not as well suited for Spark, e.g., UTS. In UTS, Resilient X10 has an overhead of less than 3% compared the
sequential throughout, Spark is much higher at 30%. Moreover, with X10 there is the opportunity to go native, and
for computationally intensive codes this is often a clear win as illustrated by the KMeans benchmark.

While some applications have higher resiliency overheads that others, these overheads are almost entirely due
to application-level checkpointing. We have compared the checkpointing costs for instance for KMeans between
Resilient X10 and Spark and found them to be comparable.

Moreover, the experimental setup we have chosen—3 failures in 5-minute runs—over-emphasizes the check-
pointing costs. First, the initial checkpoint is often very expensive but it is only needed once (and alternative
implementations could be considered such as reloading input data from disk). With our configuration, the initial
checkpoint is not amortized and amounts to a significant fraction of the execution time. Second, we implemented
very frequent checkpoints to optimize for very frequent failures. With a MTBF of one day instead of one minute,
the checkpointing interval (respectively overhead) would be multiplied (respectively divided) by 38. Concretely,
across all four benchmarks, for a 2-hour long run with a checkpointing interval adjusted for a 24-hour MTBF, the
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checkpointing overhead drops below 1%. In short, in real-world use cases, we expect the resilient code to be barely
slower than the non-resilient code.

Finally, we have shown that, across all the benchmarks, the downtime consecutive to a place failure never exceeds
2 seconds. In other words, 2 seconds after a failure the application code is already busy restoring data from the
resilient store or even computing.

6 OTHER RELATED WORK
The relationship between Resilient X10 and Big Data frameworks such as MapReduce and Spark was discussed
in Section 1. The relationship to previous work on Resilient X10 was covered in Sections 2 and 4. Due to space
constraints, we do not repeat those discussions here.

HPC applications have long relied on coordinated checkpoint/restart both as a mechanism for resiliency and
to decompose long-running applications into more scheduleable units of work (Elnozahy et al. 2002; Sato et al.
2012). Resilient X10 naturally supports a checkpoint/restart model by providing a resilient store abstraction and the
APGAS control constructs needed to synchronize checkpoint/restart tasks across all involved Places. In response
to increasing system scale, more loosely synchronized approaches have been explored based on message logging
and deterministic replay (Guermouche et al. 2011; Jonathan Lifflander et al. 2014).

Partially fault-tolerant implementations of GLB and UTS have been described in (Fohry and Bungart 2016;
Fohry et al. 2015). But these implementations can still fail even after a single place failure if the failure hits at the
worst possible time.

Approximate computing represents an alternative approach to resiliency that simply suppresses some failures
based on the observation that some computations are inherently approximate or probabilistic. In some cases,
analysis can be applied to obtain bounds on the distortion of discarding the results of failed tasks (Rinard 2006).
Because Resilient X10 enables the application programmer to control their fault tolerance and recovery strategies,
various approximate computing approaches as well as algorithmic-based fault tolerance (Bosilca et al. 2009) can be
naturally expressed in Resilient X10 as illustrated in the original Resilient X10 paper (Cunningham et al. 2014).

7 CONCLUSIONS
This technical report describes the evolution of Resilient X10 into a powerful and practical programming framework
for implementing high performance distributed and resilient applications. While the Resilient X10 semantics
remain the foundation of this work, the lack of data resilience in the original programming model design drastically
limited its usefulness. Conversely in-memory data grids such as Hazelcast lack a rich tasking model capable of
orchestrating parallel and distributed computations. In this work, we combine the two in a seamless way: the data
and control semantics obey the happens-before invariance principle; heap and resilient stores are organized along
the same PGAS abstraction.

New capabilities such as elasticity, logical places, and non-shrinking recovery provide powerful new options
to the application programmer. These capabilities significantly reduce the complexity of implementing stateful
applications designed to survive failure and preserve the core productivity and performance benefits of the APGAS
programming model.

As further developed in this technical report, the Resilient X10 programming model naturally supports Big
Data paradigms such as those supported by MapReduce or Spark. In addition, Resilient X10 also supports classes
of applications with complex distributed communication patterns, shared mutable distributed state, and dynamic
fine-grained work generation. The Resilient X10 model also enables a spectrum of recovery techniques ranging
from checkpoint/restart, to resilient data structures, to approximate computing and algorithmic fault tolerance. We
strongly believe this generality and flexibility is essential to accelerate the adoption of datacenter-scale computing
infrastructure in an ever-increasing number of application domains.
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