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Abstract. Creating Internet of Things systems is a complex challenge
as it involves both software and hardware, and because it touches on
constrained devices and networks, storage, analytics, automation, and
many other topics. This is further complicated by the large number of
available technologies and the variety of di↵erent protocols and standards.
To help with the ensuing confusion, we presented Internet of Things
Patterns in several categories, such as device communication and manage-
ment, energy supply types, and operation modes. These patterns describe
abstract solutions to common problems and can be used to understand
and design Internet of Things systems. In this paper, we show that these
patterns can be applied to Smart Factory systems, which is one of the
many domains where the Internet of Things is applicable.

Keywords: Internet of Things, Architecture, Patterns, Industry 4.0,
Smart Factory, Industrial Internet

1 Introduction

Building Internet of Things (IoT) systems is a complex endeavor. It requires suc-
cessfully combining both software and hardware across various domains. Sensing
and actuation capabilities have to be brought into all kinds of environments using
constrained devices and networks. Moreover, collected data has to be communi-
cated and turned into usable information, sometimes fast and sometimes in huge
quantities. Data and information has to be stored, has to be made accessible to
others, and is used as basis for automation. Remote sensing and control o↵ers
great possibilities, but also high risks when it comes to security, privacy, and safety.
This situation gets more complicated by the current state of the IoT field. As it
is still relatively new and growing, a wide variety of technologies and solutions
pushed by vendors from di↵erent areas are fighting for attention [2,15,18]. There
is also an abundance of standard, as these solutions often have been created
in silos [23]. This makes it confusing for IoT developers and architects to find
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appropriate technologies and solutions for their particular situation. To tackle
these issues, we identified and collected IoT Patterns

3 in various categories that
abstract from individual technologies [20,21,22]. During the design of IoT systems,
architects can use IoT Patterns to solve specific problems they encounter. But
applying the patterns is not limited to single problems. Rather, once one pattern
has been applied, architects can now follow links to other related patterns. This
enables them to build IoT systems step by step. As the IoT is applicable in many
di↵erent domains, such as home automation, health care, logistics, and industrial
fabrication, our IoT Patterns should also be applicable in these di↵erent domains.
In this paper we will show that this is the case for industrial fabrication.

The remainder of this paper is structured as follows: In Section 2, we will
present work related to IoT Patterns and their application. Section 3 introduces
a motivating example from the domain of industrial fabrication which will be
used in the remainder of the paper. Section 4 briefly describes the IoT Patterns
which are relevant to this paper. Section 5 elaborates how these patterns can be
used to describe and refine the system which was introduced in the motivating
example. Finally, Section 6 ends the paper with a conclusion.

2 Related Work

We have published IoT Patterns for device energy supply and operation modes [22]
and device communication and management [20,21]. Eloranta et al. presented
patterns for building distributed control systems [5,6], which are concerned
with reliability and fault-tolerance of large moving machines used for forrestry,
mining, construction, etc. Qanbari et al. introduced four patterns for provisioning,
deploying, orchestrating, and monitoring edge applications [19]. Another paper
presents a pattern language for IoT applications [4], based largely on patterns
from blog entries which are not comparable to our patterns in format or scope.
Guth et al. compared several IoT Platform architectures to create an IoT reference
architecture [16] to which our example system can be mapped. There are several
publications that use patterns to design software architectures, such as [3,13]. But
as the IoT includes a lot of physical things, our patterns are not only concerned
with software, but also with the features of these things and how they shape and
influence the IoT systems. There is also work by Falkenthal et al. which refines
abstract patterns to patterns with more concrete, technology specific solution
descriptions [9] or links them to concrete implementations [8,7]. This could be a
next step to move our abstract IoT Patterns towards concrete solutions.

3 Motivating Example

One of the many domains where the IoT is applicable is industrial fabrica-
tion [10,11]. Here, as in many other domains, digitalization is advancing. This

3 An up-to-date overview of all published IoT Patterns can be found on
http://www.internetofthingspatterns.com
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Fig. 1. Abstract high-level overview of the SePiA.Pro project.

has lead to the creating of various movement, such as Smart Factory, Industrial
Internet, or Industry 4.0, which at their core have similar goals: to gain advanced
insights and control of productions processes through wide spread digitalization
and to further automate and optimize these processes.

Our example stems from the Industry 4.0 research project SePiA.Pro4, which
is situated in the domain of optimization [10]. Todays factories are comprised of
many machines. By connecting several of these machines together, production
lines are formed, which transform a part over several steps, for example by
cutting, drilling, bending, welding, and painting. While single machines are often
highly optimized, the overall optimization of production lines might be improved.
The aim of SePiA.Pro is to build a self-service platform that enables analytics
specialists to o↵er optimization services to large and small companies, which can
instantiate these services on- or o↵-premise to optimize their existing machines
and production lines with little or no technical expertise.

Figure 1 shows a very high level example of what this entails. On the left side,
there are several data sources that provide the data which is used as input for the
optimization services. These include data from the actual machines that should
be optimized, but potentially also data from other sources, such as databases.
The right-hand side of Figure 1 shows a Data Science Component, which takes
this as input for analytical algorithms and produces a result that can be used to
optimize machines and production lines. Of course there are several additional
steps and obstacles between the left and right side that have to be looked at in
more detail. For this we will use IoT Patterns.

4 IoT Patterns

The idea of patterns, which are abstract textual descriptions of proven solutions
to reoccurring problems, goes back to Alexander’s architecture patterns [1]. Since
then, patterns have been published for all kinds of domains, also in the domain
of IT [14,17]. In our previous work, we added to the already existing IT related
patterns by publishing a collection of IoT Patterns [20,21,22]. Table 1 provides
a brief overview of the IoT Patterns that are relevant in the context of this
paper3. They include patterns concerned with device energy supply and device

4 http://projekt-sepiapro.de
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operation modes, as well as patterns concerned with communication and with
data processing.

5 Applying IoT Patterns to Smart Factory Systems

Our motivating example shown in Figure 1 gives only a very general overview of
what the SePiA.Pro project is trying to achieve. But by stepwise applying the
existing IoT Patterns presented in Section 4, we can build this simple overview
into a more full fledged architecture. We start on the left hand side of Figure 1
with the devices and other data sources.

5.1 Devices

The devices and potentially other data sources are the first point in the system
where patterns can be applied. In some cases, these pattern can have a profound
impact on the rest of the system architecture. There are two patterns that are
applicable in this case, as shown in Figure 2.

Fig. 2. Example with added Mains-Powered Device and Always-On Device.

One important question in IoT systems is how you provide energy to all the
devices. In many systems you will have Period Energy-Limited Devices
or Lifetime Energy-Limited Devices which are powered by batteries, or
Energy-Harvesting Devices that gather their energy from their surroundings,
for example with solar cells [22]. These kinds of devices often have a large impact
on the overall system, as they are usually very constrained in their resources
and only intermittently online [22]. In our case we are looking at large industrial
machines that require a lot of power to operate and are therefore connected to
the energy grid. Thus, they are Mains-Powered Devices (see Table 1) [22].
These kinds of devices have the advantage that they have all the power they need
at their disposal and do not have to restrain themselves. On the other hand, they
cannot be mobile and are depended on the power grid. In our case, this is not a
problem and these devices do create no special problems regarding their energy
supply.

Devices can use di↵erent operating modes to get the most out of the energy
available to them. Device with limited energy are often Normally-Sleeping
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Table 1. Short summary of the IoT Patterns used in this paper.

Icon Description

Mains-Powered Device
Some devices have high energy requirements or are otherwise restricted
so that powering them with batteries or energy harvesting is not an
option. Connecting these devices to mains power provides them with
plenty of energy [22].

Always-On Device
Some devices have to be constantly active and connected to fulfill
their intended function or have virtually unlimited power available
to them (e.g., Mains-Powered Devices). Leave these Always-On
Devices connected and running at all times [22].

Device Gateway
Devices often di↵er in the communication technologies, protocols, or
payload formats they use. Connect them to an existing network or
system by using an intermediary Device Gateway that translates
between the di↵errent communication methods [20].

Device Shadow
Devices go o✏ine to save energy or because of network outages. Other
components still want to interact with them. By storing a persistent
virtual representation of devices and communicating through this copy
only, other components can still work with o✏ine devices [20].

Rules Engine
Throughout its operation a system receives a wide range of messages
from devices and other components. A Rules Engine can react in
di↵erent ways to these messages depending on their content, metadata,
or additional external data sources. Each message is evaluated against
a set of rules which trigger actions if they match [20].

Remote Processing
Some processing on the data produced by devices is very processing
intensive, requires a lot of storage, or requires multiple data sources to
be combined. Such processing steps may be too resource intensive for
devices. Remote Processing runs the processing steps somewhere
else, e.g., the Cloud, and returns the result to the originator.

Local Processing
Some situations require a fast reaction to sensor readings or other
events. In such cases, first sending this data to Remote Processing
components and then waiting for the answer may take too long. Local
Processing integrates processing capabilities directly on or physically
close to the devices where time-critical data is generated.
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Devices which turn most of their components o↵ for long periods of time in
order to safe energy [22]. But in our case, as our industrial machines are used
continuously to produce goods and are Mains-Powered Devices anyway, it
makes little sense for them to sleep for long periods. Thus, they are Always-On
Devices (see Table 1) [22] which, apart from high energy costs, bring only few
disadvantages.

5.2 Communication

The patterns we applied so far had no impact on our overall system architecture.
We continue with the middle part of our original overview in Figure 1, which is
concerned with the communication between the data sources on the left and the
Data Science Component on the right. Two patterns can be applied here as we
described in the rest of this section.

As mentioned earlier, we can have all kinds of machines and other data
sources which produce data in which we are interested for optimization purposes.
But these data sources rarely use a single communication technology, protocol,
or payload format. Industrial machines may use OPC-UA5 or other industrial
communication technologies, while other sources, for example databases, might
be accessed via SQL6. This is the problem solved by the Device Gateway
pattern (see Table 1) [20]. As shown in Figure 3, by adding a Data Interface

Unit, which implements the Device Gateway pattern, we are able to translate
di↵erent communication technologies so that they can be uniformly accessed by
the Data Science Component.

Fig. 3. Example with added Device Gateway pattern.

Although we have Mains-Powered Devices and Always-On Devices,
there may be situations where they are unavailable, for example during mainte-
nance or a power outage. Besides, some devices may not have a persistent storage
for their data. In this case, a Device Shadow (see Table 1) helps as it stores
the last known states and desired future states of all devices connected to it [20].
Thus, it is possible for other components, such as the Data Science Component

5 https://opcfoundation.org/about/opc-technologies/opc-ua/
6 https://www.iso.org/standard/63565.html

6

https://opcfoundation.org/about/opc-technologies/opc-ua/
https://www.iso.org/standard/63565.html


in our example, to access device data even if the device is currently not available.
As can be seen in the middle of Figure 4, we added this functionality to the Data

Interface Unit with the Relay Service.

Fig. 4. Example with added Device Shadow pattern.

5.3 Processing

The communication patterns that we introduced in the last sections added new
components to our example system which now allow us to communicate data
from the di↵erent data sources to the Data Science Component. Now we turn
our attention to the actual data processing. There are three patterns which can
be applied in this area.

The algorithms and software needed for the analysis and optimization of
machines and production lines vary depending on the use case. Thus, there is
not only one Data Science Component, as shown in the previous figures. Instead,
there are multiple di↵erent Data Science Components that can be selected. These
are hosted on a common Industrial Analytics Platform, as shown in Figure 5.
As an example, A Rules Engine (see Table 1) [20] could be one kind of Data

Science Component or part of a Data Science Component.

Fig. 5. Example with added Rules Engine pattern.

As mentioned earlier, the analytics capabilities provided by the SePiA.Pro
platform should be usable for all kinds of small or large organizations. Some
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of these do not have the required IT infrastructure or technical knowledge to
run the software provided to them. For such cases, SePiA.Pro o↵ers the option
of Remote Processing (see Table 1), where the analytics software is hosted
remotely in the cloud and the data produced by the machines and other data
sources is transferred into the cloud for analysis. To support this scenario, the
Data Interface Unit and the Industrial Analytics Platform, which includes a Data

Science Component, are packaged as a Smart Service [11]. This Smart Service
is then provisioned by the Smart Service Provisioning Engine into a remote
environment, as shown in Figure 6.

There may also be organizations using the SePiA.Pro platform for which
sending all their data to a remote cloud is not an option for security and privacy
reasons. Besides, in cases where a lot of data is produced and should be analyzed,
sending all this data to a remote location may not be practical because of
bandwidth limitations, high latency, or high costs. For such cases, SePiA.Pro
also implements the Local Processing patterns (see Table 1). Here, the Smart

Service Provisioning Engine is used to provision the Smart Service at the local
premises of the company, where they are in full control of their data and IT
infrastructure.

Fig. 6. The final example system after applying the Remote Processing and Local
Processing patterns.

6 Conclusion

Industrial production and automation is one area where IoT will be relevant in
the future. We have shown that our existing IoT Patterns can be applied in this
area to better understand the consequences of choosing a particular solution,
solve problems that appear in such systems, and provide an abstract architectural
overview. In the future we work on adding more patterns to the already existing
pattern catalog. One interesting area is security and privacy, where IoT Patterns
would be of high relevance, especially in industrial scenarios such as the example
described in this paper, where security and privacy is highly relevant. We are
also planning to further refine the existing connections between the IoT Patterns
into a pattern language, which gives IoT architects and designers more tools
to find and apply the right patterns for their particular use case. Besides, we
are working on methods that allow generic patterns to be refined to technology
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specific patterns [9] which can be linked into solution languages [12]. This could
provide IoT architects additional support when implementing IoT systems based
on IoT Patterns.

Acknowledgments. This work was partially funded by the project SePiA.Pro
(01MD16013F) of the BMWi program Smart Service World.
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Abstract. The Internet of Things (IoT) requires highly scalable infras-
tructure to handle the large amount of data from IoT devices. Therefore,
many IoT solutions use cloud computing to profit from the economy of
scale. Besides scalability, many of these solutions require service level
agreements with well-defined quality of service (QoS), which are chal-
lenging to define considering the complex environment of a cloud ecosys-
tem. This paper gives a basic introduction to the authors’s PhD topic
tackling this problem. The main goal of this thesis is to provide the IoT
solution architect with concepts and tools to predict QoS, and addition-
ally optimize the architecture to utilize cloud services in a cost e�cient
manner while fulfill its QoS.

Keywords: IoT, Cloud, Availability, Prediction, Architecture

1 Introduction and Motivation

In the Internet of Things (IoT), virtually everything will be connected to the In-
ternet, including, in particular, devices integrating sensors and actuators. Gart-
ner estimates that 20 billion devices will be IoT enabled by the end of 20201.
In order to manage the huge population of IoT devices and the large amount of
data stemming from these devices, a highly scalable infrastructure is required.
Cloud computing promises to provide such a scalable infrastructure at low cost
utilizing commodity hardware, virtualization techniques, and resource sharing
concepts.

However, running IoT applications atop a virtualized and shared infrastruc-
ture makes it challenging to provide these applications with a well-defined qual-
ity of service (QoS). In particular, safety-critical IoT applications have stringent
requirements with respect to response time (latency), and availability. For in-
stance, an emergency call (eCall) IoT cloud solution, depicted in Figure 1, can
automatically call for help after a car collision. The eCall solution needs to be
highly available and guarantee a response time in the range of seconds from the

1 Gartner, Inc. http://www.gartner.com/newsroom/id/3598917, Last Accessed:
27.04.2017
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2

detection of the collision by a sensor embedded in the car until triggering further
actions to help the driver. Consequently, we need concepts and tools to assist the
IoT cloud solution architect to design and implement cloud applications fulfilling
a well-defined QoS with respect to latency and availability.

Fig. 1: Example of the emergency Call (eCall) IoT use case.

Thus, the goal of this PhD project is to design concepts to predict the QoS
of a given solution architecture and more importantly optimize the architecture
to utilize cloud services in a cost e�cient manner and still fulfill its QoS. This
paper is providing a broad overview on this PhD topic and also discuss about
related work and research gaps.

The rest of this paper is structured as fallows, Section 2 presents preliminary
evaluations of related work. Finally, Section 3 provides a detailed description of
the PhD topic and the main research gaps.

2 Related Work

The early approaches to predict software availability, as proposed for instance by
Cheung [1], sought to predict availability by modeling dependencies and failure
rates manually as (discrete-time) Markov Chains as depicted in Figure 2. A
software system is modeled as a control flow graph where each node Ni is a
software module, and each edge (Ni, Nj) a possible transfer of control to module
Nj . In case of a failure, every node might transit to an absorbing failure state
F . The software system is available when the control flow reaches a successful
state C.

However, such approaches do not take response time into account and each
component needs prior availability annotations, which makes large cloud appli-
cations hard to model. In order to avoid complex modeling of Markov Chains,
concepts have been proposed of mapping use case scenarios or UML diagrams
to some Markov Chain structure [2]. Such concepts ease the design process, but
still requires a domain expert to annotate the model correctly.

Recent research in availability prediction has begun to include performance
analysis and o↵er better abstractions to model complex distributed systems. For
example, the Palladio Component Model (PCM), which is widely used in the
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3

Fig. 2: Example of a user-Oriented reliability software model by Cheung [1].

field of software engineering to analyze the performance of distributed systems,
has been extended by Brosch et al. [3] with the feature of availability prediction.
For example, Figure 3 depicts a MongoDB instance with one CPU and one hard
drive (HD); additional components can be added and it is even possible to model
use case flows within the models. In particular the PCM concept might also be
useful to model Micro Services.

Fig. 3: Example of a basic MongoDB instance with one CPU and one hard drive
(HD)

Nevertheless, PCM still requires manual availability annotations of compo-
nents during the design phase, and it cannot model cloud specific mechanics like
auto scaling or VM (Virtual Machine) migration.
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4

Dedicated approaches to model cloud availability have only focused on the
Infrastructure as a Service (IaaS) layer. Jammal et al. and Kim et al. provide
availability prediction models based on Stochastic Petri Nets [4, 5] which help to
model multi-tier applications and include physical servers combined in clusters,
VMs, and load balancing into their models.

However, these approaches are missing interaction with cloud services o↵ered
as Platform as a Service (PaaS), where clients can utilize cloud services like
databases, message brokers, etc. Most importantly they solely focus on dedicated
services, whereas most clouds also provide shared hardware and software services
to their clients.

Another research trend in availability prediction is to avoid manual annota-
tion of availability of software components. To this end, Pitakarat et al. provide
methods to predict the availability of distributed systems by applying machine
learning methods to monitor data [6], but this requires the IoT application to be
already deployed and running in the cloud, rather than evaluating an undeployed
architecture during development. A possible solution might be to combine the
architecture of an IoT application together with a online prediction model of
the cloud. In general, current software reliability solutions are not su�cient to
model the high complexity of cloud applications.

3 Research Goals

Cloud concepts like VM migration, auto scaling of service instances, fail-over
techniques, influence of shared services, interaction between the cloud layers
(IaaS, PaaS, Software as a Service), etc. have not been investigated deeply
enough. Therefore, this PhD project focuses its research on providing solutions
which help the IoT solution architect to predict the availability of his architecture
before deploying the application to the cloud, and more importantly optimize
the architecture to be cost e�cient and still fulfill its availability requirements
when running in the cloud.

Figure 4 gives an overview of the project goals. A Three-Tier Cloud Pattern

architecture (left) is used as an example IoT solution [7]. This architecture uses
two RabbitMQ nodes as messaging middleware to decouple the presentation tier
from the business tier . Additionally, the business tier is connected to a dedicated
MongoDB service.

First, this project aims to provide concepts to predict QoS, e.g., availability
and performance, of the IoT architecture before deploying the architecture to the
cloud. Therefore, the cloud ecosystem – here modeled with the basic three layer;
IaaS, PaaS, SaaS – and the additional management interface, need to be taken
into consideration since QoS depends on running services, service dependencies,
complex cloud patterns [7], and how they are utilized by other tenants.

In the second step, these concepts and tools needs be enhanced to also pro-
pose a cost e↵ective architecture which still fulfills the clients’s QoS require-
ments. For example, the architecture on the left of Figure 4 might provide a
higher availability than expected. To reduce cost, design tools might suggest
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Fig. 4: Research and project goals.

other service configurations (right side of Figure 4), e.g., using one RabbitMQ
node instead of two, and utilizing a shared MonogoDB instated of a dedicated
MongoDB instance.

Generally, proving these tools requires to tackle the following main research
gaps (see numerical labels in Figure 4):

1. Mapping of cloud structure to availability model.
2. Influence of shared services on availability.
3. Dependency interaction between cloud layers (IaaS, PaaS, SaaS).
4. Infer availability with little or without estimates of domain experts avoiding

human in the loop.
5. Modeling complex virtualization concepts and cloud computing patterns, like

service migration between datacenters, deployment chains, container nesting.

In a first attempt to solve these research gaps, we focus on Bayesian approaches
[8, 9] and probabilistic graph models [10], like Bayesian Networks [11]. Bayesian
Networks are helpful to model uncertainty, compute inference, and to handle
missing values. Additionally, Object Oriented Bayesian [12] Networks help to
manage software components, like Micro Service, in an hierarchical manner.

Finally, the IoT solution architect should receive tools which abstract away
the underlining availability model, by providing an environment similar to PCM,
or o↵ering an interface where the architect combines cloud patterns [7] to com-
plex IoT solutions.

15



6

4 Conclusion

Holding IoT applications in the cloud requires a high focus on availability, i.e.
QoS, for IoT solutions. To this end, this PhD project is investigating solutions
to predict availability of an IoT architecture before deploying the solution to the
cloud and more importantly optimize the architecture to be cost e�cient and
still fulfill its availability requirements when running in the cloud. Our prelim-
inary evaluation of related work has shown that many cloud specific concepts
and patterns have not been taken into account when modeling availability, es-
pecially, the interaction between cloud layers and influence of shared service.
One promising method to model availability are probabilistic graph models, like
Bayesian Networks. Therefore this PhD project focuses on concepts to combine
cloud patterns with mathematical models, in order to deliver QoS predictions
which help the IoT solution architect in designing his IoT solution.
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Abstract. The Internet of Things (IoT) has become an increasingly
important domain, which more and more requires application deployment
automation as manual deployment is time-consuming, error-prone, and
costly. However, the variety of available deployment automation systems
also increases the complexity of selecting the most appropriate technology.
In this paper, we discuss how the deployment of complex composite IoT
applications can be automated and discuss the conceptual strengths and
weaknesses of declarative and imperative deployment modelling.

Keywords: Deployment Modelling, Declarative, Imperative, TOSCA

1 Introduction

The Internet of Things (IoT) has become an increasingly important domain as
more and more IoT applications influence our life. IoT applications typically
consist of physical devices that are connected to software, which is often deployed
in cloud environments. Thus, IoT applications are cyber-physical systems that
consist of one or more physical parts and virtual parts. However, especially the
combination of physical devices and cloud-based software deployments quickly
leads to complex architectures as multiple physical as well as virtual components
have to be deployed, configured, and wired. As a result, the deployment of
such complex composite IoT applications is a serious challenge that requires
immense technical expertise [28]: Physical devices must be installed, scripts
deployed, sensors configured, and backend software provisioned. Due to this
complexity manually deploying IoT applications is time-consuming, error-prone,
and costly. However, although various deployment approaches exist to automate
the deployment of IoT applications, the variety of available technologies makes it
very di�cult to select the most appropriate technology for a certain use case.

In this paper, we discuss how the deployment of such complex composite
IoT applications can be automated by analyzing the conceptual strengths and
weaknesses of declarative and imperative deployment approaches based on our
experiences we gained in the BMWi project SmartOrchestra1. Thus, we do
not focus on individual technologies but on the general deployment modelling
concepts and discuss their suitability for di↵erent IoT deployment use cases.

1
http://www.smartorchestra.de
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2 Fundamentals & Related Work

The declarative deployment modelling approach is based on declarative deploy-
ment models that describe the structure of the application to be deployed including
all components, their configuration, and their relationships. A declarative deploy-
ment model is consumed by a declarative deployment system that interprets the
model, derives all required technical tasks to deploy the described application,
and executes these tasks [11]. Thus, declarative deployment models specify only
what has to be deployed, while the actual deployment logic gets calculated by
the deployment system and is, therefore, not contained in the model. There are
multiple scientific works that support the declarative approach for modelling
the deployment of applications, for example, by Eilam et al. [9], Maghraoui et
al. [10], Hewson et al. [13], and Breitenbücher et al. [6, 5]. Moreover, configuration
management technologies such as Puppet [27] often support declarative deploy-
ment modelling, too. The Topology and Orchestration Specification for Cloud
Applications (TOSCA) [22, 21, 24, 3] is a standard that enables automating the
deployment of cloud applications. TOSCA also supports the declarative approach
as it provides a metamodel for modelling the topology of the application to be
deployed including all components, their configurations, and their relationships.

In contrast, the imperative deployment modelling approach is based on
imperative deployment models that describe the actual deployment logic to be
executed in the form of a process [11]. Thus, imperative deployment models
are process models that explicitly describe all technical deployment tasks to be
executed, their order, and the data flow between these tasks. For application
deployment and management automation, often the workflow technology [18]
is used to describe the corresponding processes in an executable manner. For
example, the approaches presented by Mietzner et al. [20], Bellavista et al. [1],
Keller et al. [14], and Breitenbücher et al. [5, 8] are based on the workflow
technology. Moreover, there are domain-specific extensions for workflow languages
that focus on deployment, for example, BPMN4TOSCA [15, 17] or the approach
presented by Weerasiri et al. [30]. In practice, low-level shell scripts are often used
as well to describe software installation and configuration tasks in an imperative
manner. Imperative deployment models are executed by a corresponding process
engine, for example, a workflow engine, or by an imperative deployment system
such as OpenTOSCA [2], which is an open-source runtime for TOSCA. Thus,
TOSCA also supports the imperative deployment modelling approach by the
concept of Management Plans, which are executable process models that can be
used to automate the deployment of the modelled application.

We documented both deployment modelling approaches in our previous
work [11] in the form of Application Deployment Modelling Patterns. This work
also categorizes some available deployment automation technologies based on the
two modelling approaches. In this paper, we discuss the general suitability of
the two approaches for the deployment of complex composite IoT applications
with respect to requirements of the IoT domain. We first describe the conceptual
strengths and weaknesses of the declarative modelling approach in the next
Section 3, which is followed by the imperative part discussed in Section 4.
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3 Declarative IoT Deployment Modelling

In this section, we discuss the strengths and drawbacks of declarative deployment
modelling with respect to the domain of IoT. To provide a conceptual overview,
the discussion does not compare concrete technologies but discusses the general
suitability of declarative IoT deployment modelling. Each following subsection
discusses one certain strength or drawback. To support understanding and to
better illustrate problems, we provide examples based on the TOSCA standard.

3.1 Creation and Comprehensibility of the Deployment Model

Declarative deployment models capture the structure of the system to be de-
ployed as they describe the components that shall be deployed as well as their
relationships, thus, the topology of the application. This directly reflects the ap-
plication’s structure developers have in mind during development, which provides
an intuitive modelling approach and directly shows the final result. Moreover,
especially for IoT deployments directly capturing the involved physical devices
as well as their connections to software components eases the creation and un-
derstanding of the deployment model. In addition, for declarative deployment
languages typically graphical modelling tools are available that enable a fast
creation of the respective models. For example, the open-source TOSCA mod-
elling tool Winery [16] supports graphically modelling TOSCA-based declarative
deployment models based on the visual notation Vino4TOSCA [7].

3.2 Suitability of Declarative Technologies

Many IoT applications are composed of common components such as Raspberry
Pis and IoT middlewares2 such as the Mosquitto message broker. Moreover,
typically standardized communication protocols, such as MQTT [23], are used
that are explicitly defined regarding their technical details. As declarative de-
ployment models are interpreted by the deployment system, the components to
be provisioned and their relationships must be processable by the system. In a
previous work [28], we have shown that automatically deploying IoT applications
that are composed of such common components and protocols is possible based
on declarative TOSCA models. However, if customization and application-specific
deployment logic is required, the declarative approach reaches its limits as the
system needs to interpret the declarative model that specifies only what has
to be provisioned, but not how. To tackle this issue, declarative deployment
technologies typically provide plug-points, which can be used to specify custom
deployment logic for individual components. For example, the TOSCA Lifecycle
Interface [21, 24] enables to provide an own install implementation for a certain
type of component. However, this is typically limited to lifecycle operations and
does not allow to customize the deployment arbitrarily [4]. Thus, the declarative
modelling approach is mainly suited for common and non-complex deployments,
but is limited regarding individual customizations and application-specific details.

2 An overview of di↵erent IoT Integration Middlewares is provided by Guth et al. [12]
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3.3 Required Technical Deployment Expertise

Declarative deployment models specify only what has to be deployed, but not how
the deployment shall be executed. Therefore, modellers only need to specify the
application’s structure including the components, their wiring, and the desired
component configurations. Thus, only little or even no technical expertise is
required about the actual deployment execution: Neither scripting languages
have to be understood nor API calls must be orchestrated, which is typically
required for the deployment of complex systems [8]. Especially in the domain of
IoT, this characteristic becomes of vital importance as deploying and configuring
software on (remote) physical IoT devices is typically more complex than solely
deploying software in cloud environments as more technical deployment and
configuration tasks have to be executed [28]. The additional technical tasks range
from, for example, connecting to (remote) physical devices for installing software
to configuring gateways in order to establish the communication between devices
and backend. The immense heterogeneity regarding IoT middleware systems [12]
additionally increases this complexity. Therefore, only modelling the structure of
the system to be deployed requires significantly less technical expertise than the
imperative modelling approach, which has to specify all technical deployment
tasks, remote communications with devices, API calls, script executions, etc.

3.4 Deployment Customization

Declarative deployment models are interpreted by the deployment system, which
derives and executes the technical deployment tasks [11]. This interpretation
is typically based on (i) known types of components and relationships and
(ii) known management interfaces. For example, the OpenTOSCA deployment
system provides a plug-in system for the deployment of di↵erent component
types [5]. Many declarative technologies also support mechanisms to inject custom
deployment logic into the model based on known management interfaces. For
example, TOSCA not only provides a metamodel for declarative deployment
models but also standardizes the TOSCA Lifecycle Interface, which defines the
operations that are called during the deployment of a component, e.g., install
and start. Moreover, TOSCA enables to provide own implementations for these
operations on a per-component basis in the model. Thus, based on such interfaces,
the deployment logic of a component can be influenced even if a declarative
deployment technology is used. However, if more complex tasks must be executed
that do not follow such predefined operations, the declarative approach reaches
its limitations: The deployment can be customized only using such plug-points,
but not in an arbitrary manner. For example, if two di↵erent components must
be installed before both can be started, this cannot be realized using the TOSCA
Lifecycle Interface. Especially in the domain of IoT this is a critical limitation as
the configuration of physical devices often needs a special deployment execution
order. For example, often two devices must be physically connected before software
can be installed. Thus, the relationship between these two components must be
established before software can be deployed on the devices, which breaks the
typical deployment execution order of components and their relationships [5].
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3.5 Integration of Human Tasks

IoT applications are cyber-physical systems and, thus, consist of one or more
virtual parts and one or more physical parts. For automating the deployment of
the virtual part, there are many declarative deployment technologies available
that are capable of executing arbitrary deployment tasks, for example, creating
virtual machines, installing Web-based applications, and instantiating a database
on a Storage as a Service o↵ering such as Amazon RDS3. All these deployment
tasks have in common that they can be executed fully automatically without the
need for human intervention as the components that have to be deployed as well
as the components on which they have to be deployed can be accessed by software,
e.g., via HTTP-based APIs of hypervisors and cloud service o↵erings or low-
level communication protocols to access virtual machines. In contrast, deploying
the physical part of IoT applications often requires humans, e.g., for installing
devices, soldering sensors, etc. However, such human tasks are typically not
natively supported by declarative modelling approaches and are, therefore, very
hard to integrate into the available deployment systems and the corresponding
models. For example, in TOSCA it would be possible to implement the install
operation of a physical device component by a script that sends a message to a
human to install the device. This means that typical workflow features such as
sta↵ resolution, work item management, and role management [18] would have to
be re-implemented in such solutions as they are typically not supported natively
by declarative deployment systems. However, the reliability and robustness of
workflow management systems [18] cannot be achieved using such workarounds.

3.6 State-preserving and State-Changing Deployment Tasks

Deployment and management tasks can be abstractly classified into (i) state-
changing tasks and (ii) state-preserving tasks [4]. State-changing task change
the state of one or more components or relationships of the application, for
example, modifying the HTTP port of a Webserver changes the state of the
component. In contrast, state-preserving tasks do not change the state of one or
more components or relationships, for example, exporting data from a database
does not change the state or configuration of the database or of its stored
data. Declarative models support state-changing deployment tasks natively:
Components are transferred from state uninstalled to state installed, for example.
However, this type of deployment models does not support state-preserving tasks
very well as this kind of tasks cannot be modelled by specifying a component, a
relationship, or a configuration [4]. Especially for deploying IoT applications this is
a serious problem as state-preserving tasks are often required. For example, before
connecting a physical device to the backend system, its physical functionality
and also non-functional requirements such as its battery level may have to be
checked. In particular, if a device has an actuator that triggers some physical
action, a declarative model cannot specify that the physical functionality has to
be verified manually after the successful installation of the device or its software.

3
https://aws.amazon.com/rds/

22



4 Imperative IoT Deployment Modelling

In this section, we discuss the general strengths and drawbacks of imperative
deployment modelling with respect to the domain of IoT. Where possible we refer
to the declarative strengths and drawbacks to compare the both approaches.

4.1 Deployment Customization

Imperative deployment models are process models that specify a set of activities
to be executed as well as their order and the control flow between them. Thus,
they specify exactly how a deployment has to be executed [11]. This enables
influencing the deployment execution arbitrarily as each detail can be described
and customized in the process model, for example, the deployment order of
components can be changed or application-specific customizations can be im-
plemented by additional tasks. Thus, in contrast to the declarative approach,
imperative deployment models support state-preserving as well as state-changing
tasks. In particular, for deploying complex composite IoT applications also tasks
that are hard to describe declaratively can be realized, for example, installing a
physical device at a certain place or testing a device before connecting it to the
backend. TOSCA also supports the imperative deployment modelling approach
in the form of so-called Management Plans, which are executable process models
that automate the execution of a certain management function for the applica-
tion, e.g., its deployment. Thus, the TOSCA standard supports the declarative
as well as the imperative approach for deploying applications, which therefore
provides a suitable basis to choose the right modelling approach for a certain IoT
deployment use case. In particular, there are previous works that show how the
TOSCA standard can be used for IoT deployment automation [19, 28, 29].

4.2 Integration of Human Tasks

The integration of human tasks in the automated declarative deployment of an IoT
application is hard to realize and may misuse concepts provided by the deployment
technology (cf. Section 3.5). Using imperative deployment models this is much
easier as especially many workflow languages and workflow management systems
support the integration of human tasks in automatically executed processes [18].
For example, the Business Process Model and Notation (BPMN) [25] defines a
task type for integrating manual human task executions in an overall automated
workflow. Thus, this kind of deployment model is suited for IoT application
deployments in which manual task executions by humans are required, for example,
to install or configure physical devices at a certain place. However, the available
standards-based domain-specific workflow extensions for application deployment
such as BPMN4TOSCA [15, 17] currently do not support the integration of
human IoT deployment tasks, which is therefore part of our future work.
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4.3 Required Technical Deployment Expertise

Imperative deployment models describe each detail about the deployment tasks
to be executed, for example, technical details of script invocations, API calls,
and file transfers to virtual machines. In addition, also the control flow of these
tasks must be specified as well as the data flow between them. Moreover, when
deployment tasks shall be executed in parallel, this quickly leads to complex
process models that must be developed and maintained carefully. Thus, manually
creating imperative deployment models is a complex and technically error-prone
challenge [8]. Especially when multiple deployment technologies must be or-
chestrated, for example, for multi cloud or hybrid cloud deployments, di↵erent
API designs, data formats, invocation mechanisms, and security concepts of the
di↵erent deployment technologies and provider APIs also increase the complexity
of imperative deployment models [8]. IoT applications additionally increase this
complexity as also physical devices must be considered in the deployment process,
which often requires establishing connections to devices, transferring files, and
executing scripts—all these tasks must be reflected in the imperative process
model. As a result, the development and maintenance of complex imperative IoT
deployment models requires immense technical deployment expertise of possibly
multiple di↵erent deployment systems and APIs that have to be combined. There-
fore, the imperative approach is complex, error-prone, and time-consuming [8].
The TOSCA standard enables to reduce the complexity of imperative deployment
models as deployment logic can be hidden by the lifecycle operation implementa-
tions of the components (cf. Section 3.4). Thus, a deployment plan can invoke
these operations, which wrap technical details. Moreover, in previous work [31],
we also developed a TOSCA-based management bus that encapsulates deploy-
ment technologies such as Chef [26] from plans. As a result, plans only invoke
this bus in a standardized manner to execute a deploying task using a certain
technology without the need to care about the technical invocation details.

4.4 Comprehensibility of the Deployment Model

Declarative deployment models specify the structure of the application including
all components and relationships. Especially when graphical, graph-based rep-
resentations are used, declarative models provide a comprehensive overview on
the application to be deployed (cf. Section 3.1). In contrast to this, imperative
deployment models specify the process of the deployment. Thus, the final result
is not immediately visible in these imperative models and must be derived by
analyzing the modelled tasks, their semantics, and their order. This quickly gets
complex if an IoT application is complex and consists of various physical as well
as virtual components. Moreover, in IoT applications often multiple devices of
the same kind are involved, for example, devices with temperature sensors in a
smart home. Thus, in such scenarios not only the deployment tasks and possibly
their labels in the process model must be analyzed, but also their parameters
must be understood to recognize which component is a↵ected by a certain task.
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5 Conclusion and Future Work

In this paper, we discussed the suitability of the declarative and the imperative
deployment modelling approaches for automating the deployment of IoT appli-
cations. We analyzed the major conceptual strengths and weaknesses of both
approaches and mainly compared them in terms of complexity for modellers and
the required technical expertise. The paper shows that the major drawbacks of
each approach is solved by the other one, which leads to the conclusion, that a
hybrid IoT deployment modelling approach is required: A declarative deployment
model eases the specification of the desired deployment but is limited to common
and non-complex deployments. Thus, transforming declarative models into im-
perative deployment models enables customizing the IoT application deployment
arbitrarily as any additional task can be added and even human tasks and state-
preserving tasks can be included in the generated process model. It has been
already shown that this transformation is possible for software-based application
deployments [10, 9, 5] and also that simple declarative IoT application deployment
models can be transformed into imperative workflows [29]. Therefore, in future
work, we focus on this transformation—especially on the integration of human
tasks into the automated deployment process. This requires a detailed analysis
of existing imperative deployment modelling languages such as BPMN4TOSCA
and new concepts that support humans in executing such manual IoT deployment
tasks. For example, to install a certain software via USB stick on a device that
cannot be managed remotely due to missing connectivity to the network.
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12. Guth, J., Breitenbücher, U., Falkenthal, M., Leymann, F., Reinfurt, L.: Comparison
of IoT Platform Architectures: A Field Study based on a Reference Architecture.
In: Cloudification of the Internet of Things (CIoT). IEEE (Nov 2016)

13. Hewson, J.A., Anderson, P., Gordon, A.D.: A Declarative Approach to Automated
Configuration. In: Proceedings of the 26th Large Installation System Administration
Conference (LISA). pp. 51–66. USENIX (Dec 2012)

14. Keller, A., Badonnel, R.: Automating the Provisioning of Application Services
with the BPEL4WS Workflow Language. In: Proceedings of the 15th IFIP/IEEE
International Workshop on Distributed Systems: Operations and Management
(DSOM 2004). pp. 15–27. Springer (Nov 2004)
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19. Li, F., Vögler, M., Claeßens, M., Dustdar, S.: Towards automated iot application
deployment by a cloud-based approach. In: 6th International Conference on Service-
Oriented Computing and Applications (SOCA). pp. 61–68 (Dec 2013)

20. Mietzner, R., Leymann, F.: Towards Provisioning the Cloud: On the Usage of Multi-
Granularity Flows and Services to Realize a Unified Provisioning Infrastructure
for SaaS Applications. In: Proceedings of the International Congress on Services
(SERVICES 2008). pp. 3–10. IEEE (Jul 2008)

21. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA)
Primer Version 1.0. Organization for the Advancement of Structured Information
Standards (OASIS) (2013)

22. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA)
Version 1.0. Organization for the Advancement of Structured Information Standards
(OASIS) (2013)

23. OASIS: Message Queuing Telemetry Transport (MQTT) Version 3.1.1. Organization
for the Advancement of Structured Information Standards (OASIS) (2014)

24. OASIS: TOSCA Simple Profile in YAML Version 1.0. Organization for the Ad-
vancement of Structured Information Standards (OASIS) (2015)

25. OMG: Business Process Model and Notation (BPMN) Version 2.0. Object Manage-
ment Group (OMG) (2011)

26. Opscode, Inc.: Chef O�cial Site, http://www.opscode.com/chef
27. Puppet Labs: Puppet O�cial Site, http://puppetlabs.com/puppet/

what-is-puppet
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Abstract. Industry 4.0 endeavours often integrate and analyze a mul-
titude of data, such as data about machinery, production steps, and
environmental conditions, in order to optimize manufacturing processes.
Thereby, they aim to reveal information hidden in formerly isolated data
silos via holistic analytics approaches. However, the integration of such
data silos is often accompanied by challenges according legal regulations,
organizational obstructions, and technical implementations, among others.
Therefore, in this work we present a list of key challenges, which have to
be commonly overcome in integration projects dealing with essential data
from production processes. They can be used as a check list to address
recurring challenges in future Industry 4.0 projects. Finally, we identify
several plug-points in an abstract integration architecture, which have to
be considered in concrete projects at hand to enforced the requirements.

Keywords: Requirements, Policies, Data Aggregation, Industrial Data,
Data Integration, Industry 4.0

1 Introduction

The 4th industrial revolution, respectively known as Industry 4.0 [13], is facilitated
by developments in the fields of data analytics, which evolve in this context to
a new research field of so-called smart services [2]. Besides the availability of
easily accessible cloud computing resources and advances in the miniaturization
of sensors and Internet of Things (IoT) devices, the need for smarter factories
and dynamic production processes are main drivers for manufacturing companies
to foster new analytics approaches targeting the automated optimization of
production lines. Thereby, di↵erent technologies, e.g., IoT, shall be leveraged
in order to capture data about manufacturing environments and supporting
processes in a very fine-grained manner. For instance, sensors are brought out into
factories, which allow to enrich already present monitoring data about production
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processes with additional environmental parameters, such as temperature or
humidity. The major goal of such endeavours is to identify previously hidden
auxiliary conditions influencing production processes in a specific manufacturing
facility. In ideal cases, conclusions about changing degrees of incorrectly produced
parts can be deduced and machinery can be automatically adjusted appropriately
to compensate such changing parameters. Another example is to integrate data
silos from di↵erent production units to enable holistic analyses inferring new
insights and optimization potentialities of production processes to make factories
more adaptable to drastically increasing variations in the product portfolio.

However, while such developments promise to align whole industries for
the upcoming era of dynamically and rapidly changing productions, actual
Industry 4.0 projects are typically faced with di↵erent kinds of challenges that
have to be considered in order to attain success. On the one hand, the integration
of many di↵erent data sources and the analysis of big amounts of data both
require immense expertise in terms of the development of analytics algorithms
and the operation of integration middleware. On the other hand, the technical
perspective of such an data analysis project is commonly not the most substantive
one if it is about to prosper. Further requirements regarding law constraints,
organizational obstacles, or qualities and semantics of analysis results have to be
managed, which are often unapparent in the course of an Industry 4.0 project.

Therefore, we present findings by the research project SePiA.Pro [1, 16], which
is located in the context of Industry 4.0. We describe and structure ascertained
requirements concerning the integration and processing of business-critical data
about manufacturing processes and production steps. Among the discussion of
these requirements we also locate di↵erent enforcement points in an abstract and,
thus, generic integration architecture that can be considered as technical hooks
allowing to ensure compliance according the identified requirements.

The remainder of this paper is structured as following: we motivate the
challenges of Industry 4.0 projects in more detail and give deeper background
information in Section 2. We explain and structure key challenges in this context
in Section 3 and discuss possible enforcement points to assure the compliant usage
and security of business critical data in Section 4. Related work that supports
and extends the presented findings in this work is discussed in Section 5. We
conclude this work in Section 6 by summing up results that are expected from
this work and the project and identify relevant future work.

2 Motivation and Background

Typical Industry 4.0 projects have to deal with the integration of formerly dis-
connected data silos, be it because of di↵erent production units, departments,
or even legal entities. All these data sources are from the production or supply
chain. Such a scenario is depicted in Figure 1, which illustrates the isolation of
two production units on the right. In many companies, hierarchical organizations
or the distribution of manufacturing among di↵erent production facilities lead to
the emergence of data silos, i.e., technically disconnected databases. Each data
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Fig. 1. Typical Industry 4.0 integration scenario: (i) di↵erent types of data are integrated
as exemplarily depicted in Production Unit A, while (ii) di↵erent technical characteristics,
such as data streams, data batches, and transmission via file are exemplarily illustrated
in Production Unit B. Further, data from the di↵erent production units is further
integrated and exposed to an external analytics smart service.

silo typically comprises di↵erent types of data, such as exemplarily illustrated in
Production Unit A by machine-data, data about production steps and processes,
data about environmental conditions, and data from quality management moni-
toring production lines. The combination of this data can enable the creation
of additional knowledge that can benefit the data owner. Specific about this
setup is that the di↵erent data types are usually disconnected even if they are
technically available in a production unit. This is often due to di↵erent backend
systems, diverging data formats and semantics, as well as missing adapters and
integration middleware. Besides these technical impediments also organizational
structures and responsibilities can cause such inhomogeneous system landscapes.

The situation is typically even more complex, since besides di↵erent types
of data, also the technical characteristics of how it is captured and provided
can di↵er greatly. This circumstance is illustrated in Production Unit B, where
data is (i) available via data streams, i.e., continuous streams of bits and bytes,
(ii) a request – response model, where an inquiring system sends specific requests
for data, (iii) batches of data, such as results from executed sets of pooled SQL
queries, or as (iv) a number of file exports. Therefore, also the heterogeneity if
these characteristics adds to the complexity of integrating data from di↵erent
systems. Thus, from a technological point of view, the integration of these data is
a non-trivial task, as indicated by the question marks in the depicted production
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units in Figure 1. The integration is non-trivial because immense expertise about
the source systems, as well as suitable integration middleware is required.

However, once data shall be integrated among di↵erent departments, pro-
duction units, or even legal entities there often arise also obstacles in terms of
legal issues and organizational caveats, which have to be handled by integration
projects. Thereby, the integration of data from di↵erent legal units might cause
violations of country-specific law, e.g., laws and acts intending to protect the econ-
omy from monopolistic consolidations of companies, consumer protection laws
or laws against insider trading. This applies especially to integration scenarios,
where competitors strive to cooperate in non-business-critical areas. Also, if data
shall be integrated just internally, di↵erent departments or organizational units
might inhibit the integration of their data, since analyzing data more holistically
often allows for more transparencies and comparisons with other units, thus
fueling rivalry. All these non-technical issues have to be clarified in order to
provide proper boundary conditions for developing and applying algorithms to
analyze connected data holistically, which is illustrated by the third question
mark where inputs from the two production units are joined.

Based on this motivating scenario, a list of key challenges and requirements is
described in Section 3. In combination with identified policy enforcement points
in Section 4, they can be used as a starting point to identify, refine, and address
such obstacles in future projects working in the context of Industry 4.0.

3 Requirements for Industrial Data Sharing Platforms

and Policies

In this section, requirements for integration systems and data protecting policies,
respectively, are described and categorized. The requirements can be classified
into legal requirements, which are mainly dependent upon the geographic or legal
location in which the data acquisition and processing is performed. The legal
requirements are not entirely harmonized among di↵erent countries, making it
important to involve legal experts early on in such a project.

Organizational requirements are usually defined and enforced by the company
or companies employing such a smart service project. There is an overlap between
organizational and regulatory requirements with regulatory requirements influ-
encing and creating organizational requirements. Organizational requirements
can, furthermore, be di↵erent within one single business entity, e.g., in a company
which is operating in di↵erent countries. These requirements can further depend
upon the customers a↵ected by such smart services, e.g., the requirements can
di↵er for corporate, private or governmental customers.

The third category are technical or structural requirements, which mainly
stem from the underlying technical landscape. The fourth category comprises
of the logical or principal requirements, and, therefore, groups those that are
enforced to align with certain objectives or goals for which a particular smart
service project is created. The requirements are identified in the following sections
and described by respective examples and explanations.
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3.1 Legal Requirements

In general, legal requirements arise from the country-specific legal situation. Thus,
it is important to learn which laws have to be considered for elaborating a com-
pliant data integration solution. This can be important in scheduling Industry 4.0
projects, because law dictates the fundamental frame about which data is allowed
to be integrated. Thus, legal restrictions can prohibit to integrate data in order
to be analyzed holistically, although there are no technical limitations.

The Data Privacy Act protects individual-related data in Germany. Data
related to people is specifically protected to be processes arbitrarily. Transfered to
data integration scenarios, e.g., data about bank accounts must not be combined
with data about the purchasing behaviour of customers without being explicitly
approved by them. Another example a↵ects the processing of data about produc-
tion processes. In such cases, it is often prohibited, or at least critical, e.g., to
combine data about production processes, downtimes of conveyor belts, and sta↵
for calculating the overall e�ciency of personnel. Such purposes mostly have to
be clarified with and approved by the employee organization of the company.

Sharing data between di↵erent legal entities or internal units can lead
to legal issues. On the one hand, if data is shared with competitors in the same or
in equal business areas, this can violate law against the suppression of competition,
i.e., anti-cartel law. On the other hand, integrating data of distinct internal units
can violate law and internal compliance policies if, e.g., the resulting integrated
dataset and the automated analysis is not consistent with four-eyes-principles.
Therefore, overcoming data silos might cause the circumvention of formerly
established compliance processes because due to such regulations data must be
distributed among separate units with di↵erent management responsibilities.

Anti-discriminatory algorithm design must be enforced in case of legal
requirements to avoid biased algorithms. This can be of importance when algo-
rithms and analyses involve person-attributable factors such as gender, religion or
race. For industrial data scenarios this applies in cases when data about personnel,
e.g., from processes, is combined with other data to draw conclusion’s about
their performance or qualification for specific tasks. Such analysis scenarios then
typically have to deal with requirements detailed in The Data Privacy Act above.

3.2 Organizational Requirements

Organizational requirements typically stem from responsibilities of management
sta↵, hierarchies, and segmentation of companies into departments, divisions, and
units. Besides this, also sociological connections can influence data integrations
among di↵erent departments. In any case, a integration project can benefit from
a sponsor with wide-ranging responsibilities regarding these influencing factors.
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New continuous transparencies of business unit data arise by enabling
holisitc analyses. This is due to the fact, that formerly isolated data silos are
connected and integrated, which can cause suspiciousness at any a↵ected employee.
Therefore, the intended transparencies as a result of the analysis of integrated
data can, e.g., lead to unpleasant comparisons of the performance of di↵erent
departments. Thus, people might refuse collaboration with integration projects
because they fear being bad in comparison with others.

Data ownership is often dedicated to specific management responsibilities in
a company. This implies that there are managers in a company, who must be
enabled to enforce rules, i.e., policies about how specific data can be used and
processed. However, data integration scenarios typically integrate datasets to
allow comprehensive analysis. Thus, it has to be clarified how data policies can
be enforced in the integrated dataset and if new data responsibilities are added.

Inter-company analytics scenarios are often not the major aim of Industry 4.0
projects. Nevertheless, abstracting and aggregating data until they no longer
contain business critical information can still open up analysis scenarios along
with further companies, which can lead to overall results and value adds for all
participants. For instance, if companies operating machines share data about
their processing environments, environmental conditions, and machine parameters
with the machine vendors, this can enable completely new business models. Of
course, then data has to be shared in a way that no business critical information,
such as information about the produced parts, is captured. However, this can
then enable the analysis of overall machine fleets by machine vendors resulting
in suggestions about how to optimize the operation of machines.

3.3 Technical or Structural Requirements

The technical or structural requirements involve issues and obstacles, which can
occur due to implications based on technological restrictions or implementation-
specific di�culties. These restrictions typically have to be managed in the develop-
ment and implementation phase of an integration project, while requirements as
presented in the sections above have to be carefully considered and incorporated.

Di↵erent semantics of data from di↵erent data sources can lead to im-
mense integration e↵orts. For instance, machinery from di↵erent vendors can
be technically integrated based on compatible protocols but usually provide a
vendor-specific data model. So, the di↵erent data models have to be compared
and mapped to each other in order to assure precise semantics of the resulting
integrated set of data. Often, a normalized data model has to be derived and
additional data transformations have to be introduced for source systems to
match with the integrated data model. Such transformations typically lead to
more complexity in the overall integration system due to additional processing
components but also because of additionally required processing infrastructure.
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Di↵erent formats, quality of data, and acquisition rates are also obsta-
cles, which have to be managed in order to enable the holisitc analysis of di↵erent
data sources. Thereby, semantically equal values have to be adjusted, e.g., the
fractual part of floating-point numbers. Another problem arises, if data with
di↵erent accuracies is collected. Some data sources can provide a higher degree
of uncertainity with some data than others, which must be reflected for decisions
based on them. Finally, sensors and other data sources often provide data by
di↵erent rates, which has to be considered by normalizing such data streams.

Data policies have to be inseperable from the data to be protected and in-
tegration middleware has to enforce them. This assures, especially in the field
of industrial data, the required degree of security for business critical data. For
instance, if a specific set of data is classified, i.e., it is defined that it must not
leave the company, this has to be attached to the data in the form of a data
policy, which can be processed and enforced by integration systems [15].

Arbitrary data transfers have to be secured by data policies. Hence, data
policies have to be attached to data independently from the communication
channel, be it the transfer of data via data streams, batch jobs, or ordinary files.

Policies have to be combinable on all aggregation steps as motivated in Sec-
tion 2. Integrating data among di↵erent departments, business units, or even
companies often implies that data is integrated on a cascade of di↵erent in-
tegration systems. Each integration step can require to initiate aggregations
and obfuscation of data in order to enforce attached policies. However, in such
scenarios policies also have to be applied in combination, i.e., policy aggregations
have to be conceptually possible and must also technically be enforced.

3.4 Logical or Principal Requirements

The requirements presented in this section add general aspects to the above
presented ones. They influence the quality of analysis results and the protection
of data by adding general properties to be incorporated into integration systems.

Data results must yield a specific format or data-range. Thus, specific expecta-
tion checks should be applied to data at the di↵erent integration and aggregation
steps as presented above. For instance, data input and data output at a particular
processing step must conform to specific rules, which have to be defined. This
assures that data does not get corrupted during di↵erent manipulations.

Enforceability of data policies has to be assured twofold: firstly, policies
must be enforceable under specific conditions, such as in accordance with time.
So the relevance of a policy can be restricted via time constraints in a way, that
it only applies for data with specific time stamps. Secondly, policy checking and
enforcement must be automated to assure performance of integration scenarios.
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4 Policy Enforcement Points in Industrial Settings

Policies must be enforced in any system. With the proposed and described system
a distributed data network is created. By the nature of this distribution, di↵erent
logical points are possible and reasonable for enforcement operations. By enforcing
policies in di↵erent locations, di↵erent results and implications are manifested.
In the current scenario, data is acquired and handled within DataHubs, software
components that are equipped with control and access logic, thus, managing
the access and acquisition of data for the stakeholders. They can be recursively
stacked within enterprises and locations as the following example depicts.

A DataHub is placed logically near the data producing machine and unifies
the access to this device such that it can be used in the resulting smart service.
Another DataHub is placed within one factory building, aggregating data from
and unifying access to several downstream DataHubs located at various machines.
Furthermore, a DataHub is placed at a business unit that controls various factory
buildings and individual machines with associated DataHubs. The location and
placement of the DataHubs can be categorized as follows:

– Directly at the data-producing machine. This placement requires knowledge
about access control structures, based on employees or groups, which might
not be available in this level as the management is usually a few layers up.

– Aggregating data within a physical location, e.g., within a factory building.
– Within a business unit, responsible for data acquisition of a various number

of physical and logical locations.
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Fig. 2. Data policy enforcement points along di↵erent aggregation steps as indicated
by eleven policy documents in an abstract integration scenario.
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– At company borders, for inter-company connection of data processing tasks.
This placement requires, like all others too, detailed knowledge of the con-
nected machinery to enforce certain access restrictions on specific data fields,
which might be not available this far from the data production.

All placements vary in the degree of implications caused. To summarize it
can be stated, that for the data access enforcement, knowledge about the allowed
and disallowed groups and persons, knowledge about company structure, aims,
and targets, and, finally, knowledge about the data structure available is required.
The di↵erent involved parties have varying knowledge about this.

The DataHub is intended to be data-agnostic, meaning that the access is
unified, but for the implementation this knowledge is still required. The individual
DataHubs do not have any knowledge of the structure further upstream and
are only aware of their immediate downstream level. The logic is imbued into
the system through the smart services, which have a complete picture of the
connectedness of the machines and DataHubs. The implementation scenario of
the DataHubs and the machinery within the SePiA.Pro project is depicted in
Figure 2. In this figure, the Industrial Data Integration Hub is also a DataHub
component, that is named to indicate its purpose.

The policy enforcement can further be divided by being upstream or being
downstream. Upstream denotes the case, where all data access is propagated
from the user and the data is acquired accordingly and only in the situation of
the transmission of the data back to the user, it is checked if the data is allowed
to be procured to the user. The downstream policy checking works by testing the
data acquisition or processing requests prior to their execution and acquisition.
Aggregation of data might result in new data that the user is not allowed to
process which is possible to filter in the upstream processing. In the downstream
processing, the user might be wrongfully inhibited to generate data requests that
would, eventually, through aggregation or pre-processing, result in data the user
would be allowed to process. As an example, a policy could prohibit the usage
of personal information, such as which operator of a machine is working with a
machine for how long. In this example and with downstream policy application, it
is possible to query the machine operating hours and separately shift plans for the
respective machine. Both these queries do not yield the forbidden information, so
it would be allowed. Further combination of these data would yield the forbidden
information but could not be prevented in this case. To prevent this, upstream
policy application is required.

The policies, indicated by the scroll symbol and named P
x

in Figure 2,
can be attached to raw data and processed data of various types. The policies
are ensured to be enforced by the DataHub. In the reverse direction, sending
instructions towards the data sources, e.g., for the addition of additional sensors
or for restructuring of the data, are also possible with the system. This direction
is not depicted in the figure. These instructions are also enhanceable with policies
as described.
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5 Related Work

In the following, related work is discussed, which extends the context of this work.
Thereby, we especially point out work presenting details and approaches about
the presented challenges and starting points to solve them in particular projects.

According to Weyer et al. [24], one additionally identified and important
challenge for the advent and success of smart factories is the standardization of
protocols, technologies, and data formats. They identify that production systems,
nowadays, are still only vendor-specific ecosystems, which are not driven by open
standards. This hinders their interplay and integration to foster automatic control
and adjustment of production processes. Thus, they provide SmartFactoryKL as
an exemplary reference for a modular and adaptable production system.

Regarding the communication and connectivity of machinery, devices, and
further data sources, Varghese and Tandur [23] describe the key role of wireless
communication networks to enable Industry 4.0 systems. They discuss current
key challenges in the field of wireless communication and argue how the 5th

generation of wireless networks can tackle these. The identified key challenges
concerning wireless communication extend the presented technical challenges in
this work. Wollschläger et al. [25] further underline these challenges by identifying
IoT as the leading technological evolution, which enables the development of
smart platforms to access and orchestrate industrial data and devices.

To overcome the technical challenges in terms of the design and implementa-
tion of integration architectures as abstractly depicted in this work, there are
di↵erent approaches presented. General IoT reference architectures to identify
main system components are given, such as presented by Guth et al. [12]. The
enterprise integration patterns by Hohpe and Woolf [14] provide best practices
to design and implement integration systems. Implementations of these patterns
are already available via di↵erent middleware technologies, such as Apache Ac-
tiveMQ [21], Apache Camel [22] or Spring Integration [17]. Further, the cloud
computing patterns by Fehling et al. [11] provide knowledge about integration of
private and public clouds, which can get necessary in Industry 4.0 endeavours if
local processing power is not su�cient to execute analytics algorithms contained
in smart services. To specifically deal with architectures and characteristics of
IoT-related systems and devices, Reinfurt et al. [18, 19] provide a collection of In-
ternet of Things Patterns, which they plan to develop towards a pattern language
for IoT. The presented requirements in this work can be mapped to their patterns
in order to find proper solution concepts. Finally, to ease and guide design and
implementation of IoT systems and integration scenarios and, thus, to e�ciently
overcome the identified implementation challenges in this work, Falkenthal et
al. [5, 4, 6, 9] describe approaches to connect concrete implementations to patters
using pattern and solution repositories as introduced by Fehling et al. [10].

Finally, technologies from the domain of cloud computing have been iden-
tified to be drivers of the 4th industrial revolution in terms of automating the
provisioning and management of analytics stacks [8] and to enable function
and data shipping scenarios based on situational conditions [7], such as legal
and organizational requirements as identified in this work. Application of cloud
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technology is also considered essential in manufacturing concepts, such as cloud
manufacturing as described in Baumann et al. [3], where the connection of
additive manufacturing technology to the Internet is described, thus enabling
collaborative work.

6 Conclusion and Future Work

We presented in this work findings from the project SePiA.Pro [1], which investi-
gates the issues and challenges of Industry 4.0 projects in terms of the research
program Smart Service World of the federal ministry of economics and energy
of Germany. Thereby, we elaborated requirements for protecting industrial data
in the context of Industry 4.0 endeavours via requirements or data policies,
respectively. Such data policies are means to specify constraints, restrictions or
instructions that apply to the data, taking into account aspects such as data
accessibility, utilisation, processing, obfuscation, storage or generation. The poli-
cies extend common access control rules and restrictions to incorporate concepts
such as temporal, logical and organisational triggers. An exemplarily scenario
for enabling trust and enforcing implementations was analysed within this work,
which can be used as a coarse-grained overview to attach data policies to relevant
data sources and plug-points in data integration architectures. The rationale for
such an attachment of policies is to secure and protect data from manufacturing
environments in standards-based deployment models such as cloud computing.
These models can be used to provision smart services and wiring them with
arbitrary data sources, such as databases, data aggregation services, industry
specific machine to machine or IoT related data streaming endpoints.

In future work, we plan to further investigate, how and through which means,
i.e. systems and parties, the identified challenges, requirements, and policies
can be enforced at several points in time of the lifecycle of smart services —
specifically at modelling time, deployment time and runtime — to overcome the
above mentioned obstacles. Based on these investigations we plan to extend the
open-source provisioning engine OpenTOSCA to enable the enforcement of data
policies in Industry 4.0 deployment scenarios as presented by Falkenthal et al. [8]
and also or more general IoT integrations such as presented by [20].

Acknowledgments. This work is partially funded by the project SePiA.Pro
(01MD16013F) of the BMWi program Smart Service World.
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Abstract. Over the past years, (big) data and analytics have made a significant 
impact in nearly all domain.  Organizations have commenced progressively on 
capitalizing their data assets in larger volumes, and with more varieties and 
varying velocities than ever before. Data pipelines constitute the de-facto vehicle 
for transforming these data assets into value. Although there have been many 
publications in recent years regarding concrete architectures of data pipelines for 
specific use cases and technologies, a literature on technology and domain 
independent, high level, and unified reference architecture is absent. In this paper, 
we first review and analyze multiple industry cases on the development and 
management of data pipelines. Based on this thorough analysis we propose and 
partially validate a reference architecture for robust and scalable data pipelines, 
which is the main contribution of this paper. By defining the functionalities and 
data flow between the main components of a big data pipeline, we hope to 
facilitate implementation of a concrete architectures for big data pipelines. 

Keywords: (Big) Data Pipeline, (Big) Data Pipeline Reference Architecture 

1   Introduction 

In 2006 Michael Palmer, a marketing commentator, was the first to compare Data 
with crude oil; and just like crude oil, value from data needs to be extracted through 
proper processing [1]. (Big) Data pipelines constitute the refineries of data: they 
efficiently collect, process, and transform raw data into actual value. These are 
challenging tasks as the volume, variety, velocity and veracity of data is continuously 
increasing. In this paper, we make a first step towards the definition of a high-level 
reference architecture for (big) data pipelines. Therefore, we seek to answer the 
following three research questions:  

1. What are the components of a reference architecture for (big) data pipelines? 
2. What are the functionalities of these components? 
3. How does the data flow between these components? 
We envision that this reference model will provide multiple benefits, both at 

theoretical and practical level. In primis, a reference architecture facilitates the design 
of concrete architectures. This also facilitates standardization of concrete architectures, 
which enables reuse of standard system functionalities and configurations, and resulting 
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shorter time to market and cost reduction [2]. The definition of a true reference 
architecture is far from a trivial task. We will use a bottom-up approach: starting from 
industry cases, we will abstract key features, including functional and non-function 
requirements (desiderata) of current real-life pipelines. 

In this work, we will adopt the design science research methodology, using empirical 
research to gather requirements, with design and validation (again based on empirical 
studies). Firstly, we have conducted an in-depth literature survey to localize case studies 
reporting on the development of data pipelines. From the cases, we have carefully 
selected three case studies that proved to have sufficient objectivity, quality, and depth 
for further analysis in Section 3. From the case studies, we have subsequently analyzed 
and abstracted key design desiderata for data pipelines also in Section 3. Based on these 
desiderata, we then have proposed a generic reference architecture in Section 4. In 
Section 5, we use the framework provided in [3] to analyze the design and relevance of 
our reference architecture. Finally, in Section 6 completes this article with conclusions 
and future work. 

2   Reference Architecture Definitions and Design Approach  

In the software domain, reference architecture is associated with numerous definitions 
[3]. For our work, we have selected the definition used in [3], where a software 
reference architecture is defined as a generic architecture for a class of software 
systems. It is a high-level abstraction of all the components, and it defines or describes 
the functionalities and data flow in between each component. Furthermore, reference 
architecture lays the foundation for creating concrete architectures. 
This paper proposes a reference architecture for big data systems based on the 
empirically-grounded design framework for reference architecture; which is originally 
proposed in [3] and [4]. In Section 3.1 three use cases of big data pipelines are studied 
from literature. The framework proposed in [3] comprises of multi-dimensional space 
for classification of five different types of reference architectures. The work in [3] also 
displays that a reference architecture is congruent if a reference architecture can be 
classified as one of the five reference architectures. In this paper, we also examine the 
proposed reference architecture using the multi-dimensional space and validate its 
congruency.       

3   Study of Real World Data Pipelines  

To understand the essential characteristics and design desiderata of data pipelines, in 
this section we reviewed three case studies from literature. After studying these 
pipelines, we superimpose these case studies and refine common serving as the natural 
substrate of the proposed reference architecture. 

In [5] authors design a data pipeline to process ‘activities’ of customers for Groupon, 
an e-commerce company. These activities include web-based interactions such as 
product view, clicks, and purchases on Groupon’s touchpoints (website, mobile 
application, and marketing email) from a 100 million+ customer base. To handle such 
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large volumes of data, the data pipeline is designed in two segments or parts. In the first 
part, the data pipeline accommodates products and customer activity data from separate 
sources. Product information such as price and locations are collected and stored in 
Hadoop Distributed File System (HDFS) [6] and various log files containing customer 
activity information are put, in real-time, to Apache Kafka [7]. Apache Storm [8] 
consumes these logs from Kafka in real-time, processes it in a canonical format and 
writes the output into Apache HBase [9]. The second segment joins and processes 
product and customer data from HDFS and HBase with MapReduce [10] in batch or 
offline to derive valuable and actionable insights. 

In [11], authors proposed a big-data pipeline for carrier payments, a service enabled 
via PayPal to use mobile as a mean to pay for digital goods. A verification PIN is sent 
to the mobile phone and the amount is charged at the end of the month along with the 
mobile phone bill. As with any payment method, dealing with fraudulent transactions 
is a key challenge. Authors implement a data pipeline to bring relevant data into a 
platform to enable a data-driven method to tackle fraudsters. Data is pushed from 
various sources into the data pipeline through a single REST interface, which accepts 
JSON data with just a simple application reference ID. To handle ingestions at various 
pace with scalability, this entry point is built as a micro service and the ingested data 
are pushed into Kafka. Each source is submitted to a separate ‘topic’ or queue in Kafka. 
Apache Storm picks up ingested data from Kafka, does simple processing and stores 
the output in Hive [12]. 

[13] presents a data pipeline for IoT applications where the authors address the 
challenge of capturing and processing huge amounts of IoT data in an efficient way. To 
achieve such efficiency in a data pipeline, a combination of various suitable tools is 
required. The authors perceive scalability and load balancing as the key requirements 
in selecting each component for building the IoT (sensor) data pipeline. They suggest 
Apache Flume [14], Fluentd [15], ZeroMQ [16], RabbitMQ [17] as great for data 
ingestion. The authors also lists Apache HBase [9], Apache Cassandra [18] and 
InfluxDB [19] as options for implementing a highly scalable high-speed data store. 
Furthermore, the literature suggests Apache Flink [20], Apache Storm [8], Apache 
MapReduce [10], and Apache Spark [21] as data processing framework; and R [22], 
SciPy [23], NumPy [24], Hive [12] as preferred data analytics toolkit. 
Comparative Case-Study Analysis: For all the data pipelines reviewed above, system 
scalability and real-time capability is of top priority. Furthermore, in [5] and [11], 
ingesting unstructured data from various sources with a high degree of schema 
flexibility is a necessity. To ensure system scalability and increase schema flexibility, 
we see a common trend of implementing a publish/subscribe mechanism, where 
ingested data is fed into a central queueing system. However, the data pipelines vary 
on the requirement of processing complexity of ingested data. While [5] requires 
complex data processing, [11] and [13] requires simple data processing. A summary of 
the design considerations underpinning the case studies is summarized in Table 1. 

Table 1.  Data Pipeline Design Considerations 
Architectural Patterns Mentioned In 
Ingestion with Schema Flexibility [5] [11] 
Real-Time Capabilities [5] [11] [13] 
Complex Processing [5]  
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System Scalability [5] [11] [13] 
Pub/Sub Mechanism [5] [11] [13] 

4   Towards a Reference Architecture 

Traditionally, a pipeline is a collection of data processing tasks connected in a series, 
where the output of one task is the input of the next task [25]. As we have observed in 
Section 3, (big) data pipelines in modern-world settings typically consist of multiple 
dependent tasks leveraging different technologies to meet required design goals or 
considerations.  

The reference architecture proposed in Figure 1 is grounded on the design desiderata 
reported in Section 3. The data collection (see left hand side in this figure) ingests data 
from external sources into the data pipeline. Data sources are the end-points from where 
the data pipelines consume data, and is further categorized as streaming or stationary 
sources. Data collection has a streaming layer to accommodate data from streaming 
sources and a batch layer to gather data from stationary sources. Streaming data sources 
push data into the data pipeline when new data is available. On the contrary, data 
collection gather data from stationary sources in a batch or periodic manner. The data 
bus, which is essentially a message queuing system, acts as a buffer for the incoming 
messages. The data collector is responsible for sorting the data into the right queue. 
Once the data processor picks up incoming data, it transforms the data and writes the 
result to a data store or sink.  

The data queue enables the data collection and data processing to operate 
asynchronously and scale independently. Typically processing the data and writing it 
to an output requires more resource. By implementing a publish/subscriber pattern, 
multiple data processing instances can consume data from a single point. This 
simplifies complicated tasks such as governing, routing, and managing data. 
Furthermore, the data queue enables the data collection to push data with high 
throughput, without having to worry about the availability of data processing.  

 

Fig. 1. (Big) Data Pipeline Reference Architecture 

The next component of our data pipeline entails the data processing. It consists of 
three sub components: the consumer, processing engine, and output driver. The 
consumer is responsible for picking up the right set of data from the data bus. Once the 
right data is retrieved, the processing engine transforms or processes the data. After the 
data is processed, the result is stored for further consumption. The output driver 
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connects and writes the output of the processing engine to the data store. Like the data 
collection, the data processing could be configured to operate in a streaming or batch 
style. 

A summary of every component, identifying the functionalities and data flow is 
provided in the Table 2. 

Table 2.  (Big) Data Pipeline Reference Architecture Summary 

Component Functionality Data Flow 
Data Source Provide Data 

 
To Data Collection  

Data Collection  Ingest data, simple processing, validation, and 
sorting the data into the right queue or topic. 
 

To Data Queue 

Data Queue Enable asynchronous exchange of data 
between data collection and data processing. 
 

To Data Processing  

Data Processing  Simple and complex data processing to 
transformation 
 

To Data Store 

Data Store Store the result produced by the Data 
Processing 

- 

   

 
 

5   Reference Architecture Classification and Analysis 

We have used the multi-dimensional space provided in [3] to analyze the congruency 
of our reference architecture. In [3] , congruency is defined as alignment between 
architectural goals, design context and intended application context, and architecture 
design and specification of a reference architecture. The value for each dimensions of 
the multi-dimensional space is provided below in Table 3. 

Table 3.  Classification of Reference Architecture 
Dimension Value 
Why is it defined? Facilitation  
Where will it be used? Multiple organizations 
Who defines it? Research  
When is it defined? Preliminary 
What is described? Components 
How detailed is it described? Semi detailed 
How Concrete is it described? Abstract elements 
How is it represented? Semi-formal element specifications 
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As summarized in Table 3, the reference architecture proposed in this article was 
designed with the goal of facilitation of the design of concrete data pipeline 
architectures in research groups within Philips Lighting and Jheronimus Academy of 
Data Science. This is a preliminary reference architecture, which will mature and 
develop with further research and innovation of this topic. The values specified in the 
multi-dimensional space aligns with the type 5 reference architecture proposed in [3]. 
The work in [3] shows that if a multi-dimensional space can be aligned with one of the 
five types of reference architectures, the reference architecture proposed can be said to 
be congruent. Therefore, we can conclude that with respect to the purpose we have 
defined our reference architecture it is congruent.   

5   Conclusion and Future Work 

In this article, we lay the foundation for a reference architecture for data pipelines with 
the goal of facilitating concrete data pipeline architectures and further research in this 
field. The three research questions regarding the reference architecture for (big) data 
pipelines was answered in Section 4. Furthermore, the congruency of the reference 
architecture proposed in Section 4 was validated using the multi-dimensional space 
from [3] in Section 5. However, the reference architecture reported in this article are 
clearly core research results in nature. We understand that only three data pipelines 
were studied in design of this reference architecture, and further research is required to 
validate and improve the proposed reference architecture. Our ambition is to follow up 
this effort with additional research toward better management of data pipelines. 
 
Furthermore, the amount of data available to companies is exponentially growing and 
diversifying. There is an increasing and urgent need to have more effective and efficient 
mechanisms, tools, and techniques to develop and manage data pipelines. Currently, 
data engineers typically design, develop and maintain data pipelines on a rather ad-hoc, 
case per case base. What is lacking is a robust, predictable and repeatable approach to 
develop and maintain data pipelines, promoting reuse, embracing change and resulting 
in shorter development time, less efforts and more standardized solutions. 
 
We envision to exploit model management operators to further formal underpin and 
operationalize our approach. In addition, more (tool) support is needed to “instantiate” 
the reference architecture. We strongly believe that patterns have proven to be an 
efficient instrument for similar software engineering problems in the past. Our future 
work will be directed toward developing patterns to cater for a systematic, repeatable 
and rigorous development (and maintenance) of data pipelines. 
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Abstract. This work presents the architecture of a sensor platform which is con-
ceived as a sensor and data management system in IoT sensor networks. The 
main advantage of the platform is its flexibility regarding the design and man-
agement of sensor configurations. Sensor configurations are enriched by seman-
tic annotations for fitting the sensor platform to specific application contexts. The 
sensor platform manages the connection with a variety of heterogeneous sensors, 
incorporates analytics and data persistence, energy management and allows the 
transmission of the information to middlewares or cloud computing systems. The 
sensor platform is designed to be integrated easily in different domains and was 
already successfully used in food tracking scenarios as well as in the field of 
ambient assisted living.      

Keywords: Sensor Platform, Sensor management, Wireless Sensor Networks, 
Semantic Annotations, Data Management, Energy Management, Flexible Con-
figuration, Resuability, IoT Application Scenarios 

1 Motivation 

The numbers of sensors used in the Internet of Things worldwide is constantly growing. 
According to IHS [1], 30.7 billion devices are expected to be interconnected wirelessly 
and as integrated devices in the year 2020. Their application fields are enormously di-
verse such as logistics, food tracking, ambient assisted living, energy, environmental 
monitoring, emergency cases, etc. The heterogeneity of domains implies the need for a 
high variety of sensor deployment and access. Usually in the typical application sce-
narios, a large amount of small sensors is distributed and therefore hard to access for 
energy consumption and its data. For such kinds of applications, sensors require a bat-
tery and low energy consumption, in order to increase the usage time and ensure precise 
sensing for longer time-periods. Bluetooth and ZigBee constitute two technologies that 
seem to fill this gap [2][3]. Taking into account these requirements and the high distri-
bution of sensors, reading the information on demand becomes a challenge. The sensor 
platform presents itself as a solution for acquiring and managing the different sensors’ 
data and making it avaible in convenient ways such as scanning or touchlessly reading-
on-the-fly while passing by.  

49

mailto:zsolt.kemeny@sztaki.mta.hu


2 

 
Fig. 1. Sensor platform application 

A high number of sensors results in huge amounts of data depending on the number of 
relevant sensors and their acquisition interval. On the one hand, cloud computing con-
stitutes a powerful development to manage and analyze big amounts of information. 
On the other hand, application design should consider if all single data points actually 
need to be transmitted or whether it makes sense to omit or pre-process sets of          
measurement directly within the sensor platform. The sensor platform allows designing 
for both alternatives and then establishes a common output interface for transferring the 
information to cloud services or middlewares (see Fig. 1).  

2 Sensor Platform Architecture 

The architecture of the sensor platform is composed of modules that incorporate differ-
ent services and functionalities (see Fig. 2). The high level of abstraction allows the 
modules to work independently providing flexibility and dynamics to the platform, as 
it allows to add new sensors or to change the application’s behaviour. The modules’ 
responsibilities are divided into Communication Interfaces, Sensor Management Ser-
vice, Energy Management, Data Management and Data Persistence that are described 
in the following. 
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Fig. 2. Sensor Platform Architecture. 

The Communication Interface provides the abstract connectors for the communi-
cation with the sensors and with the cloud services. Individual connectors for combin-
ing different protocols and technologies, such as Bluetooth, ZigBee, MQTT, WLAN, 
are integrated in this module. This gives the possibility of integrating the platform to 
cloud computing services. 

The Sensor Management Service manages the configuration of different kinds of 
wireless sensors within the sensor platform network by entering their information via a 
web interface. The web interface uses an internal framework to configure the wireless 
sensors that will connect to the sensor platform. It defines physical characteristics (such 
as MAC-Address) and other functional characteristics of the sensor (sensor name, type, 
id, etc.). The framework uses the lightweight JSON format for introducing the infor-
mation, which is later used by the Data Management Service. This service also estab-
lishes and ensures the connection to the set of configured sensors. 

The Energy Management is responsible for taking measures for immediate power 
loss or battery drainage of the platform itself (if powered by battery) and the attached 
sensors. In this case, the configuration of  the sensor platform and its related sensors is 
saved in an internal file. This procedure permits the sensor platform to load the last 
configuration when the energy supply is restored after a loss of energy. 

Data Management collects the data from the connected sensors. Beyond this basic 
functionalitiy,  the component is responsible for optionally preprocessing the data be-
fore forwarding it to the cloud or middleware infrastructure. Thus, it is closely related 
to the specific IoT application. According to this, the algorithms used can vary ex-
tremely. Therefore, the platform gives the opportunity to integrate existing frameworks  
or self-developed code, depending on the system requirements [4]. The flexibility 
makes the platform suitable even for fog computing applications [5]. 

Data Persistence is secured in an internal database of the sensor platform, in order 
to avoid loss of data from the measurements of the sensors. Each instantiated sensor 
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uses an internal sample collector, which is a thread that continuously monitors the avail-
ability of the sensors’ information. In case a network connection is not available, it 
internally stores the collected sensor data in a database. As soon as the network con-
nection is restored, the data is forwarded to the cloud service or middleware.  

3 Conclusions 

The presented Sensor Platform eases the deployment of large-scale networks of heter-
ogeneous sensors by providing data collection hubs that allow for easily collecting, 
processing and forwarding sensor data. It builds the bridge to cloud computing and 
middleware solutions by acting as proxy and optionally as fog node. In addition, the 
platform provides a high level of flexibility in terms of the configuration of attached 
sensors as well as its data processing capabilities.  
The sensor platform was successfully deployed in two different application domains, 
namely food tracking and ambient assisted living. For the first one, the food’s environ-
mental conditions within a package were monitored for dynamic estimation of their 
individual expiry date and the detection of damages resulting from the packaging pro-
cess. In the second application scenario wearables were interconnected in order to 
measure ECG signals and activity of the persons. For both applications, Bluetooth Low 
Energy was used as wireless technology.  
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Abstract. Many benchmarks can be used for measuring performance
of di�erent types of databases. To automate the process of benchmark-
ing databases, this paper outlines DBCloudBench. It can be used to
automatically setup a scenario and perform a benchmark run using a
standards-based approach. The databases and benchmarks are stored in
“cloud services archives” allowing them to be reused and combined as
necessary. Each benchmark is accompanied with an adapter for runing
the benchmark on certain database systems while using DBCloudBench.

� Overview

Choosing a database in a project may be done in di�erent ways such as comparing
performance [�], comparing features [�], based on existing knowledge, or by
architectural decisions [��]. A performance comparison of di�erent databases
is a crucial step when choosing a database. Performance can be compared
with di�erent metrics, e. g., completed transaction per time unit, or latency of
transactions. Since most databases are grouped in overlapping groups (e. g., time
series databases, NoSQL databases, or relational databases), many benchmarks
are made for one or more groups of databases or for a specific purpose (e. g.,
storing time series data). This means that a benchmark can only be executed if
the database supports all features that it requires. Beside their targeted database
groups, benchmarks are usually di�erent in the creation of their queries (e. g.,
synthetic creation) and in the measured metrics. As a result, there exist multiple
benchmarks for the same group of databases (e. g., MySQL can be benchmarked
with TPC-H [��] and YCSB [�]).

When benchmarking performance, there are two possible approaches: �) Attest
and achieve a maximum performance by fine tuning the database and (optionally)
the underlying system, �) Getting insights on performance for choosing a database
by benchmarking a set of databases with the same benchmark.

If using the second approach for choosing a database, one or more benchmarks
are used to measure one or more metrics of several databases setup in one or
more scenarios. That means that a user performing the benchmarking has to
know how to setup multiple databases, multiple benchmarks, their metrics,
and their required parameters. To chose a database, multiple scenarios may be
required to be measured, e. g., di�erent cluster sizes or di�erent replication factors.
Additionally, a user has to perform each benchmark run manually, which means
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that each setup has to done manually for each database, scenario, and benchmark.
To ensure good results, the conditions for each run must be comparable [��].

The usage of cloud techniques (e. g., using an Elastic Infrastructure, EI for
short) makes it possible to automate the process of performing a benchmark run,
which includes setup, benchmarking, retrieving results, and cleanup. Therefore,
this work focuses on the second approach, as fine tuning of a system cannot be
done in an automated way yet, which makes the first approach impossible to
automate. The proposed solution is a benchmark framework for databases being
independent of databases and benchmarks that can be used to automatically
perform benchmark runs that are setup according to a scenario definition on
an EI: DBCloudBench.

A requirement for the benchmarking framework is to support as many EIs as
possible and to be as independent from EI-specific code as possible. Additionally,
it should be easy to use and to extent for a user. Therefore, a external solution is
required that interacts with the EI and keeps DBCloudBench free from EI-specific
code. These requirements were derived during the creation of a platform for a
new marked role, called Decentralized Market Agent (DMA) [��], which was done
in the context of the NEMAR project [�].

By sharing artifacts on how to setup a scenario using repositories, a user
requires less knowledge to setup a benchmark run and execute it. A user can pick
the required artifacts from the repositories, choose the components he requires for
his scenario, and execute it automatically in an EI. This results in less required
domain-knowledge, as a user must only know which components he needs, without
deeper knowledge in the setup of the chosen database and benchmark. In other
words, the aim is that a user that wants to chose a database only specifies the
database, benchmark, and scenario he wants to use and the framework executes
it automatically. One main part of the solution is to use the “cloud services
archive” packaging format of TOSCA and the OpenTOSCA ecosystem [�] for
the installation of di�erent benchmarks and databases.

� Related Work

There exist several benchmarks for measuring cloud performance, the most
prominent are CloudBench [��] and CloudCMP [��]. Silva et al. [��] provide an
overview over the rest of these types of benchmarks. All of these benchmarks
have in common that they try to provide an answer to the question which EIs to
use. DBCloudBench, however, has the focus to provide a general framework to
meassure database performance.

HammerDB is a tool for automated benchmarking of databases, with a focus
on relational databases [�]. As it does not support the automated deployment
of databases and its focus is on relational databases, it cannot be used for
our approach.

The Transaction Processing Performance Council (TPC) benchmarks con-
sist of several benchmarks for measuring the performance of di�erent business
scenarios, e. g., TPC-C [��] that uses an Online Transaction Processing (OLTP)
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workload that emulates a wholesale company or TPC-H [��] that emulates a
decision support scenario, which uses complex queries that are designed to have a
long execution time. Most comparable to our approach is TPC-VMS [��], which
benchmarks the performance of a database whilst running on Virtual Machines
(VMs). To do this, it takes one of the other TPC benchmarks and runs it three
times parallel on three identical VMs on an EI. TPC-VMS does not cover the
automated deployment of the VMs used in the benchmark, as they are already
setup before the benchmark starts.

Kolb and Wirtz [�] identified a similar scenario for users of Platform as a
Service (PaaS). These cloud systems often come with heterogeneous environments
and interfaces to work with. To assist a user in the decision for the right cloud
platform and automate the deployment of user applications, they propose a
unified feature description and interface for cloud platforms [�].

The BPEL/BPMN Engine Test System (betsy), a benchmark framework for
testing the compliance of open-source BPEL/BPMN engines to the corresponding
standards [�], was extended to use virtualization techniques (vbetsy) [�], which
results in the use of VMs and their snapshot functionalities to perform benchmark
runs. The idea is similar to our approach, but it lacks the support of creating a
cluster of VMs depending on a scenario chosen by a user on an EI, which makes
it not usable for our approach, even though it uses multiple benchmarks and test
candidates (engines) for its tests.
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1 Motivation

In recent years, data analytics gained relevance in many fields such as economy,
science or public administration. Applying data analytics on a potentially huge
data set aims to find new knowledge, which subsequently can lead to an advance
in a specific area, e.g. economic benefits. Process models such as CRISP-DM
[2] or KDD [3] guide the analyst through the analysis by defining a sequence
of atomic steps. These process models typically range from (1) definition of the
analytic goals over (2) selection of the data sets, (3) pre-processing of the data,
(4) selection and application of an analytic algorithm to (5) evaluation of the
results. They further demand an iterative approach enabling the user to improve
incrementally the results of each step and thus improve ultimately the final result
of the process. Hence, the analyst requires a strong technical knowledge in each
step of the process as well as in the domain in order to gain solid results [1].

The existing process models for analytics are characterized by coarse-grained
steps, e.g. step (4) has to be executed completely before step (5) can be initiated.
This atomicity leads to a cognitive gap which hinders the discovery of knowledge.
In times of big data, where terabytes of data are analyzed, this gap expands even
further due to the long run time of established methods. To improve the ability
to discover knowledge in a faster way, existing steps of processing models need
further analysis. Research has to unveil how they can be drilled down e↵ectively
and how they can fade into each other. The result would be a fine-grained ap-
proach generating intermediate results, which enable the analyst to interact with
the system more closely, thus enhancing the interaction significantly.

Concluding, the main issues of todays data analytics approaches are: (a) the
rigidity of atomic steps in process models revealing the quality of the overall
result eventually at the very last step, (b) the architecture to support a fine-
grained analysis and (c) the necessity of domain knowledge in specific areas to
navigate through an analytics process and to validate the quality of the result.

This research heavily contributes to the novel subject of “Human-in-the-Loop
Data Analytics”. More and more analysts with di↵erent technical and domain-
specific knowledge will benefit from this research since it enables a broad range of
complex analyses to be performed in a detailed manner with good performance.
This directly leads to comprehensible, trustful and solid results.

57



2 Manuel Fritz, Holger Schwarz

2 Research Questions

The application of an analytic algorithm during an analytics process is the fo-
cus of this research. The desideratum addresses a method enabling the user to
interact with a system in a fine-grained manner to obtain relevant findings from
existing data sets. Applying this method should result in shorter iteration steps
and therefore o↵er the user more options to interact with the system; suitable
software solutions must support this (i.e. storage of data and execution of the de-
tailed process). This research currently addresses four pivotal research questions:

RQ1: Which options in the analytic process need a refinement in terms of
interaction? To answer this RQ, it needs to be reflected how data mining ap-
proaches and algorithms are executed and at which iteration the user should
interact with the system. Furthermore, the way of interaction with a system,
e.g. selection of data sets, algorithms and parameters, needs to be investigated.

RQ2: For each of the exposed options from RQ1, what kind of system sup-
port has to be considered? The possibilities range from a manual support, over a
semi-automatic support to an automatic support through an analytics process.
Research has to reveal which option at which step bears the most viable solution.

RQ3: What is the underlying architecture to support the user within a fine-
graind analytics approach? The research focuses on existing reference architec-
tures from Data Warehousing, general data processing architectures and specific
architectures of existing analytics tools. The result clarifies which concepts need
to be further extended in order to include the analyst more tightly to a detailed
analytics process with a higher possibility of interaction.

RQ4: How does an execution environment implement such an architecture
from RQ3? Processing environments o↵er a set of features and characteristics to
analyze data. It may be possible, that a specific feature can only be executed rea-
sonably in e.g. Apache Spark. Further research has to reveal how these properties
can be combined and extended to gain advantage of di↵erent processing engines.

The poster exhibits first insights on recommendations for data mining algo-
rithms and their parameters (see RQ1). Partitioning methods, such as binary
space partitioning, provide a good run time behavior and divide data sets into
distinct areas. The properties of those areas, such as the density or the distance
to other areas, provide valuable information for further research.
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Introduction. Cloud computing offers organizations the opportunity to im-
prove the efficiency of their operations and reducing their costs. The possibility
of acquiring resources in a dynamic way is an essential characteristic of the cloud,
however deciding the optimal amount of resources, in time, to achieve and offer
cloud elasticity is not a trivial task. To date, many algorithms have been pro-
posed and several control services that employ elastic scaling exist. For example,
AWS Auto-Scaling is one of the first scaling services offered to cloud developers
and is still one of the most popular. AWS Auto-Scaling employs simple metric vi-
olation rules that do not require fine-grain cloud application topology modelling
to regulate infrastructural resources and schedule scaling actions. In general,
elasticity control is provided at the deployment phase and is based on horizontal
scaling rules applied to low-level metric rule violations (e.g., if CPUusage > 75%
ADD VM).

Challenges. The above approach endeavours a number of risks due to: (i) the
inability of novice users to determine optimal thresholds; (ii) “ping-pong” effects
where sudden and short-lived (e.g., few seconds) spikes on highly sensitive met-
rics (e.g., CPU usage) resort to resources being provisioned and de-provisioned
rapidly, but most importantly they are billed although real demand does not ex-
ist [1]; and (iii) fail to acknowledge “cold-start” effects where the time required
for an instance to be bootstrapped is not limited to only VM boot-time reported
by the cloud provider. Instead, it includes service bootstrapping and delays im-
posed due to data movement while “joining” a cluster of other instances [2]. To
better understand, consider a scenario in which a cluster of VMs is running a
database service(Cassandra, CouchDB). When there is an increase on the work-
load, a scaling action is triggered and a new VM joins the cluster. The cluster
now needs to replicate and transfer the data among the instances, leading to a
momentary increase on the average resource usage. This increase is wrongly in-
terpreted by the elastic controller, as a need for adding a new VM in the cluster.
When the data transfer is completed, the resource usage is decreased to a level
that an action to remove the extra VM is triggered and rebalance starts again,
leading the system to an endless cycle between under and over provisioned state.
Currently, most of the cloud providers offer the user with a configurable parame-
ter known as cool down period, where the system doesnt allow any other scaling
actions to happen during that period. A choice of a long cooldown period, gives
enough time to the system to prepare its resources and overcome this problem,
however it leads to long over-provisioned periods, increasing the cost.
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Proposed Solution. To accommodate these challenges resulting in sub-optimal
elasticity control, we aim for the development of a framework capable of sup-
porting fine-grained elasticity control over the cloud environment. We aspire to
develop a framework, able to provide with a certain confidence, the novice user
with an accurate tuning of such parameters that minimize the periods in which
the system is in under or over provisioned state to eliminate these problems
without the excessive usage of the resources. This can be achieved by monitor-
ing the resource usage of each instance running the user’s application and based
on the statistical properties of those metrics, identify the periods of time that
determine the state of the system, to make the right decisions for provisioning
and de-provisioning. Specifically, we are planning to exploit the capabilities of
time series analysis, phase detection methods used in ADMin [3] and supervised
learning mechanisms to discover patterns of the application. Currently, we are
conducting an experiment based on the scenario described above, in which we
demonstrate the aforementioned issues. We identify that adding or removing a
VM, can lead to a variable amount of time for the system to prepare its resources,
due to the unpredictable time it takes for data movement to complete, making
impossible the pre-configuration of cooldown periods. However, by observing the
patterns and the statistical properties of the resource metrics, we advocate that
the actual period of time that the system needs to prepare its resources, can
be detected in an automatic way, resulting to a better and accurate elasticity
control.
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