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Abstract 

Personalized, multi-dimensional assessments of the risk of the condition of a person (or object) 

deteriorating, called vulnerability assessments, are critical in outcome-based care management. However, 

lack of time for information gathering, often coupled with urgency to take action, pose specific challenges 

for individual vulnerability assessment in the field compared with assessment in a clinical or laboratory 

setting.  We describe an approach to develop vulnerability assessment models for use “in the wild” - as 

distinct from use in clinical/laboratory settings - borrowing a term from the visual emotion recognition 

terminology. Key elements of the proposed modelling framework for vulnerability assessment are that it 

(i) accommodates incomplete information about the person (ii) continuously adjusts as background 

information evolves (iii) can serve as a guide to prioritize information gathering (iv) can function with 

imprecision in the input parameters. Specifically, we integrate a Markov Chain model describing the 

evolution of the person into, and out of, vulnerable states together with a Bayesian network that serves 

to customize the dynamic model.  We describe the extension of the framework to situations arising 

through the presence of imprecision in the model parameters. The examples that we present were 
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developed and validated as practical tools for the analysis of the vulnerabilities of elderly persons in the 

context of a consulting engagement in China. The techniques presented are general however, and 

generalizations are discussed in the conclusion section.  

Keywords: Vulnerability; Bayesian Networks; Markov Chains; Imprecise Probability; Health and Social 

Care; Ranking algorithms;  

1. INTRODUCTION 

Health and social programs represent a significant – and growing – proportion of the public sector budget 

across OECD economies, recently estimated at 22% of GDP (1).   In the US, Medicaid spending, $457 billion 

in 2014, is expected to almost double by 2020 (2). As expenses continue to grow, it has become essential 

for sustainability to investigate solutions for reducing health and social care expenses while possibly 

minimizing the effect on the support provided (if not to improve its quality at the same time).    

At an operational level, vulnerability models, i.e., models that estimate the risk of individual situations 

deteriorating, can help care workers identify the future high-cost / high-need patients and attempt to 

proactively address their problems. Vulnerability models constitute promising avenues to address the 

health and social care spending challenge.  Indeed, social care services have typically been designed to 

address specific situations and tend to be ill-suited in more complex scenarios, i.e., when a person 

presents a variety of health and social needs that require coordination across social services. In addition, 

such complex situations are often associated with high costs.  In NYS about  5% of  Medicaid  beneficiaries 

account for more  than half of Medicaid spending (3) and in Camden NJ,  one percent of patients account 

for a third of the city’s medical costs (4).  

In this paper, building upon previous work (5), we present such a vulnerability model for social care. Its 

purpose is to assist care coordinators (whether healthcare or social care) in assessing clients as they 
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receive new situations or update existing ones. Our model provides them with a high level assessment of 

the patient’s current needs, along with assessments of their vulnerabilities (upcoming problems). The 

objective is to help care workers with limited time and financial resources define priority domains for 

intervention for each individual and also compare profiles among individuals. Ultimately, the expectation 

is that the use of such a vulnerability model would lead to earlier identification and management of high-

cost / high-need situations. 

 In our approach, vulnerability is measured through an estimation of how soon one would be in unwanted 

states, providing an indication of the urgency of the patients’ situations along with the domains in which 

they are the most vulnerable. An essential characteristic of our model is that it adapts to the amount of 

information at hand, providing coarse estimates when few pieces of information about the person are 

available (as in the case for first visits) and updating vulnerability indexes as knowledge about the patient’s 

context accumulates through interactions with the members of the care team. As such it is purposely 

designed for use in real world settings. As a side benefit, the model promotes shared use of information 

among care team members, encouraging better information exchanges of social and health services 

across silos. 

2. RELATED WORK 

As an introductory side note, we wish to clarify that what we term vulnerability model is different from 

social vulnerability indexes that also appear in the risk analysis literature (6). Those social vulnerability 

indexes aim at evaluating which geographical zones are most vulnerable to hazards from a social 

perspective, accounting for likelihood of various types of disasters along with the effectiveness of recovery 

efforts. In our context, a vulnerability model typically applies to a person, not an area, and seeks to 

estimate the likelihood and severity of deterioration of that person situation along multiple dimensions. 
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We now focus on research linked to social care vulnerability models as we define them. The social care 

and healthcare literatures provide several examples of models designed for assessment or prediction of 

vulnerability, however with the objective of further population-level statistical analysis and based on 

complete gathering of information.  By contrast, our objective is to develop models that function with 

limited and incomplete information and are aimed at decision support. We summarize nonetheless the 

main models that we have encountered in vulnerability prediction as they serve as informative guides to 

our modeling effort in eldercare (e.g., choice of explanatory variables). In the social care domain, 

InterRAI(7) and Northern Ireland Single Assessment Tool (8) are a suite of coordinated assessment tools for 

eldercare. Both tools are descriptive, seeking to capture and record an accurate profile of the patient at a 

given time. Other seek to estimate incidence rates of disabilities so as to predict the size of the elderly 

population that would require support in the coming years and inform public policy decisions (9). In the 

medical domain, frailty relates to the increased vulnerability of some elderly people to functional decline 

and dependence and encompasses biomedical, social and psychological aspects (10). More than twenty 

frailty instruments, questionnaires designed to measure frailty for use in clinical studies (such as 

population level trends), have been identified in the literature since the late 1990s (11,12,13). 

Modeling-wise, risk analysis has long made use of Bayesian networks and Markov models. Bayesian 

networks, often represented in the less compact form of event trees, are one of the key models in 

probabilistic risk analysis and have for instance been applied to support risk management in health care 

entities (14), catastrophic risk modeling (15) also extended to counter terrorism (16). Markov chains, whether 

discrete or continuous, have also been widely used to represent the stochastic evolution of systems or 

incidents in particular in reliability modeling (17), but also to model adversarial situations (18). Sometimes 

Markov chains and Bayesian networks are combined, for instance in a fire modeling application (19).  If we 

frame vulnerability modeling as a ranking task (ranking the different domains of vulnerability for an 

individual and across individuals), we note that Markov chains have also been used extensively, in 
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particular through the well-known PageRank model (20) for ranking internet pages. They have since been 

applied to a variety of settings such as neurosciences, sports and literature (21). However, there seem to 

be limited investigation for vulnerability modeling and applications in the social care domain. 

Our technical contribution in this research goes beyond the application of Markov chains and their 

combination with Bayesian networks to a different context. Our approach addresses two key technical 

challenges associated with vulnerability assessment in the field – lack of comprehensive data, and, 

uncertainty in inputs. To compensate for lack of data, our approach integrates Bayesian networks and 

Markov models together, using the Bayesian network to enable continuous personalization of the Markov 

model. Specifically, the Bayesian network enables evaluation of vulnerability with varying amounts of 

information about the person. Through inference, limited evidence is leveraged to better estimate the 

parameters of the Markov model representing the dynamic vulnerability model of an individual. In 

addition, we explore how existing extensions of Bayesian network models and Markov Chains can be 

leveraged to accommodate imprecision in the model parameters. This is useful in practice to allow for 

limited knowledge about such parameters due to conflicting experts opinions or unavailability of large 

datasets for training. 

3. PERSON-SPECIFIC VULNERABILITY MODELING FRAMEWORK 

Our vulnerability modeling framework consists of a single integrated model that simultaneously evaluates 

a set of vulnerability metrics across several domains. In the context of eldercare, for instance, the 

vulnerability domains used were “Physical Health”, “Mental Health”, “Income”, “Shelter” and “Difficulty 

Walking”. For each domain, we compute a vulnerability metric corresponding to an estimation of how 

soon the person of interest might be in a state defined as “vulnerable” (for example, being homeless or 

being unable to walk independently). This can then be used to rank intervention. 
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3.1 Using a Markov Chain as Underlying Dynamic Model 

The heart of a vulnerability model is a dynamic representation of the probabilistic evolution of an 

individual through states over time. We rely on a homogeneous Markov chain which is a random process 

characterized by the Markov property. This property, which stipulates that the evolution of the system 

only depends on its current state and not on how it reached that state, enables to characterize the model 

with few parameters and simplifies computations. As our goal is to consider multiple dimensions of 

vulnerability simultaneously, the Markov chain needs to consider state combinations, as in the example 

on Figure 1 which considers together Shelter and Employment vulnerabilities.  

 

 

Figure 1– Simple Markov Chain Model to Represent Evolution of a Person over time 

Note: To make the diagram readable, we have not represented the self-transitions. The transition 

probability that is spelled out is associated with the bolded arc. 

Based on the Markov chain parameters, we compute future-behavior statistics aimed at characterizing 

the vulnerability, specifically, the mean first passage time (MFPT), defined shortly, to a vulnerable state 

conditional on the current state.  In our example, assuming the person current state is “Employed, 

Sheltered”, then the Employment vulnerability would be the average time of the first “visit” to either 
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“Unemployed, Sheltered” or “Unemployed, Unsheltered” states. MFPT provides a characterization of the 

short-term behavior of the model and is thus particularly suited as a measure of immediate vulnerability 

of a person. The use of mean first passage time as a mean to rank by decreasing level of relevance can be 

found in other domains, for instance in the context of road network modeling(22).  

Mathematically, Let d index vulnerability domains and let D denote the number of such domains. Each 

domain is described by a state space  𝓢𝒅  decomposed into two subsets  𝓢𝒗𝒖𝒍
𝒅  and 𝓢𝒐𝒌

𝒅 . The subset 𝓢𝒗𝒖𝒍
𝒅    

corresponds to the states that are deemed vulnerable. In our preceding example, we would have D = 2. 

The first domain is “Shelter” with state space 𝓢𝟏 = {𝑺𝒉𝒆𝒍𝒕𝒆𝒓𝒆𝒅, 𝑼𝒏𝒔𝒉𝒆𝒍𝒕𝒆𝒓𝒆𝒅}, and vulnerable state 

set 𝓢𝒗𝒖𝒍
𝟏  = {𝑼𝒏𝒔𝒉𝒆𝒍𝒕𝒆𝒓𝒆𝒅} , and the second dimension is “Employment”, with state space 𝓢𝟐 =

{𝑬𝒎𝒑𝒍𝒐𝒚𝒆𝒅, 𝑼𝒏𝒆𝒎𝒑𝒍𝒐𝒚𝒆𝒅}, and vulnerable state set  𝓢𝒗𝒖𝒍
𝟐 = {𝑼𝒏𝒆𝒎𝒑𝒍𝒐𝒚𝒆𝒅}. We denote by  𝓢 the 

product space of each state space for each dimension. 𝓢 =  𝓢𝟏 × ⋯ × 𝓢𝑫. Let N denote the total number 

of states, 𝑵 = 𝒄𝒂𝒓𝒅(𝓢). 

Let 𝒙𝒕
𝒅 represent the state of a person at discrete time intervals t along vulnerability domain d. Thus, 𝒙𝒕 =

(𝒙𝒕
𝟏, ⋯ , 𝒙𝒕

𝑫)  captures the comprehensive state of the person at time t.  We assume that there exists a 

homogeneous Markov chain with transition matrix 𝑴 with  𝒎𝒊𝒋 = 𝑷(𝒙𝒕+𝟏 = 𝒔𝒋|𝒙𝒕 = 𝒔𝒊) where 𝒔𝒊, 𝒔𝒋  ∈

𝓢 , which describes the evolution of a person across states.   

Finally, let 𝜏𝑖𝑗 = min{ 𝑡 ∶  𝑥𝑡 = 𝒔𝒋} represent the random variable capturing the number of steps  to arrive 

at destination 𝒔𝒋  for the first time starting from state 𝒔𝒊 at 𝑡 = 0. The mean first passage time  𝝁𝒊𝒋 =

𝐸(𝜏𝑖𝑗)  is simply the expectation of this random variable and follows (1) below, where with probability 

𝒎𝒊𝒋 it takes one step to go from state 𝒔𝒊  to state 𝒔𝒋 and for transition to states 𝒔𝒌  with 𝑘 ≠ 𝑗, it would 

then take an expected time of 𝝁𝒌𝒋 to reach state 𝒔𝒋 in addition to the current transition: 

𝜇𝑖𝑗 = 𝑚𝑖𝑗 + ∑ (𝑚𝑖𝑘 + 1){𝑘≠𝑗} 𝜇𝑘𝑗 = 1 + ∑ 𝑚𝑖𝑘{𝑘≠𝑗} 𝜇𝑘𝑗      (1) 
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Building about this concept, for each domain d, we define the vulnerability index associated with current 

state 𝒔𝒊 in a similar manner. We need to adapt the definition to the multidimensional setting and also to 

the fact that we want to evaluate the mean first passage time to a set of states (the ones tagged as 

vulnerable) rather than to a single state. In particular, let 𝜏𝑖
𝑑 = min{ 𝑡 ∶ 𝑥𝑡

𝑑 ∈ 𝓢𝒗𝒖𝒍
𝒅 }  denote the number 

of steps to arrive to any destination state for which its dth component is deemed vulnerable starting from 

state 𝒔𝒊. Then the vulnerability index  𝒗𝒊
𝒅 is simply the expectation of this random variable, 𝒗𝒊

𝒅 = 𝐸(𝜏𝑖𝑗).  

When the starting state corresponds to a vulnerable state for domain d (𝒔𝒊
𝒅 ∈   𝓢𝒗𝒖𝒍

𝒅  ) our chosen 

convention is to set the vulnerability index to 0 to indicate current need. Finally, we call the vector 𝑽𝒊 =

(𝒗𝒊
𝟏, ⋯ , 𝒗𝒊

𝑫), the vulnerability profile of the person corresponding to current state 𝒔𝒊. 

Slightly adapting equation (1) to our specific context, we have 

 𝑣𝑖
𝑑 = 1 + ∑ 𝑚𝑖𝑘{𝑘:𝒔𝒌

𝒅 ∈ 𝓢𝑜𝑘
𝑑 } 𝑣𝑘

𝑑   ∀𝑖: 𝑠𝑖
𝑑 ∈ 𝓢𝒐𝒌

𝒅        (2) 

Let 𝑀[𝑜𝑘]
𝑑  denote the submatrix of  𝑀 restricted to indexes i: 𝑠𝑖

𝑑𝜖  𝓢𝒐𝒌
𝒅 , and similary 𝑣[𝑜𝑘]

𝑑  denote the 

vulnerability indexes vector for states ∀𝑖: 𝑠𝑖
𝑑𝜖  𝓢𝒐𝒌

𝒅 . Then, according to Equation (2), we have  

(𝐼 − 𝑀[𝑜𝑘]
𝑑 )𝑣[𝑜𝑘]

𝑑 = 𝟏.          (3) 

𝑀[𝑜𝑘]
𝑑   is by design substochastic. In addition, we assume there are no absorbing states among the non- 

vulnerable states therefore all states in 𝑀[𝑜𝑘]
𝑑   are transient and lim

𝑛→∞
(𝑀[𝑜𝑘]

𝑑 )𝑛  = 0. Overall,  𝐼 − 𝑀[𝑜𝑘]
𝑑  is 

non-singular and we have 

 𝑣[𝑜𝑘]
𝑑 = (𝐼 − 𝑀[𝑜𝑘]

𝑑 )−1𝟏.        (4) 

Overall, the vulnerability profile of a person is fully determined by the knowledge of the current state 

and the transition matrix 𝑴. As we have pointed out, we may not know exactly what the current state of 

the person is. In that case, we will assume that we have some knowledge of the distribution of the 
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current state of the person (as will become clearer when we introduce the Bayesian networks in section 

3.2) which enables us to average over vulnerability indexes. Section 3.4 will provide some perspective on 

the challenge of having limited information about the transition matrix.    

3.2 Bayesian Network for Customization  

Observe that if the parameters of the Markov chain are fixed, any person in a similar current state would 

have the exact same vulnerability profile, providing minimal differentiating information. To allow for 

model customization, we have chosen to let the parameters of the Markov chain depend on a set of 

relevant factors. Specifically, we assume that there exists an underlying Bayesian network (23) which 

articulates the relationships among the factors themselves and also between the factors and the state of 

a person.  Figure 2 shows an example of such a Bayesian network with six factors. This model implies that 

Age, Gender and Race are independent of one another but that Veteran Status is influenced by all three. 

In addition to the graphical structure, Bayesian networks are characterized by a quantitative layer which 

represents the distributions of the variables conditional on all possible parent scenarios (See for instance 

at the bottom of Figure 2, the conditional probability table for the variable HIV positive).  Bayesian 

networks are especially efficient at computing inference queries, i.e., conditional probabilities involving 

the subsets of the variables in the network. In our example such a query could be asking for the probability 

of a person being HIV positive given Gender and Veteran Status.  

Note that we can extend such a model to include variables corresponding to a Markov chain model as 

presented in Figure 3. By extending the Bayesian network so as to couple it with the Markov chain model, 

inference computations can provide personalized parameters for the Markov chain, accounting for the 

current knowledge of a person situation, both current state and known factors, as large or limited as this 

knowledge may be. 
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Figure 2– Illustrative Bayesian Network 

 

Mathematically,   Let 𝝌 = {𝑿𝟏, ⋯ , 𝑿𝒏} denote the set of all the variables represented in the Bayesian 

network. We decompose 𝝌  into three groups: 

  ℱ = { 𝑥𝑘
𝐹: 𝑘 = 1, ⋯ , 𝐾}: set of variables representing explanatory factors 

 𝒮𝑡 =  { 𝑥𝑡
𝑑: 𝑑 = 1, … , 𝐷}: set of variables representing the state variables at current time t 

 𝒮𝑡+1 =  { 𝑥𝑡+1
𝑑 : 𝑑 = 1, … , 𝐷}: set of variables representing the state variables at future time t+1 

 

The last two sets enable the pairing. Indeed, each element in the set 𝓢𝑻  corresponds to one of the 

vulnerability domains and 𝑽𝒂𝒍(𝒙𝒕
𝒅) = 𝑽𝒂𝒍(𝒙𝒕+𝟏

𝒅 ) =  𝓢𝒅.  Where in a Markov model, a state s was 

represented by one (vector) variable, it is represented by a set of variables in the Bayesian network.  For 

any observed evidence 𝓔 belonging to a subset of the state space of 𝓕 , and any (𝒔𝒊 ,  𝒔𝒋)  ∈ 𝓢𝟐 , the 
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Bayesian network model can provide through inference the value of the   parameters of the Markov chain 

model : 

𝑷(𝒙𝒕+𝟏
𝟏 = 𝒔𝒋

𝟏, … , 𝒙𝒕+𝟏
𝒅 = 𝒔𝒋

𝒅, … , 𝒙𝒕+𝟏
𝑫 = 𝒔𝒋

𝑫|𝒙𝒕 = 𝒔𝒊, 𝓔)      (5) 

 

 

Figure 3– Illustrative Paired Bayesian Network 

Therefore, when we let 𝓔  represent the observed information about a person related to factors in 𝓕, we 

can estimate the associated personalized Markov chain parameters and thus that person’s vulnerability 

profile. Consequently, as knowledge about a person’s situation evolves, the vulnerability indexes evolve 

as well. In addition, the Bayesian network enables us to estimate 𝑷(𝒙𝒕
𝑑|𝓔) i.e., the distribution of the 

current state of person along domain d when it is not part of the observed evidence. This enables us, as 
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noted as the end of the previous section, to derive a vulnerability index even when ignoring the current 

state of a person. 

3.3 Characteristics of the Modeling Framework 

This modeling framework presents several advantages. First, the model is designed to function with 

incomplete information about a person current state and profile, a key difference for instance with 

assessment tools in the social care domain, making it a useful complement for screening and other 

decision making situations “in the wild’. Second, through the Bayesian network model, the vulnerabilities 

across domains are made interdependent. In the context of health and social care, this means that the 

model can capture essential interactions among social factors, health factors and vulnerabilities.  Third, 

the resulting vulnerability profile is both personalized yet standardized. It is personalized as the Bayesian 

network provides a way to determine the parameters of the Markov chain model based on observed state 

of the person. It is standardized as the same customization model is used for everyone. Note also that the 

vulnerability indexes are associated with a physical – thus interpretable – measure, in the form of average 

amount of time. This consistent use of one metric enables both within subject and across subject 

comparisons.  

In the presentation of the model above, we have focused on measuring vulnerability through the risk of 

occurrence of a vulnerable state. The model can be used at the same time to evaluate severity upon 

occurrence. Specifically, for a vulnerability domain d, for a state 𝒔𝒊
𝒅 corresponding to a vulnerable state, 

then the severity index 𝒘𝒊
𝒅  is defined as the mean first passage time to a non-vulnerable 

state {𝒔 ∈ 𝓢: 𝒔𝒅 ∉ 𝓢𝒗𝒖𝒍
𝒅 }.  For a state 𝒔𝒊

𝒅 that does not correspond to a vulnerable state, then we can set 

𝒘𝒊
𝒅 = 𝟎,  symmetrically to the definition of severity. 

Besides the vulnerability profile, the model yields further insights into a person’s situation. In particular, 

we can provide (i) guidance into what additional information could be useful (informative factors) and (ii) 
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explanations (influential factors) by identifying which aspects of the person profile strengthen and weaken 

his/her profile. Both are obtained by performing one-way sensitivity analyses. For instance, let’s consider 

domain d, and current vulnerability index 𝒗𝒊
𝒅(𝓔), corresponding to knowledge 𝓔. For each factor 𝒙𝒌

𝑭  

currently observed (𝒙𝒌
𝑭 ∈ 𝓔), we compute an artificial vulnerability index  𝒗̃𝒊

𝒅(𝓔\{𝒙𝒌
𝑭}) , assuming factor k 

is not observed. The difference between the vulnerability indexes,  𝒗𝒊
𝒅(𝓔) −  𝒗̃𝒊

𝒅(𝓔\{𝒙𝒌
𝑭}) , provides an 

indication of the influence of that factor. A similar prodecure is performed for factors that are unknown 

to determine how informative they could be, loosely borrowing from the concept of Value of Information 

from the field of Decision Analysis.  

3.4 Extension to Imprecision: Credal Networks and Markov Sets 

One useful characteristic of the approach that is relevant when building models from real world 

information is the fact that it can function with imprecise information. So far, we have assumed that the 

parameters of the model are point estimates, i.e., that we have enough data or definite domain expertise 

to determine a single value for each one. This may not necessarily be the case in practice, either because 

data is limited, experts are unsure or more comfortable with providing ranges, or because multiple experts 

have proposed different values. In such situations, being able to handle imprecise information is essential 

if one does not have the time or budget to reconcile conflicting information or gather more data.  

Both Markov chains and Bayesian networks admit imprecise extensions in the form of Markov Set Chain 

(24) and Credal Network (25) (respectively) which enable to rigorously percolate the imprecision through the 

computations. The only consequence of allowing for imprecision in the model is the fact that vulnerability 

indexes become intervals and may thus be more difficult to interpret.  

Specifically, assume we are asking about the effect of X on Y, experts may not be able to provide point 

estimate of P(Y|X) but may provide a range [𝑝, 𝑝]. Such type of imprecision can be incorporated in the 

model both at the Bayesian network level and at the Markov chain level.  
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For Bayesian networks, imprecision in the form of ranges can be modeled through a credal network. A 

credal network is an extension of a Bayesian network where instead of associating conditional probability 

distributions to the nodes, one associates conditional credal sets. A credal set 𝐾(𝑋|𝑃𝑎(𝑋) = 𝜋𝑖) for all 

possible instantiations 𝜋𝑖  of the parents of node X denoted 𝑃𝑎(𝑋), is a closed convex set of probability 

distributions. For instance if X is binary taking values 𝑥 and ¬𝑥  , then 𝐾(𝑋|𝑃𝑎(𝑋) = 𝜋𝑖) can be 

represented by a closed interval and denoted [𝑝, 𝑞] = {𝑃(𝑋): 𝑝 ≤ 𝑃(𝑋 = 𝑥) ≤ 𝑞, 𝑃(𝑋 = 𝑥) + 𝑃(𝑋 =

¬𝑥) = 1}. Rules for combining credal sets and defining independence that extend Bayesian networks 

manipulation are to be specified (25). One choice for instance is to use strong extension for combining 

credal sets which leads to independence properties quite similar to standard theory of Bayesian 

networks(25). Naturally, the representation being more sophisticated, all operations such as inference and 

expectation require significantly more memory and computing power that the precise Bayesian network 

framework. For our purpose, we simply focus on the fact that from a credal network, it is possible to 

obtain coherent lower (denoted 𝑝(𝑋|𝑌)) and upper probabilities (denoted  𝑝(𝑋|𝑌)) for any conditional 

event X|Y by deriving the credal set K(X, Y) and defining 𝑝(𝑋|𝑌) = 𝑖𝑛𝑓𝑝∈𝐾(𝑋,𝑌)𝑝(𝑋|𝑌) , 𝑝(𝑋|𝑌) = 1 −

𝑝(𝑋𝑐|𝑌),  where 𝑋𝑐𝑈𝑋 = Ω. 

In our specific case, it means that from the credal networks we are able to extract intervals for the 

transition probabilities in the Markov Chain. Fortunately, the theory of Markov chains has also been 

extended to handle imprecision in the form of ranges through models called Markov Set-Chains (24). In 

such model, the transition matrix A is replaced by compact set of  𝑛 × 𝑛 stochastic matrices denoted 𝑀. 

We define  𝑀𝑘+1 = 𝑀 × 𝑀𝑘  as the set of matrices being the product of k+1 matrices belonging to the set 

𝑀, thus  𝑀𝑘+1 = {𝐴1 ⋯ 𝐴𝑘+1: 𝐴1, ⋯ , 𝐴𝑘+1  ∈ 𝑀} . The sequence𝑀,  𝑀2,… is called a Markov set-chain.   

Specifically, if we look at imprecision defined through interval, then we have the following: 
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Let p and q be 1 × 𝑛 vectors with 𝑝 ≤ 𝑞 (component-wise), then we define a vector interval 

[𝑝, 𝑞] = {𝑥: 𝑥 𝑖𝑠 𝑎 1 𝑥 𝑛 𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑣𝑒𝑐𝑡𝑜𝑟 𝑎𝑛𝑑 𝑝 ≤ 𝑥 ≤ 𝑞} .    

If 𝑝𝑖 = min
𝑥∈[𝑝,𝑞]

𝑥𝑖 and 𝑞𝑖 = max
𝑥∈[𝑝,𝑞]

𝑥𝑖  then 𝑝𝑖  and 𝑞𝑖 are called tight respectively. If 𝑝𝑖  and 𝑞𝑖 are tight for all 

i then the interval [𝑝, 𝑞] is called tight.  Similarly, a matrix interval is defined by 𝑃, Q, two n x n non negative 

matrices with 𝑃 ≤ 𝑄 (component-wise) and   

 [𝑃, 𝑄] = {𝐴: 𝐴𝑖 ∈ [𝑃𝑖, 𝑄𝑖] ∀𝑖 𝑤ℎ𝑒𝑟𝑒 𝐴𝑖 , 𝑃𝑖, 𝑄𝑖 , 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑟𝑜𝑤𝑠 𝑜𝑓 𝐴, 𝑃, 𝑄 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦} 

Similarly, if P and Q satisfy, 𝑝𝑖𝑗 = min
𝐴∈[𝑃,𝑄]

𝑎𝑖𝑗  and 𝑞𝑖𝑗 = max
𝐴∈[𝑃,𝑄]

𝑎𝑖𝑗  for all i and all j then [𝑃, 𝑄] is called tight. 

In particular, if 𝑀 = [𝑃, 𝑄] is a column-tight interval for a transition matrix and [𝐿, 𝐻] are tight component 

bounds on any 𝑀𝑘 then it is possible through the Hi-Lo algorithm to determine [𝐿, 𝐻] corresponding to 

tight components for 𝑀𝑘+1 (24).  Furthermore, the Hi-Lo method is also involved in computing bounds for 

the mean first passage time. Note that by definition, the bounds generated by lower and upper 

probabilities are tight. 

Altogether, the Bayesian network extended to a credal network results in being able to define a Markov-

set-chain [𝑃, 𝑄] associated with any evidence about a person which in turn can be used to compute lower 

and upper bound on vulnerability indexes. 

4. APPLICATION TO ELDERCARE 

We applied this modeling framework to the domain of eldercare in collaboration with Beijing Academy of 

Science and Technology. Specifically, we developed a vulnerability model to help care workers better 

support aging populations, focusing on fostering independent living while at the same time identifying 

declining mental and physical health as early as possible. Aging populations and support for independent 
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living are a growing concern in both developed and developing countries. In fact, the number of older 

people who are no longer able to look after themselves in developing countries may quadruple by 2050(26). 

To build the Bayesian network, we have used the Longitudinal Study On Aging (LSOA)1from the US 

National Institute for Health. This data is based on an initial cohort of 9,447 persons who were 70 aged 

and over in 1995. Those persons (or their proxies when deceased) have been interviewed at three 

different times (waves), approximately two years apart. We have chosen to use the last two waves as the 

questionnaires were more similar between those two waves than between the initial and second waves. 

We thus obtained access to state variables at two-year intervals. The choice of vulnerability domains and 

higher level vulnerability categories was mostly driven by the availability of data and by local expert 

knowledge(27). Table 1 provides a list of the vulnerability domains considered grouped into 6 categories. 

The LSOA study contains several hundred different fields and we have selected a subset of 61 features in 

addition to the 34 state variables (listed on the left side of the table). Compared with medical domain 

frailty assessments(28,29), our set of explanatory factors contains more social environment information 

(family members, education, type of household) and less focus on laboratory measurements (neurological 

exam, glucose or albumin measurements, grip strength). However, there is overlap in terms of Activity of 

Daily Living and Instrumental Activity of Daily Living along with indications of chronic conditions such as 

diabetes and hypertension. 

After basic data cleaning (mostly discretizations of some fields and minimal data imputation), we obtained 

a training data set with 3604 entries after setting aside some entries for testing.  The Bayesian network 

model was learnt using Jsmile2 greedy-thick-thinning algorithm with various combinations of the learning 

algorithm parameters (type of priors and maximum number of parents allowed). While we do not have 

                                                           
1 Description and data available at http://www.cdc.gov/nchs/lsoa/lsoa2.htm 
2 available at http://genie.sis.pitt.edu/ 

http://www.cdc.gov/nchs/lsoa/lsoa2.htm
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data to validate the value of the vulnerability indexes, we chose the best set of parameters for the learning 

algorithm by taking the one that had the best next-period prediction accuracy, which we computed by 

applying the Bayesian network prediction to test data that we had held from the training data.   

Table 1 – List of Factors and Vulnerability Domains Included in the Eldercare Vulnerability Model 

Factors Category(number of variables):list 
of vulnerability domains 

Difficulty Stooping, Difficulty Preparing Own Meal, Has Arthritis, 
Difficulty Controlling Urination, Difficulty Finger Grasping, 
Difficulty Walking Quarter Mile, Difficulty Walking 10 Steps, 
Difficulty Grocery Shopping, Has Diabetes, Number of Persons in 
Household, Marital Status, Length Married in Years, Age, 
Veteran Status, Gender, Gender of Second Person in Household 
Number Days Left House in Past 2 Weeks, Education, Race, Has 
Cancer, Bed , Bath and Kitchen on the same Floor, Use Stairs to 
enter Home, Proximity Children in Hours, Frequency See 
Children, Frequency Talk to Children, Number of Living 
Daughters, Number of Living Sons, Number of Living Sisters, 
Number of Living Brothers, Has Ever Worked, Height, Weight, 
Has Asthma, Has Bronchitis, Smoker, Ever Had Broken Hip, Has 
Osteoporosis, Number of Years of Osteoporosis, Difficulty 
Reaching Over Head, Difficulty Reaching Out, Has Hypertension, 
Ever Had Hypertension, Had Stroke, Ever Had Diabetes, Number 
Year Diabetes, Number Year Arthritis, Ever Had Asthma, Ever 
Had Bronchitis Emphysema, Number Year Bronchitis 
Emphysema, Number Year Asthma, Number Year Hypertension, 
Had Heart Disease, Number Year Heart Disease, Number Year 
Stroke, Ever Had Cancer, Is Social Activity Sufficient, Difficulty 
Doing Light Housework, Difficulty With Telephone, Difficulty 
Managing Money, Difficulty Managing Medication. 

Sensation (2):  
Sight – Hearing 

Social Involvement (2):  
Socially Active with friends  - 
Socially Active with relatives 

Mental Health (2):  
Frequency of sadness or 
depression, self-rated memory 

Fundamental Daily Activity (6):  
Ability to eat, bath, dress, walk , 
get out of bed or chairs and use 
the restrooms independently 

Extended Daily Activities (2) :  
Social Living Abilities, Cognitive 
Living Abilities 

Medical (3) :  
Self-rated Health, Injured from 
Fall, More than three chronic 
conditions 

 

The model was then integrated and deployed into a real tool currently being deployed in a Beijing 

neighborhood. Figure 4 provides a snapshot of the user interface associated with a previous iteration of 

our model (with fewer categories). In that interface, we do not directly present the full vulnerability profile 

(meaning values for each of the 14 vulnerability domains) but rather aggregate each category by reporting 

the worst vulnerability index associated with that category (second column). In addition, we provide 
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associated historical values (third column) and contributing factors (fourth column) to the care worker 

using the dashboard. While we chose to take the worst vulnerability index among indexes within the same 

vulnerability category, other possible approaches could have been to average across the indexes and list 

the union of informative and influential factors in the fourth column. 
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Figure 4– Dashboard of our Application 
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Figure 5– Bayesian Belief Network associated with our Model 
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To illustrate the effect of the known information on the vulnerability profile, we provide on Table 2 the 

profiles associated with 4 different information content associated with a patient. Person 1 corresponds 

to a “Married 75 year-old man”. Person 2 corresponds to the same profile, except that we also know that 

the person suffers from diabetes. Person 3 builds upon person 2 with the additional knowledge that he 

has difficulty walking and feels depressed a little of the time. Finally person 4 is an even richer (and dire) 

description of the person current situation. However, person 4’s profile still represents incomplete 

knowledge of the person, capturing 10 out of the 61 factors contained in the model.  

The first two columns in Table 2 are fairly similar, though there is a consistent minimal increase of 

vulnerability (decrease of the indexes) for person 2 who also suffers from diabetes. This is an example of 

cross-influences of a medical factor on social domains. The largest difference is associated with the More 

Than Three Chronic Conditions domain. As diabetes is a chronic condition, such change is logical. When 

comparing persons 2 and 3, we first notice that Difficulty Walking is now null for person 3, a direct 

consequence from the fact that we have observed this difficulty, it is no longer a vulnerability but rather a 

need. Notice again that many other vulnerability indexes have decreased as well, illustrating cross-

influences. Only Frequency Sadness and Depression has increased, indicating lessened vulnerability. This 

is not surprising as feeling sad or depressed only a little of the time constitutes in fact positive evidence 

compared to the unknown state. Finally person 4 represents a significant aggravation of person 3 state, 

with many additional physical and medical difficulties and a worsening of the mood.  

In addition to providing vulnerability indexes, we also perform sensitivity analyses on the explanatory 

factors so as to determine which ones have a sizeable influence on the vulnerability index. For instance, 

for person 4 and for the domain of being socially active with friends, the index value is 9.29 years which 

seems to indicate little concern. However, our sensitivity analysis on known facts points out that the fact 

that person 4 has difficulty doing light housework and that he has left home less than 5 times in the past 
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two weeks are aggravating factors which should be kept in perspective. By contrast, the sensitivity analysis 

on unknowns factors reveals that knowing whether person 4 has difficulty with using the phone, preparing 

his own meals, managing money or medication and difficulty doing grocery shopping are informative 

factors. This means that depending on the answer, the vulnerability index could change significantly.  

Table 2 – Illustrative Vulnerability Indexes (in Years) 

 Person 1 Person 2 Person 3 Person 4 

Difficulty Dressing 7.51 7.49 4.42 1.12 

Difficulty Eating 15.55 15.52 11.10 5.34 

Difficulty Walking 3.24 3.22 0.00 0.00 

Difficulty Using Toilet 8.83 8.81 5.11 2.14 

Difficulty Getting Out Chair Bed 5.77 5.74 2.97 1.10 

     

Sight Level 6.54 6.54 5.82 4.70 

Hearing Level 2.70 2.66 2.58 2.26 

     

Socially Active Friends 12.28 12.27 11.33 9.29 

 Socially Active Relatives 23.12 23.11 20.58 15.98 

     

Frequency Sadness Depression 6.65 6.61 7.96 0.00 

Self-Rated Memory 32.10 32.06 31.69 31.01 

     

Difficulty with  Social Living Abilities 4.05 4.04 2.59 0.43 

Difficulty with  Cognitive Living Abilities 4.30 4.29 3.37 1.55 

     

Injured From Fall 4.45 4.45 3.56 2.83 

More Than Three Chronic 9.10 7.11 6.13 3.79 

Self-Rated Health 13.92 13.78 9.69 4.50 

LEGEND: 

Person 1: Married 75 year-old man     

Person 2: Married 75 year old man with diabetes 

Person 3: Married 75 year old man with diabetes and difficulty walking and feeling sad or depressed a little of 
the time 

Person 4: Married 75 year old man with diabetes, hypertension, difficulty walking, stooping and finger grasping, 
feeling sad or depressed all of the time, who has not left his house more than 5 days in the past 2 weeks, who is 
a smoker and who is not able to do light house work in his home 
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Finally, we also evaluated severity indexes for the situations where vulnerability is no longer a risk but a 

need (i.e., when the index is 0). For person 3, the severity of difficulty walking is 5.4 years increasing to 

about 7.5 years for person 4, thereby serving as a further indicator that the condition of the person has 

worsened. For person 4, the severity of depression is 3.5 years highlighting here that addressing the 

difficulties with mobility may be the first priority for a care worker in charge of this person. 

To illustrate the effect of imprecision on the results, we have reproduced a similar analysis though on a 

reduced set of variables and vulnerability domains as listed in Table 3. 

Table 3 – List of Factors and Vulnerability Domains Included in the  

Eldercare Vulnerability Model with Imprecise Inputs 

Factors Category(number of variables):list of vulnerability 
domains 

Difficulty Stooping, Difficulty Finger Grasping,  
Has Diabetes, Marital Status, Age, Gender, 
Number Days Left House in Past 2 Weeks, Has 
Ever Worked, Smoker, Ever Had Hypertension, 
Difficulty Doing Light Housework 

Mental Health 
Frequency of sadness or depression,  

Fundamental Daily Activity   
Ability to walk independently 

 

A precise model was learnt following the same protocol as with the broader set of variables. To incorporate 

imprecision, we modified some of the network parameters based on the number of data points in the 

training dataset that went into estimating the probabilities. Indeed, while we had about 3600 training 

entries, some specific combinations were very rare or did not occur altogether. For instance, no 

respondent above 90 was separated while in our network, the distribution of age is influenced by marital 

status. This makes the estimation of the probability of being above 90 given one is separated much less 

reliable than for married respondents (74 entries) or widowed ones (273 entries).  Therefore, for 

parameters with a support of less than 5 entries, we replaced the precise probability by an interval 

corresponding to +/- 50% of the precise value. When parameters had a support above 5 but less than 20, 
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we associated them with an interval +/- 10%. Granted, this represents a fairly simple approach to adding 

imprecision and the choice of the magnitude parameters or thresholds is arbitrary. Its purpose here is to 

provide some illustration as to cases where adding imprecision is warranted along with its effect on 

vulnerability modeling. To perform the credal set computations, we used the JavaBayes package3. 

Figure 6 reports the lower bound, upper bound of the mean first passage time to the vulnerable states for 

Difficulty Walking and for Depression starting from each of the possible non-vulnerable states. In addition, 

we also provide the values associated with the model without imprecision (red dots). We consider three 

profiles with increasing level of information about the persons (and with increased difficulties overall). The 

third profile corresponds to a 75 year old male with diabetes and difficulty stooping, finger grasping, doing 

light housework, has hypertension, currently smokes and had not left his house more than 5 days in the 

past two weeks. Before going into the specific results, we observe that this reduced model leads to higher 

vulnerability indexes than the broader model, around 5.5 years for difficulty walking for the first profile 

corresponding exactly to Person 1 in the broader model which had a vulnerability of 3.2 years.  We observe 

that the range of the intervals varies with the level of knowledge, for the 75 year-old male for difficulty 

walking, we have a difference of 0.16 years between the lower bound and the upper bound while this 

difference becomes 0.40 years for the person with the many difficulties. This pattern applies to all three 

mean first passage time metrics. We also observe that the addition of imprecision does not necessarily 

lead to a symmetric interval around the reference value (the value corresponding to the model without 

imprecision). There is no reason why the interval should be symmetric as shown in our simple model. 

Finally, while in this illustrative example intervals tend not to overlap, we can see that for the case of 

becoming depressed from feeling sad a little of the time, the 75 year-old male with and without diabetes 

are difficult to distinguish and should probably be treated in a similar manner by a care worker. 

                                                           
3 Available at http://www.cs.cmu.edu/~javabayes/Home/ 
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Figure 6 –Graphical Representation of Lower Bound, Upper Bound, and Reference Values  

for Multiple Vulnerability Domains Based on the Model With Imprecise Inputs 
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5. DISCUSSION AND CONCLUSION 

In this paper, we present a modeling framework for vulnerability assessment “in the wild” and its 

application to the health and social care domain. This model combines a Markov chain model that 

describes the evolution of persons through states with a Bayesian network that enables to customize the 

Markov chain parameters based on available evidence. The objective of the model is to estimate the 

vulnerability profile of a person with varying amount of input information so as to guide subsequent 

decision making. Such a system is meant as a decision support tool to help professionals with limited time 

and financial resources to prioritize urgent situations and understand, for a given patient, which domain 

of vulnerability should be addressed first. Within the social care context, its purpose is among others to 

identify clients that present a multiplicity of problems and need to be handled differently than the majority 

of clients (the often termed “High-Cost High Need” category).  Early identification of complex cases are 

expected to have positive benefits on both the persons involved and the efficiency of the social care system 

at large. 

Our choice of underlying models, Bayesian networks and Markov chains, was partially motivated by the 

fact that they are fairly widely used and at the same time graphically intuitive. Altogether, this makes them 

accessible to decision makers that are not always analytically savvy yet interested in getting some 

understanding into logic of the model and the provenance of the vulnerability estimations. 

One challenge associated with the presented modeling approach is to find a reasonable method to build 

the underlying Bayesian network (both structure and parameters). One technical advantage of our 

framework is its ability to incorporate imprecision in the parameters in a disciplined fashion through the 

combinations of Markov sets and credal networks. The ability to handle imprecise inputs makes the 

approach more likely to be applicable in real world situations where information can be messy.  In the 

eldercare case study that we presented, we were satisfied with using the LSOA dataset to determine both 
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model structure and parameters as it was reasonably large. However, further data sources could have 

been considered, for instance China Health and Retirement Longitudinal Study (CHARLS) 4, North American 

open data sets such as RAND Health and Retirement Study (HRS)5 or similar studies from Europe such as 

SHARE6, ELSA7, or TILDA8 among others. In fact as the model was designed to be deployed for a Chinese 

cohort, we would have preferred to use the CHARLS data, but it contained insufficient relevant entries 

when filtered to have respondents appearing in at least two waves. We decided, as a first approximation, 

to use the information from the American cohort. This meant not including potentially relevant cultural 

factors and assuming that aging factors were somewhat universal.  

Overall, model building in this case, as in many other situations in risk analysis, is faced with the double 

challenge of incomplete or partially misaligned single input, which when one seeks to combine them may 

become redundant and conflicting.  To facilitate the construction of the model, we are currently exploring 

methods to build Bayesian network models from a collection of disparate, overlapping, and possibly 

conflicting, sources of information such as 

 Data sets at the individual level, covering a subset of the nodes in the network 

 Aggregated information for a subset of the nodes of the network 

 Expert information (influence statements and probability statements). 

Specifically, we are extending methods from the artificial intelligence community. In particular, we have 

looked at adapting the PC algorithm(30) to build a Bayesian network from multiple overlapping datasets (31). 

                                                           
4 Description available at http://charls.ccer.edu.cn/en 
5 Description available at http://www.rand.org/labor/aging/dataprod/hrs-data.html 
6 Description available at http://www.share-project.org/ 
7 Description available at http://www.elsa-project.ac.uk/ 
8 Description available at http://tilda.tcd.ie/ 
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In a different endeavor focused on the medical academic literature, we have also explored how to extract 

expert statements from abstracts and then aggregate them into a Bayesian network (32). 

Beyond eldercare and evident extensions, our vulnerability model can apply to many related situations 

that involve evaluating the risk of a person state deteriorating. One such domain would be in social actions 

for crime prevention, where it is critical to better understand who among the relatively large population 

of known perpetrators of crimes, or in a more particular case, of violent crimes (especially those who have 

committed lesser offenses such as shoplifting and possession of drugs), is likely to become a repeat 

offender. Again, to make such information actionable at an operational level, it needs to be personalized 

to each such candidate, taking into account the social-family context of the person along with information 

about the conditions in which the crime was committed. In particular, it would seem beneficial to be able 

to identify people who are likely to commit a crime in the near future. Another domain of application 

would be the management and maintenance of pipe networks, be they water networks as in cities or gas 

networks in hospitals. Seeing each pipe as a member of an aging population, the model would be able to 

estimate which ones are most likely to deteriorate based on contextual information about the pipe (for 

instance diameter, length, water pressure, material, location) and possible observation of leaks. Such a 

model would be useful for administrators to better manage the maintenance activities associated with the 

water network. However, as pipes in a network are not necessarily independent, this would require an 

extension of the model to allow for local interactions among the elements whose vulnerabilities are 

evaluated. This would represent in fact a meaningful extension even for the case of eldercare so as to be 

able to consider the cross-influences of a spouse and of a person’s close social network on their well-being. 

  



29 
 

REFERENCES 

1. OECD. Social spending after the crisis.  2012. OECD. 

2. Centers for Medicare and Medicaid Services. Actuarial report on the financial outlook for Medicaid. 
2012. Washington, DC, US Government Printing Office.  

3. Mann C. Medicaid  and  CHIP:  On  the  road  to  reform [pdf slides]. 2011. Retrieved from 
http://www.healthandwelfare.idaho.gov/Portals/0/Medical/SUD/Medicaid%20and%20CHIP%20On%20t
he%20Road%20to%20Reform%20by%20Cindy%20Mann.pdf. 

4. Gawande A. The hot spotters. Can we lower medical costs by giving the neediest patients better care? 
The New Yorker. 2011. Retrieved from http://www.newyorker.com/magazine/2011/01/24/the-hot-
spotters. 

5. Deleris LA, Aonghusa PM, Shorten R. Person-Specific Standardized Vulnerability Assessment in Health 
and Social Care. MEDINFO 2015: EHealth-enabled Health: Proceedings of the 15th World Congress on 
Health and Biomedical Informatics 2015. 216:462-466 

6. Cutter SL, Boruff BJ, Shirley WL. 2003. Social vulnerability to environmental hazards*. Social science 
quarterly. 84(2):242-61. 

7. Gray LC, Berg K, Fries BE, Henrard JC, Hirdes JP, Steel K, Morris JN. Sharing clinical information across 
care settings: the birth of an integrated assessment system. BMC Health Services Research. 2009. 
9(1):71.  

8. Taylor BJ. (2012). Developing an integrated assessment tool for the health and social care of older 
people. British journal of social work, 2012. 42(7):1293-1314. 

9. Van der Gaag N, Bijwaard G, de Beer J, Bonneux L. 2015. A multistate model to project elderly 
disability in case of limited data. Demographic Research. 32:75 

10. Lang PO, Michel JP, Zekry D. Frailty Syndrome: A Transitional State in a Dynamic Process. Gerontology 
2009. 55:539-549 

11. De Vries NM, Staal JB, Van Ravensberg CD, Hobbelen JS, Rikkert MOM, Nijhuis-Van der Sanden MWG. 
Outcome instruments to measure frailty: a systematic review. Ageing research reviews. 2011. 10(1):104-
114. 

12. Saliba D, Elliott M, Rubenstein LZ, Solomon DH, Young RT, Kamberg CJ, Wenger NS. The Vulnerable 
Elders Survey: a tool for identifying vulnerable older people in the community. Journal of the American 
Geriatrics Society. 2001. 49(12):1691-1699. 

13. Andrew MK, Mitnitski AB, Rockwood K. Social vulnerability, frailty and mortality in elderly people. 
PLoS One. 2008. 3(5):e2232. 

14. Deleris LA, Yeo GL, Seiver A, Paté-Cornell ME. Engineering risk analysis of a hospital oxygen supply 
system. Medical decision making. 2006. 26(2):162-172.  

15. Li L, Wang J, Leung H, Jiang C. Assessment of catastrophic risk using Bayesian network constructed 
from domain knowledge and spatial data. Risk analysis, 2010. 30(7):1157-1175.  

16. Paté-Cornell E, Guikema S. Probabilistic modeling of terrorist threats: A systems analysis approach to 
setting priorities among countermeasures. Military Operations Research. 2002. 7(4):5-23. 

17. Platis A., Limnios N, Le Du M. (1998). Dependability analysis of systems modeled by non-
homogeneous Markov chains. Reliability Engineering & System Safety. 1998. 61(3):235-249. 

http://www.newyorker.com/magazine/2011/01/24/the-hot-spotters
http://www.newyorker.com/magazine/2011/01/24/the-hot-spotters


30 
 

18. Moayedi BZ, Azgomi MA. A game theoretic framework for evaluation of the impacts of hackers 
diversity on security measures. Reliability Engineering & System Safety. 2012. 99:45-54. 

19. Guanquan C, Jinhua S. Quantitative assessment of building fire risk to life safety. Risk analysis. 2008. 
28(3):615-625.  

20. Page L, Brin S, Motwani R, Winograd T. The PageRank citation ranking: bringing order to the web. 
1999 

21. Gleich DF. PageRank Beyond the Web. SIAM Review. 2015. 57(3):321-363 

22. Crisostomi E, Kirkland S, Shorten R. A Google-like model of road network dynamics and its application 
to regulation and control. International Journal of Control. 2011. 84(3):633-651. 

23. Pearl J. Probabilistic reasoning in intelligent systems: networks of plausible inference. 19988. Morgan 
Kaufmann. 

24. Hartfiel DJ. Markov set-chains. Lecture notes in mathematics.1998.  

25. Cozman FG. Credal networks. Artificial intelligence. 2000. 120(2):199-233.  

26. World Health Organization. Facts on ageing and the life course. World Health Organization, Geneva, 
Switzerland. 2012. Retrieved from (http://www. who. int/features/factfiles/ageing/en/). 

27. ICS 03 080 01. Ability assessment for older adults. 2013. Retrieved from jzshfl.gov.cn/uploads/老年人

能力评估.doc. 

28. Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a proxy measure of aging. The 
Scientific World Journal. 2001 1:323-336. 

29. Carrière I, Colvez, A, Favier F, Jeandel C, Blain H, EPIDOS study group. Hierarchical components of 
physical frailty predicted incidence of dependency in a cohort of elderly women. Journal of clinical 
epidemiology. 2005. 58(11):1180-1187. 

30. Spirtes P, Glymour CN, Scheines R. Causation, prediction, and search. 2000. Vol. 81. MIT press.  

31. Sajja S, Deleris LA. Bayesian Network Structure Learning with Messy Inputs: The Case of Multiple 
Incomplete Datasets and Expert Opinions. International Conference on Algorithmic Decision Theory 
2015. 27:123-138 

32. Deleris L, Deparis S, Sacaleanu B, Tounsi L. Risk Information Extraction and Aggregation. International 
Conference on Algorithmic Decision Theory 2013. 154-166.  

 

 


