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Abstract

Red-black planning is the state-of-the-art approach to satisfic-
ing classical planning. A planner Mercury, empowered by the
red-black planning heuristic, was the runner-up of the Inter-
national Planning Competition (IPC) 2014. The exceptional
performance of Mercury is amplified by the fact that condi-
tional effects, a feature required to be supported in the com-
petition, were handled by the planner in a trivial way, by sim-
ply compiling them away. Conditional effects, however, are
important for classical planning, and many domains require
them for efficient modeling.
Consequently, we herein investigate the possibility of han-
dling conditional effects directly in the red-black planning
heuristic function, extending the algorithm for computing
red-black plans to the conditional effects setting. We show
empirically that red-black planning heuristics that handle
conditional effects natively favorably compete with the vari-
ant that compiles this feature away.

Introduction
Delete relaxation heuristics have played a key role in the
success of satisficing planning systems (Bonet and Geffner
2001; Hoffmann and Nebel 2001; Richter and Westphal
2010). A well-known pitfall of delete relaxation is its inabil-
ity to account for repetive achievements of facts. It has thus
been an actively researched question from the outset how to
take some deletes into account, e. g. (Fox and Long 2001;
Gerevini, Saetti, and Serina 2003; Helmert 2004; Helmert
and Geffner 2008; Baier and Botea 2009; Cai, Hoffmann,
and Helmert 2009; Haslum 2012; Keyder, Hoffmann, and
Haslum 2012). Red-black planning framework (Domshlak,
Hoffmann, and Katz 2015), where a subset of red state vari-
ables takes on the relaxed value-accumulating semantics,
while the other black variables retain the regular semantics,
introduced a convenient way of interpolating between fully
relaxed and regular planning.

Katz, Hoffmann, and Domshlak (2013b) introduced the
red-black framework and conducted a theoretical investiga-
tion of tractability of both plan existence and plan genera-
tion. Among other, they found that reversibility (Chen and
Giménez 2010) plays a major role in making red-black plan
generation tractable. Following up on this, exploiting the no-
tion of invertibility, Katz, Hoffmann, and Domshlak (2013a)
devised practical red-black plan heuristics, non-admissible

heuristics generated by repairing fully delete-relaxed plans
into red-black plans. Observing that this technique often
suffers from dramatic over-estimation incurred by follow-
ing arbitrary decisions taken in delete-relaxed plans, Katz
and Hoffmann (2013) refined the approach to rely less on
such decisions, yielding a more flexible algorithm deliver-
ing better search guidance. Finally, Katz and Hoffmann
(2014b) presented red-black DAG heuristics for a tractable
fragment characterized by DAG black causal graphs and
devised some enhancements targeted at making the result-
ing red-black plans executable in the real task, stopping the
search if they succeed in reaching the goal. Red-black DAG
heuristics are in the heart of the Mercury planner (Katz and
Hoffmann 2014a), the runner-up of the sequential satisficing
track in the International Planning Competition (IPC 2014).
All red-black heuristics to this day, however, are defined
for a SAS+ fragment without conditional effects, despite
of conditional effects being a main feature in the domains
of IPC 2014. Mercury planner handles conditional effects
by simply compiling them away in a straighforward fash-
ion, multiplying-out the actions (Nebel 2000). Obviously,
the number of actions grows exponentially, and thus the
straight forward compiling away does not scale well. Nebel
(2000) presents an alternative compilation, that does not lead
to an exponential blow-up in the task size. This compila-
tion, however does not preserve the delete relaxation. Thus,
several delete relaxation based heuristics were adapted to
natively support conditional effects (Haslum 2013; Röger,
Pommerening, and Helmert 2014).

In this work we extend the red-black planning framework
to tasks with conditional effects. To that end, we generalize
the definition of invertibility to support conditional effects.
We then show that the fragment of red-black planning char-
acterized by DAG black causal graphs remains tractable in
the presence of conditional effects. Further, we show how an
existing algorithm for solving tasks belonging to this frag-
ment can be adapted to handle conditional effects. Finally,
we empirically show the added value of handling the con-
ditional effects directly in the heuristic over compiling them
away. We conclude the paper with a discussion of our results
and a future work.



Background
In order to handle classical planning tasks with conditional
effects, we consider the red-black planning finite-domain
representation (RB) framework (Domshlak, Hoffmann, and
Katz 2015), a generalization of both the finite-domain rep-
resentation and the monotonic finite-domain representation
formalisms. We extend the formalism of RB to handle ac-
tions with conditional effects. A red-black (RB) planning
task is a tuple Π = 〈VB,VR, O, s0, s?〉. VB is a set of black
state variables and VR is a set of red state variables, where
VB ∩ VR = ∅ and each v ∈ V := VB ∪ VR is associated
with a finite domain D(v). The initial state s0 is a complete
assignment to V , the goal s? is a partial assignment to V .
Each action o is a pair 〈pre(o), effs(o)〉, where pre(o) is a
partial assignment to V called precondition and effs(o) is a
set of effects. Each effect e ∈ effs(o) is a tuple 〈cond , v, ϑ〉,
where cond is a partial assignment called effect condition,
v ∈ V is the effect variable, and ϑ ∈ D(v) is the effect
value. We often refer to (partial) assignments as sets of facts,
i. e., variable-value pairs v = d. For a partial assignment
p, vars(p) denotes the subset of V instantiated by p. For
V ′ ⊆ vars(p), p[V ′] denotes the value of V ′ in p. For the
sake of readability, by vars(effs(o)) we denote the subset of
V that appear in effs(o). Also, for the sake of readability, by
effs(o)[V ′] we refer to the subset of conditional effects that
affect variables in V ′.

A state s assigns each v ∈ V a non-empty subset s[v] ⊆
D(v), where |s[v]| = 1 for all v ∈ VB. A state s agrees with
the partial passignment p, denoted by s |= p, if p[v] ∈ s[v]
for all v ∈ vars(p). An action o is applicable in state s
if s |= pre(o). An effect 〈cond , v, ϑ〉 ∈ effs(o) fires in
state s if s |= cond . Applying o in s changes the value
of v for all firing effects 〈cond , v, ϑ〉 ∈ effs(o) as follows.
If v ∈ VB, the value is changed to {ϑ}. Otherwise (if
v ∈ VR), the new value of v is s[v]∪{ϑ}. By sJ〈o1, . . . , ok〉K
we denote the state obtained from sequential application of
o1, . . . , ok. An action sequence 〈o1, . . . , ok〉 is a plan if
s?[v] ∈ s0J〈o1, . . . , ok〉K[v] for all v ∈ vars(s?).

Π is a finite-domain representation (FDR) planning
task if VR = ∅, and is a monotonic finite-domain rep-
resentation (MFDR) planning task if VB = ∅. Plans for
MFDR tasks (i. e., for delete-relaxed tasks) can be generated
in polynomial time. A key part of many satisficing plan-
ning systems is based on exploiting this property for deriv-
ing heuristic estimates, via delete-relaxing the task at hand.
Generalizing this to red-black planning, the red-black re-
laxation of an FDR task Π relative to VR is the RB task
Π∗+VR = 〈V \ VR,VR, O, s0, s?〉. A plan for Π∗+VR is a red-
black plan for Π, and the length of a shortest possible red-
black plan is denoted h∗+VR(Π). For arbitrary states s, h∗+VR(s)

is defined via the RB task 〈V \VR,VR, O, s, s?〉. If VR = V ,
then red-black plans are relaxed plans, and h∗+VR coincides
with the optimal delete relaxation heuristic h+.

We use a slightly modified miconic-simpleadl task with
two passengers as our running example. An elevator moves
between four floors and need to move passengers from their
original floors to their destination floors. Passenger p0 is
originally at floor f3 and needs to get to floor f0. Passen-

p0

p1

f3

f2

f1

f0

f t

stop f0

oc: L=f0, B0=t

forgot-keys f0 p0

oc: L=f0, B0=t

(b)

L

B0

S0

B1
S1

(a) (c)

Figure 1: An example (a), a domain transition graph of a
variable S0 (b), and the causal graph (c).

ger p1 starts from floor f0 and goes to floor f2. The exam-
ple is depicted in Figure 1(a), with floors, passengers and
their initial and goal locations shown. There is one variable
for elevator location, L, with initial value f0, and two vari-
ables for each passenger, encoding whether the passenger
was boarded, Bi and whether she was served, Si. There are
actions changing the value of variable L, up fi fj and down
fi fj . These actions have one unconditional effect each. In
addition, there are actions that stop at a floor, picking up pas-
sengers from their origin floors and embarking passengers to
their destinations. The stop fi actions are as follows.

stop f0 =

〈
{L=f0},


〈∅, B0, f〉,

〈{B0=t}, S0, t〉,
〈{S1=f}, B1, t〉


〉
,

stop f2 =〈{L=f2}, {〈∅, B1, f〉, 〈{B1=t}, S1, t〉}〉, and

stop f3 =〈{L=f3}, {〈{S0=f}, B0, t〉}〉.
Note that there are only actions stop f0, stop f2, and stop

f3. There is no action stop f1, since the floor f1 is neither
origin nor destination of any passenger.

In addition, there are actions forgot-keys f p with one un-
conditional effect each, taking the embarked passenger back
to the elevator on her destination floor. These actions are as
follows.

forgot-keys f0 p0 =〈{L=f0, B0=t, S0=t}, {〈∅, S0, f〉}〉,

forgot-keys f2 p1 =〈{L=f2, B1=t, S1=t}, {〈∅, S1, f〉}〉.
Focusing at action stop f0, a straight forward approach

of handling conditional effects would multiply out the vari-
ables in conditions of the effects. As a result, we obtain four
actions:

• 〈{L=0, B0=f, S1=f}, {〈∅, B0, f〉, 〈∅, B1, t〉}〉,
• 〈{L=0, B0=t, S1=f}, {〈∅, B0, f〉, 〈∅, B1, t〉, 〈∅, S0, t〉}〉,
• 〈{L=0, B0=f, S1=t}, {〈∅, B0, f〉}〉, and

• 〈{L=0, B0=t, S1=t}, {〈∅, B0, f〉, 〈∅, S0, t〉}〉.



A real optimal plan has length 6 ( up f0 f3, stop f3, down
f3 f0, stop f0, up f0 f2, stop f2 ), a relaxed plan has length
5 (no need to go back down to f0). If we paint L black, then
h∗+VR(s0) = 6 as desired.

Tractable fragments of red-black planning have been
identified using standard structures, domain transition
graph and causal graph (Helmert 2006). The domain
transition graph DTGΠ(v) of a variable v ∈ V is a labeled
digraph with vertices D(v). The graph has an arc (d, d′) in-
duced by action o if 〈cond , v, d′〉 ∈ effs(o), and either (i)
pre(o)[v] = d or cond [v] = d, or (ii) v 6∈ vars(pre(o)) ∪
vars(cond). The arc is labeled with its induced action o and
its outside condition pre(o)[V \ {v}] ∪ cond [V \ {v}]. In
contrast to the case of no conditional effects, here we cannot
know in advance which effects will fire, and thus the notion
of outside effect for an edge in the domain transition graph
is not well defined. The domain transition graph of the vari-
able S0 in our example is shown in Figure 1(b). The action
labels are above the arcs and the outside conditions (marked
by oc) are below the arcs.

The causal graph CGΠ of Π is a digraph with vertices
V . An arc (v, v′) is in CGΠ if v 6= v′ and there exists an
action o ∈ O such that either (i) the domain transition graph
DTGΠ(v′) of v′ has some arc labeled with outside condition
on the variable v, or (ii) both v, v′ ∈ vars(effs(o)).

The black causal graph CGB
Π of Π is the sub-graph of

CGΠ induced by VB. Figure 1(c) depicts the causal graph of
the example task. If we paint only L black, then the black
causal graph is arc-empty. If we paint also S0 and S1 black,
then the black causal graph is a DAG.

Invertibility
The notion of invertibility introduces a sufficient criteria
for tractability of red-black planning for tasks with acyclic
black causal graphs (Katz, Hoffmann, and Domshlak 2013a;
Katz and Hoffmann 2013; Domshlak, Hoffmann, and Katz
2015). The definition for tasks without conditional effects is
as follows. An arc (d, d′) is relaxed side effects invertible,
RSE-invertible for short, if there exists an arc (d′, d) with
outside condition φ′ ⊆ φ ∪ ψ where φ and ψ are the outside
condition respectively outside effect of (d, d′). A variable v
is RSE-invertible if all arcs in DTGΠ(v) are RSE-invertible,
and an RB task is RSE-invertible if all its black variables
are.

The motivation behind the defition is as follows. If the
black causal graph is acyclic, every action affects at most
one black variable. Since red variables accumulate their
values, the only effect we need to invert is the black one.
This corresponds to inverting a single arc (d, d′) in a do-
main transition graph. Thus, we need to ensure that for ev-
ery arc (d, d′) traversed in the domain transition graph, there
exist a corresponding inverse arc (d′, d). That arc must be
traversable after (d, d′). Furthermore, since the outside con-
dition φ of (d, d′) is not changed by traversing the arc, and
the outside effect ψ consists of red variables only, and thus
can only accumulate new values by traversing the arc, both
φ and ψ will remain true and can be used as conditions for
the inverse arc.

In the presence of conditional effects we need to cosider
which effects fire, and thus the definition of RSE-invertible
arcs is adapted as follows.

Definition 1 Let v ∈ V be some variable and o be some
action affecting v. Let (d, d′) be some arc in the domain
transition graph DTGΠ(v) of v, induced by 〈cond , v, d′〉 ∈
effs(o) of action o and let φ be its outside condition. The arc
(d, d′) is relaxed side effects invertible, RSE-invertible for
short, if there exists an induced by the action o′ arc (d′, d)
with outside condition φ′, such that φ′ ⊆ φ ∪ ψ, where ψ =
{v′ = d′′ | 〈cond ′, v′, d′′〉 ∈ effs(o), v′ 6= v, cond ′ ⊆ φ}.

In words, the outside condition of the reverting arc should
either hold before traversing the reverted arc or be achieved
as a side effect of traversing the arc. For latter, we can con-
sider only the effects that surely fire.

As before, a variable v is RSE-invertible if all arcs in
DTGΠ(v) are RSE-invertible, and an RB task is RSE-
invertible if all its black variables are. In what follows,
we show that the main theorem of Katz, Hoffmann, and
Domshlak (2013a), which enabled devising practical red-
black heuristics holds also for tasks with conditional effects.

Theorem 1 Any RSE-invertible RB task with acyclic black
causal graph is reversible.

We follow the proof of Katz, Hoffmann, and Domshlak
(2013a) and show that every action application can be un-
done. Specifically, we show that given a state s and an action
o applicable to s, from the state sJ〈o〉K we can reach a state s′
so that s′[VB] = s[VB]. If all variables affected by o are red,
s′ := sJ〈o〉K fits the requirement. Otherwise, o affects ex-
actly one black variable v. Let (d, d′) be the arc in DTGΠ(v)
that corresponds to the effect 〈cond , v, d′〉 ∈ effs(o) fired in
s, let (d′, d) be the inverse arc, and let o′ be the action that
induces (d′, d) with outside condition φ′ as in Definition 1.
Then o′ is applicable in sJ〈o〉K: Using the notations from
above, pre(o′) ⊆ φ′ ∪ {(v, d′)}, where φ′ ⊆ φ ∪ ψ. As
discussed above, both φ and ψ are true in sJ〈o〉K. Clearly,
s′ := sJ〈o, o′〉K has the required property. This concludes
the proof of Theorem 1.

In the example, variable L is RSE-invertible, since up and
down actions invert each other. The variables B0 and B1 are
not RSE-invertible, since edges that correspond to stop ac-
tions can be inverted only by other stop actions. These pairs
of stop actions correspond to boarding and embarking the
passenger, and therefore the elevator location value would
not match. The variables S0 and S1 are RSE-invertible,
as can be seen in Figure 1(b). Note that while the edge
from t to f coressponds to a non-conditional effect and
thus the outside condition comes entirely from the precon-
dition, the edge from f to t is induced by a conditional ef-
fect 〈{B0=t}, S0, t〉, and thus the outside condition comes
partially from the precondition and partially from the effect
condition.

Red-Black DAG Heuristics
Katz and Hoffmann (2013) provide an algorithm for RSE-
invertible RB tasks with acyclic black causal graphs and no



Algorithm : REDBLACKPLANNINGCE(Π, R+)
main
// Π = 〈VB,VR, O, s0, s?〉
global R, B ← ∅, π ← 〈〉
UPDATE()
while R 6⊇ R+

do



O′ = {〈o, c〉 | o ∈ O, 〈c, v, ϑ〉 ∈ effs(o),
pre(o) ∪ c ⊆ B ∪R,
〈v, ϑ〉 ∈ (R+ \R)}

Select 〈o, c〉 ∈ O′

if pre(o)[VB] ∪ c[VB] 6⊆ s0JπK
then π ← π ◦ ACHIEVE(pre(o)[VB] ∪ c[VB])

π ← π ◦ 〈o〉
UPDATE()

if s?[VB] 6⊆ s0JπK
then π ← π ◦ ACHIEVE(s?[VB])

return π
procedure UPDATE()
R← s0JπK[VR]
B ← B ∪ s0JπK[VB]
for v ∈ VB, ordered topologically by the black causal graph

do B ← B ∪ DTGΠ(v)|R∪B

procedure ACHIEVE(g)
sB0 ← s0JπK[VB]
sB? ← g
OB ← {oB | o ∈ O, pre(o) ⊆ R ∪B,

⋃
〈c,v,ϑ〉∈effs(o)[VB]

c ⊆ R ∪B,

pre(oB) = pre(o)[VB],
effs(oB) = {〈c[VB], v, ϑ〉 | 〈c, v, ϑ〉 ∈ effs(o)[VB]}}

〈o′B1 , . . . , o′Bk 〉 ← an FDR plan for ΠB = 〈VB, OB, sB0 , s
B
?〉

return 〈o′1, . . . , o′k〉

Figure 2: Red-black planning algorithm.

conditional effects. Figure 2 shows the adaptation of Katz
and Hoffmann’s pseudo-code to conditional effects. The
original algorithm assumes as input the set R+ of precon-
ditions and goals on red variables in a fully delete-relaxed
plan, i. e., R+ = s?[VR] ∪

⋃
o∈π+ pre(o)[VR] where π+ is

a relaxed plan for Π. The adaptation also requires to collect
the conditions of the effects that fire in the relaxed plan, and
therefore R+ will also include those conditions.

The original algorithm then successively selected achiev-
ing actions for R+, until all these red facts are true. Our
algorithm, however, in the presence of conditional effects,
instead of selecting an action, is required to select a partic-
ular effect of an action. Then, the black condition of that
effect should be achieved together with action’s black pre-
condition. Throughout the algorithm, R denotes the set of
red facts already achieved by the current red-black plan pre-
fix π; B denotes the set of black variable values that can be
achieved using only red outside conditions from R.

To explain how the algorithm works, for each selected
achieving action and effect pair (or for the goal), if the black
variable values do not match the precondition of the selected

multiply out native support
Domain # Constr. Inv. Constr. Inv.
briefcaseworld 50 10 10 50 50
cavediving-14-adl 20 20 20 20 20
citycar-sat14-adl 20 20 0 20 0
fsc-blocks 14 0 0 14 0
fsc-grid-a1 16 1 0 16 0
fsc-grid-a2 2 1 0 2 0
fsc-grid-r 16 0 0 16 0
fsc-hall 2 1 0 2 0
fsc-visualmarker 7 0 0 7 0
gedp-ds2ndp 24 4 4 24 0
miconic-simple 150 150 150 150 150
t0-adder 2 0 0 2 2
t0-coins 30 20 15 30 30
t0-comm 25 25 0 25 0
t0-grid-dispose 15 0 0 15 15
t0-grid-push 5 0 0 5 5
t0-grid-trash 1 0 0 1 1
t0-sortnet 5 0 0 5 0
t0-sortnet-alt 6 1 0 6 0
t0-uts 29 13 0 29 4
Sum 439 266 199 439 277

Table 1: Per-domain summary of the number of tasks (#);
number of constructed (Constr.) and number of tasks with
invertible variables (Inv.) for both approaches.

action and effect condition (or the goal), the algorithm at-
tempts to achieve the aforementioned partial state. For that,
ACHIEVE(g) is called, which finds a sequence of actions
achieving the partial state by solving the black subtask ΠB

with invertible variables.
Katz and Hoffmann (2014b) present a simple algorithm

that solves the black subtask: Starting at the leaf variables
and working up to the roots, the plan is constructed by aug-
menting the partial plan with plan fragments that correspond
to paths in domain transition graphs, bringing the supporting
variables into place 1. They show the algorithm runtime to
be polynomial in the size of ΠB and the length of the plan
returned, which, although worst-case exponential in the size
of ΠB, is practically efficient. As conditional effects corre-
spond to edges in domain transition graphs, the algorithm
works verbatim for tasks with conditional effects.

Experimental Evaluation
In order to evaluate the benefit of natively support condi-
tional effects in red-black planning heuristics, we imple-
mented the support within the existing implementation of
red-black planning heuristics, adapted to the current Fast
Downward framework (Helmert 2006). We compared our
native support (NS) to the original implementation on top
of a transformation that multiplies out conditional effects
(MO), a baseline for our comparison. We perform a greedy
best first search with a single queue, ordered by the red-black

1A similar algorithm was mentioned, but not used, by Helmert
Helmert (2006)
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Figure 3: Comparison of the number of RSE-invertible vari-
ables with the baseline multiplying out conditional effects
and the native support for conditional effects.

heuristic. The heuristic is obtained by solving a red-black
planning task with black DAG causal graph. The red-black
planning task is obtained by coloring the RSE-invertible
variables black as long as the black part is a DAG (Domsh-
lak, Hoffmann, and Katz 2015).

The experiments were performed on Intel(R) Xeon(R)
CPU E7-8837 @2.67GHz machines, with the time and
memory limit of 30min and 2GB, respectively. We per-
formed our evaluation on the existing set of benchmark do-
mains with conditional effects. There are only a handful
number of domains from previous International Planning
Competitions (IPC) with conditional effects and no axioms.
Therefore, following Haslum (2013), we also use problems
generated by the conformat-to-classical planning compila-
tion (T0) (Palacios and Geffner 2009) and the finite-state
controller synthesis compilation (FSC) (Bonet, Palacios, and
Geffner 2009). In addition, following Röger, Pommeren-
ing, and Helmert (2014), we use the briefcase world domain
from the IPP benchmark collection (Köhler 1999) and the
Miconic simpleadl version from the benchmark set of the In-
ternational Planning Competition (IPC2000), as it has condi-
tional effects but no derived predicates after grounding with
Fast Downward. This results in total of 20 domains, shown
in Table 1. The table also depicts the number of tasks in
these domains, as well as the per-domain summary of the
number of tasks that could be constructed and the number of
tasks where at least one RSE-invertible variable was found.
Note that in all cases when the tasks that could not be con-
structed, it was due to the transformation that multiplied out

Domain # Inv. multiply out native support
briefcaseworld 50 50 10 50
cavediving-14-adl 20 20 7 7
gedp-ds2ndp 24 4 0 4
miconic-simple 150 150 150 150
t0-adder 2 2 0 0
t0-coins 30 30 20 20
t0-grid-dispose 15 15 0 15
t0-grid-push 5 5 0 3
t0-grid-trash 1 1 0 0
t0-uts 29 4 4 3
Sum 326 281 191 252

Table 2: Per-domain coverage for domains with invertible
variables, tasks for which at least one approach found in-
vertible variables. Best performers are marked in bold.

conditional effects created a task that was too large to fit into
memory. This happened in 173 out of the total 439 tasks.
Note that there is no way around creating the transformed
task in order to check RSE-invertibility of variables in the
transformed task. If no RSE-invertible variables are found,
red-black heuristics are effectively equivalent to a FF heuris-
tic (Hoffmann and Nebel 2001). Importantly, in such cases,
for the baseline approach FF heuristic would be constructed
on top of the transformed task. Looking at the table, there
are 10 domains where either of the two approached found
any RSE-invertible variables. In what follows, we restrict
our attention to these domains.

Figure 3 compares the number of RSE-invertible vari-
ables for each task in these 10 domains. Each point cor-
responds to a task, showing the number of RSE-invertible
variables for the multiply-out approach and for the native
one. Observe that the number of RSE-invertible variables
mostly increases when moving from compiling away con-
ditional effects to natively supporting them. The points on
“multiply out” axis corresponds to 4 tasks in gedp-ds2ndp
domain, where the multiply-out transformation resulted in
a tasks with 15 RSE-invertible variables, while the origi-
nal task has 0 RSE-invertible variable under our new defi-
nition of RSE-invertibility in the presence of conditional ef-
fect. For the reverse case (“native support” axis), there are
82 tasks where there could not be found any RSE-invertible
variables in the transformed task, including due to failing
to create the task, and there was at least one RSE-invertible
variable under our new definition, allowing us to run the red-
black planning heuristic.

Turning our attention to the heuristics performance, Table
2 shows the per-domain coverage, comparing our suggested
approach to the baseline. The second column describes the
overall number of instances in each domain, while the third
column shows the number of instances on which at least one
of the approaches found invertible variables (Inv.). The last
two colums report the number of solved instances for the
compared approaches, restricting to the set of instances in
Inv., as described above. The table clearly shows the ben-
efit of handling conditional effects natively in the heuris-
tic – the coverage reduces by 1 instance in one domain,
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Figure 4: Domain-wise comparison of the number of eval-
uations performed with the baseline multiplying out condi-
tional effects and the native support for conditional effects.

remains the same in five domains, and increases by 62 in-
stances in four domains, namely by 40, 15, 4, and 3 in brief-
caseworld, t0-grid-dispose, gedp-ds2ndp, and t0-grid-push,
respectively. Note that if we compare the coverage on all
instances of all 20 domains, the baseline solves 246 out of
439 instances, while our approach solves 359. However, on
tasks where no RSE-invertible variables were found, such
comparison would essentially be between the FF heuristics
with and without task transformation.

In order to show a per-instance comparison, Figure 4 com-
pares the number of heuristic evaluations performed until the
solution is found. Here as well, we restrict our attention to
tasks with RSE-invertible variables. First, observe that many
tasks previously not solved, are now solved after up to 10000
evaluations, with a few (five) additional examples going as
high as 37000 evaluations. Second, in many more cases the
task is solved without search at all, after 1 evaluation – all
instances in miconic domain and 3 instances in t0-uts. There
are only a few instances where the preformance got neglige-
bly worse, and many where it improved considerably.

Finally, to measure the heuristic computation time differ-
ence, Figure 5 shows the per-instance total time comparison.
Here as well, the picture is clear. The vast majority of points
are under the diagonal, demonstrating our conjecture that it
pays off in practice to support conditional effects natively in
red-black planning heuristics.
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Figure 5: Comparison of the total time untill a solution is
found with the baseline multiplying out conditional effects
and the native support for conditional effects.

Conclusions and Future Work

We have shown how to adapt red-black planning to sup-
port conditional effects, an important modeling feature in
planning. To that end, we have adapted the formalism of
red-black planning to include conditional effects and have
shown how to derive practical red-black planning heuris-
tic. For that, we extended the definition of invertibility of
variables and adapted the existing algorithms for tractable
red-black planning for the classical formalism to work in
the presence of conditional effects. To measure the bene-
fit of natively supporting conditional effects in the red-black
planning heuristic, we performed an extensive experimen-
tal evaluation, comparing to the red-black planning heuris-
tic without the support for conditional effects, applied to
a transformed planning task, with conditional effects com-
piled away. Our evaluation clearly shows the benefit of sup-
porting conditional effects natively.

For future work, we intend to explore natively sup-
porting additional non-classical features in red-black plan-
ning, such as axioms and derived predicates (McDermott
et al. 1998; Thiébaux, Hoffmann, and Nebel 2005). Fur-
ther, an interesting direction is extending red-black plan-
ning to richer formalisms, such as fully observable non-
deterministic (FOND) planning.
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