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Given a collection of sets S = {Sl,Sz,---,Sn}, a basis B is defined
as a collection of sets B = {Bl,Bz,---,Bm} such that for each Si in S
there exists a subset of B whose union equals Si' The problem of finding
a basis of least cardinality arises in several applications [2, 4]. Kou and
Wong [6] show that this problem can be efficiently reduced to the clique cover
problem.

The purpose of this note is to prove that the set basis problem is
NP-complete [3, 5, cf.1l], thus providing evidence that there is no efficient
algorithm which finds a minimum basis in all cases. Moreover, this problem
is NP-complete even with the restriction that each of the sets Si is of
cardinality three or less. However, for technical completeness, we note
that if the problem is restricted further by requiring the Si to be of
cardinality two or less, then a minimum basis can be found in a computation-
ally straightforward manner. We assume the reader is familiar with the
terminology concerning NP-complete problems; see [1, 5].

For positive integer b, let b-SET BASIS denote the set of pairs
(S, k) such that S is a collection of sets S = {Sl,---,Sn} with(l)
#Si <b for 1 <i<n, k is an integer, and S possesses a basis

B={B --,Bm} where m < k.

kg
Let NODE COVER denote the set of pairs (G, &) such that G 1is an
undirected graph, £ 1is an integer, and there is a subset R of the nodes

of G such that every edge of G 1is incident with some node in R (i.e.,

R is a node cover of G), and #R £ .,

Fact [5]. NODE COVER is NP-complete.

(1) #S denotes the cardinality of the set S.



Theorem 1 3-SET BASIS 1is NP-complete.

Proof. 3-SET BASIS can obviously be recognized by a nondeterministic
Turing machine within polynomial time. We now show that NODE COVER 1is
polynomially transformable to 3-SET BASIS.

Let an undirected graph G and a positive integer ¢ be given. Say

G has nodes N and edges E = {e -,em}. For each i with 1 < i £ m,

l,ez’tl
let p(i) and q(i) be the endpoints of e, Assume ags bi ¢ N for

1 i< m, and form the following set basis problem:
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{ai!p(i)9Q(i)}s {aiap(i) ;bi}s {al,Q(l) ’bl} | 1 £1i<m };
k = 2 + 2m.

Clearly the transformation mapping (G, £) to (S, k) can be computed
within polynomial time. It remains to verify that G has a node cover of

cardinality < & 4if and only if S has a basis of cardinality = k.
I. (only if). Let R be a node cover of G such that #R = £. Let
B={ {ai,bi} | 1 <di<m}uf {u}l | ueR}
u { {ai,p(i),q(i)} - R | 1. & 1 Em Je

Now {#B = #R + 2m < k. Since, for each 1, at least one of p(i) or q(i)

belongs to R, it easily follows that B 1is a basis for S.

LT, (if). Let B be a basis for S such that #B = k.

—_— [ £ (- =ik
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Lemma 1. For each j with 0 = j <m there 1s a basis Bj for S
such that: (i) #Bj < #B; and (ii) for each i with 1 <1 < 3,

either {p(i)} ¢ Bj or {q(i)} ¢ Bj (or both).

Proof. The Bj are constructed inductively. BO = B. Assume Bj—l

has been constructed for some J < M. Since {aj,p(j),q(j)} must be
expressible as a union of sets in Bjul’ we have one of several cases.

1). 1If {p(j)} € B, or {q(3)} e B, ., then take B, =B, ..

@ p(3) s q(3) j-1 3= P

(2). Assume (1) does not hold, and suppose U € Bj—l where either
U, = {aj,p(j),Q(j)} or U = {p(),q(i)}. Since U; cannot be used in the
unions for {a.,p(j),b.} or for {a.,q(j),b.}, we must have Uil & By s

i p(d) i o i q(3) i 93¥3 j-1

where U, = {pGE)} v c, and U, = {q(i)} v 03 for some CZ’C3 e {aj,bj}.

Furthermore, C2 # ¢ and C3 # ¢ because (1) does not hold. Let

B = (B, . - {u,,u,,u. 1) v { {a,,p(J }, {9}, {a,,b,} }.

3 ( jui 12Up5U4 ) ; p(3) q(3) s

Certainly #Bj < #Bjﬂl' Now Ej is a basis for S. This is true because,
since GC,,Cq # @, the sets Ul’UZ’US can only be used in unions for

T]— = {aj !p(])$q(j)}) T2 = {aj )P(j)‘lbj}s 3nd T3 = {aj )q(]))bj}° BU't the’
three new sets added to Bj are a basis for {Tl’TZ’TB}'

(3). If (1) and (2) do not hold, the only remaining possibility is

€ Ej—l where V, = {aj,P(J)} and V, = {aj,q(J)}. {aj,p(J),bj} e S
implies that V3 € Bj*l where V3 = {bj} U C for some set C. As in

VsV

case (2), Vl, Vz, and VB can only be used in unions for Tl, T2, and T3.

Thus Bj is a basis where

B. = (B

; R U/ (a,p(}, fad?, agb,) ).

This completes the proof of the lemma. O



Let R={ u| {u}e B~ for some wu e N }; and B_ = { {u} | ueRr?l.
Since Bm satisfies (ii) of Lemma 1, R 1is a node cover of G. Let
B,={BeB | (31)[a; € B] and (Vi)[b, ¢ B] J,
B = {BeB | (31) [b,; € B] Vi
Since {ai,p(i),q(i)} e S for 1 < i <€ m, we must have #Ba > m. Since

{ai,p(i),bi} ¢S for 1 < i <€ m, we have #Bb > m. But Ba’ Bb’ and Bc

are pairwise disjoint. Therefore
2m + #R < #B + #B, + #B_ < #B_ < #B < k = 2m + L.
a b c m

So {#R < % which completes the proof of Theorem 1. 0

For technical completeness, it is appropriate to point out that
2—-SET COVER can be recognized within deterministic polynomial time. A
family of sets {Sl,'-°,Sn} is said to be connected iff for each
u,v € Ui=l Si there are i(1), i(2),+-+,i(k) such that wu ¢ Si(l)’

v € Si(k)’ and Si(j) n Si(j+1) # @ for 1 < j < k. Clearly a minimum
basis for a (possibly non-connected) family S is the union of minimum
bases for the connected components of S. However, if the Si are of

cardinality < 2, it is trivial to find a minimum basis for a connected

family because:

Lemma 2. Let S = {Sl,---,Sn} be connected, and #Si <2 For L= =

Let D = lJ2=l s,. If #D < n, then { {d} | d e D} 1is a minimum basis

S. If #D > n, then S is a minimum basis for B

The proof of Lemma 2 is not difficult and is left to the reader.
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