IBM Research

RC 5431	THE SET BASIS PROBLEM IS NP-COMPLETE
(#23737)	
5/27/75	
Mathematics	L. J. Stockmeyer
	Mathematical Sciences Department
5 pages	IBM Thomas J. Watson Research Center
	Yorktown Heights, New York 10598

Yorktown Heights, New York San Jose, California Zurich, Switzerland

THE SET BASIS PROBLEM IS NP-COMPLETE RC 5431 (#23737) 5/27/75 Mathematics L. J. Stockmeyer Mathematical Sciences Department 5 pages

IBM Thomas J. Watson Research Center Yorktown Heights, New York 10598

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication elsewhere and has been issued as a Research Report for early dissemination of its contents. As a courtesy to the intended publisher, it should not be widely distributed until after the date of outside publication.

Copies may be requested from: IBM Thomas J. Watson Research Center Post Office Box 218 Yorktown Heights, New York 10598 Given a collection of sets $S = \{S_1, S_2, \dots, S_n\}$, a <u>basis</u> *B* is defined as a collection of sets $B = \{B_1, B_2, \dots, B_m\}$ such that for each S_i in *S* there exists a subset of *B* whose union equals S_i . The problem of finding a basis of least cardinality arises in several applications [2, 4]. Kou and Wong [6] show that this problem can be efficiently reduced to the clique cover problem.

The purpose of this note is to prove that the set basis problem is NP-complete [3, 5, cf.1], thus providing evidence that there is no efficient algorithm which finds a minimum basis in all cases. Moreover, this problem is NP-complete even with the restriction that each of the sets S_i is of cardinality three or less. However, for technical completeness, we note that if the problem is restricted further by requiring the S_i to be of cardinality two or less, then a minimum basis can be found in a computation-ally straightforward manner. We assume the reader is familiar with the terminology concerning NP-complete problems; see [1, 5].

For positive integer b, let <u>b-SET BASIS</u> denote the set of pairs (S, k) such that S is a collection of sets $S = \{S_1, \dots, S_n\}$ with⁽¹⁾ # $S_i \leq b$ for $1 \leq i \leq n$, k is an integer, and S possesses a basis $\mathcal{B} = \{B_1, \dots, B_m\}$ where $m \leq k$.

Let <u>NODE COVER</u> denote the set of pairs (G, ℓ) such that G is an undirected graph, ℓ is an integer, and there is a subset R of the nodes of G such that every edge of G is incident with some node in R (i.e., R is a <u>node cover</u> of G), and $\#R \leq \ell$.

Fact [5]. NODE COVER is NP-complete.

(1) #S denotes the cardinality of the set S.

Theorem 1 3-SET BASIS is NP-complete.

<u>Proof</u>. 3-SET BASIS can obviously be recognized by a nondeterministic Turing machine within polynomial time. We now show that NODE COVER is polynomially transformable to 3-SET BASIS.

Let an undirected graph G and a positive integer l be given. Say G has nodes N and edges $E = \{e_1, e_2, \dots, e_m\}$. For each i with $1 \le i \le m$, let p(i) and q(i) be the endpoints of e_i . Assume $a_i, b_i \notin N$ for $1 \le i \le m$, and form the following set basis problem:

$$S = \{ \{a_{i}, p(i), q(i)\}, \{a_{i}, p(i), b_{i}\}, \{a_{i}, q(i), b_{i}\} \mid 1 \le i \le m \};$$
$$k = \ell + 2m.$$

Clearly the transformation mapping (G, ℓ) to (S, k) can be computed within polynomial time. It remains to verify that G has a node cover of cardinality $\leq \ell$ if and only if S has a basis of cardinality $\leq k$.

I. (only if). Let R be a node cover of G such that $\#R \leq \ell$. Let

$$\mathcal{B} = \{ \{a_i, b_i\} \mid 1 \leq i \leq m \} \cup \{ \{u\} \mid u \in R \}$$

 $\cup \{ \{a_i, p(i), q(i)\} - R \mid 1 \le i \le m \}.$

Now $\#B = \#R + 2m \le k$. Since, for each i, at least one of p(i) or q(i) belongs to R, it easily follows that B is a basis for S.

II. (if). Let B be a basis for S such that $\#B \leq k$.

<u>Lemma 1</u>. For each j with $0 \le j \le m$ there is a basis B_j for S such that: (i) $\#B_j \le \#B$; and (ii) for each i with $1 \le i \le j$, either $\{p(i)\} \in B_j$ or $\{q(i)\} \in B_j$ (or both).

<u>Proof.</u> The B_j are constructed inductively. $B_0 = B$. Assume B_{j-1} has been constructed for some $j \le m$. Since $\{a_j, p(j), q(j)\}$ must be expressible as a union of sets in B_{j-1} , we have one of several cases. (1). If $\{p(j)\} \in B_{j-1}$ or $\{q(j)\} \in B_{j-1}$, then take $B_j = B_{j-1}$. (2). Assume (1) does not hold, and suppose $U_1 \in B_{j-1}$ where either $U_1 = \{a_j, p(j), q(j)\}$ or $U_1 = \{p(j), q(j)\}$. Since U_1 cannot be used in the unions for $\{a_j, p(j), b_j\}$ or for $\{a_j, q(j), b_j\}$, we must have $U_2, U_3 \in B_{j-1}$, where $U_2 = \{p(j)\} \cup C_2$ and $U_3 = \{q(j)\} \cup C_3$ for some $C_2, C_3 \subseteq \{a_j, b_j\}$. Furthermore, $C_2 \neq \emptyset$ and $C_3 \neq \emptyset$ because (1) does not hold. Let

$$B_{j} = (B_{j-1} - \{U_{1}, U_{2}, U_{3}\}) \cup \{\{a_{j}, p(j)\}, \{q(j)\}, \{a_{j}, b_{j}\}\}.$$

Certainly $\#B_j \leq \#B_{j-1}$. Now B_j is a basis for S. This is true because, since $C_2, C_3 \neq \emptyset$, the sets U_1, U_2, U_3 can only be used in unions for $T_1 = \{a_j, p(j), q(j)\}, T_2 = \{a_j, p(j), b_j\}, \text{ and } T_3 = \{a_j, q(j), b_j\}$. But the three new sets added to B_j are a basis for $\{T_1, T_2, T_3\}$. (3). If (1) and (2) do not hold, the only remaining possibility is $V_1, V_2 \in B_{j-1}$ where $V_1 = \{a_j, p(j)\}$ and $V_2 = \{a_j, q(j)\}, \{a_j, p(j), b_j\} \in S$ implies that $V_3 \in B_{j-1}$ where $V_3 = \{b_j\} \cup C$ for some set C. As in case (2), V_1, V_2 , and V_3 can only be used in unions for $T_1, T_2, \text{ and } T_3$. Thus B_j is a basis where

$$B_{j} = (B_{j-1} - \{V_{1}, V_{2}, V_{3}\}) \cup \{\{a_{j}, p(j)\}, \{q(j)\}, \{a_{j}, b_{j}\}\}.$$

This completes the proof of the lemma. \Box

Let $R = \{ u \mid \{u\} \in B_m \text{ for some } u \in N \}$; and $B_c = \{ \{u\} \mid u \in R \}$. Since B_m satisfies (ii) of Lemma 1, R is a node cover of G. Let

$$B_{a} = \{ B \in B_{m} \mid (\exists i) [a_{i} \in B] \text{ and } (\forall i) [b_{i} \notin B] \},$$
$$B_{b} = \{ B \in B_{m} \mid (\exists i) [b_{i} \in B] \}.$$

Since $\{a_i, p(i), q(i)\} \in S$ for $1 \le i \le m$, we must have $\#B_a \ge m$. Since $\{a_i, p(i), b_i\} \in S$ for $1 \le i \le m$, we have $\#B_b \ge m$. But B_a, B_b , and B_c are pairwise disjoint. Therefore

$$2m + \#R \le \#B_a + \#B_b + \#B_c \le \#B_m \le \#B \le k = 2m + l.$$

So $\#R \le l$ which completes the proof of Theorem 1.

For technical completeness, it is appropriate to point out that 2-SET COVER can be recognized within deterministic polynomial time. A family of sets $\{S_1, \dots, S_n\}$ is said to be <u>connected</u> iff for each $u, v \in \bigcup_{i=1}^n S_i$ there are $i(1), i(2), \dots, i(k)$ such that $u \in S_{i(1)}, v \in S_{i(k)}, and S_{i(j)} \cap S_{i(j+1)} \neq \emptyset$ for $1 \leq j < k$. Clearly a minimum basis for a (possibly non-connected) family S is the union of minimum bases for the connected components of S. However, if the S_i are of cardinality ≤ 2 , it is trivial to find a minimum basis for a connected family because:

Lemma 2. Let $S = \{S_1, \dots, S_n\}$ be connected, and $\#S_i \leq 2$ for $1 \leq i \leq n$. Let $D = \bigcup_{i=1}^n S_i$. If $\#D \leq n$, then $\{\{d\} \mid d \in D\}$ is a minimum basis S. If #D > n, then S is a minimum basis for S.

The proof of Lemma 2 is not difficult and is left to the reader.

REFERENCES

- A. V. Aho, J. E. Hopcroft, and J. D. Ullman, <u>The Design and Analysis</u> of <u>Computer Algorithms</u>, Addison-Wesley, Reading, Mass., 1974, 363-404.
- H. D. Block, N. J. Nilsson, and R. O. Duda, Determination and detection of features in patterns, <u>Computer</u> and <u>Information</u> <u>Sciences</u>, J T. Tou and R. H. Wilcox, eds., Spartan Books, Washington, D. C., 1964, 75-110.
- 3. S. A. Cook, The complexity of theorem proving procedures, Proc. Third Annual ACM Symposium on Theory of Computing (1971), 151-158.
- J. F. Gimpel, The minimization of spatially-multiplexed character sets, <u>CACM</u> <u>17</u>, 6 (June 1974), 315-318.
- 5. R. M. Karp, Reducibility among combinatorial problems, in <u>Complexity</u> of <u>Computer Computations</u>, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, 85-104.

APR-

 L. T. Kou and C. K. Wong, A note on the set basis problem related to the compaction of character sets, IBM Report RC-5244, January, 1975.