RC 6688 (#28797) 8/18/77
Engineering Technology 19 pages

Research Report

ON THE ARCHITECTURAL REQUIREMENTS OF AN ENGINEERED SYSTEM

N. P. Edwards

IBM T. J. Watson Research Center Yorktown Heights, New York

Research Division
San Jose - Yorktown - Zurich

T

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication elsewhere and

has been issued as a Research Report for early dissemination

of its contents. As a courtesy to the intended publisher, it
should not be widely distributed until after the date of outside
publication.

Copies may be requested from:

IBM Thomas J. Watson Research Center
Post Office Box 218

Yorktown Heights, New York 10598

RC 6688 (#28797) 8/18/77
Engineering Technology 19 pages

ON THE ARCHITECTURAL REQUIREMENTS OF AN ENGINEERED SYSTEM

N. P. Edwards

IBM T. J. Watson Research Center Yorktown Heights, New York

The principles and practices of engineering provide for attributes of control, audit, and
changeability. The architecture of such a system must be based on controlled, pre-tested
modules and certain controlied interface protocols which permit configurability. This approach
also provides the best means known to the author for the control of system complexity. These
principles are examined and their application to information system design is proposed. Some

areas requiring further development are discussed.

1. INTRODUCTION

Engineers have been building systems which were subject to audit for several thousand years.
An engineer who contracts to design and execute a bridge or a space shuttle is held accounta-
ble for the quality of his work. NASA requires extensive technical accountability and audita-
bility of its engineering contractors. The AN/FESQ-(SAGE) computer built by IBM in the
1950’s for the continental air defense had an extensive system designed for control and audit
of the system elements which contributed significantly to the reliability ol the system. It aiso
had extensive design features for recoverability. (Ref. 1) . In designing the control, audit and
recovery systems for the project, we realized that we were re-inventing techniques in electron-
ics which were state-of-the-art for mechanical engineers. These included such things as
functional specifications with tolerance, tested, specified, re-usable modules with standard
interfaces and control protocols, redundant function, built in sensing and testing mcans to
name a few.

Since computer logic can be implemented (given enough money), in either hardware, micro-
code or software, it is logical that the techniques applicable to hardware are also applicable
(although not always economical) to computer software and systems. This paper examines the
principles and practices of engineering which have been used in some computer projects and
which have a history dating back several thousand years. The application of these principles
and practices to software and systems is then examined.

In the early days of engineering, in the days of ancient Greece, for instance, the engineering
profession must have had great rewards, because the penalties for failure were drastic.
Herodotus (2) tells of a bridge which Xerxes had built to span the Hellespont. "But no sooner
had the strait been bridged than a great storm swept down and brake and scattered all that
work." "When Xerxes heard of that, he was very angry..." and '...he commanded that the sea
should be punished, and that they who had been overseers of the bridging of the Hellespont
should be beheaded." A second effort was made. The bridge was made of 674 "fifty-oared
ships and triremes anchored and held in place with two cables of flax and four of papyrus.”
This bridge held.

In more modern times, an engineer famous for other reasons put it, "The engineer simply
cannot deny that he did it. If his works do not work, he is dammed..." (3) In spite of this, and
the occasional dramatic failures of engineered works, engineers have persisted. Some have had
genius, most have probably just been competent. Their works "work' because certain key
principles and practices have evolved over the years which, when followed without compro-
mise, provide for success.

This paper is based, in part, on some conclusions of a continuing project (see Acknowledge-
ments) which is studying the application of these principles and practices to information
systems. It is also based on a continuing study by the author of published results, and several
IBM projects which observe these principles in varying degrees. No general purpose data
processing system has been studied which has been found to observe these principles and
practices to an extent which would justify using the term "engineered system". The conclu-
sions presented are based on traditional hardware (bridges and buildings, as well as computers)
engineering practices. The author’s confidence that these principles and practices are applica-
ble to data processing and information systems is derived from observed results of their partial

application in systems currently under study.

Although the basic principles and practices of the engineering approach have been known and
used for hundreds of years, they '"have not been adequately articulated..." (4) and infrequently
taught. Rather the knowledge and discipline have been acquired by observation and practice
in laboratories rather than engineering courses which usually teach techniques and tools only.

2. PRINCIPLES OF AN ENGINEERING APPROACH

The basic principle is that the works of an engineer must work according to agreed to perform-
ance specifications. If the engineer is to continue Lo win contacts, his designs must be
economical to implement, operate, and maintain. In addition, the works must be acceptably
safe. The design engineer attempts to achieve these objectives by one basic principle: His
design must contain no significant unknown factors.

Two well known examples of designs that failed this test are the Tacoma Narrows Bridge,
"Galloping Gerty' and the Teton Dam. In the case of the Tacoma Narrows Bridge, the
significant unknown factor was the behavior of the roadway in a 125 mile per hour cross wind.
It "flew", but not well, and its uncontrolled oscillations broke the support cables and the
bridge collapsed. In the Teton Dam, the unknown guantity was the porosity of the volcanic
rock underlying the lake bed. Persons acquainted with that kind of rock know that it may
contain voids or even tunnels hundreds of feet long, or even longer. There may have been
some significant unknown in the rock structure, which the designers assumed was not signifi-

cant.

A rather extensive search of the literature was conducted by P. O. Crawford, Jr. with partici-
pation by the author. Most of the publications found relate to specific techniques for design
and implementation. Very limited material was found relating to the principles and practice
which underlie successful project design and implementation. Most of this material found
relating to the engineering of large systems was published in the late 1950’s and early 1960’s.

Very few recent publications on the subject were found in the Engineering Societies Library
(New York, N.Y.). The principles are perhaps best summarized in the following extract from
the definition of an engineer (5) developed by a committee of the council for Professional
Development in 1949: " ..An engineer is characterized by his ability to apply creatively
scientific principles to design or develop structures, machines, apparatus, Or manufacturing
processes, or works utilizing them singly or in combination, or to construct or operate the same
with full cognizance of their design; or to forecast their behavior under specific operating
conditions; all as respects an intended function, economy of operation and safety to life and
property.” The key words are:

"works"

"forecast their behavior"

"intended function"

"economy"

"safety"

"apply scientific principles"

Another author states it as, "The aim of engineering is to create new equipment and systems
which perform a desired task at minimum cost.” (6) Thus, the principles and practices
discussed apply to the design, implementation and operation of systems. Research, the quest
for information, and development, the quest for a material, process or structure for a particular

use, are not included.

2.1 Principles:

The following are believed to be the key principles of engineering design:

a. Scientific principles are applied creatively.

b. The works of an engineer perform to spzcification.

c. The performance specifications include the function required to be performed, the
quality and amount of performance, and the safety requirements.

d. The performance must be achieved efficiently.
A requirement of (a) above, which will be discussed later is that there exists an underlying
body of theory structuring the elements and processes used and their behaviors relating to their

use in achieving the desired performance. This body of theory may or may not be formally
understood.

3. PRACTICES OF ENGINEERING

Over the years, a set of practices has evolved which implement these principles. These
practices are seldom articulated and not generally taught explicitly. Rather, they are acquired
by exposure to expert practitioners, and by emulation of successful projects.

3.1 Predictable Performance Through Use of Known Elements

The works of an engineer should use only materials, components, processes and procedures
which have been shown by tests to conform to their relevant performance specifications. The
design relies only on characteristics which are specified, and the performance required is
always within specified bounds. The system should include no significant unknowns. Even the
inescapable uncertainty needs to be quantified. To the extent the engineer succeeds in the
above, the works perform as designed. (Fig.1)

ENGINEERING DESIGN & EXECUTION

ACHIEVING: SPECIFIED RESULTS

USING: PARTS, ASSEMBLIES, MATERIALS OR

KNOWN BEHAVIOR

COMBINED: ACCORDING TO PROTOCOLS AND PROCESSES
KNOWN TO PRODUCE PREDICTABLE RESULTS.

Fig. 1

32 Use of Common and Standard Design and Test Information

The engineer attempts to achieve his goal of efficient design and execution by utilizing past
knowledge and experience in the form of standard specifications and data. Thus, his customer
only pays a small (pro-rated) share of the cost of design and test of these component materi-

als, processes and parts.
3.3 Use of Common and Standard Parts

Engineering, primarily through practice, formalized by standards organizations, has sought to
classify engineering endeavors such that materials, components, structures and functions
common to a class can be identified. This permits the establishment and promulgation of
re-usable standard specifications and thus re-usable design information, parts, materials and
structures. The attempt is to find "common factors" such that a large variety of structures
with different performances can be constructed using mostly standard materials, components,

and processes.

Engineering Principles: Techniques and Practices

Performance to Specification Economy

Performance specified, Re-use of design
pre-tested materials, information, (Standard
parts, processes . Specifications)
Elemental Functions Commonality of

elemental functions

Common Set of Standard:
materials,
components,
processes,
elemental functions
construct functions

Requires

an underlying concept of structuring; a theory of structure; separation of significant variables.

Fig. 2

3.4 Separation of Variables of Use and Design

In structuring a particular system design, the engineer attempts to identify the system perform-
ance parameters which the user will want to treat as independent variables. He also attempts
to identify the design factor he will want to treat independently. He then structures his design
to preserve the independencies desired by the user as well as those he needs in his implementa-
tion and test. The engineered design '"separates significant variables" for both implementation
and use.

3.5 An Underlying Concept of Structure

Most fields of engineering have an underlying structural commonality such that pre-specified
structures can be utilized extensively. System design with LSI circuit modules is an example,
as is modular office space. Standard truss and girder designs for bridges and buildings are also
examples. Engineering utilizes a stock of pre-specified structures in addition to making use of
specified and tested materials, tools, processes and procedures which are available. (Fig.2)

The requirement that the design and execution be efficient, combined with the requirement
that all materials, components, structures, procedures and processes have known performance
leads to the use of previously designed and tested elements. Thus, there is a continual search
for underlying structure, classes and commonality of structural elements. Without these, a
practical set of specifications (as for bearings, shafts, fasteners, resistors, valves and switches)
would not be possible. Every design engineer would be required to create these specifications
for each design, and would also have to verify their correctness.

3.6 Valid Standards Exist

Standards are established and promulgated by recognized standardization bodies, in accordance
with established procedures. Good engineering practice requires that any standard have a
designated control authority which asures the validity of the standard.

3.7 Engineering Design Proceeds from the User Requirement for the Performance of a
Specified Function

"The specification must clearly state the result desired..." (7) The basic system specification is
the specification of function. "The first element is function Every system must have a
function and if there is one mistake made in system design efforts today, it is to forget the fact
that a system must have a function. The function is the mission, aim or purpose of a system.
What is the system supposed to be accomplishing, not how it is to be accomplished." (8)

4. SYSTEM ARCHITECTURE AND AN "ARCHITECTURAL SYSTEM"

For the purposes of this paper, the following definition of "system' is used: ""A system is an
aggregrate of components, sometimes including men and even animals, which act together to
perform a desired function." (6) Thus, a system architecture is a particular structure. A
building is a particular architecture, and may be in one of a variety of architectural styles,
implemented in a variety of architectural systems. Margiloff (9) describes the different kinds
of building systems which were developed in the 19th century, including the frame house,
curtain wall construction (using cast iron panels), girder sections, and reinforced concrete. An
architectural system includes a set of related materials, processes and use protocols which are
known to produce predictable results, when used in accordance with good practice.

An architect or engineer, designing and implementing a building or bridge using a particular
architectural system is relying on a set of elemental parts which have performance specifica-

tions relevant to the class of use. He procures the parts to these specifications and assures
that the contractor uses them for their intended purpose, in accordance with specifications.
His contribution is the originality of the particular architecture he designs using the known
elements, assembly techniques and procedures. If he needs a new material or process, an
engineering development is contracted. The result is used only if the development was
successful, that is, the result has been proven to conform to a performance specification.

5. PREDICTABILITY OF THE RESULT

The task of the designer is to proceed from the specification of the desired results to the
specifications of the component parts and their interactions. Clearly, if the designer is to be
able to predict the behavior of the final design, the result, he must not incorprate any signifi-
cant "unknowns'in the design. Even the inescapable uncertainties of the real materials must
be considered in the specifications and the tests of the component parts. If he has done this,
then it should be possible to predict the functional behavior of the implemented design.
Although this practice was followed in the early 1950’s on the SAGE computer and is required
by some contracts, only one concise statement of it was found in recently published engineer-

ing literature. M. P. O’Brien (6) says:

"Considering the aggregate of components which act together to perform a desired function,
one may analyze the performance of the resulting system by considering only the interactions
of the input-output relationships of the components without reference to the internal mecha-
nisms of each component. One links together "black boxes' of known input-output character-
istics including in some systems black boxes which measure the output, compare it with a
desired value, and send back a command to alter the input. By analysis of the interrelation-
ships between components, one can predict the input-output characteristics of the system as a
whole; at least one can do so in principle if all the pertinent characteristics of the components
are accurately known." It also seems reasonable to add that the only alternative to this is to
build the system and test its output/input transformation to the required level of exhaustion.
If the results are not predictable in advance Lo a very high degree the number of such design
and test ("cut and try") cycles required to achieve the specified results could be enormous.

N. H. Taylor (1) described the techniques used in the IBM built SAGE computer, in a paper
that won a prize as the best reliability paper of that year (1957). In a complex system, where
exhaustive testing on an input-output basis is not feasible, performance can only be predicted
or known to the extent that the individual components are known to conform to relevant
functional performance specifications, and are known to be used in accordance with specifica-
tion. Only specified characteristics of specified parts are used, in conformance with specifica-

tion.

6. CONFIGURABILITY, FLEXIBILITY AND MAINTAINABILITY

Many different variations on the concept of a system architecture composed of functionally
specified, pre-tested parts are possible. While the variations can compose a practically
continuous spectrum, they are considerd in four classes, for convenience.

6.1 A "fixed architecture'.

The component parts which comprise any particular system architecture can be provided with
functional specifications, and tested for conformance to specification. No attempt to standard-
ize on common mating faces (interface standards) is made, and thus the basic architecture is
fixed. No component part will fit in any other location in the structure. However, if each
component part has an implementation independent functional specification, which includes the
specification of its mating faces and environment, it can be implemented in any feasible

fashion, tested independently and repaired outside the system. Concurrent design is also
possible, providing all funcional specifications and mating face specifications are determined in
advance.

6.2 "Customizable architecture'.

This is analogous to the customers present view of a mass produced automobile. The basic
architecture is fixed, however, you can have a variety of optional features added or substituted.
The various optional features are specified, as are their attachment to the system. The mating
faces are specified. However, there is still no attempt to standardize on common mating faces.

6.3 "Configurable architecture'.

Highway bridges are made with standard girders and forms, AMTRAC stations use standard
pre-cast concrete forms for platforms. An automobile manufacturer has interchangeable
engines, transmissions, body shells and countless other parts out of which a knowledgeable
person can compose orders for a wide variety of different cars. Basic parts such as screw
threads, ball and roller bearings, tire sizes and the like were standardized to provide inter-
changeability during World War I.

A wide variety of individual architectures can be made using a configurable architecture
system, and if the rules are followed rigorously, the resulting architecture will "work". That is,
it will do what that particular structure should, based on the functional performance of its
individual parts, and their interconnections. It may not be the architecture you expected if the
design process produced the wrong algorithm or construct, but it will be a "correct'' member
of the allowable set of architectures of that system. For example, integrated circuit modules
are available today which perform complex logical and arithmetic functions, storage, signal
processing, signal conversion and the like. These are supplied in "families" with a common set
of mating faces, from which you can compose any arbitrary function within the capability of
that family. If you have followed the interconnection rules exactly, any algorithm you
construct will "work'. It may not be the one you want, but it will work. It is not the fault of
the architectural system if you happen to build the wrong particular architecture.

Each of these architectural approaches has its own degree of flexibility, ranging from no
flexibility to a wide variey of possible configurations. The maintainability of the three systems
differs in complexity and in the nature of the test equipment required. In each class of
architectural system the individual elements which have functional specifications may be simple
or complex. However, in a configurable architecture, the existence of a common set of mating
faces means that the inputs needed for testing a system element can be provided by a simpler
piece of equipment, as it does not have to cope with different input and output faces for every
system component. In a well designed configurable architectural system, there should be
multiple occurrence of parts, which further simplifies the test equipment and reduces the
number of spare parts which must be stocked. The "eighty-twenty' rule is well known.
Typically, eighty percent of the system comprises 20 percent of the part types, the remaining
20 percent of the machine is largely special and has 80 percent of the part types.

7. EFFICIENT REALIZATION OF SYSTEMS

The determination of what is "efficient" depends heavily on the nature of the particular
architecture or set of architectures to be realized, and their use. The basic trade-off is
between design and test cost on one hand, and production or replication and use costs on the
other. Thus, "efficient' may mean the least cost to design, the least cost to produce, or the
least cost to use (including maintenance), or any weighted combination of these. The trade-off
appears in the amount of time and effort that is appropriately spent on the design and testing

of elements and structures particular to the application, as opposed to using "off-the-shelf"
designs and elements. In the absence of a configurable architectural system with its "off-the-
shelf" system elements, the designer is compelled to do a complete design and test of each
elemental part, whether to do so is economical or not. Only if there is a configurable architec-
tural system with its stock of pre-specified, tested parts, does the designer have a choice.

§. REQUIREMENTS FOR A CONFIGURABLE ARCHITECTURAL SYSTEM

8.1 Elemental functions which recur are necessary.

The essential requirement for a configurable architectural system is an underlying concept
structuring the architectures which are within the scope of the system. The architectures to be
constructed must be factorable into a largely common set of elemental functions, with a
common set of interconnection and use protocols. Thus, the functions performed by the
systems to be architected must be largely composable out of a common set of sub-functions.
In construction of buildings and bridges there are tension, compression and fastening elements.
In digital logic there are gates, registers, drivers, arithmetic elements, code translaters and the
like. Any set of functional elements can be configurable, reusable or "common', only if the
funcions they implement recur in systems. An appropriate classification scheme, based on the
underlying structure permits recognition and cataloging of common functions.

8.2 Specifications of functional elements include function and performance.

Since the designer is required to provide a design which satisfies specified functional perform-
ance, he must know and be able to rely on the functional performance of the sub-functions

from which he designs his system.

8.3 The functional performance of any "configurable' or reusable element must be independ-
ent of its embedment in any particular architecture (10).

If its function is dependent on the structure of the particular architecture, the functional
specification of each element would have to consider all possible architectures which might use

that element. This is impractical.
8.4 The mating faces of the elements of the configurable system must be specified.

The number of different faces allowed must be small. Adapters which permit functional
elements with different faces to be mated can exist, but the number increases rapidly with the

increase in number of types of mating faces.
8.5 The elements and their applications must be controlled.

Management must assure that elements and their use conform to specification. A correct set
of functionally specified elements and interconnecton protocols is not sufficient to assure that
a system using these elements will perform to specification. There must be adequate manage-
ment controls to assure that the elements themselves perform to specification, and there must
be management controls to assure that the use of the elements conform to the use protocols.
Incorrect use of a system element is tantamount to use of an unspecified and untested element.

10

9. ARCHITECTURAL SYSTEM REQUIREMENTS FOR DATA PROCESSING

The idea of applying engineering principles and practices to data processing systems and
programming has been around since hardware engineers began to do programming in the
1950’s. With one exception, 1 am aware of no example of a software system which exhibits
most, if not all of the essentials of the engineering approach. This one exception is the
Advanced Modular Programming System "AMPS" invented by J. Paul Morrison of IBM (11).
It is especially notable in that it uses fully independent modules and configurable architecture
principles. The need for time buffering between functional units or modules was first brought
to my attention by Morrison's work. Myers (12) has examined various levels of module
"strength and "independence'’, as have Parnas (13) and Kerrighan and Plauger, (14) among
others. However, the need for complete independence of individual modules from the program
in which they are used does not appear in the general literature. Kerrighan and Plauger say,
for example, '...so that no one module has to know much of the total problem, nor deal with
more than a handful of immediate neighbors." and, " the modules are kept as uncoupled as
possible, and the coupling that exists is kept visible." 1In a fully configurable architectural
system using 'controlled modules", the modules know nothing about the total problem, only
about what they do (in any problem), and they know nothing about their neighbors, only that
they are a part of an input-output compatible family. These characteristics are discussed in
more detail below and in reference 11.

9.1 Function is specified in terms of data state transformations.

The "end user', for whom a data processing system exists, wants to receive the information he
wants, where, when and in the form he specifies, with known quality levels including security,
privacy, reliability and accuracy. (Fig. 3). The function of the data processing system is to
retrieve, derive, assemble, format and present the ‘required information using its internal
functions applied to the available data. Any function can be thought of as a set of processes
which produce state changes in the things processed. E. V. Kirk, in An Introduction to
Engineering and Enginecring Design (15) states ""A problem arises from the desire to achieve a
transformation from one state of affairs to another." Petersen (16) describes an approach to
"Data State Design'' for characterizing the flow of data through processes in a system. The
resulting diagrams look very similar to the "PERT" diagrams used to plan and record the flow
of system parts thru the processes which produce a finished system.

WHAT INFORMATION PRODUCTS (UNITS)

j ﬁ\ d (b

To Whom

Where

When

How: Presented
Accurate
Reliable
Secure

Private Fig. 3

1L

9.2 Function is independent of structures (programs or systems) which use it. (Fig. 4)

FUNCTION IS INDEPENDENT OF:

L SOURCE OF INPUT

—} 2
DATA IN F j}— ¢ DESTINATION OF OUTPUT
T
be e DATAOUT e PAST HISTORY
CONTROLLED MODULARITY SPECIFY, BUILD, TEST "IN ISOLATION®

Fig. 4

a. Module function must be independent of the source of its input. This is so because the
source of the input is a function of particular programs, not of a reusable module. Four logical

options exist which can satisfy this requirement. (Fig. 5)

Input
Input
Source Indirect Direct
Fixed A B
Variable C D

Fig. 5

In the case of a fixed input source, the module knows implicitly where to find its input. If the
address is indirect, the system provides the real address. No address information needs to be

loaded or complied into the module for any use.

In the case of variable input source, the module must be "told" where to find its input and
must be supplied this information, for each use (but not for each instance of each use).

"Binding" of addresses can be either early or at run time, depending on the individual choice.
If early binding is used, a record must be kept of the address associated with each module to

permit changes.

b. Module function must be independent of the destination of its output. A generally useful
module cannot know which modules are connected to it as this is a function of the programs
that use it. The options are the same as for the input source, (Requirement a).

9.3 Module function must be independent of its past use.

The initial state of the module must be known. If its function is dependent on past use, the
initial state of the module is probably unknown to other users.

Corollary 1. A module can only have three states; "Ready', "Busy", or "Inoperative'. It is
ready to do its function; it is doing its function or it is in trouble. Since each use may want
different parameter values in the module, it is essential that no unknown changes of module

state or unknown parameter values be left in the module.

12

Corollary 2. Control must be external. If this is not so, the module must have been
previously instructed as to what to do. This means that its function is in part, at least,
dependent on its past.

Option a) Appearance of data at the module input turns it on; absence of data turns
it off.

Option b) A separate, external on/off control, independent of the data is provided.

Corollary 3. Any parameter in the module must be genuinely constant, i.e., not changed for
the life of the module, or it must be entered with each use (but not each instance of a
particular use). An external record of the location and value of entered constants must be
maintained. The options for entry of constants are the same as "Data in", with the additional
option that the constants may be entered by a separate port on the module.

9.4 The data received by the module (from preceding modules) must be appropriate for the
receiving module.

Some options are:
Option 1) There is only one fixed data type and format for all modules in the set.

Option 2) All modules of the set have the ability to accept a variety of data types
and formats. The modules are instructed as to the type and format of the data (by an
external control).

Option 3) Translator modules are provided .and instructed by control to make the
needed transformations of the data type and format or to signal an error.

The design of a proper set of interconnection protocols depends on the purpose of the
architectural system and the particular design approach chosen. A detailed discussion is
beyond the scope of this paper; however, some of the factors which have been considered (17)
include the code, syntax, symbols, vocabulary, units (used for values of attributes and parame-
ters) and semantic considerations. For example, the input might be in the correct code,
format, have the correct vocabulary and syntax, but be about the wrong item. Depending on
the particular architectural system chosen, the system might be able to provide protection
against errors in any or none of these factors.

9.5 Time synchronization is required.

The results of different functional elements may be required as input to any element. Also, as
the performance rate or delay of a functional element may be dependent on the data input or
parameters entered, it is necessary to provide means for synchronization. Queues or bins are
used in other physical systems; in computers and communications, registers and buffers
perform this function. Thus, any general purpose, configurable system architecture requires
queues between functions to adjust for different processing rates of the various units.(Fig. 6)

13

Fa
3
INTCRFACE PROTOCOLS: —_—
=
® CONTROLLED, LIMITED INTERFACES F3
“n —
L] LINEAGE FACILITY/MECHARISA

© DATA QUEUE AND LOCK MECHANISMS

ARCHITECTURE REQUIREMENTS

RECONFIGURABLE, RCUSABLE FUNCTION MODULES

Fig. 6

Particular requirements for gueues of given lengths are functions of the particular programs,
the available resources, and the system resource manager. Thus, the queue requirements must
be unknown to the modules. A module simply receives data at its input. A queue of data is
merely data in a "wait" state. Thus, the control of queues is a function of the system resource
manager, as data is one of the system resources. A means to connect modules to form
programs and to assign data is needed.

.\

9.6 There must exist a linkage facility separate from tfle modules it invokes.

This facility invokes the modules and assigns data in accordance with the program require-
ments. It "binds" the modules to modules and data to modules to accomplish a specified
result. As mentioned earlier, the binding can be to copies of the modules (and recorded)
before run time, or can be at run time. Three options are:

Option a. Early "binding" of real addresses and data. The Linker reads the
program, copies modules and links real data to the module copies and makes .a load

module.

Option b. Early "binding" of virtual addresses. The linker reads the program,
enters virtual address of modules and data into modules and creates a load module.

Option c. The linker reads the module sequence, table of data assignments and
conditional control at run time and calls the data and modules as needed. It pararmet-
erizes the modules, assigns the data and runs modules.

9.7 Resource management is separate.

Resource management occurs at several levels of the system. The department manager (of the
DP installation) decides what resources to provide, and their nature. This includes decisions as
to which functions will be in hardware, microcode, software, or performed by people on or off
site. In the automated portion of the system, the primary resources are the hardware, software
and the data. Since multiple processes may be running concurrently, the resource managers
must be independent of any particular user program on the system. Since the data may be
used in a variety of processes, the management of the data resource must be independent of
both the individual using programs and the physical resource management.

14

9.8 Documentation is in accordance with good engineering practices.

Engineering design and implementation practices adequate documentation to provide for
producibility, control, auditability and maintainability. (Fig. 7)
DOCUMENTATION - PARTS AND ASSEMBLIES

SINGLE USE (To repair, replace, upgrade)

- PART Specifications:

Function, Fit
Environment
Make - Procure (Procedural)

- ASSEMBLY (ALL OF THE ABOVE)
Except: Procedural Spec
= BILL OF MATERIALS
ASSEMBLY INSTRUCTIONS
MULTI USE PART OR ASSEMBLY
ALL OF THE ABOVE, AND CONTROL POINTS FOR:

SPECIFICATIONS, PROVISION,USE,
(supply)

RECORDS - "WHERE USED", WHERE IS,
CHANGE LEVEL

Fig. 7

a) Producibility: The specifications contain the necessary information for the production of
a specified item, and for the verification that the item meets specification. "A specification is a
description of an article or a method so complete that it can be bought or built by others to
the complete satisfaction of all concerned." (19) Specifications are of two classes: perform-
ance specifications which are a formal description of what is to be performed, (function, rates,
capacities, timings, qualities); and structure specifications which describe any sort of structure;
(organization, thing, process). They provide the information needed to supply an article with a
specified performance.

b) Control: Information is maintained regarding who has the responsibility and control of:
content of specifications, items produced to specifications, use of items in systems, and the
specifications themselves.

¢) Auditability is provided by the records of assigned responsibilities and the "where used"
files, biils of materials and change level records, as well as by the specifications themselves.

d) Maintainability is facilitated because the functional performance and structure of every
part of the system is specified and records exist which identify each part and its documenta-
tion. Thus, any functional unit in a specified system can be identified, removed, repaired, the
unit tested and replaced in the system. If desired, the functional unit can be replaced with
another unit with the same function and performance, but implemented in a completely
different way or technology.

5

9.9 Concepts of structure are needed.

A structuring is proposed which includes three general classes of functions which can be
considered as candidates for implementation as "controlled modules". These are:

a. Internal System Functions,

b. Application Independent Modules (AIM), (20)

C. Generalized Application Modules (GAM).
9.9.1 Internal Function Modules.

These include all the system functions which need not be accessible to the end user. Examples
of sub-classes are:

a. Resource managers, including data management, security, custody, job schedulers,
file management, network control.

b. Data mappers. These map data among families of modules with different data
representation.

¢ System state monitors,

d. System use monitors,
e. Data use monitors, and
f. Editors.

This class of function was proposed by M. J. Marcus in about 1972 as "Implementation
Independent Internal Functions," (I3 F).

9.9.2 Application Independent Modules (AIM)

These are the basic functions the user needs to compose and execute a job. They include the
following classes and are discussed in detail in reference 20.

a. Transfer. This class of function permits the user to sign on, enter data or request
data from the system. This is accomplished by specifying the data (Fig. 4) and calling

the data by name. (18)

b. Convert. This class changes the expression or representation of the data without
changing the data meaning.

c. Derive. This class includes the classic computation functions. Data is derived
from other data in the system.

d. Sequence. Sort and merge fall in this class. Neither the meaning nor the
expression of the data is changed.

e. Logic. This includes conditional and unconditional operations.

16

9.9.3 Generalized Application Modules.

This class is potentially an extensive one. Work has been done by P. O. Crawford, Jr. (21)
and D. C. Burnstine (22). Burnstine has focussed on the structure of business and Crawford
has emphasized the structure of information used to manage and operate the business func-
tions. Included are the functions relating to: :

a. Registers (Chronology of membership, inventory),
b. Rosters,
c. Journals,
d. Transaction reports
e. Accounts, summaries, analyses, and
f. Specifications.
9.10 A common means of specifying information is needed.

This is fundamental to the approach to "Engineered Systems''. Any formal discipline or field
of endeavor requires a formal means of communication. The engineering approach could not
exist without standards for blueprints, drawings and specifications. "Software engineering
and "engineered' data processing and information systems cannot exist without a commonly
accepted, formal means of specifying the results to be produced; the data input, the system
function. Without such common specification means, it.is not possible to provide the end users
with common functional modules which have functional performance specifications and have
been tested for conformance to those specifications. Without the common specification means
it is not possible for the user or implementer of information systms to take advantage of
commonality which exists. Finally, accountability cannot exist for unspecified items. Without
a class specification, class membership cannot exist. Most accounts require the concept of

class membership.

10. CONCLUSIONS AND SUMMARY

The principles and practices of good engineerihg design and implementation provide essential
ingredients for controllability, auditability, recoverability and for changeability of complex
systems. They also provide ingredients essential to the control and audit of the system
contents; in this case, the data in the system. That this is so can:be summarized as follows.

10.1 Control .and auditability.

A system whose contents are specified and under strict accountability provides for require-
ments essential to accountability, control, and protection.

Management control requires accountability. Accounts are ‘based on specified classes. Unless
there are classes (tanks, troops, guns) each item must be specified individually. Specifications
are necessary so that class membership can be established. Audits are of account records and
existing inventories (memberships), and transactions against those inventories. A proper
concept of the nature of the structure of the system and the information in the system is
required for proper class specification. The principles of engineering specification must be
followed. No generally accepted classification approach for logical data structures now eXists.

17

10.2 Recovery and changeability.

Recovery, relating to either the system itself, or the information in the system requires that
functional specifications exist for all system elements and the system itself; that the concepts
structuring the system provide the needed separation of variables (controlled modules) in the
system function, and that the system architecture obeys the principles of "configurable
architecture'. These characteristics also provide for changeability. System recovery and
changeability are essentially the same. In recovery, the desire is to get from an unwanted state
(failure) to a wanted state (working as before). In change, the desire is to go from the present
(unwanted) state to a new state of the system. A system composed of specified functional
parts, obeying the laws of configurability, can be repaired and modified efficiently.

10.3 Areas requiring development.

The two major areas require development before the principles and practices of engineering
can be applied fully to information system design. These are:

a. Establishment of generally useful classification schemes for information system
elements and the information itself.

b. Establishment of generally useful specification means for specifying end user
information with sufficient precision and accuracy so that the specification is the basis
for the system to provide that information requested by the user.

To reiterate:

- Improved recognition of common user functions cannot occur without improved
concepts of classification of these functions so that the underlying commonalities can
be recognized.

- Specification of these functions in an implementation independent way is essential to
reusability.

- Accountability of the kind needed cannot exist without adequate classification and
specifications.

ACKNOWLEDGEMENTS:

Much of the material in this paper was developed in meetings and discussions with my
co-workers on the project, Perry Crawford, Jr. and Donald H. Myers. 1 wish to especially note
that Perry was primarily responsible for excellence of the literature search and provided several
of the key references. Conversations with John Crane and Raoul deCampo have also contrib-
uted to shaping my thinking and identifying key concepts of the engineering approach. E. C.
Lamb, R. C. Kendall and Y. Tarnawsky have also been most helpful.

18

REFERENCES:

I: Taylor, N. H., "Designing for Reliability," IRE, June 1957.

2. Herodotus, Vol. 111, Loeb Classical Librar'y.

2 Hoover, Herbert; Memoirs of Herbert Hoover, Vol. I. Years of Adventure, The
Macmillan Co., New York, 1951, quoted in Whinnery, J. R., The World of
Engineering, McGraw-Hill, 1965.

4. Sporn, Philip, Foundations of Engineering, Macilllan Co., 1964,

& Encyclopedia Britannica, 14th Edition, 1962.

6. O’Brien, M. P., "The Engineering of Large Systems,” Ch. 9 of Listen to Leaders in
Engineering, David McKay Co., 1965, (Edited by Childers and Love).

T Jessup & Jessup, Law and Specifications for Engineers and Scientists.

8. Nadler, Gerald, "Engineering Research and Design in Socio-Economic Systems,"
Engineering: A Look Inward, a Reach Outward, U. of Wisc., 1967.

9. Margaloff, Irwin E., "When Technology Falters," -- an address to the 142nd Annual
Meeting of the American Institute of the City of New York, Feb. 4, 1970.

10. Edwards. N. P., "The Effect of Certain Modular Design Principles on Testability,"
Proceedings, International Conference on Reliable Software, IEEE Press, April, 1975.

T Morrison, J. P., "Data Responsive Modular, Interleaved Task Programming System, "
IBM Tech. Disc. Bull., Vol. 13, No. 8§, Jan. 1971.

12. Myers, Glenford, J., Reliable Software Through Composite Design, Petrocelli, N. Y.,
1975.

13. Parnas, D. L., "On the Criteria to be Used in Decomposing Systems into Modules,"
Carnegie-Mellon Univ. Aug., 1971.

14. Kernighan, B. W., Plauger, P. 1., Software Toaols, Addison-Wesley, 1976.

155 Kirk, E. V., An Introduction to Engineering Design, John Wiley & Sons, 1956.

16. Petersen, J. E., "Data State Design," Proceedings Compcon 76.

17. deCampo, R., Internal IBM memos and reports.

18. Edwards, N. P., Tellier, H., "A Look at Characterizing the Design of Information
Systems," Proceedings, ACM, Nov., 1974.

19. Ayers, Chesley, P. E., Specifications: For Architecture, Engineering and Construction,
McGraw-Hill.

20. Edwards, N. P., Lamb, E. C., "On Classification of Application Independent Mo-

dules," (to be published).

19

21. Crawford, P. O., Ir., Internal IBM memos and presentations.

22. Bernstine, D. C., "BIAIT", presentation to Application Systems Methodology Project,
GUIDE 40, May, 1975, by Alistaire Paterson, and Internal IBM memos.

