Rt A

A Text Editor for Parametric Files

USER GUIDE

July 1980

Vincent Kruskal

PEDIT is a new text editor that has been developed to provide
' more convenient way to create and maintain cums files
for which there can be many different versions. This
document is intended as a reference manual for p.rpir

users, It is also available on-line while p.EpIT is heing
used,

_____ Fhomas J Watson Research Uenter ‘RCB3SG2 (236326)
== ="= Yurktown Heivhts, New Yaork 10398

Computer Seience

RC 8352

71080
138 pages

Y

Copies may be requested from:

IBM Thomas J. Watson Research Center
Distribution Services 36-068

Post Office Box 218

Yorktown Heights, New York 10598

A7

Table of Contents

Introduction,...... e BT —— R

----------------------------- L T T T) 1

A New Technique for the Development and Maintenance of Parametric Programs 3

Documented Concepts.....ouuirerersresisssssmssnssresssssinias

Built-in P.EDIT Commandseveveieierivnnns

Standard MACTOS ..vvvvvirrnessiserersenrsssrrrrsrrrsrssssrssssseses

Standard Boolean FUunctionscccoccevieemrermnssrerssrssssrnssess

Other Standard EXEC2 Files...vverivrreerisrererreannnns

Common Values for 3270 PF-keys......ccoruesurenns R

...... el L

R R R L R A R R L 43

....... VTSNS £ .

&)

Introduction

For the most part, this document is automatically generated from the same files used by
the on-line documentation facility of p.epIT. Also included is a reprint of an article,
previously published, that describes how a text editor, such as pEDIT, can provide a
much better tool for dealing with different versions of a file by allowing all the versions
to be edited together as one object.

It was this need that made the implementation of still yet another editor necessary.
PEOIT is a joint project of the Automatic Programming and the System Laboratory
Departments at IBM Research. It was created by myself and Paul Kosinski. Peter
Sheridan provided the Boolean expression simplifier that has been described in *'A
Formula Decision/SimpIiﬁcation Program’, IBM Research Report RC7132, May 18,
1978. Leroy Junker has been an invaluable early user by being extremely communica-
tive and inquisitive,

P-EDIT currently has a small body of users who have been attracted to it for a number of
reasons:

The ability to edit the many versions of a file as one object called a
parametric file. Anyone who is currently using UPDATE, the pL/1 Prepro-
cessor, or simply contending with lots of similar files, should consider
this new way of dealing with such situations.

The ability to remember the effects of previous commands so that disas-
ters can be easily corrected. The uNDO command can be used to remove
all effects of any number of commands, while the unco command can be
used to remove just the positional effects of any number of lines (the
effects of redefining which line is the one being edited).

The ability to switch easily back and forth between all the files being
concurrently edited. Lines can be given names, called tags, and by
using the co command any of them can become the line being edited.
In fact, most of the r.EpIT commands that operate over a specified range
of lines permit tags, as well as line counts, to be used for that
specification.,

The ability to edit files whose lines are up to 65,535 characters wide.
Extensive compatibility with existing text editors. All the common
commands will be familiar to the experienced user (NEXT, UP, DELETE and

such). .

An interface to EXEC2 that permits easy extention of the available p.eprr

Introduction -

Cie

facilities. A large library of such extensions is publicly available, adding
such additional facilities as:

extensive on-line documentation

indentation of structured files

spelling error detection with suggested changes

entering P.EDIT commands while in INPUT mode

generating lists of cms files, cp spool files and files being edited
operations on those files without having to retype the information
knowledge of how files of many different types should be edited

The documentation that follows has extensive cross-references, The root of this
network of cross-references is in the description of the TELL macro in the chapter on
macros, a good place to start for someone unfamiliar with PEDIT, Within each chapter,
the topics are arranged alphabetically. When a topic has more than one name, it
appears under one of those names and the others refer to it.

P P-EDIT User Guide

A New Technique
for the Development and Maintenance
of Parametric Programs

Vincent Kruskal

Computer Sciences Department
IBM Thomas J. Watson Research Center
Yorktown Heights, ny 10598

This paper was originally published in the Proceedings of the Seven-
teenth Annual Technical Symposium of the ACM (Tools for Improved
Computing in the 80’s), June 15, 1978, prior to the implementation of
rEDIT, The version here has been updated to reflect the actual imple-
mentation and the vocabulary that eventually evolved.

Abstract

A parametric program is a model of a group of related programs which contains the
logic necessary {or each of those programs to be realized, based onr the setting of a
number of parameters. This concept of parametric program is merely a generalization
of a whole slew of techniques that have been used in the past to represent, in one
module of code, different versions of a program, the history of changes to a program,

and the like.

Previous techniques for representing parametric prcgrams have typically involved
explicit coding of the necessary control information intermixed throughout the program
text. Such control information is usually in the form of compile-time condition
statements which test Boolean expressions of parameter values. Such parametric
programs can easily become unreadable. The reader must lock at a jungle of control
information and fragments of program text and try to imagine what some particular
version of the program might look like.

What is needed is a high-level way of dealing with a parametric program which hides
all this complexity from the user and lets him return to the world of dealing with a
straight-forward program. A simple and elegant method is described for automating the
bookkeeping needed to develop and maintain parametric programs. Ways are discussed
for naturally grafting this method onto a display oriented text editor.

A New Technique for the Development and Maintenance of Parametric Programs .

Introduction

The earliest computer programs were small and were coded by same person interested
in using them. As programs became more complex, teams of progran.mers were
needed to code them. As these teams became larger, they became more professional
and more removed from the user. To justify the expense of these programming teams,
the programs had to be more general-purpose to support a larger body of users. This
phenomenon made necessary the invention of numerous automatic bookkeeping aids to
keep track of the additional complexity:

Update utilities permitted a set of related modifications of a program to be packaged as
a single update deck. These update decks, when applied to the original program in
chronological order, would produce the program’s current version. This facility was
originally created simply to permit the modification of large programs stored on tape.
However, it was soon discovered that it was better to keep the original program and the
update decks as the official representation of the program’s current version and to
discard the actual current version after compilation. This gave a representation of the
program which included the history of changes.

Program development systems permitted the members of a programming team to share
a common library of code. While a large program is under development, the various
programmers will be out of sync with one another to some degrece. When the definition
of a module of code changes, all the programmers can't instantly accommodate them-
selves to the new version. So at any tirae, cach programmer has his own view of the
current state of the program under development. If each programmer had his own
copy of the program, he would be spending most of his time installing fixes to his
copies of other programmers’ modules. So program development systems were invent-
ed which allowed the sharing of a common library of code. These systems know the
management strrcture of the programming team, enforce ownership rules, and provide
the appropriate view of the program to each programmer.

Customizers permitted programs to be automatically tailored according to a question-
naire filled out by the end-user. Thus, programs could be more general-purpose than
any single user woulu want while remaining efficient. This was far better than simply
giving the user a general-purpose program which would contain large amounts of
unneeded code, cause unnecessary testing of options during execution, and be much
harder for him to modify. In addition, most programming languages have some aspect
which cannot be specified during execution, declaration of variables is a typical exam-
ple. Such things can be made optional only by using a customizer,

Although not generally recognized, all these bookkeeping aids have one thing in
common: a representation of programs that permits them to contain alternative
sequences of code complete with the necessary control information to define when each
sequence is appropriate. Any prograru with such a representation is called here a
parametric program. A parametric prograni contains all the information needed to

4. P-EDIT User Guide

determine a particular program, once the values of the parameters are given. When all
the parameters Liave been given values, the resulting program is called an instantiation
or, sometimes, a version of the parametric program. When some, but not all, of the
parameters have been given values, we sometimes speak of the partial instantiation
defined by those which have. Clearly, a partial instantiation appears to be, itself, a
parametric program. However, there is a subtle difference that will be discussed latter.

Using this concept of parametric program, one could think of update utilities as having
a single parameter to control which update deck should be the last one applied. Like-
wise, program management systems have, most simply, one parameter per program-
mer; each programmer’s view of the pregram under development would be defined by a
value for each of these parameters telling how current he is relative to each of the
other programmers. And, of course, customizers have one parameter per question on
the questionnaire, each with one value for each possible answer,

Each of these applications of the concept of parametric program traditionally had its
own representation and techniques for dealing with it. Each of these techniques was
inappropriate for the other applications. This paper describes a tool for manipulating
parametric programs in a uniform and simple fashion: a single tool that can satisfy all
these needs simultaneously while making each easier for the programmer.

Customizers

The most complicated parametric programs are those written for customizers, It is in
this application that we find large numbers of independently specified parameters
interfering with each other by controlling the same sequences of code. Before going
further, we should look at the best technique used in the past to produce parametric
programs for customizers, for this was the only technique that could have possibly
satisfied the desire for a uniform way of manipulating parametric programs.

Early compilers, including assemblers, merely provided the facility of translating from
a human-oriented language to machine language. But because of the need for customiz-
ers, these compilers soon provided additional facilities for modifying the program
during compilation. These facilities included compilation-time variables and control
statements. Al the beginning of each program would be a section where these
compilation-time variables would be assigned values. Comments would be liberally
used in this section to explain the possible values for each compile-time variable and
the effect of each value. Throughout the remainder of the program would be compile-
time control statements so that the compiler would ignore all the text which was
inappropriate for the particular version defined by the compile-time variables. For
example, the preprocessor of IBM’s pL/1 compiler permits a subset of pL/1, preceded by

A New Technigque for the Development and Maintenance of Parametric Programs -5

a percent-sign, to control compilation. Fragments of a pL/1 parametric program follow:

PROG: PROCEDURE () OPTIONS(MAIN) ;

AVERSION = 5,6; /* VERSION DESIRED */
RSYSTEM = 'VM'; /* 'MVS' OR 'VM' ./
I =1+ 1;

%IF (VERSION >= 4.0) € (SYSTEM = 'VM') THEN CALL ADJUST(I);

END;

This kind of facility is clearly arbitrarily powerful in theory. However, as a practical
matter, it will get out of hand when the parameterization of the program becomes
complex. When a great number of parameters control the same sequence of code, the
Boolean expressions get complicated and hard to understand. When the sequences of
code get small because a great deal of contro! is being exercised, it becomes impossible
to look at the program and get any idea of what an instantiation might look like.
Because of this, customizers have either permitted the vser only modest options or have
been too expensive.

It should now be clear why this technique for handling parametric programs has not
been able to serve all the needs: it had trouble serving just the needs for customizers.
If in addition to implementing user options, the entire history of the program and all
the various versions under development were encoded by explicit control statements,
visible to anyone reading the program, nobody would ever understand it.

The Editor

The basic idea here is to change the program editor that the programmer already is
using so that it can be told the programmer’s intent in making any modification to his
program. For concreteness, let us assume that we are talking about one of the many
text editors that have evolved from typewsiter context editors to use display terminals.
These editors are built around the concept of a cursor which is always pointing at some
line of the text called the current line. This cursor can be moved relatively, absolutely,
or contextually. For example:

UP 5 Move cursor up five lines.

LINE 1057 Move cursor to line number 1057.
o .
LOCATE "CALL" Move cursor to the next line containing a CALL statement.

-6 - P-EDIT User Guide

Once at the desired location in the text of the program, either the current line can be
modified or new lines can be inserted. For example:

CHANGE "CSLL"CALL" Correct the spelling of cALL.
REPLACE CALL SUBR (X) Replace the current line.
INSERT Y = Y + 1 Add a new line after the current one.

It should be noted that these editors know nothing about the language the programmer
is using: they merely have the concept of character and line. Thus they are often used
to produce English documents as well as programs and the techniques described in this
paper apply equally well to parametric documents as they do to parametric programs.
Indeed, being able to maintain the documentation of a parametric program using the
same system is necessary for a well functioning development tool.

The display terminal is often used merely to display a window of the text being edited
around the current line. We will assume that the terminal has some method of
highlighting lines of text which we will call brigh.

Building Parametric Programs by Incremental Programming

Incremental programming is my name for making a small, single-purpose modification
to an existing program. This kind of programming involves the least complexity of any
and is the most common assignment for a novice programmer. He has the system
organization and data structures rigorously defined for him and need only hold in his
mind the simple change he wishes to make.

If the task of creating a parametric program from a simple program can be reduced to
a sequence of incremental programming steps, we will have accomplished, in that
sense, the complete automation of the complex bookkeeping that is necessary in
dealing with a parametric program.

In order to build a parametric program in this fashion the programmer must start with
a base program. This base program is simply a non-parametric program built and
debugged in the traditional way using the editor. If he is creating a customizer, the
base program is one possible instantiation of the program which he feels is typical. If
the purpose of the parametric program is to record changes to the program, the base
program is the original version.

Once the base program is completed, all further uses of the editor will use the new
parametric features which have been grafted onto the editor’s original programmer
interface. Prior to making any change to his program, the programmer would inform

A New Technique for the Development and Maintenance of Parametric Programs .

the editor of his intention by specifying a parameter name and value(s). The following
examples are typical for the application mentioned:

BILLING.METHOD = PRE.BILLING Accounts receivable customizer
BUG564 = FIXED Correction maintenance system
VERSION >= 5.6 Release maintenance system
KPUSKAL >= 5.6 Programn development system

From this point on the programmer would proceed to use the editor in a completely
normal fashion. The editor would monitor every change to the program and automati-
cally build a data structure which associates the new text with the programmer’s
intention and associates the old text with the negative of his intention (example:
BUG564 —= FIXED). Thus the program would take a form internally such as:

DO WHILE (Y > Z); TRUE
CALL SUBR(X) ; BUG564 = FIXED
CSLL SUBR(X) ; BUG564 == FIXED
END; TRUE

Note that each line internally has two fields: the program text and a Boolean expression.
If a line is in all instantiations of the parametric program, its Boolean expression is
TRUE. If not, its Boolean expression would be something more constraining. There is
no notion that two lines are alternatives to one another built into the editor; each line
is either in an instantiation or not. If two lines are, in fact, alternatives, they would be
consecutive and have Boolean expressions that are mutually exclusive.

In the base program, all Boolean expressions are TRUE. FEach time the programmer
informs the editor of a different intention and modifies the program, the Boolean
expressions become evermore restrictive. Because the editor always retains the text
associated with the negative of each intention. there is always a partial instantiat'on
corresponding to each value of a parameter that has been mentioned plus one that
corresponds to the case where that parameter has none of those values. Thus the editor
has no notion of a limited range of values for each parameter and no declaration of
possible parameter names or the values they might take is needed (although one might
be imposed so that typing errors might be detected).

It was mentioned earlier that while partial instantiations bare a remarkable similarity to
parametric programs, there is a subtle difference between them. That difference is lies
in the need to restrict the range of parameter values. As shown above, parametric
programs have no such need. A partial instantiation, however, cann't exist under an
assumption that contradicts the assumption that induced it. Thus the partial instantia-
tion induced by BUGS64 = FIXED must exclude from the range of possible values for
BUG564 any value other than FIXED.

T P-EDIT User Guide

Boolean-expression 1S Boolcan-term
OR conjunction
OR disjunction
OR function
Boolean-term IS constant
OR relational-expression
OR (Boolean-expression)
OR - (Boclean-expression)

conjunction I'S Boolean-term & Boolean-term

OR Boolean-term & conjunction

disjunction 15 Boolean-term | Boolean-term

OR Boolean-term | disjunction
relational-expression 1S name relation-value

OR value L-relation-name L-relation-value

relation IS E-relation
OR L-relation
OR c¢-relation

E-relation IS =
OR .=
L-relation 18 «
OR «=
G-relation IS >
OR »>=
constant IS rrue
OR FaLse
value IS base-36-signed-Dewey-decimal-number
OR function
name IS letter
OR letter base-36-unsigned-Dewey-decimal-number
function IS name (arguments)
argun.ents [S argument
OR argument, arguments
argument IS value
OR

OR (arguments)

Boolean Expression Syntax

Boolean Expressions
The term Boclean expression is used throughout this paper.

used to define constraints on parameter values and, therefore,
instantiation of the parametric program. Their syntax is in

A New Technique for the Development and Maintenance of Parametric Programs

Boolean expressions are
they also define a partial
the above figure. Since

parameter values are sometimes thought of as character strings and sometimes as
Dewey decimal type version numbers, relational operations should be defined to work
reasonably on both. When being compared, values are broken up into fields by periods.
Each field is a base 36 (digits 0 to z) number with'a possibie sign. Fields are com-
pared, left to right (lexically), in the normal Dewey decimal fashion.

The editor needs the ability to compute the Anp, or and NoT of Boolean expressions
where these functions return simplified results. In addition, the function, CONSISTENT, i8
useful for speed since the editor needs it often and it can be made much faster than
taking the AnD and checking for FaLsE,

Masks and Displaying Parametric Programs

Central to this editor for parametric programs is the concept of the mask. The mask is
a Boolean expression that describes a constraint on the values the parameters can take,
The mask is used in two ways. On input, it defines the intent of the programmer’s
modifications to the parametric program. On output, it describes the partial instaniia-

tion the programmer wishes to see. Once the mask is set, there is no way that excluded:

instantiations can be modified or viewed without resetting it.

Each line of text is said to be fixed by the current mask or not. It is fixed if either it is
in all instantiations of the parametric program (it has a Boolean expression of TRUE) or,
at least, it is in all instantiations that arc consistent with the current mask (the mask
proves that the Boolean expression on the line is true). A line that is in some, but not
all, instantiations that are consistent with the current mask is called unfixed (the mask
is consistent with both the Boolean expression on the line and the Nor of that Boolean
expression). When a line is fixed, it is displayed normally; when a line is unfixed, it is
either displayed bright or it is not displayed at all, called hidden, and a nearby line is
displayed bright.

Only one ir. tantiation can be actually displayed even though, in a logical sense, all the
ones that are consistent with the current mask should be displayed, since they are all
being edited. So some of the unfixed lines are going to be displayed bright and some
are going to be hidden. The choice of which instantiation to display is made incremen-
tally, on an as-needed basis, whenever an unfixed line might be displayed. The first
time this decision is made, the editor arbitrarily chooses to display the line. After that,
the decision is made to be consisterit with all previous decisions in the following
manner.

A Boolean expression called the view control and a list of Boolean expressions called the
view priority list are maintained by the editor. Whenever the editor has to decide
whether an unfixed line should be displayed, it does so if it is consistent with the view
control. If it is also consistent with the NoT of the view control (the decision to display
it could have been made, consistently, the other way), the line’s Boolean expression is

.10 - P-EDIT User Guide

————

added tu the end of the view priority list (lowest priority). Whenever the wask or the
view priority list 1s modified, the view control is recomputed as follows:

The view control is intialized to the current mask,

Each Boolean expression in the view priority list is examined in turn,
starting with ‘the highcst priority. If it is consistent with the current
value of the view control, it is anped to it, thus making it more restric-
tive.

This operation has the effect of keeping the view control as consistent with prior
decisions as is possible, while never contradicting the current mask. It is possible to
permit the user to exercise control over the view by allowing him to add to the top of
the view priority list. :

While this technique guarantees that the view shown the user will be a consistent
instantiation, it has the problem that the view chosen might have no lines at some
point in the program while other instantiations, consistent with the current mask, do.
Thus there is no unfixed line in the view to brighten. When this happens, the previous
line is displayed bright even though it is fixed.

The programmer can’t see the unfixed lines that are hidden, but they exist as much as
the text that he can see in every other sense. If he issues an editor command to move
the cursor to the next occurrence of some string, say, and that next occurrence is in
such a hidden line, the editor will display a blank line to stand for the hidden line.

As desrribed here and in essence, there is only onc mask that conirols the editor at any
time. However as a convenience for (he user, it might be wise to permit a number of
masks so that he might more easily exercise contro! over them. These masks might
each have a name or they might be elements of a push-down list (or possibly both).
The current mask, as that term has been uscd here, would be computed by taking the
AND of the user’s masks.

Handling Interference between Parameters

The real power of this technique does not become apparent until we look to see what
happens when different parameters control the same sequence of text. This is the
situation where complex Boolean expressions must be formed to control the instantia-
tion process. . If the programmer is to continue to operate i. the simple incremental
Programming mode, these complex expressions must be managed automatically by the
editor.

Let’s take as an example the programmer who is fixing bug number 564. As his first
step, he has set the mask to BUGS64 = FIXED. We want him to focus only on that goal

A New Technique for the Development and Maintenance of Parametric Programs «11.

and not even to know about the other parameters. But even when programming
incrementally, the programmer can’t make modifications blindly. He must look at the

t-be looked at carefully, since it's
obvious that his change is independent of them. The programmer need only read the
relevant parts of the program, If there are bright lines in those parts, he has been
warned that there is hidden code he cannot see,

To handle this case, the editor must permit the programmer to see all the alternatives
of a sequence of bright lines and to make his change for each case. Again this must be
done in such a way that the programmer always sees a consistent partial instantiation.
The snow command, issued when the current line is bright, causes the editor to modify
the mask so the group of unfixed lines around the current line becomes fixed. This is
done by setting the mask to the anp of its previvus value and the Boolean expression
necessary to fix one alternative of these lines. This, of course, might well cause other
lines to become fixed: thus keeping the programmer’s view consistent. After the
programmer fixes bug 564 for this alternative, he would issue the srgp command. This
command would go back to the previous mask and modify it so that another alternative
is fixed. When the bug has been fixed for all alternatives, the programmer would issue
the uNsHow command and the mask would be restored.

In order for this operation to uet reasonably in the face of possible modifications to the
lines whose alternatives are being shown, it is important that the snow command
precompute all the necessary restrictions to the mask. The srep command would
merely AND each of these, in turn, to the original mask., In addition, for the smow
operation to act reasonably in the face of possible modifications to the mask prior to the
SHOW (possible if named masks, as above, are permitted), it is important to choose the
correct restriction to the mask for each alternative (there are many that would act the
same as long as the original mask isn’t modified). The correct anc is that which is Jeast
restrictive. This can be computed by choosing any of them .nd oring the Not of the
original mask to it.

It should be clear that fixing bug 564 for any alternative might itself involve stepping
through the alternatives of another bright line and so forth 1o any level. Each time this
is done the mask becomes more vomplicated. But the programmer is never doing
anything but asking himself “Now how can I fix bug 564 in this code without messing
it up?”. He has no knowledge of the other parameters; only the unavoidable need to be
able to integrate his change into existing code.

Maintaining the Boolean Expressions in the Parametric Program
Whenever a line of text is modified by the programmer, the editor must replace that

line in the program with two lines, one with the original text and the other with the
new text. It must then assoc:ate with the original text the Boolean expression computed

12, P-EDIT User Guide

(T

by taking the anp of its original Boolean expression and the NoT of the current mask (if
this is FALSE, the line is deleted). It associates with the new text the anp of the
original Boolean expression and the current mask,

been the same, To permit this, a MERGE command s needed. This permits consecutive
lines with the same text and mutually exclusive Boolean expressions to be combined by
'Ring the Boolean expressions together and associating the result with one of the lines
while discarding the other.

Editor Macro Interface

Most text editors have some sort of macro facility. The simplest kind of macro merely
associates a name with a sequence of editor commands, A user who gets weary of
issuing the same commands repeatedly can define such a macro and just use its name
from that point on. In practice, of course, these sequences of commands should not
have to be identical each time. Rather, the user identifies some definable Pattern they
have in common. So rea] macro facilities tend 1o have gl the power we expect in
programming languages: passing of arguments, conditionals, loop control, invocation of
sub-macros and the like. Such a facility makes the editor very extensible with users
accumulating and sharing an ever increasing library of macros,

This macro facility is really the hardest o get right when upgrading a text editor to
operate on parametric programs. For what is to happen when a macro tests a line of
text which is unfixed by the current mask ang does something completely different
depending on what it finds? Such a test doesn't have a unique outcome: for some
parameter values it should have gone one way and for others it should have gone the
other. There are really two approaches to this problem: the explicit and the automatic,

The explicit solution is 1o make all the concepts and control that is available 1o the
user, available to the macros, A command, STATUS, would be provided for a macro to
test whether a line is fixed or not. If it is unfixed, the macro would use the SHOw,
command to step through each alternative. This mimics what the user does when the
ambiguity of a bright line makes him uncertain of what editing he wishes to do. Iy

This would mean, in practice, that all macros must explicitly test the lines of text that
it deals with and be Prepared to step through each alternative of that text. Clearly this
would make the macros more complex. If the editor is already in wide use, we would
have the additional problems of rewriting the existing macros and re-educating the

A New Technique for the Development and Maintenance of Parametric Programs -13.

[

for the editor to do this, it must have a facility analogous to a multi-programming
supervisor, It needs the ability to introduce a fork in the execution of a macro at will.

After such a fork, the e
running in parallel, each with a different magk. Were a macro o test a line of text,
unfixed by the current mask, and the outcome of that test were different for different

the fork and the Boolean expression which defines one outcome of the tegt, Let’s say,
for example, that the current mask is sysreym = MVS and that the current line and jts
alternatives are g5 follows:

A =B+ VERSION < 5,6
A =B+ FLOOR (C) ; VERSION = 5.5
A =B + FLOOR (C) + 1; VERSION > 5.6

If the macro tested the current line to see whether the FLOOR function ig called, the
execution would fork into two executions. One with the mask (sysTy - MVS §
VERSION < 5.6) and the other with the mask (SYSTEM = MVS § vERsTON >= 5,6),
Each of these executions would proceed independently of each other since they would
be using mutually exclusive masks. Any change to the Program made by one would be
associated with its mask and would be invisible to the other,

This independence of the different executions is crucial, since otherwise the macro
would have to concern itsell with the parallel execution in the same way that co.
oOperating programs in a multi-programming environment must, Byt this independence
is limited to Uperations on the parametric Program. If the macro facility in the editor
permits, as many do, sending of messages to the user, issuing commands to the
operating system, or any other communication outside the world of the editor, this
independence is shot. The editor must intercept any such communication that occurs
after a fork and treat i as an error.

Acknowledgment

building program customizers. Paul Kosinski and Peter Sheridan are currently working
with me to implement a prototype of a text editor for parametric programs, called

4 £ o PEDIT User Guide

- see DIRECTION

BASIC COMMANDS

MACRO
COMMAND
COMMAND
COMMAND
MACRO
MACRO
COMMAND
MACRO
COMMAND
COMMAND
RESOLVE
RESOLVE
MACRO
MACRO
COMMAND
MACRO
COMMAND

RESOLVE
MACRO
COMMAND
COMMAND
RESOLVE
COMMAND
MACRO
COMMAND
MACRO
MACRO
COMMAND
MACRO
MACRO
COMMAND
COMMAND
COMMAND

COMMAND
MACRO

RESOLVE
COMMAND
COMMIND
COMMAND
COMMAND

?

ADD
AGAIN
AVOID
BOOL
BOTTOM
CHANGE
CMC
copy
CUF
Cus
DELETE
FILE
FIND

FIRST
INCHANGE
INPUT
INSERT
LAST
LOCATE
MOVE
NEXT
ourt
P-EDIT
PRINT
QuIT
RANGE
REPLACE
RESUME
SAVE

SCROLL
TELL
TO

TOP
UNDO
up

X

Concepts

(Execute CMS command)

{Execute command in reverse mode)

{(Print the last few commands)

(Execute previous command again)

{Add string to end of line)

(Execute remembered command again)

(Go to the next line missing specified string)

(Print Boolean expressions for lines in range)

{Go to the last line in the file)

{Replace one string with another over range)

(Replace one mixed-case string with another over range)
(Copy lines from one point to another)

(Replace unique occurence of string in file as specified)
(Replace unigue occurence of string on screen)

{(Delete lines in range)

(Stop editing current file after saving it on disk)

{(Go to the next line that matc-hes pattern)

{Set default FIRST tag for MOVE, eotc.)
{Interactive CHANGE)

{Enter batch INPUT mode)

(Insert a new line after current line)

(Set default LAST tag for MOVE, etc.)

{Go to the next line that has specified string)
{Move lines from one point to another)

(Go to the next line closer to EOF)

(Stop editing all saved files)

{Resume editing or read file if not in memory)
{Print lines in specified range)

(Stop editing current file)

{Set default FIRST or LAST tag for MOVE, etc.)
{Replace current line)

{Resume editing a file)

(Save current file on disk)

{Go to a line based on display)

(Edit a file to explain specified part of P-EDIT)
{Set defavlt TO tag for MOVE, ete.)

(Go to the TOP dummy line) }

(Undo effect of remembered commands)

{Go to the next line closer to TOP)

{Execute or define command abbreviation)

BOOLEAN see BOOLEAN EXPRESSIONS

BOOLEAN EXPRESSION see BOOLEAN EXPRESSIONS

Concepts

«15 .

BOOLEAN EXPRESSIONS

- 16«

The rules for writing Boolean expressions in P-EDIT are very similar to those
in PL/I. The principle difference is that parameter names (variables) are
always on the left side of relations and parameter values (constants) are
always to the right. Therefore there is no need to use gquotation marks or such
to distinguish names from values., Details follow:

Boolean operators: These consist of '&' for AND, '|' for OR, and '-' for NOT.
Parentheses can be used to group these operations and must be used when mixing
AND and OR because there is no built-in hierarchy defined. Example:

-(A=1 & (B=1 | C=1))

Cconstants:; The constants, 'TRUE' and 'FALSE', are permitted, but are not often
useful,

Relations: Boolean operators act on Boolean expressions, constants, or rela-
tions. Relations provided are '<', '<=', 's', '==',6 '>=', and '>'. Relations
coded with two characters may not be separated with a blank. Relations take a
parameter name on their left and a parameter value on their right. It should
be noted that 'P=1' in no sense means that a variable 'P' currently has the
value '1'; there are no values in this sense. 'P=1' is significant only in
that it contradicts 'P=2', implies 'P>=0', and so forth, A special form is
provided fer ranges, 'O<P<B8', where either '<' can also be '<=',

Parameter names: These must begin with a letter and may contain any number of
letters, digits and '.'. Any zero digits following a '.,' are ignored.
Examples:

PARAMETER . NAME
NAMES

Parameter values: These are a generalization of Dewey decimal notation intended
to be adequate for version numbers, integers and symbolic names. A value

consists of any number of fields, separated by '.'s. They are compared left to
right, lexically (5.6.4 > 5.6). Each field is a base 36 signed integer (digits
range from '0' to 'Z'). Thus symbolic values (which would only be compared
using '=' or '-=') act reasonably. Examples:

VERSION.1.3.4 k
CMS
-5.1 {greater than =5)

7.4.=3

Functions: these permit the same kind of extensibility that macros provide for
commands. A function may occur wherever a Boolean expression or a parameter
value is expected, although a given function would probably make sense only in
one context,

Internally and on disk, Boolean expressions must be upper-case and contain no
blanks. However, P-EDIT will make the necessary translation when Boolean
expressions are read from the terminal or returned by a function (P-FUNC}). On
disk, Boolean expressions have at least one blank to their left and exactly two
blanks on their right (end of the record).

P-EDIT User Guide

BUILT-IN COMMANDS

COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
* COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND

COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND

COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND

COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND

Concepts

;'

L
ALARM
ALTER
APPEND
ATBASE
AVOID
BOTTOM
BROWSE
CALLER
CASE
CHANGE
CcMs
COLUMN
COMMAND

COPYFROM
COVERT
DELETE
DELIMSTRING
DESERIALIZE
DIRECTION
DROP

EDIT
EDITING
EDITMODE
ERRCR
EXCLUDE
EXCLUDEVIEW
EXIT

FCOUNT
FETCH

FIND

FIX
FIXVIEW
FNUMBER
FORMAT
FREE
GETFILE
GO

HZAD
HEADVARS
HILITE
IMAGE
INPUT
INSERT
LENGTH
LEVEL
LINES
LOCATE

MACRO
MACROLINE
MAKE
MASK
MASKNAME
MASKS
MAXLENGTH
MAXNEXT
MERGE
MODE
MOVEFROM
NAME

NEXT
NORESTORE
OVERLAY
PFKEY
PFOFF

{Do nothing) ;

({Execute command in reverse mode)

(Print the last few commands)

{Execute previous command again)

(Set or print permitting beeping on errors)
(Replace one character with another over range)
{Append current file to existing file on disk)
(Set base application as defined by current masks)
(Go to next line missing specified string)

(Go to the last line in the file)

(Set or print BROWSE mode which disallows changes)
(Test who caller was)

(Set or print upper-case folding mode)

(Replace one string with another Over range)
(Enter CMS subset operation)

(Print location of string in current line)
(Execute built-in command)

(Copy the range to after the current line)
(Execute command as part of previous one)

(Delete lines in range)

{Parse a delimited string from a string)

(Set or print deserialize mode and columns)

(Test for reverse mode by caller)

{Stop editing a file)

(Read and edit a file or print files being edited)
(Print file number of file specified)

{Set or print whether to edit text or Boolean expressions)
(Act like an illegal command)

(Restrict mask to exclude range)

(Restrict mask to exclude viewed lines in range)
(Stop execution of READ *)

(Print number of files being edited)

(Print value of edit variable)

{Go to the next line that matches pattern)

(Restrict mask to fix range)
(Restrict mask to fix viewed lines in range)
{(Print number of file and controlling file)

(Set or print format of file (v, F, pgtec.))
(Privnt amount of available storage)

(Read a file and insert it into current file)
{Go to the line named by the specified tag)

(Set header line of screen)

(Set order of resclution for header line)

{Set or print method of highlighting lines)

(Set or print handling of tab and back-space characters)
(Enter batch INPUT mode)

(Insert a new line after current line)

(Print length of current line)

(Print level of editing)

(Print physical line number and number of lines)
(Go to the next line that has specified string)

{Execute P-EDIT macro)

(Stack calling command) .

(Modify Boolean expressions over the range)
(Print or set specified mask)

(Parse a mask name from a string)

{(Print names of current masks)

(Print length of longest line)

(Print distance to EOF)

{Physically combine mutually exclusive lines)
{Set or print : .es of file)

{Move the range after current line)

(Set or print name, type and mode of file)
(Go to the next line closer to EOF)

{Don't restore saved edit values upen return)
(Change current line with characters specified)
(Set or print a PF-key)

(Clear PF-key)

-17 .

.18 .

COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND

COMMAND
COMMAND
COMMAND
COMM.AND
COMMAND
COMMAND
COMMANL
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND

COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
CUMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND

COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND

PFRENEW
POPMASK
PRINT

PRY

PUSHMASK
READ

RECLAIM
REMEMBER
REPLACE
RESOLVE
RESOLVECRDER
RESCLVETOKEN
RESTRICTMASK
RESUME
RETRIEVE
REVERSE

SAVE

SAVED
SAVEVIEW
SAY
SCALEX
SCOPE
SCREEN
SCROLL
SHOUT
SIMPLIFY
SORTX
STACK
STATUS
STORE
SUPERIMPOSE
SYNONYM
TABKEY
TABS

TAG
TAGNAME
TAGS
TOKEN

TOP
TRANSINX
TRANSOUTX
TRUNC
TYPE

UNDO

UNGO
UNMASK
UNSTORE
UNSYNONYM
UNTAG

up
VARNAME

VARS
VERIFY
VERSION
VERSIONS
VIEW
WIDTH
WINDOW

X
XFERCONTROL
XMACRO

Y

ZONE

{Restore PF-keys)

({Change default mask name)

(Print lines in specified range}

(Enter PRY for debugging)

{Change default mask name)

{Read lines and execute them as edit commands)
{(Find all available storage)

(Set or print number of commands to be remembered)
(Replace current line)

{Print interpretation of command)

{Set or print order in which commands will be resolved)
{Print interpretation of command verb)

(Make specified mask more restrictive)

(Resume editing a file)

{Print past command)

{Execute command in reverse mode)

(Save current file on disk)

(Set or print memory of whether file has been saved)
{Save current view of file)

{Print message in message area)

{Stack a line like the one above input area)

{Set or print scope modes or force screen refresh)
{Print contents of screen)

{Go to a line based on display)

(Print warning message in message area and sound alarm)
{(Print simplification of Boolean expression)

{Sort lines in specified range)

{(Stack lines in specified range)

(Go to line with specified status or print status)
(Define value of P-EDIT variable)

{Change current line with characters specified)
(Define a synonym or abbreviation for command)

{Set or print PF-key for tab character)

{Set or print tab stops)

{(Tag current line with specified name)
(Parse a tag name from a string)

(Print tags defined in range)

(Parse a token from a string)

(Go to the TOP dummy line)

{Print or set input translation tables)
{Print or set output translation tabie)
{Set or print length of lines for INSERT)
{Set or print file type of file)

(Undo effect of some remembered commands)
(Go back to current line as of a remembered command)

{Clear specified mask)

{Clear P-EDIT variable)

{Clear a synonym for a command)

(Clear specified tag)

(Go to the next line closer to TOP)
(Parse a variable name from a string)
(Print names of defined edit variables)

(Set verify mode used for typewriters)

{Print current P-EDIT version)

{Print Boolean expression defining versions of range)
(Change or print view being displayed)

(Set or print width of file on disk)

(Set or print part of lines to be displayed)
{Execute or define command abbreviation)

(Use masks from another file)

(Execute specified EXEC2 file)

(Execute or define command abbreviation)

{Set or print part of lines to be seen by CHANGE)

P-EDIT User Guide

»g

CMS COMMANDS

MACRO
MACRO
COMMAND
MACRO
MACRO
MACRO
COMMAND
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
COMMAND
MACRO
MACRO
MACRO
COMMAND

MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO

MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
COMMAND
MACRO
MACRO
COMMAND
MACRO
MACRO
MACRO

3

APPEND
ARCV
BURN
CANCEL:
CMs
COMPARE
CONSOLE
CP
CPLIST
DISKS
DROPDISK
EDIT
ERASE
FILE
FILELIST
GETFILE

GETFILES
GETSYNS
GETTAIL
HIST
HUFF
INSTANCE
LINKS
MORE

ouT
ORDER
P-EDIT
P-LIST
PAUSE
PEDIT
PUFF

PUTBOOL
QCOoPY
OMOVE
REACCESS
HECEDIT
RENAME
RENEW
SAME
SAVE
SAVEFIX
SAVEFORM
SAVEVIEW
UNUPDT
UPDATE
WHO

COMMAND XMACRO

(Execute CMS command)
(Execute CMS command and wait for CANCEL (MORE.,.))
(Append current file to existing file on disk)
(Arg¢hive file designated by current l.ne)

(Stop editing current file and erase it on disk)
(Leave P-EDIT with no protection for unsaved files)
(Enter CMS subset operation)

{Generate a file showing differences between two files)
(Edit console spool file)

(Execute a CP command)

(Edit a list of spool files)

(Edit file showing accessed disks)

{Drop disk designated by current DISKS line)

(Read and edit a file)

(Erase file designated by current line)

{Stop editing current file after saving it on disk)
(Generate a list of files on disk)

(Read a file and insert it into current file)

(Read a number of files and insert them into current file)
{Insert SYNONYM commands needed by macros}

(Read last lines of a file and insert it into current file)
(Add line to the MAINTAIN HIST file for current file)
{Encodes file designated by current LIST line)

{Generate an instance of a FORM file)

(Print users linked to disk)

(Show further detail of COMPARE file)

(Stop editing all saved files)

(Re-ORDER spool files designated by CP-LIST lines)

(Edit or resume a file or edit a FILE LIST)

(Read a group of files for editing)

{Save all files on disk that need to be saved)

(Edit a file using the PEDIT editor)

{Decodes file designated by current LIST line))

(Write Boolean expression on disk)
(Copy files designated by LIST file)

(Move files designated by LIST file)

[Re-access disk designated by current DISKS line)
{Start editing file recursively)

(Rename file designated by LIST file)

(Renew current line of LIST file)

(Insert similar file descriptions in LIST file)
(Save current file on disk)

{Save one of the current versions, interactive)
(F11l in and save one of the current versions, interactive)
(Save current view of file)

{Produce UPDATE file from parametric file)

(Apply UPDATE file to current file)

{Print information about who and what is running)
{Execute specified EXEC2 file)

COMMAND MEMORY see MEMORY

CURRENT FILE see CURRENT LINE

Concepts

-19.

CURRENT LINE

The concepts of the current line and current file are central to P-EDIT as it
1s to most text editors that evolved from typewriter based editors., At any
time, one line of current file being edited is designated the current line,
Most P-EDIT commands have an implicit argument of the current line. For
example, the CHANGF command eithar modifies the current line alone or a range
of lines starting with the current line. Saimilarly, the LOCATE command
searches for the next occurrence of a piece of text following the current line,
The current line is always displayed on line B on a 3270 display and is often

highlighted.

In order to permit the current line to be entirely before or after the lines in
the file, a dummy line is placed at each end called the TOP and EOF dummv
lines. If the current line is such a dummy line, many commands act in a
special fashion, described for each. 1In any case, the dummy lines are never
permitted to be modified or deleted and no line is permitted to be inserted
beyond the limits of the file,

related documentation

CONCFEPT POSITION COMMANDS (P-EDIT commands that control current line)
COMMAND HILITE (Controls method of highliting current line)

CURRENT MASKS see PARAMETRIC FILES

DEFAULT VALUES see INITIALIZATION

DEFAULTS see INITIALIZATION

DICT see DICTIONARY

DICTIONARY

built-in command
A P-EDIT command, nnt a macro,

EOF
The dummy line maintained after all the linee in the file (status is
EOF) .,

excluded line
A line which is not in any versions of the file that are defined by the

current masks (status is TOP, EOF, DUMMY or E)XCLUDED) .

fixed line
A line which exists in all versions of the file that are defined by the

current masks (status is FIXED).

.90 . ’ P-EDIT User Guide

go to a line
This 1vfers to the establishment of a different line as the current line
of a file.
See: CONCEPT CURRENT LINE

'Not found' is reported N
If the issuer of the command was either the user or a READ command in a
macro, 'Not found' is printed (on a 3270 display device, it is displayed
in the information area), If the issuer was a macra, a return code of 1
15 returned.

printed (stacked) information
If the issuer of the command was either the user or a READ command in a
macro, the information is printed (on a 3270 display device, it is
displayed in the information area)., If the 1ssuer was a macro, it is put
into the CMS program stack {(FIFO).

range of lines
Many P-EDIT commands can operate over a range of consecutive lines, The
first line 1s the current line unless othervise specified, The extent is
specified as a tag which names the last line, an '®' for the remainder of
the file, or an unsigned intcger cefining the number of lines in the
range. The first line counts toward the count even if it is excluded, but
subsequently only lines in the logical file are counted, An optional
range is typicaliy shown in documentation as: <tay>

n
.

status of a line
Either FIXED, TOP, EOF, DUMMY, or for parametric files, IINFIXED, HIDDEN or
EXCLUDED,
See: CONCEPT STATUS

TOP
The dummy line maintained before all the lines in the file (status iz
TOP) ,

unfixed line

A line vhich 1s in some, but not all, of the versions of the file dafined
by the current masks (status i1s UNFIXED or HIDDEN),

DIRECTION

Most P-EDIT commands for which 1t makes sense, can be made to operate in tho
opposite directiorn in the file by preceding them with '=', Tha only exceptions
are disks operations such as SAVE since it soems dangerous and not useful to
reorder a tile as it moves in and out of memary, Typically, thae meaning of the
opposite direction is that the command operatos as though the file were
completely reversed, the command were executed, ard the file wore reversed
again (that is its order were restored) ,

This is the way all primitive P-ELIT communds work., Some macros, however, make
an analogous, but not identical, interpreotation, In descriptions of command
syntax, one will find '<->' precedirg Lhe syntactic form of the command when it
is influenced by direction. If it follows the normal interpretation of
reversal, no further mention is made; it is left to the reader to change
'before’ to 'after', 'TOP' to '‘EOF', etn, IFf, however, some different
interpretation is made, it will be explained,

P-EDIT macros always opcrate in non-reversed mode. If they wish to make some
interpretation of reversal, they rust tepst Sor it with the DIRECTION command,

related documentation

COMMAND - (Prefix to cause reversal)
COMMAND REVERSE (Same as '-' for macron)
COMMAND DIRECTION {Testing reversa) for macros)

DISK see MAINTENANCE

Concepis .21.

DISPLAY COMMANDS

COMMAND ? {(Print the last few commands)

MACRO BOOL (Print Boolean expressions for lines in range)
COMMAND CALLER (Test who caller was)

COMMAND COLUMN (Print location of string in current line)
COMMAND DESERIALIZE (Print deserialize mode and columns)

COMMAND DIRECTION (Test for reverse mode by caller)

COMMAND EDIT (Print list of files being edited)

COMMAND EDITING (Print filc number of file specified)

COMMAND EDITMODE {(Print whether to edit text or Boolean expressions)
COMMAND FCOUNT (Praint number of files being edited)

COMMAND FETCH (Print valve of edit variable)

COMMAND FNUMBER (Print number of file and controlling file)
COMMAND FORMAT (Print format of current file)

COMMAND FREE (Print amount of available storage)

COMMAND HEAD (Set header line of screen)

COMMAND HEADVARS (Set or print order of resolution for header line)
MACRO HELP {(Same as TELL TELL)

MACRO IIIDE {Change view to hide current (unfixed) line)
COMMAND IMAGE (Print handling of tab and back-space characters)
COMMAND LENGTH (Print length of current line)

COMMAND LEVEL {Print level of editing)

COMMAND LINES (Print physical line number and number of lines)
COMMAND MACROLINE (Stack calling command)

COMMAND MASK {Print value of specified mask)

COMMAND MASKS {(Print names of current masks)

COMMAND MAXLENGTH (Print length of longest line)

COMMAND MAXNEXT (Print distance to EOF)

COMMAND MODE (Print mode of file)

COMMAND NAME {Print name, type and mode of file)

MACRD NOTE (Find previous note)

MACRO P-EDIT (Edits a file of files being edited)

MACRO P-LIST (Edits a file of files being edited or & subset of that)
MACRO P-SCROLL {Special scroll for TELL and LISP files)

RESULVE PAREN (Check for balanced parentheses)

COMMAND PFKEY (Print value of specified PFP-key)

COMMAND PRINT (Print lines in specified range)

COMMAND RESOLVE (Print interpretation of command)

COMMAND RESOLVETOKEN (Print interpretation of command verb)
COMMAND RESOLVEORDER (Print order in which commands will be resolved)

MACRO RETCODE (Print the return code that would have been returned)
COMMAND RETRIEVE (Print past command)

MACRO REVEAL (Display the lines the satisfy specified condition)
MACRO RIGHT (Move WINDOW right)

COMMAND SAVED (Print memory of whether file has been saved)

COMMAND SAY (Print message in message area)

COMMAND SCALEX (Stack a line like the one above input area)

COMMAND SCOPE (Print scope modes or force screen refresh)

COMMAND SCREEN (Print contents of screen)

COMMAND SCROLL (Go to line based on dicplay)

COMMAND SHOUT (Print warning message in message area and sound alarm)
MACRO SHOW (Start loop to show ail possible versions of range’)
MACRO SHOWMASK (Edit a file showing current masks)

MACRO SHOWPF (Edit a file showing current PF-key settings)

MACRO SHOWSYNS (Edit a file showing current P-EDIT synonyms)

MACRO SHOWPARM (Edit a file parameters and values controling lines)
MACRO SHUOWVARS (Edit a file showing current edit variables)

MACRO SHOWVERS (Edit a file showing current versions of file)

MACRO SPELL (Detect incorrectly spelled lines and offers corrections)
COMMAND STACK (Stack lines in specified rangej

COMMAND STATUS (Print or go to line with status relative to current masks)
COMMAND."SYNONYM (Define a synonym or abbreviation for command)
COMMAND *TABKEY (Print PF-key for tab character)

COMMAND TABRS (Print tab stops)

COMMAND TAGS (Print tags defined in range)

MACRO TELL (Edit a file to explain specified part of P-EDIT)
COMMAND TRANSINX (Prant input translation tables;

COMMAND TRANSOUTX (Print output translatien table)

COMMAND TRUNC (Print length of lines for INSERT)

COMMAND TYPE (Print type of file)

MACRO UNHIDE (Change current view to exclude current line)

.22. P-EDIT User Guide

COMMAND V..uS {(Print names of defined edit variables)

COMMAND VERIFY (Print verify mode used for typewriters)

COMMAND VERSION (Print current P-EDIT version)

COMMAND VERSIONS {Print Boolean eéxpression defining versions of range)
COMHMAND VIEW (Print or change view being displayed)

MACRC WHO (Print information about who and what is' running)
COMMAND WIDTH (Print width of file on disk)

COMMAND WINDOW (Print columns of lines to be displayed)

COMMAND ZONE ; (Print part of lines to be seen by CHANGE)

DISPLAY DEVICE see SCREEN FORMAT

EDIT VARIABLES sce VARIABLES

EDITOR DISK see MAINTENANCE

FILE COMMANDS

MACRO BLIND (Enter INPUT mode with SCOPE OFF)
COMMAND CASE (Set upper-case folding mode)
COMMAND DESERIALIZE (Set deserialize mode and columns)

MACKO FIELDBR (Set current fill-in field brackets)

COMMAND FORMAT (Set format of file (V, F, etc.})

COMMAIG MILITE {Set method of highlighting current and unfixed lines)
COMMAND (MAGE (Set handling of tab and back=-space characters)

MACRO INDENT {INPUT that automatically lines up line with previous)
COMMAND INPUT (Enter batch INPUT mode)

COMMAND MODE (Set mode of file)

COMMAND NAME (Set name, type and mode of file)

MACRO NOTE (Set a note at current line or find previous note}
MACRO PAUSE (Save all files on disk that need to be)

COMMAND PFKEY (Set a PF-key)

COMMAND PFOFF {Clear PF-key)

COMMAND PFRENEW (Restore PF-keys)

COMMAND SAVE (Save current file on disk)

COMMAND SAVED (Set memory of whether file has been saved)

MACRO SETUP (Set file values as would be done for specified file type)
COMMAND TABKEY {Set PF-key for tab character]

COMMAND TABS (Set tab stops)

COMMAND TRUNC (Set length of lines for INSERT)

COMMAND TYPE (set file type of file)

TOMMAND VERIFY (Set verify mode used for typewriters)

COMMAND WIDTH (Set width of file on disk}

COMMAND WINDOW (Set part of lines to be displayed)

COMMAND (Set part of lines to be seen by CHANGE)

ZONE

GARBAGE COLLECTION see RECLAMATION

GARBAGE COLLECTOR see RECLAMATION

Concepts

-23.

[}

GLOBAL COMMANDS

COMMAND ALARM (Print or set permitting beeping on errors)
COMMAND BROWSE (Print or set BROWSE mode which disallows changes)
COMMAND EXIT (Stop execution of READ *)

RESOLVE FIRST (Set default FIRST tag for MOVE, etc.)

MACRO FORGET (Clear remembered commands)

COMMAND GO (Go to line named by the specified tag)

COMMAND HEADVARS {Set order of resolutior for header line)

RESOLVE LAST (Set default LAST tag for MOVE, eatc.)

MACRO RANGE (Set default FIRST or LAST tag for MOVE, etc.)
COMMAND RESOLVEORDER (Print or set order in which commands will be resolved)
COMMAND RESUME (Resume editing a file)

MACRO SHORT (Define abbreviatiun for command)

MACRO SIMEDIT {Permit input and commands to be intermixed)
COMMAND STORE (Define value of P-EDIT variable)

TOMMAND SYNONYM (Define a synonym or abbreviation for command)
COMMAND TAG (Tag current line with specified name)

RESOLVE TO (Set default TO tag for MOVE, etc.)

MACRO TRANSIN {Set 1input translation)

COMMAND TRANSINX (Print or set input translation tables)

MACRO TRANSOUT (Set output translation)

COMMAND TRANSOUTX (Print or set output translation takle)

COMMAND UNSTORE {Clear P-EDIT variable)

COMMAND UNSYNONYM (Clear a synonym for a command)

COMMAND UNTAG (Clear specified tag)

COMMAND X (Execute or definc command abbreviation)

COMMAND ¥ {Execute or define command abbreviation)

HC see INTERRUPTS

IMAGE sce IMAGING

IMAGING

« 24 .

Different types of files require different processing of text as it is entered
into the file. This is called imaging; there are three options: ON, CANON and

OFF.

ON: Text which is given in the form of lines (FIND, INSERT, OVERLAY and

REPLACE) is "expanded" into a "line image” in which back-spaces are removed and
tabs are replaced by the appropriate number of blanks. The procedure which
builds this line image simulates a tLypewriter having columns 1 to the current
TRUNC column the appropriate tab stops. If the input line contains back-spaces,
the column pointer may move forwards and backwards.

Characters in the line image are not affected by being backspaced over.
Characters which are moved over forwards are replaced.

Truncation is deemed to occur if a non-blank character is left in the line
beyond the column of truncation for.the file. (In the case of OVERLAY,

'_' 18 not considered a non-blank.lh"

Text which is not given as an entire line (CHANGE, LOCATE and ALTER) is
not expanded, that is, tabs and back-spaces are treated in the same way as
other characters.

P-EDIT User Guide

CANON: Back paces may be used to produce compound characters, as inp
underlining. Before they are inserted in the file, these compound characters
are put into a "canonical" form which-is independent of the order in which
their components were given, (Backspaces are arranged singly between the
characters which everlay each other, and the overlaying characters Are arranged
according to their EBCDIC values.) Tab characters do not receive special
treatment, and enter the file in the same way as ordinary printing characters,
Any attempt to canonicalize more than 25§ characters will fail,

OFF: Tabs and back-spaces are treated in the same way as other charaeters, that
is, they enter the file without being "expanded" or reordered,

Seat COMMAND IMAGE

INITIALIZATION

When P-EDIT is first entered and every time the cditing of a file is started,
the user is given the Opportunity to execute an EXLC2 files to set various
defaults, Although their file type 1s not 'P=MACRO', these EXEC files are
executed iy the same fashion as P-EpIT macros.

When P-EDIT is first entered, it Cxecutes the file SETUP P-EXEC, This file can
defino fiynonyms, character translation tables, PF-keys and the like, There is
a standard SETUP P-EXEC provided upon which many standard macros depend. a
file named pROFILE P=EXEC can be used to provide aaditional setup. Files named
TERMINAL P=-EXEC and TFKEYS P-EXEC can be used to provide alternative setup of
the terminal and PF-keys., It 14 recammended that users use this methed to
porsonalize P-EDIT, rather than modify the titandard SETUP filoe,

Scor BXEC SLETUP {The standard SETUP P-EXE()
MACRO GETSYNS (Inserts the standard SYNONYM defiritions)

The following commands will, if issued during initialization, cstablish default
values for the entire edit session in addition to their normal function, All
but “he first two are values that are assoclated with a fjle, The first two
are associated with the editing level,

COMMAND REMEMBER {(Humber of commands to remember)
COMMAND RESOLVORDER (Resolution order for user issued commands)

COMMAND HILITE (quhl1ght1ng of current line and UNFIXED lines)
COMMAND PFKEY (Setting of PF-keys)

COMMAND SCCPE {Display of long lines and undisplayable characters)
COMMAND TRANSINX (Translation of characters when read)

COMMAND TRANSOUX (Translation of characters when displayed)

COMMAND VERIFY (Printing changed and located lines)

description of file initialization

Whenever the editing of a file Starts (unless the NOSETUP option is Specified),
P-EDIT tries to find the following files: P-SETUP P-EXEC A
filetype P~SETUP s
DEFAULT P=SE1UP +«

The first one tound 1s executed prior to reading the file to be edited, This
file can set any file values it wishes by issuing the dppropriate P-EDIT
commands. If the command desired cannot be issued unti] the edited fjle is
read in (such as HASK), the P-SETUP, file can stark it; any such stacked lines
are executed immediately after reading in the edited file.

The standard DEFAULT P-SETUP first Jooks to see if the first four characters of
the file are 'uppT® and a file UPDT‘P—SETUP exXists; if so it éxecutes it. If
not, it tries to look up the edited file type in the fjle SETUP P-TABLE; if
found, it uses the information there for initialization, If not, it uses
default values built into it. rd

INTERRUPT see INTERRUPTS

Concepts .25

L]

INTERRUPTS,

There are two kinds of inlerrupts in P-EDIT, out-of-storage and user., An
out-of-storage interrupt occurs when.PrEDIT no longer has enough storage to

cperate (or when a macro returns thﬁ{p.return code of #9). A user interrupr
occurs when a line containing only the characters 'HCY, for Halt Command, 1is
entered (or a macro returns with a return code of -10), When either type of

i «terrupt occurs, the currently running command is terminated and its effects
are undone. T

IfF the command was issued by the uéé}, one of the following warnings 1is
printed:

No storage -- suppressed <terminated command>
Jser interrupt -- suppressed <terminated command>

If a macro was executing and 1t can not be undone because it 1ssued a REMEMBER
command, one of the following alternate warnings is printed:

No storage -- aborted <macro call>
User interiupt -- aborted <macro call>

Some macros that modify the CMS file system do this on purpose so that the user
is warned of the irrevocable modifications that have been done.

treatment of interrupted subcommand

If the interrupted command was i1ssued by a macro (a subcommand) the appropriate
return code 1s returned, -9 or -10, After undoing the partial effects of the
subcommand, one of these warning messages 15 generated:

No storage i1gnored by <EXEC2 file name>
User interrupt ignored by <EXEC2 file name>

However, if the macro responds to the return cod: as expected, by EEXITing with
the same return code, the warning will be undone 4s a natural consequence of
the unioing of the effects of the macro,

See: CONCEPT MACROS {(P-EDIT macras)
MACRO SAMPLE {Sample macro)
CONCEPT RECLAMATION (Treatment of storage)

JARGON see DICTIONARY

LOGICAL FILE see PARAMETRIC FILES

MACRO see MACROS

MACROES see MACROS

.96 . - PEDIT User Guide

MACROS

The facilities ®hat are builtﬂﬁﬁ?to P-EDIT are very primitive, bordering on
unusable == it s macros that combine these primitive commands into the
environment usérs actually use. Users are encouraged to write their own macros
and to make them .generally available to the community, Macros are written in
the EXEC2 language, the same language many use~§p'extend the CMS ' command
environment:, P-EDTT macros are expected to conform to certain conventions
described shortly, Familiarity with EXEC2 will be assumed. Information about
EXEC2 is available in Yorktown report RC7268 fon-line as EXEC2 MEMO =

on CMS19F) and on a reference sSummary card,

how to define macros

P-EDIT macros are CMS files with a file type of 'P-MACRO'. The file name is
the macro name that the user would use like a P=EDIT command name. When used,
the remainder of the line is divided into words, separated by blanks, and each

word 1s assigned to the EXEC?2 variables &1, £2, ete, (&0 is assigned to the
command name actually used -- this might be different than the file name if a
synonym, defined with the SYNONYM command, was used.) If the macro needs a

different parsing of its arguments, the uninterpreted argument string is
available as GARGSTRING; a number of P-EDIT commands are provided for parsing
this in various common ways. For flexibility, arguments are passed in the case
they were entered; many macros use the SUPPER statement to convert them to
upper-case,

See: CONCEPT INITIALIZATION {How to automatically have synonyms defined)
CONCEPT MAINTENANCE {How to make macros generally available)
COMMAND SYNONYM {Defining synonyms)

COMMAND TOKEN (Parsing edit tokens and delimited strings)
COMMAND TAGNAME {Parsing tag, variable and mask names)

description of resolution order

EXEC2 will presume that any line that is not an EXEC2 statement 1s a P-EDIT
command and will pass it on to P-EDIT.. Thus the ELCOMMAND statement must be
used to issue CMs commands., When P-EDIT receives the command from EXEC2, it
does not check its list of synonyms, defined with the SYNONYM command, as it
normally does first, Rather, it immediately looks to see if it is a built-in
P-EDIT command: if not, it tries to find a file of type P-MACRO whose name
matches the command name used. Built-in abbreviations (such as N for NEXT) are
respected during this process. A number of commands are avalilable for
modifying this resolution order (to restore the normal order, the macro could
begin with: RESOLVORDER SYNONYM COMMAND MACRO) . The EXEC2 statement EPRESUME
can be used to change the presumption that commands are to be sent to pP-EDIT,

See: CONCEPT RESOLUTION

description information restored on exit

Macros commonly change various file characteristics in their operation. Tt is

«usually the intention that these changes are temporary, P-EDIT Automatically
saves and restores the values unless the macro issues the command NORESTORE or
a different file has become the current file. fThe following commands set the
values that are saved and restored:

COMMAND CASE
COMMAND DESERIALIZE
COMMAND EDITMODE
COMMAND TMAGE
COMMAND TABS
COMMAND TRUNC
COMMAND VERIFY
COMMAND WIDTH
COMMAND WINDOW
COMMAND ZONE

L]
-3

Concepls

.98 .

how macros receive information normally printed

A couple of techniques operate to solve the problem that information cannot be
communicated tp a madre in the same; way it could to the user, by printing it on
the display dgvice. .Instead of priiﬁﬂng error messages, non-zero return codes

are returned (BXEC2 variable E&RC):

~-10 . User ié&éfrupt, 'Hc'} occurred during command

-9 ' P-EDIT ran out of storage during command
-1 ‘Invalif P-EDIT command £

1 'Not found' or at EOF (TOP) dummy line

2 Error during execution of the command

4 Text truncated or line greater than 254 characters stacked
5 to 7 Used for SIMEDIT, see CONCEPT RESOLUTION

B

CMS command error, by convention

Commands that are used to print information, stack their result instead of
printing it (Z0NE). Commands that normally print an indefinite number of
lines, stack a null line after stacking the informational lines (VARS).

description of handling of stack

The CMS stack is the major vehicle of communication between macros and P-EDIT,
Before starting a macro execution, P-EDIT makes a new huffer in the stack so
the macro need not worry about irrelevant lines in the stack. When the macro
returns, P-EDIT drops this buffer and any subsequent ones that were made, If
the purpose of a macro is to leave a line in the stack, 1t should issue the CMS
command DROPBUF before stacking that line.

Lines in the CMS stack are restricted to 255 characters, Because files can be
as wide as 65535 and because Boolean expressions are often quite long, it is
hecessary to establish a convention for handling long lines. When P-~EDIT tries
to stack a line longer than 254, it breaks it up into 255 long segments termin-
ated with a line shorter than 255 unless the string is the maximum length (this
might result in a null line to terminate segments), When this happens, the
command will return with a return code of 4. Conversely, if P-EDIT reads a
line which is 255 in length, it assumes it is a segment of a long line and
concatenates consecutive lines until it finds one smaller than 255,

required documentation

Each macro snould be documented with a TELL, TELLs are defined by having a
line within the first 5 lines of the macro with the line (*TELL LABEL -label).
The text of the TELL is betwecn the specified label and the next label,
Screens must be separated by lines beginning with '-' ‘and be no longer than 17
lines (18 for first and last, 19 if only one screen). These lines may contain
a comment if desired. The text of the TELL should be no longer than 79
characters wide.

how to handle interrupts

P-EDIT has two types of interrupts, out-of-storage and user initiated (the
named interrupt, 'HC'). One of these two could occur during the execution of a
macro. In the best of all possible worlds, P-EDIT would grab control from
EXEC2, undo the partial effects of the macro, and report the interrupt to the
user ~- just like it does for a built-in command. But EXEC2 doesn't permit
this, so macros must detect interrupts and exit back to P-EDIT.

Whenever a command issued by a macro runs out of storage, it returns with a
return code of -10; whenever a user interrupt is detected, it returns with a
=9. If the macro exits with of these return codes, P-EDIT will undo the
effects of the macruv and tell the user. The easiest way for a marcro to fulfill
this responsibility is to issue the statement: 6ERROR EIF ERC <= -9 EEXIT E&RC.
Care must be taken when issuing CMS commands that their return code is not
misunderstood should less than or equal to -9. These return codes were chosen
not to conflict with by CMS commands typically used by P-EDIT macros.

See: MACRO SAMPLE (A good base for writing macros)

P-EDIT User Guide

how to call P-EDIT recursively

There are a- set oE’f%tanvem:ions needed to make the file ring structure of P-EDIT
match the stack structure of EXEC2 invocations. If a macro wishes to permit
the user to enter commands but not ‘give up control, it should use the macro
RECEDIT (RECursive EDIT) or embed the equivilant statements and use the READ
command. Blind use of READ * will confuse macres such as QUIT and FILE and
uvltimately the ‘user. ;

See: MACRO RECEDIT (Used to call P-EDIT recursively)
COMMAND READ {Used to restart reading commands from user)

relation of parametric file and macros

In parametric files, a user is warned that he is about to edit unfixed lines
by having them highlighted. A macro, not having eyes, must use commands to
test this explicitly. Macros basically have three choices:

1) They can refuse to operate on unfixed lines. 1In this case they should use
the STATUS command to check conformance,

2) They can operate as though some line is fixed. In this case they should
use the FIX command to set a mask and PUSHMASK and POPMASK to keep from
destroying the user's masks.

3) They can go into a loop, doing their thing once for every possible
instantiation of a range of lines. In this case they should use the
INSTANCES command to stack the Boolean expression fqg each instantiation-
and use PUSHMASK, MASK and POPMASKE to establish the necessary masks.

See: CONCEPT PARAMETRIC FILES

MAINTAIN see MAINTENANCE

MAINTENANCE

P-EDIT is kept on the disk that is labeled EDITOR along with a number of other
text editors. EDITOR is AUTOPROG 192 on both the V and T-machines. It is
maintained by Walt Daniels using the MAINTAIN EXEC he developed, Users wishing
to add P-EDIT macros or setup files to this disk should use MI.INTAIN to do so.
Further details can be obtained by issuing the command: _MAINTAIN 7.

See; CONCEPT JACROS (How to define macros)
CONCEP'" INITIALIZATION (How to define setup files)

MASK see PARAMETRIC FILES

MASKS see PARAMETRIC FILES

Concepts .20 .

By

MEMORY

P-EDIT has the ability of remembering any number of prior commands and what
effects they hadi A number of facilities use this memory to permit the user to
see previous commands, re-execute them, remove the effects of them, and the
like. Of course, the effects of commands that are out of P-EDIT's control,
such as modifications to CMS files, or which have already occurred, such as
printing messagés, cannot be undone,

The COVERT prefikx can be used to prevent the remembering of a command (although
its effects are still remembered as additional effects of the previous com-
mand}. The following commands are automatically executed covertly: 2, " and
the null command,

levels of memory

Commands are remembered in levels. A new level is started whenever the execu-
tion of a macro begins or a new level of editing starts (READ *). When the
level ends (EEXIT terminates a macro or EXIT terminates an editing level), all
the commands that were remembered during that level are wrapped up into one
unit of memory and associated with the command that started the level (the
macro call or READ command). Thus from the point of view of the user, a macro
appears to be a single command, while from the point of view of the macro, each
command it executes 15 a separate command.

Each level of memory has associated with it a limit of how many commands should
be remembered (to protect against running out of storage), A level started by
a macro has no limit unless the macro explicitly states one, while a level
started with a READ command, has the default limit {initially 9, but can be
modified by SETUP P-EXEC).

related documentation

CONCEPT INITIALIZATION (How to set default limit of memory)
COMMAND REMEMBER {Resets memory limit)

MACRO FORGET (Clears selected memory)

COMMAND ? {Print remembered commands)

COMMAND " (Re-execute last remembered command)
MACRO REPLAY {Re-execute remembered commands)

COMMAND UNDO {Undo remembered comm. 'ds)

MACRO BACK {Undo more remembered commands)

COMMAND UNGO {Undo positioning of remembered commands)
CONCEPT MACROS (P-EDIT macro facility)

COMMAND READ {(Create a new editing level)

COMMAND COVERT . (Absorb specified command into previous)
COMMAND RETRI1EVE {Used by macros to find remembered commands)

MODIFICATION COMMANDS

.30 -

MACRO ADD {Add string to end of line)

MACRO ADJUST (Indent line according to previous line)
COMMAND ALTER (Replace one character with another over range)
MACRO ANNEX (Insert a line as extension of previous one)
MACRO ASMCOM {Adjust comment on line of ASSEMBLE file)

MACRO BALANCE (Check for balanced parentheses)

MACRO BLIND (Enter INPUT mode with SCOPE OFF)

COMMAND CHANGE {Replace one string with another over range)
MACRO CHINDENT (Change characters used for indentation)
RESOLVE CMC {Mixed-case CHANGE)

RESOLVE COPY (Copy lines from one point to another)

MACRO CUF (Replace unigue occurence of string in file as specified)
MACRO cus {Replace unigue occurence of string on screen)
COMMAND COPYFROM (Copy the range to after the current line})
MACRO cuT {Cut current line into two lines)

COMMAND DELETE {Delete lines in range)

MACRO DOTHERS (Delete unselected lines)

MACRO DTOP {Delete lines from previous to the top)

P.EDIT User Guide

MACRO
MACRO
MACRO
MACRO
COMMAND
MACRO *
MACRO
MACRO
MACRO
RESOLVE
MACRO
MACRO
MACRO
COMMAND
COMMAND
RESOLVE
MACRO

MACRO
RESOLVE
MACFO
MACRO
COMMAND
MACRO
COMMAND
MACRO
COMMAND
RESOLVE
COMMAND
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO

COMMAND
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
COMMAND
MACRO
COMMAND
MACRO
RESOLVE
MACRO
MACRO

DUR
EMEFD
EXCHANGE
FILLIN
GETFILE

(GETFILES
'GETTAIL

GETSYNS
HEX
HYPHENATE
INCHANGE
INDENT
INFILLIN
INPUT
INSERT
INSPELL
INVERT

K

KC

LCASE
LINKS
MAKE
MAKESAME
MERGE
MOVE
MOVEFROM
MOVEWORDS
OVERLAY
PARA
PASTE
PROMOTE
PURGE
RETNPUT
RENEW

REPLACE
RESERIAL
RETROFIT
SAME
SAVEFORM
SCALE
SETCOL
SORT
SORTX
SUBST
SUPERIMPOSE
TRIM
UCASE
UNSERIAL
UPDATE

{Duplicate lines)
(Surround current line with specified text)

(Exchange specified strings)

(F11l in f1ll-in field with string)

(Read a file and insert it into current file)

(Read a gﬁmber of files and insert them into current file)
(Read lasit! lines of a file and insert it into current file)
{Insert SYNONYM commands needed by macros)

{Insert copy of current line translated to hexidecimal)
(Move piece of last word to next line)

{Interactive CHANGE)

{INPUT that automatically lines up line with previous)
{Interactive FILLIN)

(Enter batch INPUT mode)

(Insert a new line after current line)

{Interactively corrects spelling of file)

{(Invert order of lines)

(Split a line into two lines)

(Combine two lines into one)

(Force text to be in lower case)

{Insert lines showinq users linked to disk)

(Modify Boolean expressions over the range)

(Make varametric file out of two non-parametric ones)
{Physically combine mutually exclusive lines)

(Move lines from one point to another)

{Move the range after current line)

(Move last words to beginning of next line)

{Change current line with characters specified)
(Format a paragraph of text)

(Combine two lines, opposite of CuUT)

(Force current line to exist in all current versions)
(Remove unwanted versions of parametric file)
{Execute command and re-enter INPUT mode)

{Renew current line of LIST file)

{Replace current line)
{Reserialize lines in range)

(Combine two similar parametric files)

(Insert similar file uescriptions in LIST file)

{Fill in and save one of the current versions, interactive)
(Insert a scale line like the one on top of input area)
{Change specified columns to specified string)

{Sort lines in specified range)

(Sort lines in specified range)

(CHANGE with only beginning and end of text specified)
(Change current line with characters specified)
{Ehorten the lines over the range if too long)

(Force text to be in upper case)

(Blank serialization field over range)

{Apply UPDATE file to current file)

NAMED INTERRUPT see INTERRUPTS

NO STORAGE see INTERRUPTS

Concepls

-31.

OTHER COMMANDS

COMMAND * (Do nothing)
COMMAND " .« -, (Exepute preyious command again)

MACRO AGAIN " {Exetute remggbered command again)

MACRO ARGS (Execute command after setting arguments in current line)
MACRO BACK (Undo more (or less) than the previous UNDO or BACK)
COMMAND COMMAND " (Execute built-in command)

COMMAND COVERT (Execute command as part of previous one)

COMMAND DELIMSTRING (Parse a delimited string from a string)

MACRO DUMMY (Create a dummy line)

COMMAND ERROR fAct like an illegal command)

MACRO EVAL (Evaluate arithmetic expression)

MACRO FCR {Execute command for each line of range)

MACRO HEX (lnsert copy of current line translated to hexidecimal)
MACRO IE (Execute commands accidentally inserted)

MACRO IF {Conditional exccution of edit commands)

COMMAND MACRO (Execute P-EDIT macro)

COMMAND MASKNAME (Parse a mask name from a string)

MACRO MCASE {Execute command in mixed-case mode)

COMMAND NORESTORE (Don't restore saved edit values upon return)
MACRO PRESUME {Enter mode where input is prefixed as specified)
COMMAND PRY {Enter PRY for debugging)

COMMAND READ (Read lines and execute them as edit commands)
COMMAND RECLAIM {Find all available storage)

MACRO REINPUT (Execute command and re-enter INPUT mode)

COMMAND REMEMBER (Print or set number of commands to be remembered)
MACRO REPLAY (Selectively undo remembered commands)

COMMAND REVERSE {EXecute command in reverse mode)

COMMAND SIMPLIFY {Print simplification of Boolean expression)

MACRO SUM {Add column of numbers over range)

COMMAND TAGNAME (Parse a tag name from a string)

COMMAND TOKEN {(Parse a token from a string)

COMMAND UNDO {Undo effect of some remembered commands)

COMMAND VARNAME (Parse a variable name from a string)

OUT OF STORAGE see INTERRUPTS

P-EDIT JARGON see DICTIONARY

P-EDIT VARIABLES see VARIABLES

PARAMETRIC see PARAMETRIC FILES

-39 P-EDIT User Guide

PARAMETRIC COMMANDS

MACRO ANNEX o (Insgrt a ling as extension of previous one) &
COMMAND ATBASE ¥ (setbase application as defined by current maskg)
MACRO BOOL " (Print Boolean expressions for lines in range)

MACRO CONFLICT (Find next pair of consecutive UNFIXED and HIDDEN lines)
COMMAND EDITMODE {Print or set whether to edit text or Boolean expressions)
COMMAND EXCLUDE ‘(Restrict mask to exclude range)

COMMAND EXCLUDEVIEW (Restrict mask to exclude viewed lines in range)
COMMAND FIX {Restrict mask to fix range)

COMMAND FIXVIEW (Restrict mask to fix viewed lines in range)

COMMAND FORMAT (Make current file parametric)

RESOLVE GOSHOW (Go to line at beginning of SHOW loops range)

MACRO HIDE {Change view to hide current funfixed) line)

COMMAND HILITE (Set method of highlighting current and unfixed lines)
MACRO INFIX (Interactively sets a mask to fix the file)

MACRO INSTANCE (Generate an instance of a FORM file)

COMMAND MAKE (Modify Boolean expressions over the range)

MACRO MAKESAME (Make a parametric file out of two non-parametric ones)
COMMAND MASK (Print or set specified mask)

COMMAND MERGE {Physically combine mutually exclusive lines)

COMMAND POPMASK {Change default mask name)

MACRO PROMOTE (Force current 1line to exist in all current versions)
MACRO PURGE (Remove unwanted vercions of parametric file)

COMMAND PUSHMASK {Change default mask name)

MACRO PUSHPOP {PUSHMASK and POPMASK for PF-keys)

MACRO PUTBOOL (Write Boolean expression on disk])

COMMAND RESTRICTMASK (Make specified mask more restrictive)

MACRO RETROFIT (Combine two similar parametric files)

MACRO SAVEFIX (Save one of the current versions, interactive)

MACRO SAVEFORM (F11l in and save one of the current versions, interactive)
COMMAND SAVEVIEW {Save current view of file)

MACRO SHOW (Start loop to show all possible versions of range)
MACRO SHOWMASK (Edit a file showing current masks)

MACRO SHOWPARM (Edit a file parameters and valuesg controling lines)
MACRO SHOWVERS (Edit a file showing current versions of file)
RESOLVE STEP {Step to next version of SHOW loop)

MACRO TIME {(Re-set TIME mask)

MACRO UNFIXED {Find next occurrence of unfixed line)

MACRO UNHIDE {Change current view to exclude current line)

COMMAND UNMASL {Clear specified mask)

MACRO UNSHCHW {(Terminate SHOW loop)

COMMAND VIEW {Print or change view being displayed)

COMMAND XFERCONTROL (Use masks from another file)

PARAMETRIC FILE see PARAMETRIC FILES

PARAMETRIC FILES

P-EDIT's most novel feature permits the viewing and modification of parametric
files in a far more convenient fashion than possible previously, A parametric
file is a file which contains the necessary information to generate any of a
large number of similar files or versions. Each line of text which is common
to multiple versions exists only once, thus any change common to multiple
versions can be made only once. Each line of the file consists of its text and
control information (Boolean expression) which defines which of the versions
has that text,

With P-EDIT, the user can select which of the possible versions he wishes to
edit; he can even select an entire set of versions to edit simultaneously.
Even so, he always views on the screen simply one of the possible versions,
All the information he needs to know about other versions he is editing
simultaneously, is conveyed by highlighting various lines of the view
presented.

Concepts .33 .

definition of real, logical, and viewed files

Real file: A file as it resides on disk is called the real file. The real file
contains all the possible versionslof that file. Each record consists of text
and a Boolean expression, example: ' 3

CALL RDBUF(PLIST); SYSTEM=VM

The Boolean expression defines which versions of the file contain the
corresponding text, When a file is edited, the entire real file is read into
memory and remains there while it is being edited. The only built-in E-EDIT
commands that operate on the real file are STATUS, LINES, and variocus I/0
commands ({SAVE and such).

Logical file: The versions of the file which the user wishes to edit at the
moment 1is called the logical file, It is a subset of the real file. This
subset is defined by masks which mask out the undesired lines of the real file.
Masks are Boolean expressions which have names by which they can be referred,
Only the lines in the real file whose Boolean expressions are consistent with
the masks are in the logical file, A Boolean expression is inconsistent with
the masks if it cannot be true when all the masks are true; such lines are
called excluded., The lines that remain in the logical file are called fixed if
they occur in all versions of the file still consistent with the masks and are
call unfixed if they are in some, but not all, of those versions, Most P-EDIT
commands operate on the logical file,

Viewed file: Only one version of the file can be displayed; that version is
called the viewed file:. The viewed file is one of the versions in the logical
file, Which version is an arbitrary choice made by P-EDIT on an as-needed
basis unless the user specifies some preference. A line that is not in the
viewed file is called hidden. An unfixed line in the viewed file is displayed
highlighted to warn the user that some of the versions in _he logic.l file do
not contain that line. If a hidden line is surrounded by fixed lines, the
previous fixed line is highlighted so that the existence of the hidden line
will be known. The nature of che highlighting is determined by the HILITE
command. The only built-in P-EDIT command that operates on the viewed file is
SCROLL.

See: CONCEPT BOOLEAN EXPRESSTIONS {(Syntax of Boolean expressions)
CONCEPT MASK NAME (Syntax of mask names)
CONCEPT STATUS (Status of lines relative to current masks)
CONCEPT PARAMETRIC COMMANDS {Commands relating to parametric files)
COMMAND SAVEVIEW {(Saving the current view)

POSITION COMMANDS

.34 .

MACRO AVAND (Go to next line missing any specified string)
COMMAND AVOID (Go to next line missing specified string)

MACRO AVOR {Go to next line missing all specified strings)
COMMAND BOTTOM {(Go to the last line in the file)

MACRO CONFLICT (Find next pair of consecutive UNFIXED and HIDDEN lines)
COMMAND FIND (Go to next line with matches pattern)

MACRO FINDTAG (Find next occurrence of tag)

COMMAND GO (Go to the line named by the specified tag)

RESOLVE GOSHOW (Go to the line ae beginning of SHOW loops range)
MACRO LAND (Go to next line with all specified strings)

MACRO LHEX (Go to next line with specified characters in EBCDIC)
RESOLVE LMC (Go to next line with specified mixed-case straing)
COMMAND LOCATE (Go to next line with specified string)

MACRO LONGEST (Go to the longest line in the file)

MACRO LOR {(Go to next line with any specified strings)

MACRO LUF (Go to line with specified string uniquely in file)
MACRO Lus (Go to line with specified string uniquely on screen)
COMMAND NEXT {(Go to the next line closer to EOF)

MACRO SERRCH {Execute command over each of several files)

COMMAND STATUS (Go to line with specified status)

COMMAND TOP {Go to TOP dummy line)

MACRO UNFIXED (Find next occurrence of unfixed line)

COMMAND UNGO {Go back to current line as of a remembered command)
COMMAND UP {Go to next line closer to TOP)

PEMT User Guide

REAL FILE see PARAMETRIC FILES
RECLAIM see RECLAMATION it

RECLAMATION

P~EDIT needs a minimum of 285K to run; this probably means a minimum of a 1.5M
virtual machine in practice, The storage is managed with a garbage collection
strategy: storage is used until none 1is left; then a rather expensive
operation, reclamation, is used to free available storage. You can avoid an
unexpected pause in editing by using the command, RECLAIM, periodically when
You realize that you are not going to need to edit for a while,

See; COMMAND RECLAIM {Increases available storage)
COMMAND FREE (Prints avialable storage)
MACRO FORGET {(Frees storage used to remember the effect of commands)

execution of RECLAIM P-EXEC

Prior to starting storage reclamation, the file RECLAIM P-EXEC * ig aexecuted
with &0 set to START and &1 set to ON or OFF depending on the current setting
of SCOPE. Prior to executing the next P-EDIT command after reclamation is

completed, that same file is executed with &0 set to DELAYED and &1 the same,

The standard RECLAIM P-EXEC updates line 0 of the screen so that the user will
know why P-EDIT is not responding (if SCOPE is OFF, informative messages are
printed). Users may write their own RECLAIM P-EXEC 1if they wish, subject to
the following restrictions:

1= When first called (E0=START), no P-EDIT command may be issued and the normal
protective stack buffer is not made.

2- In both cases, nothing may be done to alter the P-EDIT, CMS or Cp environ=-
ment in a way that might interfere with the macro that might be in the middle
f execution,

3- When called the second time { tO=DELAYED) , any change is remembered as part
of the command being executed when P-EDIT ran out of available storage and is
subject to being undone by a subsequent UNDO command .

4- Keep me informed {KRUSKAL (YKTVMV)) that this non-standard RECLAIM P-EXEC is
in use.

REMEMBEREI_) COMMANDS see MEMORY

RESOLUTION

When P-EDIT gets a command, it tries to irterpret it in different ways in tu.n
until it succeeds, Simple interpretations are as & built-in command or a
macro. Some interpretations were provided as a service to the SIMEDIT macro,
and are probably not generally useful., Users may redefine the resolution order
fcr the commands they enter, macros always get a standard order, although they
can modify it. The kinds of resolution are:

Command: Try to interpret command as a built-in command using the huilt-in
abbreviations if necessary. If found, do it; if not, try the next
interpretation,

Macro: Try to interpret command as a macro, a file with type of 'P~MACRO'

(NUMBER P-EXEC for numbers}), using the normal CMS order for searching disks.
If found, use EXEC2 to do it; if not, try the next interpretation.

Coneepts . 35.

Synonym: Try to find command name in the list of synonyms defined by the
SYNONYM command. If found, try the next interpretation using the value found
as the command name; if not, try the next interpretation with the original
command name.

Command+; Try to interpret the command as a built-in command using the built-in
abbreviations if necessary. If found, do it; if not, try the next interpreta-
tien., If the execution of the command detects a syntax error (return code of
-1 for macros), try the next lnterpretation.

Macro+: Try to interpret the command as 4 macro If found, do 1t; if not, try
the next interpretation. If the execution of the command detects a syntax
error (return code of -1 for macrus), try the next lnterpretation,

Error: If resolution has gotten this far, call the EXEC2 file ERROR P-EXEC if
there is one.

ones provided pPrimarily for SIMEDIT

Input: If the previous interpretations have failed, insert the line after the
current line,

Uninput: If the previous interpretations have failed, print ‘'Rejected input'
(return code of 7 for macros) .

Rejectmacro: Try to interpret the command as a macro. If it jis, print
'Rejected macro! (return code of 6 for macros); if not, try the next
interpretation,

If none of the attempts at resolution are Successful, the command is not valid
freturn code of -1 for macros). When entered in commands, the names of inter-
pretations can be abbreviated as short as thejir first letter (except COMMAND+
and MACRO+, which must have the "+' (as in 'cr') .

Examples of resolution orders:

SYNONYM COMMAND MACRO Default for user éntered commands
COMMAND MACRO Default for macros
SYNONYM COMMAND+ MACRO Permits a macro to be written that extends a

built-in command in an upward compatible fashion
and still use the built-in when bossible

related documentation

COMMAND RESOLVEORDER {Change resclution order}
COMMAND RESOLVE (See how command resolves)

COMMAND READ {Tempordrily change resolution orde,)
CONCEPT SYNTAX {(Syntax errors)

CONCEPT MACROS (P-EDIT macro facility)

EXEC ERROR {May be used to handle syntax errors)

MACRO SIMEDIT (Permit commands and input to be intermixed)

RESOLUTION ORDER see RESOLUTION

RESOLVE ORDER see RESOLUTION

REVERSE see DIRECTION

.36 .

P-EDIT User Guide

RING COMMANDS

MACRO BURM
MACRO CANCEL (Leave
MACRO COMPARE

MACRO CONSOLE

MACRO CPLIST

MACRO DISKS

COMMAND DROP

COMMAND EDIT

MACRO FILELIST

MACRO INSTANCE

MACRO ouT

MACRO P-EDIT

MACRO P-LIST

MACRO QUIT

MACRO RECEDIT

MACRO SEARCH

COMMAND UNGO

SCOPE sece SCREEN FORMAT

STREEN see SCREEN FORMAT

SCREEN FORMAT

When a 3270 device is being
are used as follows:

Line 1 lieader Line

WHO

WHERE

WHAT
Lines 3-9 pPrevious lines
Lines 10-c Clirrent line
Lines c-m Following lines
Lines m=-21 Message Area
Line 22 Scale Line

Lines 23-24 Input Area

See: COMMAND SCOPE

header line

WHO field:
(BROWSE mode) , ‘Input:',
various flavors of INPUT
Overlay:'

addition many macros set this field
if the editing level is not 15

number ('Fdit: level 23

See: COMMAND HEADVARS
COMMAND READ

Concepts

(Stop editing current

(Generate an instance
(Stop editing all saved files)

(Resume editing or read file if not in memory)
(Read a group of files
(Stop editing current file)

(Start editing file recursively)

(Execute command over each of seversl files)
(Will reincarnate Previous file if necessary)

file and erases jt on disk)

P-EDIT with no Protection for unsaved files)

(Generate a file showing differences between two files)
(Edit console spool file)

(Edit a list of spool files)

(Edit file showing accessed disks)

(Stop editing a file)

(Read and edit a file)

(Generate a list of files on disk)

of a FORM file)

for editing)

used and SCOPE ;s ON, the 24 lines of the screen

adjusted left, center and right:
and level number if not 1

The following are
Who is in control
Information about the current line
Information about the current file

As many line before the current as will fit
Up to 850 characters of the current line

As many line after current as will fit

As many as 9 messages + extra scale. line

Tick marks te help typing fixed format lines
130 character area to input commands and text

The built-in values for this field are 'Edit; ' {normal), 'Browse: '
'Reverse input:', 'Replace: ', 'Reverse replace:' (a]l
mode) , 'Change: ', 'Find: ', 'Superimpose; ! and

(when the corresponding command is waiting to read its argument) . In
(the ":' jig a conventional). 1In addition,
to the above is added 'level' followed by the
(How macros set the WHO field)
(How the lewvel changes)
R i

L

WHAT field: This Ffield gives information about the current line, Normally it
just has the position of the line in the physical file and the size of the file
('Line 25 of 50'), However the following exceptional conditions are noted: If
the current line is a dummy line (status: TOP, EOF or DUMMY), the previous line
is described for DUMMY and EOF and the next for TOP ('After line 25 of su'),
Otherwise, if the line is unfixed (status: UNFIXED, HIDDEN or EXCLUDED}, that
15 noted ('Hidden line 26 of 50"). In addition, if more than 80 characters of
the current line are displayed or WINDOW does not start at column 1 (and some
characters of the line are displayed), the columns that are displayed are noted
('Line 25 of 50, cols 3=-70'). i

See: CONCEPT CURRENT LINE
CONCEPT STATUS
COMMAND WINDOW

WHOSWHERE field: In a few cases P-EDIT uses these two fields as one, namely,
while a file is being written to disk the name of the file follows 'Filing as;:'
or 'Appending as:'. In addition, certain macros set this double field,

See: COMMAND SAVE
COMMAND APPEND
COMMAND HEAD

WHAT field: This field describes the current file beiny edited. It consists of
the file number and the file name, type and mode ('2. PROFILE P-EXEC P

Previous, current and following lines

Lines 3 to the message area {or 21 if ncne) contain as much of the file around
the current line as possible. No more than 850 characters of any line are
displayed. Because it takes an extra character to switch from bright to normal
display (and back again} some lines might be missing their last character
(P-EDIT tries to find a blank character to use for this purpose]) .

See: COMMAND WINDUW {Controls which part of the lines are displayed)
COMMAND SCOPE {Controls how to display long lines and bad characters)
COMMAND HILITE (Controls treatment of current and unfixed lines)

message area

All messages isgsucd by P-EDIT are placed into the message area, which changes
in size as needed (maximum of 10 lines). If there are any messages, the scale
line is repeated above the messages. If there are more messages waiting to be
displayed, the lower right-hand corner of the screen will say 'MORE...'.
Pushing CANCEL will display them,

See: COMMAND SAY (Used by macros to lssue messages)

scale line

A scale line is displayed just above the input area to help the user know what
column he is typing into. For technical reasons, it can be only 79 characters
long. 1t basically consists of a tick mark in every column, However, every
column whose column number 15 a multiple of ten has the ten's digit of its
number and midway between these columns there is a longer tick mark:

UIlI!lvll'|||ll!ll!‘zlI!l!|ll'3["']!IlIallll{lllisllllI|I|l6If!|!!Ill?[ll[,lll'

See: MACRO SCALE (Inserts a similar scale line into file)

PEDIT User Guide

Special characters are inserted into the scale line to inform the user of the
settings of Z0ONE, TRUNC and WINDOW. Often these characters cannot be shown,
since the column is not represented on the scale line, These special
characters are:

> First column of ZONE
< Last column of ZONE —
X First and last column of ZONE
/7 TRUNC column
X TRUNC column when it is the same as last column of ZONE
| Last column of WINDOW
See: COMMAND ZONE (Controls zone for file searches and modifications)
COMMAND TRUNC (Controls truncation for file insertions)
COMMAND WINDOW {Controls part of lines displayed)

input area

The input area is where commands for P-EDIT are entered and text to he inputted
is prepared. an extensive local editing feature ©X1Sst on the 3270 intended for

that place information inte the input area for the user to modify and re-enter
just as though it had entirely originated with him. If the alarm on the

Scer COMMAND ALARM (Can be used to turn off the alarm On warning messages)

SETUP see INITIALIZATION

STATUS

In P-EDIT, the Boolean expression of a line and the Boolzan expressions estab-
lished as the current masks together classify the line into one of seven
classas. This is called the status of the line. By using the sTaTus command,
the status of a line can be pPrinted (stacked). The STATUS command can also be
used to go to a line with a particular status. When the PRINT comnand printsg a
line with a status other than FIXED, its status is printed with jt.

See: CONCEPT PARAMETRIC FILES
COMMAND STATUS (Print or find for status)
status in hon-parametric files

FIXED: A line which occurs in all versions of the file consistent with the J
current mesks. Typically most lines have the Status FIXED,

DUMMY: A line which is not in the file. These lines are not written to disk by
the SAVE command. When a line is deleted, it assumes the status DUMMY. It

current line, and the Storage it occupies is otherwise needed. The only ways
a line with the status DUMMY can be noticed is by the STATUS, GO or UNGO
commands,

TOP: A dummy line plazed before the first line of a file.

EOF: A dummy line placed after the last line of ia file. %

Concepis - 39 .

status in barametric filesg

UNFIXED: A line which vecurs in some, but not all, of the versions that are
consistent with the current masks is called "unfixed". The lines having status
UNFIXED are unfixed lines which are in the one version that p-gprT displays,
called the view, These lines are highlighted in some fashion.

See;: COMMAND HILITE (Control how UMZIXED lines are h;ghllghtedj

HIDDEN: An unfixed line which is not in the view., For most Purposes these
lines are treated the same as lipes with the status UNFIXED. A CHANGE command
will, for example, change lines with status FIXED, UNFIXED, or HIDDEN,
Commands which 90 to new lines (such ag NEXT and LOCATE), can easily go to a
hidden line, When this happens, the line is displayed as blanks and the header
on the screen will warn of this anomaly, The text of the line can stil) be
seen by using the PRINT command or changing the view,

See: MACRO UNHIDE (Change view to see current linej

EXCLUDED: A line which is 1n some version of the file, but is not in any
version that is consistent with the current masks,

table that organizes preceding information

Type of Line | Real | Logical | Viewed | Line

(based on Line's Boolean expression) | File I File | File | Status
----------------------------------- r~—--—————-[-—————-«——{------——-—|——-~-~-~—
Proved by the masks ! I fixed I normal | FIXED
----------------------------------- I e e e e e e | e e
Independent of masks | | ['hilited | UNFIXED

& consistent with view | i I |
——————————————————————————————————— I real I unfixed e et [T
Independent of masks I [| I NIDDEN

& inconsistent with view | | | |
------------------------------------ ! e ey l=mmm el
Inconsistent with masks & not FALSE| | | | EXCLUDED
e e e e e i e i == | I' hidden |=--eo____
Line is top dummy 1line | | excluded | | TOp
----------------------------------- I I I [=mmmme e
Line 1is end-of-file dummy)ine I dummy | I | EOF
----------------------------------- | [[fmmmm e
Line has been deleted | | | | DUMMY

STORAGE see R ECLAMATION

SYNTAX

.40 .

P-EDIT commands consist of edit tokens (such as the command names, numeric
arguments and options), and text {to be searched for Or inserted in the file).

Edit tokens: Most of the edit tokens fall in one of three categories: alpha-
betic tokeng consisting of one or more letters, numeric tokens consisting of
ane or more digits, and non-alphanumeric tokens consisting of a single non-
alphanumeric character. A token iy terminated by a blank or when the next
character cannot be added to it. Often, therefore, tokens may be juxtaposed
without introducing ambiguity, as in the following examples;

print2
change/a leaf out of /P-EDIT'g book/10qg
2onees*

Exceptions are hexadecimal arquments for ALTER (letters are digits), comni=nd

names beginning with 'p-t {'=' is alphabetic), ang tokens that are part of (Ms
file names (al] but '=', (v 5.4 ')' are alphabetic) ,

PEorT Liger Guidp

Text: Special treatment may he given to text which contains back-spaces or tabs,
See; COMMAND IMAGE {Controls handling of back-space and tah)

When a line of text follows a command name, in the same line of input, the text
is deei d to start at the character which terminates the command name, if this
15 not a blank, or at the next character if it ig a blank, Thus the first two
of the followin commands insert an '*' ip column 1 and the last inserts it in
column 2; o .

INSERT*
INSERT =
INSERT »

Users should be warned that CMS does not support more than 130 physical charac-
ters (keystrokes) in one physical line of input,

All commands are carefully checked for proper syntax. Syntax errors are
detacted prior to the command having any effect {certain compound commands
{such as GROUP) are an exXeption to this), If not issued by a macro (sub-
command) the warning message '?Edit. ! 1s printed followed by the bad command.
Macros receive a return code of -1,
syntax description language

Example of syntax description for the MOVE command:

<=> MOve <<tagli>-tag2> <To tag3>

COpy n "Up m
L] Upt
Down m

Down #

Here

<=>: The hrackets indicate that the field is optional. This particular option-
al field is shown for all commands that respond to direction.

MOve: The first letter is capitalized to indicate that the field beiny shown ig
to be interpreted literally, as itself. When used, the field can be in lower-
case. The last two letters are in lower-case to indicate that they are option-

C\].. L}
COpy: This is below MOve to show that it is an alternative for it.

<<tagl>-tag2>: The first letter is lower-case tc indicate that the field being
shown is to be interpreted as a representation of the field, a name, not litey-
ally. These names are usually chosen to indicate the meaning of the field, in
this case a tag. This field is an example of an optional field that cortains a
further optional field.

n: This also the name of a field; when used, a number would be coded to specify
the number of lines to be moved., 1t is centered below the bprevious field to
indicate that it jis an alternative to the entire field, <<tagl>-tag2>, not just
one part of it, say <tagil>,

Not shown above, but in the following example, an ellipses is sometimes
used to indicate any number of occurrences., In the following, there must be at
least one string. A '<' before 'string1' would have indicated that not having
any strings were permitted,

<-> LAND /strinq1</strinq2 e DN

Concepts - 4] .

TAGS

Tags are a facility which allows a line to be given a name, Once a line has a
name, it can be made the current line and can specify the limiting line of a
range in most commands which accept a line count:

GO tag
CHANGE /apple/pair/ tag

Tags are are not pPrivate to a single file, cach one must be unigue over all
files in the ring. Therefore they are useful to hold multiple positions in a
sec of files, A @O command which specifies a tag in a file, othar than the
current one, will redefine the current file as well as the current iine within

it,

Wien tags are used to specify the limit of a range, no check is made to see hovw
or whether it is defined, Thus, if it is attached to a line in ancther file,
to a line does not follow the current line, or to no line at all, it will be
equivalent to specifying a limit of '='_

The syntax of tag names is the same as P-EDIT variable names: upper-case
alphanumeric words ceparated by ',', beginning with a letter, with blanks
pérmitted between words. Examples: BEGINNING and DEFAULT, FIRST.TAG

See:; COMMAND TAG (5et tag for current line)
COMMAND UNTAG (Clear the specified tag)
COMMAND GO (Go to the line associated with the specified tag)
COMMAND TAGS (Print tags on lines in the specified range)
MACRO FINDTAG {Go to the next occurence of tag fitting pattern)
MACRO RANGE (Set default tags for other macros)

UNDO see MEMORY

VARIABLES

P-EDIT variables are a facility which allows a name to be given any string as a
value, They are primarily used by P-EDIT MacCros to communicate between

themselves,

Variables are global to all files in the ring. When a new level of editing is
entered, the variables are initialized to their previous value, When the level
exits, they are restored,

The syntax of variable names 1s the same asg tag names: upper-case alphanumeric
words separated by Y.1 beginning with a letter with blanks permitted between
words., Examples: BEGINNING and COMMAWD ., X

See: COMMAND STORE (Define a variable)
COMMAND UNSTORE {(Clear a variable)
COMMAND FETCH {Get the value of a variable)
COMMAND VARS {Get list of defined variahles}
MACRO SHOWVARS (Edit a file showing variahles and values)
COMMAND HEADVARS (Declare variables Lo control sereen header)

VERSIONS see PARAMETRIC FILES

VIEW see PARAMETRIC FILES

VIEWED FILE see PARAMETRIC FILES

- 42 . PERIT User Guide

Built-in Commands

* Jtext>

Comment; does nothing except to be added to the list of remembered commands ,

; see °T D JP

-~ see LOCATE

- see REVERSE

/ see LOCATE

? <n <m>>
L
LL

Twe numbers specified: Prints (stacks) the remembered commands from the first

to the second, Remembered commands are numbered from 1 (the previous command)

on. They are printed (stacked) as: ? n = command

One number specified: Prints (stacks) that remembered command. If SCOPE is ON,
it is placed into the input area where local editing can modify it and pushing

ENTER will execute (or re-execute) the command.
No argument specified: Same as;: 7 1
L specified: Same as: ? 19

LL spccified: Same as: ? 1 99999999

related documentation

CONCEPT MEMORY (How P-EDIT remembers commands)
COMMAND RETRIEVE (Similar command with additional flexibility)
COMMAND SCOPE {Controls printing of one command)

Built-in Commands

.43 .

<command>

Stacks (FIFQ) the last edit command and then executes the specified command,
This normally has the effect of redoing the previous command after the optional
additional command., Certain commands don't count in determining the last
command; null commands, the ? command, the " command issued with no argument,

and commands hidden with COVERT. Some examples;

.

This changes 'x' to 'v' in the current line, and then repeats the operation two
lines down,

This line was intended as input but caused an error
LI
b 4

The line typed in under the belief that P-EDIT was in INPUT mode is inserted
in the file and INPUT mode is established,

ALARM

ALARM <ON>
QOFF

Argument specified: Sets the mode of whether the audible alarm (on devices
which are so esquipped) should be sounded or not when an error message is
printed. The initial setting is ON.

No argument specified: Prints {stacks) the current setting.

See: COMMAND SHOUT (Used by macros to print warning messages)

ALTER

<-> ALter charl char2 <tag <p>>
L] L]

n G

Alters the first (p-th) occurence of the first character specified to the
second on each line of the specified range. The last line scanned becomes the
new current ling. Normally only the first {p-th) occurrence in a line is
altered; to alter all occurrences, add 's' (or, equivalently, 'G' for
"Global").

A character may be specified normally or in hexidecimal as two contigous.digits
such as '05' or '7B'. No translation to upper-case is ever performed on bytes
in the file specified as hexadecimal .

If the first character is not found, 'Not found' is reported, but the new
current line will be the same as if the command had been successful,

related documentation

COMMAND CASE (Controls the handling of lower-case letters)
COMMAND DESERIALIZE (Controls serialization field to be cleared)

COMMAND ZONE {Controls the part of the lines that are considered)
COMMAND CHANGE {(S*milar command for strings of characters)

P-EDIT User Guide

APPEND

APPEND <fn <ft <fm <format> <width>>>>
. . " :

Adds the current file to the end of the specified file on disk (if the file
doesn't exist, the current file becomes a new file on disk). Appends the file
to existing one on disk or creates new one if none. Missing arguments (or 's!
for the parts of the file name) are taken to be the corresponding values for
the current file,

The file is written on the disk specified by the first letter of fm. Each line
written is padded with trailing blanks to the width if the format is F or FP,
If the format is VB or V, the lines are written with one or no trailing blanks.
vV, VB, VP, VBP, ané parametric FP format files appear as V format on disk, and
the maximum line length of the file on disk may be less than the width,

If an error occurs during the operation, the file will, i general, have been
modified,

related documentation

COMMAND NAME (Controls the default file name, type and mode)

COMMAND FORMAT (Controls the default format)

COMMAND WIDTH {Controls the default width)

COMMAND SAVE {Similar command that rewrites existing file)
ATBASE

ATBase

Declares that the current masks define the "base" of the file, the normal masks
for editing the file,

It can happen that a user sets a mask and then forgets he has done 80. This
would result in all further editing being done in a more restrictive environ-
ment than he thinks. To make this less likely, P-EDIT has the notion of a
"base" Boolean expression. Whenever the AND of the current masks is different
than the base, the heading line on the screen is displayed bright.

The initial base is TRUE, but certain parametric file types have P-SETUPR files
that initialize a mask {such as TIME)} and they would establish that mask value

as the base.

See: CONCEPT PARAMETRIC FILE
CONCEPT INITIALIZATION

AVOID see LOCATE

Built-in Commands -45.

BLANK

<blanks>

If a command consisting of only one or more blanks is not resolved, the normal
case, it will be totally ignored. It could be resolved by INPUT and the like.

The null command, consisting of no characters, normally does nothing except
refresh the scope, However if SCOPE is set OFF and there are no stacked lines,
the information normally displayed as the left most field in the screen header
line (such as 'Edit:') will be printed. In a parametric file if the masks are
not at their base (defined by ATBASE), the printed information will be
preceded by 'MASKS...'; were SCOPE ON, this warning would be conveyed by
displaying the screen header bright. In any case, the null command is not
included in the remembered commands.

See: CONCEPT RESOLUTION {Way that resolution might insert a blank line)
COMMAND SCOPE (Controls whether SCOPE is ON or OFF)
COMMAND ATBASE {Controls definition of base file)

BOTTOM see TOP

BROWSE

BRowse <OFF>
ON

Argument specified: Sets BROWSE mode accordingly.
No argument specified: Prints (stacks) BROWSE mode of current file,

If the BROWSE mode of a file is on, it may not be modified or saved on disk., A
file is put into BROWSE mode if a file with the same name is already being
edited, when editing of it begins. This is dangerous situation Since one file
can easily overwrite the other, This situation can occur only by using the
built-in EDIT command. It is more common to use the macro, P-EDIT {with the
abbreviation 'E'}, which prevents this problem by resuming the file if it is
already being edited.

See: MACRO P-EDIT (Normally used to start editing a file)

CALLER see READ

CASE

.46 -

CASe <U <UU>>
M M

Argument specified: Sets "input translation” mode and, if specified, "searching
translation" mode accordingly.

No argument specified: Prints (stacks) a line with two words, the input and
searching translation for the current file.

PEDIT User Cuide

details

Translation is coded as 'U' ("Upper") to translate lower-case letters to upper-
case or 'M' {"Mixed") for neo translation., The input translation controls
whether strings that are to be placed into the file should be translated (such
as the argument of INSERT or the secomt argument of CHANGE), The searching
translation controls whether strings ify the file are to be temporarily
translated when compared argument strings (such as the argument of LOCATE or
the first argument of CHANGE). The argument that is used for a search is
translated to upper-case if either the input or searching translation is 'U',

The initial translation of a file is 'U M', but P-SETUP files for many file
types (such as SCRIPT) change the translation to 'M M',

CHANGE

<=> Change </stringl</<string2</ <tag <p>>>>>>
* %

n G

Changes the [irst (p-th) occurrence of first specified string to the second
specified string on each line of the specified range. Changed lines are
recanonicalized if IMAGE is CANON. The last line scanned becomes the new
current line. Normally only the first (p-th) occurrence in a line is changed;
to change all occurrences, add '*' (or, equivalently, 'G' for "Global").

The delimiter (shown here as '/') may ke any non-blank character not in the
strings and is optional if at the end of the command. Missing strings are
taken as null, Thus, if the first string is null, the second string is imbeded
at the beginning of each line, unless a global change is specified, in which
case the line will be filled with repeated copies of the second string.

If the first string is not found, 'Not found' is reported, but the new current
line will be the same as if the command had been successful.

related documentation

COMMAND CASE (Controls the handling of lower-case letters)
COMMAND DESERIALIZE {Controls serialization field to bhe cleared)

COMMAND IMAGE {Centrols the handling of back-space and tab)
COMMAND ZONE (Controls the part of the lines considered)

COMMAND ALTER (Similar for hexidecimal specification)

RESOLVE CMC (Similar for mixed-case change)

RESOLVE CMF (Similar for changing a string unique to file)

MACRO cus (Similar for changing a string unigue on the screen)
MACRO INCHANGE {Similar but permits interactive user control)

description of CHANGE with no arguments

If a 3270 with a keyboard is used, the CHANGE command may be issued with no
arguments. In this case the text of the current line's ZONE is put into the
input area where it can be modified by local editing. When ENTER is pressed
the possibly modified characters replace the ZONE of the line, unless the input
area is entirely "nulls", as would be generated by ERASE INPUT or CLEAR.

Note =-- if there are unprintable characters in the line or characters which
are not translated back to themselves by the input and input area translation
tables (in succession), the command will be rejected.

See: COMMAND TRAMNSINX {Controls input translation tables)

Built-in Commands ' . 47.

CMS

CMs

Enter CMS SUBSET. In this mode it is possible to execute those CMS commands
which do not require main 'storage. These include RENAME, TYPE, CP, DISK,
ERASE, EXAMINE, EXEC, PUNCH, FILELIST, QUERY, ACCESS, READCARD, PRINT, RDR,
RELEASE, SYNONYM, STATE and SET. Any attempt to execute an invalid CMS command
or one which requires main storage will provoke an error message. 1In general,
the LOAD command (and its relatives such as LOADMOD} should be avoided.

To resume editing, enter the special CMS SUBSET command, RETURN,

See: MACRO $ (Execute specified CMS commsnd)
MACRO CP {(Execute specified CP command) '

discussion of translation tables and PF-keys

The editor temporarily sets the state of the input and output translate tables
as well as the PF-keys, to the state they were in before the editor was ever
invoked. Upon returning from CMS SUBSET, they are reset to the state they were
in immediately before entering CMS SUBSET. Thus, to change their settings for
the editor, use one of the previously mentioned macros.

See: MACRO TRANSIN {(Controls translation of characters on input)
MACRO TRANSOQUT {Controls translation of characters on output)
COMMAND PFKEY (Controls settings of PF-keys)
COLUMN

COLumn /<rtring</>>

Searches the current line for the specified string and prints (stacks) the
starting column number. If string is not found, 'Not found' is reported.
Primarily for use by macros.

The delimiter (shown here as '/') may be any non-blank character not in the

string.
See: COMMAND CASE (Controls the handling of lower-case letters)
COMMAND ZONE {Controls the part of the line searched)

Note -~ this is different than EDITOR which printed (stacked) '0' if the string
was not found.

COMMAND

<=> COMMAND command

Executes the specified command as a built=-in command regardless of the current
resolution order. Primarily for use by macros.

See; CONCEPT RESOLUTION
COMMAND MACRO {Forces interpretation as a macro)

COPYFROM see MOYEFROM

.48 . P-EDIT User Guide

COVERT

COVert command

Executes the specified command without remembering it. Thus it will not be
seen by the ? or " commands. For purposes of the UNDO and UNGO commands, its
effects will be absorbed into those of the previous command.

Primarily useful for assignment to PF-keys and by macros that use UNDCO and
UNGO, : .

See: CONCEPT MEMORY

DELETE

<-> Delete <tag>

n
»

Deletes the lines in the specified range. The new current line is the one
following the deleted lines. Therefore DELETE followed by DELETE has the same
effect as DELETE 2,

See: MACRO DOTHERS {Deletes all lines not meeting some criteria)
MACRC DTOP (Deletes all lines from the previous to the TOP)

reincarnation of deleted lines

Deleted lines remain in memory with the status, DUMMY, This will normally not
be apparent since these lines seem not to exist for almost all purposes (they
are never written on disk, for example). However, a few commands can force the
one of these DUMMY lines to become the current line. Should this happen, the
line on the display reserved for the current line will be blank and the header
line of the screen will be similar to what it is when the dummy EOF line is the
current line,

See; COMMAND GO {Can go to a tagged deleted line)
COMMAND UNGO {Can go to a deletgd old current line)
MACRO MOVE {Can leave the curpent line of another file deleted)
COMMAND STATUS (Can find a DUMMY line)

DELIMSTRING see TOKEN

DESERIALIZE

DESERialize <ON p g>
OFF

Argument specified: Turns on deserialization for columns p through q, or turn
it off. Wwhen deserialization is on, all commands which modify, insert or move
lines blank out the serial number field (columns p through ¢) of those lines,
No argument specified: Prints (stacks) the current settings if no argument is
See: MACRO RESERIAL (Reserialhe lizes lines in range)

MACRO UNSERIAL (Clears serialization of lines in range)
given,

DIRECTION see REVERSE

Built-in Commands .49 .

5w

DOWN see NEXT

DROP

EDIT

.50.-

DRop <fnumber>»

Removes the specified file {or current file) from the ring of files being
edited, If the Ccurrent file is dropped, the previous file in the ring becomes
the current file. If there is no previous file, the last file in the ring
becomes the current file.

Primarily for use by macros.

See: MACRO QUIT (Normal way to stop editing a filej

Edit <fn <ft <fm <format <width>>>>> < <Dummy> <Nosetup> <DARK> <Quiet> <)>>
. . .

No argument specified: Prints (stacks) one line describing each file being
edited followed by a null line.

File specified: Edits the Specified CMS file. If the file is already being
edited, BROWSE mode is set on and a warning is printed. If the file does not
exist or the file is a dummy file (see below) an empty file is edited.

The standard SETUP p-EXEC defines a synonym for the macro, P-EDIT, that
requires at least 'ED' to be entered to specify the built-in command, EpIT.
This macro is the normal way to start editing a file.

See: CONCEPT INITIALIZATION (Initialization of files by file type)
COMMAND FORMAT (Format of a file)
COMMAND WIDTH {(Width of a file)

details of arguments

fn: The file name of the file. If '»' o missing, the file will be a dummy
file (see below).

ft: The file type of the file, If '®! Oor missing, _he file type of the current
file 1s assumed.

fm: The file mode of the file. 1If 's' op missing, the first disk on which the
file is found (normal CMS Search order) is assumed unless the file is a dummy

file (in which case it will be '"*'), If the mode number is missing, '1° will

be assumed.

format: The format the file should have. If missing, the file will be 'V' or
'F' depending on its format on disk.

width: The width the file should have,. If the file has a line longer than the

specified width, the reading of the file will be terminated at that point and
an error message will be printed.

P.EDIT User Guide

details of options

DUMMY: The file is a dummy file and will not be read from disk. The file mode
must be missing or 's' if this opticn is specified. when a file is a dummy
file (DUMMY option or file name missing or '¢') the initialization file
executed will have its sixth argument ‘YES' (normally 'NO').

NOSETUP: No initialization file will be executed to initialize the file,

DARK: The initialization file executed will have 1ts seventh arsument 'NO'
(normally 'YES'), ' This argument is ignored by the standard inwtialization
files,

QUIET: The initialization file executed will have its eighth argument 'NO'

(normally 'YES'), This argument is ignored by the standard 1initialization
files,

EDITING
EDITING <fn <ft <fm>>>
* L} []

Printsz (stacks) a line containing the file numbers of each file being edited
whose name matches the pattern specified. A absent argument or '*' will match
anything. Primarily for use by macros.

EDITMODE

EDITModa <Text>
Boolean

Argument Specified: Sets the edit mode accordingly.

No argumeht specified: Prints (stacks) the edit mode of the current file,
Normally the edit mode is TEXT. When the edit mode is BOOLEAN, Boolean
éxpressions are treated as though they were the text of the line. Used
primarily by mnacros.

Warning -=- All sorts of file characteristics such as WIDTH and CASE that made
sense in TEXT mode will act strangely in BOOLEAN mode. Use of the BOOL command
is recommended for this reason.

See: CONCEPT PARAMETRIC FILES
MACROQ BOOL (Executes command in BOOLEAN edit mode)

ERROR

ERROR

This command is equivalent to a command with a syntax error. It can be used
to, effectively, clear the definition of the X or Y command.

See: CONCEPT S5YNTAX (Treatment of syntax errors)
COMMAND X (Provides a short name for specified command)

EXCLUDE see FIX

EXCLUDEVIEW see FIXVIEW

Built-in Commands .51.

EXIT see READ

EXVIEW see FIXVIEW

FCOUNT

FCOUNT
Prints (stacks] the number of files currently being edited,
FNUMber

Prints (stacks) a line containing the file number of the current file and the
file number of the file whose original control is currently being used
{normally the same). Used primarily by macros.

File numbers are assigned sequentially whenever the editing of a file begins,
starting from 1. These serve to provide a unique identification for each file.
This is necessary because P-EDIT permits multiple copies of files with the same
CMS file name.

See: COMMAND XFERCONTROL (Description of controlling files)
FETCH
FETch name

Prints (stacks) the current value of the specified variable.

STOre name <value>

Value specified: Defines the specified value as the value of the specified
variable. 1In this form the value may not be null or begin with a blank or a

Ll L]

No value specified: The value is read separately and the operation is otherwise
the same. If the value is null, acts the same as UNSTORE,

UNSTORE name

Makes the specified variable no longer defined.

See: CONCEPT VARIABLES

FIND

<=> Find <line>

Line specified: Searches the file, from the next line, examining only those
characters in each line which correspond in position to the non-blank
characters in the specified line. The first line in which these characters
match those given becomes the new current line. If none is found, 'Not found'
is reported and the current line becomes the dummy EOF line., If line is null
or blank, the search will be successful on the first line examined. IFf the
current line is the dummy EOF line when this command is issued, the search
starts from the dummy TOP line.

No line specified: The line is read separétely and the operation is otherwise
the same.

This command usually operates faster than LOCATE.

.52. P-EDIT User Guigic

related documentation

COMMAND CASE (Controls the handling of lower-case letters)
COMMAND IMAGE (Controls the handling of back-space and tab)
COMMAND ZONE (Controls the part of tne line examined)

COMMAND LOCATE (Similar command that does not consider position)

FIX
FIX <mask> <tag>
n
™
Further restricts the specified mask by the g%nimum Boolean expression which
will cause the lines in the specified range be fixed,
EXclude <mask> <tag>
n
-
Further restricts the specified mask by the minimum EBoolean expression which
will cause the lines in the specified range to be excluded,
See: COMMAND FIXVIEW (Similar commands for lines in the view)
CONCEPT PARAMETRIC FILES
FIXVIEW
<-> FIXView <mask> <tag>
n
-
Further restricts the specified mask by the minimum Boolean exXpression which
will cause those line$ in the specified range that are in the current view to
be fixed. If the ran§e 1s specifed by a number, it refers to the lines in the
logical file as usualj not the viewed file.
<=> EXCLUDEView <mask§ <tag>
EXView T 1]
i
L A
Further restricts the specified mask by the minimum Boolean expression whickh
will cause those lines in the specified range that are in the current view to
be excluded,
See: COMMAND FIX (Similar commands for all lines in range)
CONCEPT PARAMETRIC FILE
FM see NAME
FN see NAME

FNUMBER see FCOUNT

Built-in Commands i 59

FGRMAT
FORMat <F<P>>
PECform V<P>
Format specified: Sets the record format (for subseguent SAVE commands) to 'F'
(fixed) or 'V'. VUsually a 'V' format file will occupy less disk space than the
corresgonding 'F' format, since in the 'V' case trailing blanks are st.ipped
automatically from each line before it is written out,

No format specified: Prints (stacks) the format of the current file,

The special format VB will append one trailing blank per line when the file is
written, This is necessary for 'V' format PLT or LISP files,

1f the last letter of the format specification is 'P', the file becomes
parametric. Once a file is parametric, it will remain so.

See: COMMAND SAVE {Saves the current file on disk)
CONCEPT PARAMETRIC FILE

FREE see RECLAIM

FT see NAME

GETFILE

GETfile fn <ft <fm <m <n (<Quiet<)>>>>>
® L] L] L] -

Inserts some or all of the given file, following the current line. Any part of
the file name that is missing or is an '*' will be taken to be the same as the

current file. The part of the file which is inserted runs from line m, for n L
lines, or to its end. If the starting line is missing or is an '#*', it will be = t
taken to be '1'; likewise, the number of lines will be taken to be large enough 3

to read the remainder of the file. The message 'k lines read', where k is the
number of lines actually inserted, is printed (stacked) unless the QUIET option
is specified. The last line inserted becomes the new current line,

If the format of the current file is parametric (VP, FP or VBP), GETFILE will
look for Boolean expressions on the incoming lines,.

related documentation

COMMAND DESERIALIZE {Controls ser.alization field to be cleared)
COMMAND WIDTH (Controls the widest line that may be inserted)
MACRO GETTAIL (Gets the last part of specified file)

MACRO GETFILES (Gets all files for pattern specified)

CONCEFT PARAMETRIC FILES

GO see TAG

.54 - FEMT User Guide

GROUP

<-> <GRoup> ;command! <;command? ... >>

The commands, delimited by the first character, are executed in turn until an
error or other exception is found. The delimiter, shown as a 't', can be an
non-blank character not in the commands., If it is a ';', the command name,
GROUP, can be ommitted.

The effect of reverse mode is to execute each command in reverse mode {or
actually in the opposite mode that the command itself specifies),

See; CONCEPT DIRECTION s
MACRO 1F {(Permits conditional execution of commands)

HEAD

HEAD <string>

Temporarily replace the display header with the specified string, The maximum
length of the header is 40 bytes, If issued with no arguments, the temporary
header is read from the console stack. The temporary header applies only to
the next display update, Mostly useful in macros, before issuing the SCOPE
command to refresh the screen.

See: COMMAND SCOPE {Used to refresh the screen)
COMMAND HEADVARS (Controls the left, "wHO", part of the header)
SCOPE REFRESH,

HEADVARS

HEADVars <namel <name2 .,. >>

Defines the variables that are to provide the WHO field of the header line.
The value of the earliest of these that has a value will be used for the
header, unless its value is 'FILE#' or 'CONTROL#. 1In that case, the variable
whose name is the concatenation of of the original name, ',' and thr file or
control number of the current file fas given by the FNUMBER command) will be
locked up and used if defined.

If none of these are defined, the header will say 'Edit:' or ‘Browse:'
depending on BROWSE mode. Other built-in values (such as 'Input:') take
priority over this process.

Used primarily by SETUP P-EXEC.

See: CONCEPT SCREEN FORMAT (All about the header lines}
CONCEPT VARIABLES {All about P-EDIT variahbles)
CONCLPT INITIALIZATION (HEADVARS usually issued by SETUP P-EXEC)
COMMAND STORE {Sets the value of a variable)

Built-in Commands) .55.

HILITE

HILite <char>
OFF

Character specified: Sets the HILITE mode of the current file to that
character, thus fraeing up the brightening feature of the 3270 terminal to
highlight the current line. Lines with the status of UNFIXED will be
highlighted by changing all blanks on the line to the HILITE character,

OFF specified: Sets HILITE OFF, thus the current line will not be highlighted
and UNFIXED lines will be displayed bright,

No argument specified: Prints (stacks) the HILITE mode for the current file.

Note -- The only way to assure that all UNFIXED lines will be noticed is to
have a HILITE character and set the window, WINDOW 1 78,

See: CONCEPT PARAMETRIC FILES
COMMAND WINDOW

IMAGE
IMage <ON>
CANON
QFF

Argument specified: Sets IMAGE mode of the current file accordingly.
No argument specified: Prints (stacks) IMAGE mode of current file,

See: CONCEPT IMAGING

INPUT see INSERT

INSERT

<-> Insert <line>
INPut

Line specified: Inserts it in the file following the current line, and makes it
the current line.

No line specified: Enter INPUT mode in which lines read from the terminal are
put in the file following the current line, As each line is entered, it
becomes the new current line., EDIT mode is restored by entering a null line,
A blank line is inserted by typing at least one blank.

<->» Replace <line>

Same as INSERT except the current line is replaced by the first (or only)
insertion,

related documentation

COMMAND CASE {Controls the handling of lower-case letters)

COMMAND DESERIALIZE (Controls serialization field to be cleared)

COMMAND IMAGE {Controls the handling of back-space and tab)

COMMAND TRUNC {Controls the longest line that can be inserted)
MACRO REINPUT (Permits P-EDIT commands to be entered in INPUT mode)

. 56 . P-EDIT User Guide

LENGTH

LENgth

Prints (stacks) a line containing two numbers: the length of the current line
up through the truncation column after discounting trailing blanks (working to
the left from the truncation column), followed by the total length of the liqe

(ignoring the truncation column). Primarily for use by macros.
See: COMMAND TRUNC (Sets truncation column)
MAXLength

Prints (stacks) a line with two numbers: The length of the longest line ir the
logical files, followed hy the length of the longest line in the physical file,

See: CONCEPT PARAMETRIC FILE
COMMAND EDITMODE (Meaning of "line" independent of EDITMODE)

LEVEL see READ

LINES

<=> LInes <n>

Line number specified: Positions the file at line number n counting from the
top of the real file. If n is 0, the dummy TOP line becomes the current line;
if n is larger than the file, the dummy EOF line becomes the current line
(return code of 1 for macros).

No line number specified: Prints (stacks) a line with three numbers: the
ordinal number of the current line in the real file, the number of lines in the
real fi'e, and the number of lines with (non-TRUE) Boolean expressions (0 for
non-parametric files), If the current line is the dummy TOP line, 0O is
reported as its number; if the dummy EOF line, a number one greater than the
number of lines in the file is reported; if any other dummy line (status of
DUMMY), the line number of the previous line (or 0 if none) is reported and a
return code of 1 is provided macros.

See: CONCEPT PARAMETRIC FILES

LOCATE

<=> <Locate> /string</ <tag>>
n
L

Searches the logical file, from the next line over the specified range for the
first line containing string, and makes it the new current line. If the count
is 0 or the current line has the specified tag, it will fail, The delimiter,
given here as '/', may be any non-blarnk character. If the opening delimiter is
'/', the word LOCATE need not be given. If no range is specified, the entire
remander of the file will be searched.

<-> <AVoid> =string<-~ <tagd>>
n
*

Similar to LOCATE except that a line not containing the string is searched for
and the string delimiter which makes AVOID optional is ‘=', not L e

Built-in Commands A I

All lines contain the null string {'//').

If the current line is the dummy EOF line when the command is issued, searching
starts from the dummy TOP line.

If the search is unsuccessful, 'Not found' is reported. If the current line is

not now the dummy EOF line, a dummy line is generated which is after the last
line searched and before the next, the dummy line becomes the current line,

related documentation

COMMAND CASE (Controls handling of lower-case letters)

COMMAND ZONE {Controls the part of the lines searched)

MACRO AVAND (Go to next line missing one of specified strings)

MACRO AVOR (Go to next line missing all specified strings)

COMMAND FIND {(Go to next line with charaters in same positions)

MACRO LAND (Go to next line with all specified strings)

RESOLVE LMC (Go to next line with specified mixed-case string)

MACRO LOR (Go to next line one of specified strings)

MACRO LUF (Go to line with specified string uniquely in file)

MACRO LUS (Go to line with specified string uniquely on screen)
MACRO

<-> MACRC command

Executes the specified command as a macro regardless of the current resolution
order,

<-> XMACRO fn <ft <fm>>
s

Reads the arguments for the macro (including £0) sepArately and executes the
specified EXEC2 file. If the file type is missing g? '#', it will be taken as
"P-MACRD'. If the file mode is missinc «r '#', it will be taken as the first
disk on which the file is found (the par.al CMS order).

Primarily for use by macros,
See: CONCEPT RESOLUTION

CONCEPT MACROS
COMMAND COMMAND (Forces interpretation as a built-in command)

MACROLINE

MACROLINe

Stacks the command that initiated the current macro being executed. This
is primarily to allow macros to tell whether their arguments were separated
from their name by a blank or not.

MAKE

.58 .

<-> MAKE tag eqrel bool
n
L]

Changes every otcurrence of the specified equal relation to the specified
Boolean expression in the Boolean expression associated with each line in the
spccified range. This is done in such a way that no new versions of the file
can be created (e.g., =-egrel =--> -bool).

See: CONCEPT PARAMETRIC FILES

P-EDIT User Guide

examples -- TOP and no masks assumed

PARM=YES TRUE Purge parameter, PARM

MAKE #

MAKE # VER=5 VER<#:5 Eurge versions less than 5

MAKE * VER=4 #4<=VER<6 Purge version 5

MAKE * SEX=N FALSE Purge parameter value

MAKE * SEX=M SEX=M|SEX=N Make two values synonymous

MARKE * SEX=N SEX-=MESEX-=F Remove redundant value

MAKE * SEX=N NOSEX=YES Promote value to parameter

MAKE * SEY=M SEX=MALE Rename value

FOR 2 MAKE * P=1 P==1 Remove all values but 1

FOR 2 MAKE * P=1 =-MEMBER (P, (1,3,6)) Remove all values but 1, 3, & 6
MASK

MASK <mask> <{bool)>

Boolean exp:ession specified: Resets the specified mask (or the current default
mask) to thn expression specified.

No Boolean expression specified: Prints (stacks) the current value of the
specified masks (or if none the name of the current default mask).

UNMask <mask>
Clears the specified mask (or the current default mask).

RESTRICTmask <mask> (bool)

ANDs the specified Boolean expression to the value of the specified mask (or
the value of the current default mask).

See: CONCEPT PARMAMETRIC FILES
COMMAND PUSHMASK (Controls default mask name)

MASKNAME see TAGNAME

MASKS

MASKS
Prints (stacks) the names of the current masks.

See:; MACRO SHOWMASK {Generates file showing mask names and values)
CONCEPT PARAMETRIC FILES

MAXLENGTH see LENGTH

Built-in Commands .50.

MAXNEXT

<-> MAXNext

Prints (stacks) the maximum useful count that could be used in a NEXT command
(any larger count would be an attempt to go beyond the dummy EOF line). This
is the number of lines in the logical file between the current line and the

dummy EOF line, including the current line whether or not it is excluded from

the logical file,

The result of -MAXNEXT is the line number of the current line if its status
isn't DUMMY and no masks are set. However it should be remembered that the
LINE command refers to the physical file, while MAXNEXT refers to the logical
file,

Primarily for use by macros.

See:; COMMAND LINES {Related command}
CONCEPT PARAMETRIC FILES

MERGE

<-> MERGE <tag>
n
*

Any totally identical versions within the specified range are merged. The
default range is 2,

See; CONCEPT PARAMETRIC FILES

MODE see NAME

MOVEFROM

<-> MOVEFrom tagl tag2

<-=> COPYFrom ni n2
* "

Moves (or copies) the specified range after the current line. The last such
line becomes the current line. The range is specified by identifying two
lines, the first and the last, as follows:

Tag: The line that has been associated with that tag.
Number: The line that is that far forward from the current line,
L¥ The dummy EOF line,

If the lines are moved, they keep their identity (in the sense of tags and the
- UNGO command). Lines can be copied, but not moved, from another file,

See: CONCEPT TAGS

MACRO MOVE (A more flexible facility for moving and copying)
COMMAND DESERIALIZE {Controls serialization field to be cleared)
MSG see SAY

. 60 . . P-EDIT User Guide

NAME

NAMe <fn <ft <fm>>>
FN

Set the file name (and type and mode, if specified) for writing file on disk,

TYPe <ft>
FT

Set the file type for writing file on disk.

MaDe <fm>
FM

Set the file mode for writing file on disk. If mode letter only is given, the
existing mode number is retained,

All of these will print (stack) the value for the current file is no argument
is specified. If 's' is specified, it is interpreted literally (a dummy file)
even though it is not a legal CMS file name,

NEXT

<=> Next <n>
DOWN =

Redefines the current line to be a line later in the file by n lines. If n is
absent, it is assumed 1 (advance to the next line). 1If '#' ig specified or n
is too big, the dummy, EOF, line past the last line of the file becomes the
current line and a ruturn code of 1 is provided macros, If masks are set, only
lines in the logical file are counted, except the current line counts no matter

what its status.

<-> Up <n>
PREVious =

Goes to a line in the opposite direction as NEXT: to an earlier line in the
file (-UP is equivalent to NEXT) . :

See: CONCEPT CURPENT LINE

CONCEPT DIRECTION
COMMAND SCROLL {(Similar with specification by displayed lines)

NORESTORE

NORESTore

Only makes sense issued by a macro. Prevents the restoration of the file
values saved prior to the macro call.

See: CONCEPT MACRO

NULL see BLANK

Built-in Commands .61 .

OVERLAY

Overlay <line>

Line specified: Modifies the character positions in the current line that
correspond to the non-blank characters in the specified line to be those ;
characters. An '_' in the specification forces a blank into the corresporiding

position of the current line,
No line specified: Reads the line separately and is otherwise the same.
SlUperimpose <line>

The same as OVERLAY except '_' is not treated specially.

See: COMMAND CASE {Controls the handling of lower-case letters)
COMMAND DESERIALIZE (Controls serialization field to be cleared)
COMMAND IMAGE (Controls the handling of back-space and tab)
COMMAND TRUNC (Controls the part of the line involved).)
PFKEY

PFkey n <text>

Text specified: Sets the specified PF-key to the text, which should normally
start with 'IMM ' and end with a blank,

No text specified: Prints (stacks) the current value of the PFP-key.
Each file may have its own PF-key values.
Only the PF-keys 1 to 12 are supported.

TABKey n

Defines the specified PF-key to be used to input the tah character.

See: COMMAND PFOFF (Additional PF-key commagids)
CONCEPT INITIALIZATION {PF-keys are often set by P-SETUP files)
PFOFF
PFOff n

Restores the specified PF-key to the value it had when when the current file
beran being edited and removes it from the PF-keys defined for that file.

PFREnew
All PF-keys under control of P-EDIT are restored.

See: COMMAND PFKEY {Additional PF-key commands}

PFRENEW sec PFOFF

FOPMASK see PUSHMASK

PREVIOUS see NEXT

.62 - P.EDIT User Guide

PRINT

<-> Print <n <p <g>>>
L B

Prints the lines in the specified range or just the current line. The last —
line printed becomes the new current line. The lines as printed will span
column p through column q of the lines in the file,

The first line will be printeu -tter what its status, Thereafter only
lines with status FIXED, UNFIXED or HIDDEN are printed or contribute to the
count. Lines with a status other than FIXED are printed preceded with their
status (UNFIXED...line),

See: COMMAND WINDOW {Controls how much to print if not specified)
COMMAND STACK (Similar command for macros)
CONCEPT STATUS

Note -~ This differs from the PRINT command in EDITOR in which the first column
(p) could not be specified.

PRY
PRY
Used for debugging ¢-apIT. Goes to PRY, which must be loaded. RESUME will
return to P-EDIT.
PUSHMASK
PUSHMask
Adds one to the default mask name. The default mask name 1s an integer which
is used as the mask name if none 1s specified.
POPMask
Resets the default mask and subtracts one from from the default mask name.
See: COMMAND MASK (Used to set default mask)
CONCEPT PARAMETRIC FILES
READ

READ <*> <interp! <interp2 ... >>

Asterisk specifisd: Enters a new level of P-EDIT and reads commands until an
EXIT command. Entering a new level adds one to the level count and saves down

by EXIT. The commands read will be interpreted as specified; if none are
specified the default interpretation is used (Usually SYNONYM COMMAND MACRO) .

No asterisk is specified: One command is read and interpreted as specified or
by the normal interpretation. The return code of the READ will be the return
code of the command read. Both the command read and the READ command are
recorded in the list of commands remembered, in that order. If the command

See: CONCEPT RESOLUTION (Meaning of interpretatifns\
MACRO RECEDIT (Edits a new file at a new level}

Built-in Commands .63 .

description of EXIT and LEVEL

EXIT <retcode>

Terminates the current level of P-EDIT with the return code {for 0) as specified
as a non-negative integer.

See: MACRO QUIT {Automat®cally does EXIT when applied to file RECEDITed)

LEVEL

Prints (stacks) the current level of P-EDIT. This number appears in the header
of the screen if not 1. The level is O during the execution of SETUP P-EXEC.

See: CONCEPT SCREEN FORMAT

description of CALLER
CALLER
Returns as a return code the current mode of command execution:
0 - Normal (READ *}
1 - READ (with no asterisk; usually treated tt. same as)
2 - Subcommand {from a macro or other EXECZ file)

Primarily for use by macros.

RECFORM see FORMAT

RECLAIM

RECLAIM

Frees available storage and compacts storage in use. Prints (stacks) the
message: n bytes ==> m bytes. Takes roughly 10 seconds.

FREE

Used to find out how much storage is still available without garbage
collection. Prints (stacks) the message: n bytes left.

See: CONCEPT RECLAMATION

REMEMBER

REMEMber <n>
*

Argument specified: Sets the number of commands to be remembered for UNGO and
the like. If '#' is specified, no limit is imposed. REMEMBER * is assumed at
the beginning of macros.

No argument specified: Prints (stacks) a line with two values: the current
value and the default value (9 or whatever value was established by SETUP

P-EXEC) .
See; CONCEPT MEMORY (How P-EDIT remembers commands)
CONCEPT INITIALIZATION (Default count can be set be SETUP P-EXEC)

REPLACE see INSERT

.64 - ; P-EDIT User Guide

RESOLVE

RESolve command

Prints (stacks) the result of resolving the specified command in the current
environment, If it is valid, the result is one of: a built-in command prefixed
by the word ‘Command', a macro file hame, type and mode prefixed by the word
'Macro' (or 'Rejectmacro'), or a Synonymous command prefixed by the word
'Synonvm', If not a valid command, 'Not found' is reported.

RESOLVEToken name <interpl <interp2 ... 5>

Similar to RESOLVE except the resolution order may be specified,

See: CONCEPT RESOLUTION

RESOLYEORDER
RESOLVEOrder <interpi <interp2 ... >>
RESOLVORder
Argument specified: Resets the resolution order as specified. If the current
editing level is 0 (SETUP P-EXEC is being executed), the default resolution
order for user issued commands 1s also reset for the editing session.

No argument specified: Prints {stacks) the current resolution order.

See: CONCEPT RESOLUTION
CONCEPT INITIALIZATION

RESOLVETOKEN see RESOLVE

RESOLVORDER see RESOLVEORDER

RESTRICTMASK see MASK

RESUME
RESUme <fnumber>

File number spacified: Makes that file the current file. File humbers are
the number displayed along with the file name in the WHAT field of the header.

No argument: Makes the previous file in the ring the current file. If there is
no previous file, the last file in the ring becomes the current file.

Built-in Commands - 65 -

RETRIEVE

RETRieve level n

Prints (stacks) the n-th command remumbered from the specified level back.
This 1s similar to the ? command except that commands at higher levels can be
seen. A new lev.i of memory of commands is entered whenever a macro is called
or a READ * is issued. When a level exits, all commands remembered during it
are merged into the memory of its effects. Thus, in a macro, RETRIEVE 1 1%,
will stack the command prior to the macro call. Primarily for use by macros.

See: CONCEPT MEMORY (How P-EDIT remembers commands)
COMMAND ? {More convenient command for use by user)
REVERSE
<=3 - comnand
REVerse

Many P~EDIT commands operate on the file in a direction (forward or backward).
I1f these commands are prefixed with '-', they will work in the opposite
direction; thus, -NEXT is the same as UP.

The REVERSE command 1s provided for macros because EXEC2 takes a line beginning
with '=' as a lab=el

DIRECtion

Used by macros to test whether they were called with a '-' prefix. Returns a
return code of 0 normally and a return code of 1 if 1t was called with a '='
prefix,

SAVE

SAVe <«fn <ft <fm <format> <width>>>>
. " -

Saves the file on disk. Uses the given file designation, or the current file
designation if none is given. Replace any file having the same file name and
file type and the same mode letter. The current file designation is not
changed.

The file is written on the disk (specified by fm) in the specified or current
format and width. Each line written is padded with trailing blanks to the
width if the format is F or FP. If the format is VB or V, the lines are
written with one or no 'trailing blanks. V, VB, VP, VBP, and parametric FP
format files appear as V format on disk, and the maximum line length of the
file on disk may be less than the width.

error handling

For safety, the file is first written as a temporary workfile named 'P-EDIT
. CMSUT1 fllemode Only when it is succeastully written is the designated file
file renamed to be. 'filename gllegype filemode!. This
i : he camputer. s 'falla in. sqme way.“

hav1ng wrltten “the nbw orie.

See: COMMAND APPEND (Appends Lo . ex¢§tzqg f;;e) sk :
COMMAND FORMAT t‘D&f}t 0f Qg)@ ; 5 3
COMMAND ‘WIDTH (nafanés Ef fL ? ok T T

.66 - P-EDIT User Guide

SAVED

SAVED <YES>
NO

P-EDIT remembers whether a file has been modified since it was last saved on
disk. This is so that the macro QUIT can refuse to operate if called with a
synonym when the current file has not been saved, Saving a file on disk, as
the same file name as it is known to P-EDIT, will set SAVED to YES. Any

modification to the file will set it to NO, Also, changing the file name, type

or mode will set it to NO, If an argument is specified on the SAVED command,
the SAVED flag will be set :o ity if .ot, the current value of SAVED will be
printed (stacked).

See: MACRO QUIT (Stops editing current file permitting UNDO if not saved)
MACRO ouUT (Stops editing all saved files and returns to CMs all)

SAVEVIEW

SAVEView fn <ft <fm <format <width>>5>>

Saves the current view as the file, fn ft fm. Arguments that are unspecified
or specified as '*', are taken to be the same as the current file,

SAY
SAY <text>
MNSG
Text specified: Prints the text. If SCOPE is ON, it will appear in the
message area when the screen is next refreshed.
No text specified: Reads the text separately and is otherwise the same.
SHOUT <text>
WARN
The same as JAY except the text is displayed bright on a 3270 and the alarm is
sounded if permitted by ALARM,
These commands are primarily useful for macro-,
See: CONCEPT SCTRFEN FORMAT
COMMAND SCOPE (Used to force messages to be aisplayed)
COMMAND ALAWM (Controls ALARM mode)
SCALEX

SCALEX <width>
-

See: CONCEPT SCREEN FORMAT = - .

e

WeRd Soale ¢ gwbinaseerh TBRCRES Bl -

Built-in Commands

G

R ET

SCOPE

SCOpe . <ON>
; OFF ¥
NORM
APL
TEXT
. REFresh
CHARS <continuation default>

No argument specified: Prints (stacks) a line describing how P-EDIT .s
currently using the display device (a 3270) consisting of two words: ON or OFF
and NORM, APL or TEXT.

ON or OFF specified: Turns “he use of the display device on or off, When the
display 1s off, the P-EDIT operates as though a typewriter were being used,
even 1f the device is a display device. 1If a real typewriter is being used,
the display must be set off.

NORM, APL or TEXT specified: Resets the translation table to assume the
appropriate character set is available on the display device, Unpredictable
display behavior may result if the wrong translation table is selected; the
NORM character set is a subset of the other two and thus is safe for all three

displays.

CHARS specified by itself: Prints (stacks) a line containing two chracters: the
current continuation and default characte.c. The continuation character,
initially a '.', is the one which appears in triplicate at the beginning of
continuation lines. The default character, initially *_', is displayed for
each character that cannot be dislpayed on the display device.

CHARS specified with two characters: These characters can be non-blank single
characters or the hexadecimal encoding of characters. The first is made the
continuation character and the second the default character. These characters
must be valid displayable characters: blank iz permitted, but must be repre-
sented in hexidecimal (40).,

REFRESH is specified: The display is immediately updated (assuming it is ONJ.
This is mainly useful in edit macros.

All the SCOPE settings apply to all files being edited except CHARS, which
applies to each file separately.

See: CONCEPT SCREEN FORMAT
EXEC SETUP (Standard setting of ©_0OPE)

SCREEN

. 68 -

SCREEN

Prints {stacks) the 24 lines most recently displayed on the display device.
The input area will be blank, including the state that CP puts into the lower-
right corner. Each line is preceded with '+' if it was displayed bright and
with a blank otherwise If no screen has been displayed yet, 'Not found' is

reported.

See: CONCEPT SCREEN FORMAT

P.EDIT User Guide

SCROLL
B . W S 1 I SRR |
<=> Serpll <&4>n> AR S

Line count specified: Goes to the line being displayed the specified distance
from line 10 on the display device (where the current line starts). This is

No argument specified: Goes to the line as far away from the current line as
will still permit at least one line to be redisplayed. This can be used to
browse through a file in a fashion that guarantees all lines will be seen.

If SCOPE is OFF, SCROLL will position the current line to where it would be if
ON assuming no messages in the message area.

See; EXEC NUMBER {The standard one permits SCROLL to be elided)
CONCEPT SCREEN FORMAT
CONCEPT PARAMETRIC FILES

SHOUT see SAY

SIMPLIFY

SiMPLIFY boolean

Prints (stacks) the simplified or canonical form of the Boolean expression
specified. Any functions are expanded. Errors will generate an error message
and 'TRUE' will be reported,

SORTX

<-> SORTX tag column length <Ascending>
n . . Descending
*

Borts the lines in the specified range according to.the specified field, 1If
the column is specified as a '*' it will be taken as '1' and if the length 1is
specified as an '*' it will be taken as the WIDTH of the current file., If the
option, DESCENDING, is specified, the lines will he in the opposite order. At
the end, the current line will be the first line of the sorted lines.

See: MACRO SORT {A more flexible facility for sorting)
COMMAND DESERIALIZE (Controls serialization field to be cleared)

Built-in Commands « 69 .

STACK

<->STACK <Fifo> <n <r <g>>>
Cokifg o w e Rl 8 oy S

Stacks the lines in the specified range, The lines are stacked FIFO (default)
or LIFO, The words FIFO and LIFO may appear before or after n, p and q, The
last 'line stacked becomes the new current line. The number of lines (n)
defaults to 1. The lines as stacked will span column p through column g of the
o lines in the file. The defaults for p and g (denoted by '*' if necessary) are
' 1 and the column set by the TRUNC command, Primarily for use by macros.

If the number of characters to be stacked exceeds 254, they are broken up into
255 long segments, terminated by a shorter segment or null line if necessary
{unless there are 257, the largest string, of them). In LIFO mode, the
segments are stacked in the reverse order so they will be in a logical order
when read. If any line stacked gets this treatment, a return code of 4 is

returned.

STATUS

<-> STATus <tag <indicators>>

n
L

If indicators, a list of line status indicators, is specified, finds the next
occurrence of a line with that status, within the specified range. If not,
prints (stacks) all status indicators for the lines in the range. Each
indicator can be abbreviated: Fixed, Unfixed, Hidden, EXcluded, Dummy, Top,

EOf.

See: CONCEPT STATUS

STORE see FETCH

SUPERIMPOSE see OVERLAY

SYNONYM

SYNonym <name synonym minimum>
name minimum

Defines the specified synonym as a synonym for the specified name, It may be
abbreviated down to a prefix as small as the number specified. Synonyms are
looked for only when the resolution order specifies so: normally on for user
and off for macros. The standard SETUP P-EXEC defines a large number of
synonyms, many of them necessary tor macros to act as documented.

If SYNONYM has no arguments specified, it will print (stack) a line for each
synonym currently defined.

See: COMMAND UNSYNONYM {Removes definition of synonym)
MACRO SHOWSYNS (Edits a file showing current synonyms)
CONCEPT RESOLUTION ORDER (Control over when synonyms apply)
EXEC SETUP (Defines initial synonyms)

TABKEY see PFKEY

.70 . P-EDIT User Guide

TABS

TAbs <tabl <tab2 ... >>

SETS ‘the’ given“tab columns or 'prints '(stacks) the current tabs if no argument
is specified. Tab settings are effective only if IMAGE is ON,

If the console is & 3270, the PF10 key is set to give the effect of a tab key,
and the tab settings are honored in the input area of the screen.

See: CONCEPT IMAGING
COMMAND IMAGE

TAG

TAG name

Makes the name be a tag referring to the current line.
UNT.g name

Makes the name no longer bg a tag.

GO name

Makes the line tagged by the name be the current line (redefining the current
file, if necessarv). Reports 'Not found' if the tag is undefined.

See: CONCEPT TAGS

COMMAND TAGS {Print tags defined over specified range)
MACRO RANGE (Set default tags)
MACRO FINDTAG {Search for tag specified as a pattern)

TAGGED see TAGS

TAGNAME
TAGName string
VARName
The first name is found in string. It is stacked followed by the remainder of
the string. If string is blank, 'Not found' is reported. A name begins with a
letter and is followed by alphanumerics and ',', with blanks ignored around a
'.' and and consecutive '.'s not permitted.

MASKName string

Same as TAGNAME except a positive integer is also accepted.

Built-in Commands #7] =

TAGS

<-» TAGS <tag> - i o
& el ; ¥, -6
L

Print (stack) all tag names for the current line and the specified range, if
spetified. The definition of the current line is not changed, If no tags are
found 'Not found' is reported,)

<-> TAGGED <tag>

Report 'Not found' unless the current line is tagged with the specified tag or
any tag if none is specified. Used primarily by macros.

See: CONCEPT TAGS (Print tags defined over specified range)
COMMAND TAG {Tag current line)
MACRO RANGE (Set default tag)
MACRO FINDTAG fSearch for tag specified as a pattern)
TOKEN

TOP

.72,

TOKen string

The first token is found in specified string. It is stacked followed by the
remainder of the string, If string ic blank, 'Not found' is reported. A token
is a sequence of consecutive digits or such a seguence of letters or a single
special character, Primarily for use by macros.

DELIMSTRing string

Same as TOKEN except a delimited string if found. A delimited string is any

character (often '/') bracketing any characters not containing it. The closing
bracket may be omitted. Brackets are not stacked.

<-> Top

The dummy line before the entire file, TOP, becomes the current line. The
command -TOP goes to the dummy line, EOF,

<-> Bottom
The line in the logical file just before the dummy line after the entire file,

EOF, becomes the current line. The command -BOTTOM goes to the first line in
the logical file.

P-EDIT User Guide

TRANSINX

TRANSINX <SET>
CLEAR

SET specified: Reads four lines of 128 characters each and sets the input
translation table to the first two and the input area translation table to the
second two. Whenever a line is read, it is translated (based on an indexed
look-up by EBCDIC code) character by character according to the input transla-
tion table. Whenever a line is put into the input area, it is translated
according to the input area translation table {(normally the inverse),

CLEAR: Input translation is turned off,

No argument specified: The four lines corresponding to the input translation
are printed (stacked) in the reverse order (so LIFO stacking works nicely).

See: MACRO TRANSIN (Normal way to change the input translation)
COMMAND TRANSOUTX (Sets the output translation table)
TRANSOUTX

TRANSOUTX <SET>
CLEAR

SET specified: Reads two lines of 128 characters each and sets the output
translation table to them. Whenever text is printed or displayed, it is
translated (based on an indexed look-up by EBCDIC code) character by character
according to the output translation table.

CLEAR: Output translation is turned off.

No argument specified: The two lines corresponding to the output translation
are printed (stacked) in the reverse order (so LIFO st icking works nicely).

See: MACRO TRANSOQUT (Normal way to change the output translation)
COMMAND TRANSINX (Sets input translation tables)
TRUNC
TRUnc <g>
L]

The truncation column of a file limits the part of a line that P-EDIT commands
that deal with a line as a whole operate on (such as INSERT and OVERLAY). It
also provides the default extent for the STACK command.

Arguments specified: Sets the truncation column to q of slaves it to the width
if 's' is specified. If the truncation column is slaved to the width, it will
be equal to the file width even if that later changes.

No argument specified: Prints or stacks the current truncation setting as two
items: truncation column or '#*' and truncation column or file width.

See: COMMAND WIDTH {(Maximum width of line written to disk)
COMMAND™ ZONE (Limit for commands that operate on text)
COMMAND STACK (Used by macros to stack lines in the file)
RO o ¥ +
TYPE see NAME 4

Built-in Commands .73,

UNDO

UNdo <n>
.

This command undoes the effects of the previous n remembered commands, If
issued in a macro, only commands issued by the macro can be undone. If no
argument 1s specified, one command is undone; if '#*' is specified all remem-
bered commands (at the current level) are undone (used by macros}., There is a
limit of how many commands are remembered. If the specified command is neot
remembered, 'Not found' is reported. Any changes to the CMS file system or the
CP virtual machine are not, of course, undone.)

See: CONCEPT MEMORY (How P-EDIT remembers commands)
MACRO BACK (Similar command for additional undoing aftcr an UNDO)
COMMAND UNGO (§imilar command that only undoes positioning effects)
UNGO
UNGo <n>

This is similar to UNDO, except only those effects of the previous n commands
in positioning the current line are undone. Thus UNGOing a positioning command
(such as NEXT) is equivilent to UND%ing it. If issued in a macro, only
positioning done by the macro can be undone. If no argument is specified, the
positioning of the previous command is undone; if '#' is specified the
positioning of all remembered commands (at the current level) are undone (used
by macros). There is a limit of how many commands are remembered. If the
specified command is not remembered, 'Not fourd' is reported., If the current
line restored is in a different file, that file is resumed. If that file has
been dropped, it is re-activated.

See: CONCEPT MEMORY {How P-EDIT remembers commands)
COMMAND UNDO (Similar command that undoes all effects of commands)

UNMASK see MASK

UNSTORE see FETCH

UNSYNONYM

UNSYNonym synonym
The specified synonym is removed.

See: COMMAND SYNONYM {Defines synonyms)

UNTAG see TAG

UP see NEXT

VARNAME see TAGNAME

.74 .

. £ eas b .. .
% ah o e .
L . b TR,

R "5’&‘)‘ Fingh 1‘;'.?'-

P-EDIT User Guide

VARS

VARS
Prints (stacks) the names of all defined variables,
All the above are primarily for use by macros,

See: CONCEPT VARIABLES
MACRO SHOWVARS (Generates a file showing defined variables)

YERIFY

VERify <ON>
OFF

Sets verify mode or prints (stacks) the current setting if no argument is
specified, Verify mode is intended for when using a typewriter as a display
device., If the display device is a 3270, there is no reason to have it on. 1In
verify mode, P-EDIT prints each line that is located or changed. 1In addition,
whenever the left most field of the Screen's header line (such as Edit:) would
have been changed, the new value 15 printed. If the screen header would have
been displayed bright (to warn that the masks are not at their base value) the
header will be breceded with 'MASKsS...'.

The part of the line which is printed is the same part which is specified in
the WINDOW command. Thus, when the display device 1s ON, the columns of the
lines verified are the same columns as shown on the screen for the body of the
file. If the display device is OFF, the WINDOW command may be used in
conjunction with the VERIFY command to select the columns to be verified,

VERSION

VERSion

Prints (stacks) the message: P-EDIT version as of time, date. This is the time
of the compilation of this version of P-EDIT.

VERSIONS

<-> VERSIONS <tag>

n
[

Computes the minimum Boolean expressions necessary to generate each version of
the lines in tte specified range, given the current masks. These are then

. Printed (stacked). If there are no Unfixed lines in the range, the%Sinqle
Boolean expression, TRUE, is reported.” Used primarily by macros,

See: CONCEPT PARAMETRIC FILE.
MACRO SHOW y

D %a mask through eacb]vex_?gn}

MLE T

Builtsin Commands <TG

VIEW

VIEW <boolean>

Restrict or print (stack) the current view. If a Boolean expression is
specified, it becomes the most preferred for purposes of determining the view
seen on the screen.

The current view is defined by a Boolean expression (the one printed or
stacked) and a priority list of Boolean expressions. When the status of a line
is needed by P-ELIT, it can happen that the current view isn't sufficient to
resolve it (both it and its NOT are consistent with the view). When this
happens, the priority list is searched (in order) to see whether it contains a
Boolean expression which would help if ANDed to the view. If so, the view is
restricted and the process continues until the status of the line is resolved.

If this process isn't sufficient, P-EDIT must make an arbitrary choice whether
to place the line in the view or not. It always chooses to do so: it restricts
the view with the Boolean expression associated with the line and adds it

to the end of the priority list (low priority) so that it will tend to make
the same choice next time.

When the user specifies a preferred view, using the VIEW command, the specified
Boolean expression is added to the beginning of the priority list (high
priority). Whenever he changes the view or a mask, the view is temporarily set
to only the AND of the current masks. Thus the next attempt to find the status
of an unfixed line will cause the recomputation of the view. Note: the
following command will print (stack) the AND of the current masks:

GROUP .VIEW TRUE.VIEW,

See: CONCEPT STATUS

WARN see SAY

WIDTH

- 76 .

WIDth <n>
"

Sets the width of the file being edited; or, if issued with no argument, print
(stack) the current width. If '#' is specified, the width is set to the
maximum possible.

The width of the file in P-EDIT governs the width of the file when written on
disk (such as SAVE) or read from disk (such as GETFILE). It also determines
the actual truncation column when 'TRUNC *' is in effect, and the actual end
zone when 'ZONE p *' is in effect. Reducing the width below the current
maximum line length will provoke a warning message as a file may not be saved
in that state,

The width of a file is usually not changed during editing, as the correct width
for most situations is set when editing the file is begun.

el Yo e

G LW | gl

P-EDIT User Guide

WINDOW
Window <p <g>>
L]

Set one or both of the columns between which (inclusively] the lines of the
file are displayed on the screen; or, print (stack) the current settings if no
argument is given. Columns included in the window but not in the line are
displayed as blanks, but trailing, all blank continuation lines are not
displayed,

If the second column is not specified it will remain the same. If it is an
'*!', it will become the maximum value (65535), If the WINDOW becomes wider
than 850 characters, only the first 850 will be displayed; this allows the
current line to occupy 11 lines on the screen, leaving room on the screen for
the first part of the line following the current line.

Particularly useful for looking at LISTING and other wide files,

X <command>
Yn
L]
?

Command specified: Associates the command with the specified abbreviation (X, ¥
or whatever synonym was used). This is done by setting the P-EDIT variable,
COMMAND.X {or COMMAND.Y or COMMAND. synonym), to the command.

NHumber specified: Executes the command previously associated the specified.
number of times or until an error (non-zero return code) results.

No argument specified: Executes the command previously associated once,

'#*!' specified: Executes the command breviously associated until an error (non-
Zero return code) results.

'?' specified: Prints (stacks) a line with two fields, the name of the
abbreviation and its associated value. If SCOPE is ON, this is placed into the
input area where local editing can modifiy it and pushing ENTER will redefine
that abbreviatio:. .

See: MACRO SHORT (Defines some other short name for a command)
CONCEPT VARIABLES (Description of P-EDIT variables)
COMMAND SCOPE (Controls meaning of '7')

XFERCONTROL

XFERControl fnumber

The control of the file whose file number is specified, becomes shared with
the current file,

The data structure in P-EDIT that contains the masks, their values, and the
view information of a parametric file is called the "control", Initially each
file gets its own control. Often it is desirable for more than one file to
share a control; say THEY are part of the same application.

When a control is transferred, it is "merged" with the current contrel. This
merger consists of ANDing together masks with the Same names, except masks with
numeric names (default masks)_are_nglpcated_so that the specified control
dominates (has higher nemes) , Qheggiew.ihfgrmation is also merged so that the
SPECIFIED &dntrol dominates. % ¢ ol i it

See: CONCEPT MASKS '
'CONCEPT VIEW

R B S L8 T

By

B

Built-in Commands ' - 77-

XMACRO see MACRO

Y see X

ZONE

.78 .

Zone <p <g>>
T

The zone of a file consists of two columns which limit (inclusively) commands
which do contextual searches (such as LOCATE). Those commands which also
modify the file (such as CHANGE) are also restricted to the zone in their
modification and will terminate with the message "Truncated" (return code of 4
for macros) if necessary,

Arguments specified: Sets the beginning of the zone to column por 1 if 's' jg
specified; sets the ending of the zone, if specified, to g or slaves it to the
width if '#' is specified. If the ending of the zone is slaved to the width,
it will be equal to the file width even if that later changes,

No argument specified: Prints or stacks the current zone setting as three
items: beginning column, ending column or '*', and ending column or file width.

See: COMMAND WIDTH (Maximum width of line written to disk)
COMMAND TRUNC (Limit for commands that operate on lines)

T
/)5

P-EDIT User Guide

- u

< see

Macros

RIGHT

$ <command>

Cemmand specified: Executes the CP or CMS command. If the command prints any
output it is likely to flash by faster than it can be read,

No command specified: Reads the command separately and is otherwise the same.
Thus, the if a CP or CMS command is issued by mistake without a '$' prefix,
entering '"$' will execute it properly.

See: TOMMAND " (Stacks previous command) !
MACRO $ (Similar command that protects against lost output)
MACRO cp (Similar command for Cp that uses message area for output)

—. <command>
Command specified: Executes the CP or CMs command after clearing the screen and
printing it. Following its execution, 'R;' is printed (if it had a non-zero
return code, that brecedes the ';' in parentheses)., CANCEL must be pushed to
returh the screen to P-EDIT.
No command specified: Reads the command Separately and is otherwise the same,
Thus, the if a CP or CMS command is issued by mistake without a ' _' prefix,
entering '"_' will execute it properly.
See: COMMAND " (Stacks previous command)
MACRO $ - (Similar command that doesn't need CANCEL)
MACRO Cp (Similar command for Cp that uses message area for cutput)
> see RIGHT
' see INDENT

. msee EVAL . TR

Macros

=
P
B
5

-79.

ADD

ADd text

Adds the specified text after the last non-blank character on the line.

Note -- An extra blank (total of two) is needed before the text to add a
a word to the line.
See: COMMAND CASE {Controls handling of lower-case letters)

COMMAND IMAGE {Controls handling of back-space and tab)

COMMAND TRUNC {Controls part of line considered)

The standard SETUP P-EXEC defines the necessary synonym.

ADJUST

<=> ADJUST <<+>delta <n <m>>>
-delta *

Adjusts the indertation of the lines in the specified range so that they line
up with each other and are offset by a dclta, as specified, from the line
before them. A positive delta is specified for more indentation and a negative
one for less.

ADJUST normally operates only on “he field in the lines from column 1 to the
truncation column. However, if a third argument is specified, it will be taken.
to be the starting column of that field.

See: COMMAND TRUNC {Controls the last column of the firid)
MACRO INDENT (Useful for entering the iines cn.rectly originally)

AGAIN

<-> AGAIN <n>

Re-executes the n-th remembered command back (1, the default, is the previous
command) .

Note -- If the re-executed command itself needs the list of remembered
commands, 'Not found' will be reported.

See: CONCEPT MEMORY (How commands are remembered)
COMMAND " (Similar command that stacks the previous command)

ANNEX

< B0 -

<~> ANNEX line

Inserts the specified line (or blank, 1f nune) after the current line only for
those versions of the file that contain the current line. This new line
becomes the current line. Only different th?n INSERT fov parametric files.

See: CONCEPT PARAMETRIC _;s';x;"zs'- AR i R

COMMAND CASE {Cont1rols: handling of lower=-case letters)
COMMAND TMAGE (Contvols handling of back-space. and tab)
COMMAND TRUNC {Controls how .long a line gan.be inserted)

5}'%%:1‘-{1% R e

il 'r'<..-¢'-£;>- et
The standard SETUP P~EXEC hé%khggﬁt'lq

PEDIT User Guide

ARCYV

ARCV <n>
arguments

No argument or number specified: Attempts to archive or retrieve the files
designated by the lines in the range. If the current file type is LIST the
files are archived, if ARCHIVE, they are retrieved. The lines are modified

appropriately.

ARCV arguinents specified: Invokes ARCV EXEC with those arguments.

See: MACRO FILELIST (Generates LIST files of CMS files)
MACRO SORT (Sorts LIST and ARCHIVE files)

ARGS

<=> ARGS command

Executes the specified P-EDIT command after replacing any arguments that it
contains with words picked up from the current line (often in LIST file
format). Permitted arguments are &n, &FN, EFT, &FM, &NAME, &TYPE and EMODE.,

Tf one of the file references are used, the command is not executed if the
currenv line is a comment line or the values picked up are not syntactically
correct; no error is reported. Argunent names may be upper or lower case, but
not mixed. Unlike EXEC2, blanks are preserved in the command and must separate

arguments.

For example, the following will copy the files named in the next § lines to the
A-disk and update the LIST file:

FOR 5 ARGS ;$QCOPY &FN &FT GFM A;CHANGE / &FM / A;CURRENT

See: MACRO FILELIST {Generates LIST files)

ASMCOM

ASMCOM <n>
]

Moves comments in assembly code so that they start in column 31 or two spaces
beyond the last operand.

AVAND

<=> AVAND /stringl</string2 ... ></>

Goes to the nex* occurence of a line after the current line missing one of the
specified strings. The delimiter (shown here as a '/') may be any non=-blank
character not in any of the strings. AVAND wiil run somewhat faster if the
least likely strings are specified early. Two strings in a line can overlap;
‘ine containing the string *ABCD'. . 4 .

~-thus AVANDABC/BCD/ will skip<the
See: COMMAND CAsE 7 1y

line

ontrold Tha dling of id@é}:caéeflettefsy,'

COMMAND ZONE ‘_.ICont:ols\the part of the lines searched)

MACRO LAND {Locate next line,w%bh,all specified strings)

MACRO AVOR (Logate pext: Ling{imi dngtall spegified strings)
MACRO LOR. _, (Lekate d%:&* &y s%i'qiﬂitgd stosing) . - ¢

Macros -81-

AYOR

<-> AVOR /stringi</string2 .,. > </> " *

' { EY . 1 - " on . -. .
Goes to the next .occurence of a line after the current line containing none of
the specified strings. The delimiter (shown here as a '/') may be any non-
blank rharacter not in any of the strings, AVOR will run somewhat faster if
the least likely strings are specified early.

See: COMMAND CASE (Controls handling of lower-case letters)
COMMAND ZONE {Controls the part of the lines searched)
MACRO LOR {Locate nexlL line with any specified string)
MACRC AVAND {Locate next line missing any specified strings)
MACRO LAND (Locate next line with all specified strings)
BACK

BACK <<42n>

Undoes the specified number of P-EDIT commands more (or less) than have already
been undone. BACK can be confused by coverted BACK #nd UNDO commands.

Thus, the following pairs of commands have very different meanings:

UNDO {Undoes nothing)

UNDO

BACK (Undoes previous two commands)
BACK

BACK 1s a good candidate for a PF-key.

See: CONCEPT MEMORY
COMMAND UNDO {Undoes an absolute number of commands)

BALANCE

.82 .

<-> BALance <n>

Checks the specified expression for balanced parentheses (cr n expressions or
all expressions). An expression is all lines from the current line to the line
before the first line of the next expression. The next expression is deemed to
begin with the next line that has a left parentheszis before or at the column of
the first left parenthesis of the current expression.

<=> PArentheses <tag>
n
LJ

Checks the lines in the specified range for balenced parentheses,

A line that is filled with right parentheses is treated like one right
parenthesis. The standard SETUP P-EXEC defines the necessary synonyms.

See; COMMAND ZONE (Controls the part of each line examined)

p-EDIT User Guide

BLIND

L b

<-> BLIND
Enters blind input mode. This is just like input mode except the screen is not
updated automatically. A PF-key can be used to cause the screen to be updated.
Otherwise, the screen can be updated by leaving blind input mode and re-
entering it ('#BLIND'). =

The standard SETUP P-EXEC defines the PF-key to use.

BOOL

<-> BOOL <n>
»

command

Range specified: Prints the Boolean expressions asso~iated with the lines in
that range, The last line becomes the current line,

Command specified: Proforms that P-EDIT command upon the Boolean expressions
in the current file. This is essentially the same as setting EDITMODE to
BOOLEAN and issuing the command, except all sorts of file values (ZONE, CALE
and such) are set properly to act on Booclean expressions,

See: CONCEPT PARAMETRIC FILES
COMMAND EDITMODE

BURN

BURN

Erases the file you are in and QUITs.

CANCEL

CANCEL
Cancel the entire edit session and return to whoever invoked P-EDIT.

Warning: no files in the ring are saved.

CHINDENT

Macros

<-> CHINdent /stringl</string2</ <tag <zonel <zone2>>>>>
n » *
"

Changes the characters used to indent the lines over the specified range. Each
line is examined to determine the number of occurences of the first specified
string at the beginning of the line, These are changed to the same number of
the second specified string. The part of each line examined can be specified;
if not, the current zone settings are used. Examples:

CHINDENT / /. / ® Changes the indentation to, . . .
CHINDENT / /. / * 2 Same except the first column is ignored
CHINNENT / / / * Doubles amount of indentation

CHINUENT [/ // * Unindents all lines

. B3

-y

CMCASE see MCASE

COMPARE
COMPARE <fn1 ft1 fm1 fn2 ft2 <fm2>> <(<optionl <option2 ... >><)>>
' fnl ft1 fn2 <ft2> !
fm2

.84 .

Options: Margins ml mr <ml2 mr2>
Narrow
Wide
Width w
Cc
Quiet

Compares the two specified files with each other, producing a result file which
lists the differences between the two files in parallel columns. If the result
file contains any differences it is edited, otherwise a message is displayed.
{Nothing is written on disk by this macro.)

File name specified: Any missing file name, type or mode defaults to the
corresponding one specified (mode of A is assumed if none specified). Thus:
COMPARE A B C, compares file A B A and file C B A,

Simply mode specifed:; The first file 1s taken from the current line (in the
format produced by FILELIST). The second file has the same name and type, but
has the mode specified.

No file specification: The first file is taken from the current line and the
second file 1s taken from the next line.

description of options

Normally, a message is displayed which says that no differences were found, or
how many (blocks of) differences were found. The QUIET option suppresses this
message.

The MARGINS between which the two files are compared may be specified as an
option (ml1l is left margin of file 1, ... mr2 is right margin of file 2).
Default margins are 1 through * for both files (except 1 through 72 for
ALSEMBLE type files). The WIDTH of the data portion of che ocutput columns may
be specified (between 30 and 119). If the CC option is present, the result
file contains carriage control characters in column 1 so it is suitable for
printing. The default NARROW option implies 'WIDTH 32', the WIDE option
implies 'CC WIDTH 58'. The total width of NARROW files is B0, of WIDE files
133 (CC included).

The example that follows shows a typical output file in the NARROW format.
Lines in the output file which contain only '*' delimit the header (which
appears on each page of a Cf result}. Lines which contain only '=' indicate
that both source files contain equal-within-the-margins lines in that range. A
field prefixed by 'n.' displays (the left part of) the n-th line in the
corresponding source file. A field prefixed by 'n/' displays the n-th line and
indicates that it appears AFTER the lines listed in the opposite column. The

data portion of a field starts after one space past the 'n.' or 'n/' and
continues through the character position marked by the last '*' in the header
{(or '=') over that field. A blank field indicates that this file has no lines.

P-EDIT User Guide

example

E-DISPLY LISP B1 B0/02/22 04:49 E-DISPLY LISPZ B1 8B0/01/19 11:57
V 81 553 lines, margins 1-80 V 81 553 lines, margins 1-80
n#v!t‘alnn--tvmn:t-cta--ttpw-tt---tcnm!_'ti‘i nl_qtu"fﬁr_gtmlt-n‘t!tslnn--t-ltttt!lt-ttt
i 1 S DR SRS, il L ===
192, (ITER (INIT I 80)
193, REPEAT
192/ {COND . io194, ' (SETQ I ($-1 I)))
204, - : (CHR "%")) i AL, _ (CHR "#"))
205, (ELEE (CHR "/"))) 212, - {(ELSE (CHR "|™)))
206, (COND { (PLTP EG-WINDOWL 80 213/ (SETQ ED~-DISPLAYFLAGS (LOGO
Emmonas E===s
300. (COND ((PGTP S ED~WINDOW 305, {COND ((PGTP S EG-WINDOW

This macro uses the executable module QKOMPARE 370 (after loading it into CMS
free storage) and thus runs MUCH faster than the old KOMPARE macro when a
significant number of differences are present. The maximum width permitted an
input file is 65535.

See: MACRO MORE (Shows more detail of the two files)
MACRO FILELIST {Generates LIST type files)
CONFLICT
<~>CONFLICT

Finds the next occurence of an unfixed group of lines which contains lines of
both UNFIXED and HIDDEN status, This is an indication of conflict between the
current view and other possibilities.

CONSOLE

CONSOLE

Edits the console spool file since last used. Unlike _CONSOLE LOOK, nothing is
written onto disk: the console spool file is held in the virtual card reader.

For information on console spooling, enter: _CONSOLE 7,

COPY see MOVE

cp

Macros

CP <command>

Command specified: Executes the CP command. Any output will be routed to the
message area as is the command and an indication of the return code that it
returned.

No command specified: Reads the command separately and is otherwise the same.
Thus, the if a CP command is issued by mistake without a 'Cp' prefix, entering
‘" cp' will execute it properly (the initial blank is needed to prevent CMS
from interpreting the line as the immediate command, ‘CP'}.

See: COMMAND " (Stacks previous command)
MACRO $ (Similar command for CMS commands which do not print)
MACRO _ (Similar command for CMS commands that might print}

-85 -

4]

)

CPLIST

CUF

CUSs

. 86 -

CPLIST <#%>)
+sodeerid oy 4 S Gy

User ID is missing, '®*' or same as current user: Creates and edits a file
showing information about the reader, printer and punch spool files, The lines
are in the same order of that given by the CP command, QUERY, so the newest
files, within device type, will be last assuming the ORDER attribute has not
been altered,

User ID is another user: Creates and edits a file showing information about all
reader files for that user that originated with the current user. The order of
those files in the other user's reader relative to other files will be changed.

See: MACRO P-EDIT (Edits the file designated by the current line)
MACRO ERASE {Purges the files designated by the specified lines)
MACRO ORDER {Re~orders the files designated by the specified lines)
MACRO RIGHT (Used to see DIST, TBL and TAG information)
warning

If another user transfers a file you sent him back to you during the operation,
it will be treated as though it came from the specified user., This condition
can be detected but not prevented. A warning will be printed if it occurs.
This is a very unlikely occurrence and should it happen, CP would have told you

about the transfer,

CUF /stringl1</string2</>>

Locate the unique occurrence of the first specified string in the current file
and change it to the second. 'Not found' or 'Not unigue' is reported if so
{return code of '1' for macros). This operation never repositions the current
line,

The delimiter, shown here as '/', may be any non-blank character not in the
string. :

See:; COMMAND CASE {Controls the handling of lower-case letters)
COMMAND ZONE {Controls the part of the lines considered])
MACRO LUF {Analogous LOCATE command)

MACRO cus {Changes unigue string on screen)

CUS /stringi</string2</>>

Locate the unigue occurrence of the first specified string on the screen and
¢thange it to the second. 'Not found' or 'Not unique' is reported if so (return
code of '1' for macros). If SCOPE is OFF, 'Not found' is reported. This
operation never repositions the current line.

The delimiter, shown here as '/', may be any non-blank character not in the
string.

Characters not being displayed because they are lost due to lines being
displayed bright, are still considered to be "on the screen".

See: COMMAND CASE {Controls the handling of lower-case letters)
COMMAND SCOPE {Controls whether SCOPE is ON)
COMMAND WINDOW {Controls the part of the lines considered)
MACRO LUF {Analogous LOCATE command)
MACRO CUF {Changes unigue string in file)

BEDIT User Guide

CuUT

<-> CUT /string</>
0w g C_olumnl L R AR Y -‘_lf“'.

R

Cuts the current line at the first occurrence of the specified string or
column, making two lines of it, The second part of the old line becomes the
new current line, The delimiter (shown here as '/') may be any non-klank,
non-numberic not in the string,

See: MACRO PASTE (Opposite of CUT)
MACRO K {Similar to CUT)
DISKS
DISKS

Creates and edits a file containing information about currently accessed disks.
A number of commands operate on such files,

See: MACRO DROPDISK {Drop the disk using DROP EXEC)-
MACRO LINKS (Insert lines showing all links to the disk)
MACRO REACCESS (Reaccess the disk so the directory is current)
DOTHERS

<-> DOTHERS <command>

Deletes all lines not "satisfied" by the specified command, That command should
be in the "LOCATE" family: namely those commands that search for something and
give a return code of '1' if not found. Because this macro repeatedly executes
the command starting at different lines, a range specified by a line count
(rather than '*' or a tag) will not work. Examples:

DOTHERS /APPLE/ Deletes lines not containing 'APPLE'
DOTHERS —PEAR- X Deletes lines containing 'PEAR' until tag 'X'
DOTHERS LAND /APPLE/PEAR/ Delete lines not containing both '"APPLE' and 'PEAR'

for use of DOTHERS with masks

The DOTHERS command is most often useful following the setting of a mask. Thus:
MASK A=1 ‘
TOP
DOTHERS /PEACH/

will show you just the lines containing 'PEACH'. Before modifying any of these
lines, be sure to:

UNMASK
or you will only change the file under the temporary assumption "A=1', DOTHERS
modifies the current view so you will still see the same lines after the

UNMASK. You may wish to use the HILITE command to modify the method of
high-lighting.

Macros - 87 .

To remove the changes made to the file:

TOP
MAKE * A=1 FALSE

or use UNDO

The "LOCATE" family: AL
COMMAND LOCATE (Locates string)

COMMAND AVIOD (Locates absence of string)

COMMAND FIND (Locates characters at fixed columns)

MACRO LAND (Locates occurence of all of specified strings)

MACRO LOR {Locates occurence of any of specified strings)

MACRO AVAND {Locates absence of any of specified strings)

MACRO AVOR {Locates absence of all of specified strings)
DROPDISK

DROPDISK

Drops the disk named on the current line in the format generated by DISKS,

See; MACRO DISKS (Generates DISKS files)
DTOP
<=> DTOP

Deletes all lines from the previous to the top (or next to the end). Prints
the number of lines deleted,

DUMMY

DUP

.80 -

<->DUMMY <tag>
Generates a dummy line after (or before for -DUMMY) the current line. If a tag

name 1s specified, it becomes the tag of the dummy line. This is princi-ply
used to give a name to the position between two lines.

<=> DUP <n <tag>>
m
L]

No argument specified: Inserts a copy of the current line.
One number specified: Inserts that number of copies of the current line,

Number and range specified: Inserts that number of copies of the lines in the
specified range.

In any case, the last line of the last copy becomes the current line,

See: COMMAND DESERIALIZE {Controls serialization field to be cleared)

P.EDIT User Guide

EMBED

<-> IMBED /stringl</string2</ thg)}?
n

Modifies the lines in the specified range by placing the first specified string
to the left of each and the second to the right, The two strings are placed
before the first and after the last non-blank characters., The delimiter (shown
here as '/') may be any non-blank character not in the strings and, except for
the first, is optional at the end of the command.

Examples:
BOOL EMBED /A=1&(/) Restricts the line by A=1
BOOL EMBED /A=1|(/) Promotes the line by A=1
EMBED /COVERT / ' Prefixes command with COVERT

See: MACRO BOOL

ERASE

<-> ERASE <tag tag>
n n
* 5

"Erases" the files designated by the lines in the specified range of a LIST or
CP-LIST type file. "Erasing" a file uses ERASE, HIDE, PURGE, or TRANSFER &
PURGE depending on whether the file is on a read/write disk, is on a read-only
disk, is a spool file, or is RDR spool file in another user's reader, The
argument, if any, must be specified twice for safety. The lines corresponding
to the erased files are changed into comment lines with blanks converted to
hyphens.

See: MACRO FILELIST {Generates LIST files)
MACRO CPLIST (Generates CP-LIST files)

ERF see P-EDIT

EVAL

Macros

EVAL <H> expression

Eviluates the specified expression using APL rules but FORTRAN operators ('#'
means multiply) and prints (stacks) the result, For example, 1+2%(2+3} will be
evaluated to 11.

If the first token of the expression is 'H', the entire compution is done in
hexidecimal rather than decimal, and the result is returned in hexidecimal. If
individual operands have an 'H' as their first character, they will be inter-
preted as hexidecimal, -ut the computation will still be in decimal.

The standard SETUP P-EXEC defines the necessary synonym.

-89 .

EXCHANGE

<-> EXCHange /stringl/string2</ <tag <p>>>
n A
L

Exchanges the first (p-th) occurence of the first specified string with the
next occurence of the second specified string on each line of the specified
range, If one of the strings is not found on a line, no change to it is made.
The second string may not overlap the first if it is to be recognized. Changed
lines are recanonicallized if IMAGE is CANON. The last line scanned becomes
the new current line,

The delimiter (shown here as '/') may by any non-blank character not in the
strings. If the two strings are not found on any line, 'Not found' is

reported.
See: COMMAND CASE (Controls the handling of lower-case letters)
COMMAND DESERIALIZE (Contiols serialization field to be cleared)
COMMAND IMAGE {Controls the handling of back-space and tab)
COMMAND ZONE {Controls the part of the lines considered)
FIELDBR

FIELDBRackets <left right>

Brackets specified: Sets the left and right brackets for FILLIN and INFILLIN.
These can be any string of non-blanks. The default values are '<' and '>'.

No argument specified: Prints (stacks) the current values of the left and right
brackets for the current file.

See; MACRC FILLIN {CHANGE for fill-in fields)
MACRO INFILLIN (INCHANGE for fill-in fields)

The standard SETUP P-EXEC defines the necessary synonym,

FIELDBRACKETS see FIELDBR

FILE

FILe <fn <ft <fm <format> <width>>>>

Saves the current file as specified and stops editing it. A message is printed
that describes the resulting file.

See: COMMAND SAVE (For meaning of arguments)
MACRO QUIT (FILE is essentially the same as SAVE following by QUIT)

The standard SETUP P-EXEC defines the necessary synonym.

.90 . P-EDIT User Guide

FILELIST

FILEList <fn <ft <fm>> <{options>>

LISTFile

LF

This invokes the FILELIST module (cf. FILELIST MEMO} to generate the specified
list of files which is then edited as a new file (or appended to the current
file -~ see below). If no arguments are provided, the information about the
current file is displayed in the message area. If LT or LM are used as
synonyms of FILELIST, one or two asterisks, respectively, are assumed to
preceed the arguments. As in FILELIST EXEC, any of fn, ft and fm may be
parenthesized lists of patterns. If fm is omitted, all read/write disks are
searched instead of just the A disk., The permissihle options are: Append,
Name, TYpe, Mode, Big, Small, Old, NEw, SInce, Unique, ONe, and RW, Note that
DISK, FIFO, LIFO and TERM are excluded, and APPEND means append to the current
file being edited, not append to an existing disk file.

LT ft <fm> <(options>

Same as LISTFILE * ft <fm> <({options>

LM fm <{options>

Same as LISTFILE * * fm <{options>

The standard SETUP P-EXEC defines the necessary sSynonyms.
macros which operate on LIST files

MACRO ARCV {Archives file designated by current line)

MACRO COMPARE {Compares files designated by current and next line)

MACRO ERASE (Erases file designated by current line)

MACRC P-EDIT (Edits file designated by current line)

MACRO QCOPY (Copies file designated by current line)

MACRO QMOVE {Moves file designated by current line)

MACRO RENAME (Renames file designated by current line)

MACRO RENEW (Renews line of LIST file with latest information)

MACRO SAME (Inserts similar descriptions as that on current line)

MACRO SEARCH (Executes P-EDIT command for every file designated in range)
MACRO SORT (Sorts lines in LIST file by file name, etc.)

FILLIN

<=>FILLIN </strinfj/> <tag <p>>
n L
» G

This is like the BHANGE command for fill-in fields. It is often desired to
have a file (usually a FORM file) serve as a form to be filled out to produce
similar SCRIPT files easily. These files have fields in them that must be
filled in with specific information each time, called fill-in fields. A
fill-in field consists of a left bracket, an optional default value, and a
right bracket. These brackets default to '<' and ">' if not specified. Thcy
may be specified with FIELDBRACKETS. Example:

<He> said to his <wife>, "I am going to the store",

The first (or all or p'th) fill-in field is located on each line of the
specified range nf lines. If a string is specified, it is replaced by that
string. If not, it is replaced by the default value coded in the fill-in field
itself. If the resulting line is null, it is deleted.

The delimiter (shown here as '/') may be any special character not in the
string except '*' and is optional if at the end of the command.

See: RESOLVE FIELDBRACKETS (Set or query fill-in field brackets)
MACRO INFILLIN. (INCHANGE for fill-in fields)
COMMAND CHANGE (More detail of arguments that are like CHANGE)

Macros - 9

FINDTAG

<~> FINDTAG <pattern>
Searches the current file for the first occurence of the specified tag or if

none specified, the next occurence of any tag. The tag may be specified with
's's meaning any (or no) characters in the tag name at that position,

FIRST see RANGE

FOR

<-> FOR tag <command>

n
L

Command does not go to a different line: Executes the specified command once
for each line in the specified range with the current line set to that line.

Command does change current line: Executes the specified command uncil it is
determined that it is the last time or EOF is reached. After each execution
except the last, a NEXT is executed. The determination of the last execution

is done prior to its execution by the current line being the last in the file
or there being no more lines prior to the specified tag.

Any error will terminate the loop.

<=> FORD <-> n <command>

€ ne as FOR except the display is updated after each execution of the command.

=

The standard SETUP P-EXEC defines the necessary synonym.

FORD see FOR

FORGET

FORGET <reserve>

Clears all remembered commands except for the most recent commands specified to
be reserved, If no number of commands are specified tu be reserved, all memory
is cleared. Resets the REMEMBER count to the default value.

GETFILES
GETFILES <fn <ft <fm >>> <(options>

Inserts the contents of all the specified files followinf the current line.
The arguments can be of any form permitted by FILELIST.

GETSYNONYMS see GETSYNS W

-92. P.LanT User Guide

<-> GETSYNS <disk>
L]

Inserts into the current file the SYNONYM commands expected by the macros on
the specified disk. This 1s useful for writing your own SETUP or PROFILE

P-EXEC., If no disk is specified, it will be taken to be the same disk as the
GETSYNS macro itself (normally the P-EDIT system disk with the label EDITCR).

Macros specify synonyms by a line starting with '*SYNONYMS' within the first 5
lines and followed by the synonyms, each optionally followed by the length of
the minimum abbreviation. If the first synonym is missing (the first word 1s a
number) the name of the macrc will be assumed,

See: CONCEPT INITIALIZATION
COMMAND SYNONYM

GETTAIL

GETTAIL <fn <ft <fm <m <n> <(Quiet<)>>>>>>
[] [] L] L] L]

Like GETFILE, except the line number, m, 15 taken to be the relative line froms
the end of the file and the number of lines tco read, n, refers to that number

of lines before (and including) line m.

See: COMMANC GETFILE

GOSHOW see SHOW

EELP

HEX

Macros

HELP <anything>

Does the same as TELL TELL. That is, edits a file that describes how to use
the on-line documeniation facility of P-EDIT.

See: MACRO TELL

HEX <value>

No value specified: Inserts below the current line the hex representation of
the current line. The hex data may be removed by UNDO or DELETE.

Value specified: Displays the possible interpretations of value as character,

hex and decimal. If value is not a hex or decimal number, it must be.a single
character. ¥

.93.

HiDE

HIDE

Changes the definition of the current view so that it excludes the current
line.

See: CONCEPT PARAMETRIC FILES
MACRO UNHIDE {SIMILAR COMMAND TO GET LINE IN VIEW)

HIST

HIST <text>

The text line is &ppended to the HIST type file whose name 1s that of the
current file being edited.

1f issued with no argument, HIST file for current file is edited.

For use with MAINTAIN.

HUFF

IE

IF

<-> HUFF <disk> <tag>
Ld n
»

The file idehtified in each line of the specified range (in LIST file format)
is HUFFed onto the specified disk or the same disk if '*' or unspecified. The
file is updated to rcflect the change.

1f the range is specified bLv a tag of only cne letter, the disk must be
specified to avoid ambiguity.

<-> 1E <tag>
n
L]

Deletes the lines in the specified range and executes them as P-EDIT commands
(by stacking them). The range may contain no more than 100 lines. When the
first of the commands iz executed, the current line will be the line that was
before it.

<-> IF / cmmndl / crmnd2 </ cmmnd3 </>>

Executes the first specified command. If there is no error, the next command
is executed, if there 1is an error the third command, if any, is executed. The
separator character (shown here as '/') may be any character not used in the
commands .

The follow.ng command, perhaps assigned to the X command, will find the next
occurence f 'A' or 'B', which ever comes first:

IF /;TAG T1;.'A"/;TAG T2;G0 T1;IF "L'B'""GO T2/GO T2

p-£DIT User Guide

INCHANGE

<->INCHange /stringli</string2</>>
INCHX
INCHY

Changes all occurences of the first specified string to the second from the
current line on under interactive control, As each occurrence is found, a
window around it is displayed with the found string underlined and the user is
prompted for one of the following replies:

YES; Make the change and find the next occurence,

NO: Do not make the change and find the next occurence.

MAYBE: Make the change but do not go on, but offer to unmake the change.
QUIT: Stop the operation making no additional changes.

See: COMMAND CASE {Controls the handling of lower-case letters)
COMMAND IMAGE (Controls the handling of back-space and tab)
COMMAND WINDOW {(Controls the which piece of the found line is shown)
COMMAND ZONE (Controls the part of the lines considered)

The standard SETUP P-EXEC defines the necessary synonyms and PF-key variable,
If issued with a synonym ending in 'X', INCHANGE will set the X P-EDIT abbre-
viation so that issuing the command 'X' will continue the operation. If issued
with a synonym ending with 'Y', the Y abbreviation will be set.

See: COMMAND X

INCHX see INCHANGE

INCHY see INCHANGE

INDENT
<-> INDENT <text>
1

Text specified: Inserts the text after the current line with the text indented
to line up with the first non-blank character of the current line. More inden-
tation can be specified by preceding the text with blanks (one extra is needed
to separate the text from the command name). Less indenting can be specified
by preceding the text with back-space characters.

No argumert specified: Enters INDENTED INPUT mode where all further input is
inserted into the file lined up with the previous line. %5iank and back-space
can be used as above,

COMMAND CASE (Controls the handling of lower-case letters)

COMMAND DESERIALIZE (Controls serialization field to be cleared)

COMMAND IMAGE {Controls the handling of back-space and tab)

COMMAND TRUNC {(Controls the longest line that can be inserted)
MACRO REINPUT {(Permits P-EDIT commands to be entered in INPUT mode)

meaning of "back-space character"

Normaliy, a back-space character is as in EBCDIC (hexadecimal 16). The P-EDIT
variable, INDENT.BACKSPACE, can be set to an alternative character string.
Since back-space characters are looked for before blanks, a line beginning with
a back-space can be inserted, indented, with the command:

INDENT @ @This line begins with one back-space
The standard SETUP P-EXEC defines the necessary synonym and establishes the

input translation tables so that 'a" will be translated to the EBCDIC back-
spare character.

Macros - 95.

INFILLIN

<->INFILLIN

INFILLIN allows one to interactively fillin any or all fill-in fields. As each
fill-in field located, it is displayed and the user is prompted for one of the
replies DEFAULT, NO, QUIT or a replacement string. If the reply is a
replacement string, that fillin-field 1s replaced with the string. If the
reply is DEFAULT, the left and right brackets are removed from the fill-in
field, leaving the default value. If the reply is NO, no cnange is made., In
any of chese cases, the next fill-in field is located and ‘“he user is prompted
again. If the reply is QUIT, the macro terminates with no further action.

If a fill-in fi1eld has the same default value as one already filled in, the
previous value will be used.

The pfkeys specified by the P-EDIT variable, INFILLIN,PFKEYS, will be set to

enter the DEFAULT, NO and QUIT replies.
INFILLIN (like CHANGE) respects the zone settings and allows any delimiter.

related TELLs
MACRO FILLIN {Defines the concept of fill-in filed)

MACRO FIELDBRACKETS (Redefines the strings used to bracket fill-in fields)
INFIX
<->INFIX

Interactively sets a mask to fix (or exclude) all unfixed lines of the current
file. As each unfixed line is found, 1t is printed, if hidden, and the user is.
prompted for one of the following replies:

FIX: Restrict the default mask so that the line becomes fixed.

EXCLUDE: Restrict the default mask so that the line becomes excluded.

CONTINUE: Come back to this line later,

QUIT: Stop processing with mask as already set so far.

If the operation completes by running out of unfixed lines (rather than QuUIT),
the file type is sel for a fixed file (1f the P-EDIT variable, FIXED.FILE.-
TY¢E.fnumber is set) and the format 1s set to be non-parametric,

See: CONCEPT PARAMETRIC FILES

The standard SETUP P-EXEC defines the P-EDIT variable, INF1X.PFKEYS, so that
PF-keys can be used for user responses. The standard MODEL P-SETUP defines the
P-EDIT variable, FIXED.FILE.TYPE.fnunber (where fnumber is the file number of
the current to the appropriate file type.

INSPELL see SPELL

INSTANCE

.06 -

INSTANCE name
Creates a file of type SCRIPT and name as specified by inactively fixing the

current file. The current file must be of type FORM, That file is then edited
and 1its fill-in fields are interactively filled in. It is then saved.

See:; MACRO INFIX (Used to fix file)
MACRO INFILLIN (Used to fill in fill-in fields)

a

FEMIT User Guide

INVERT

J see

<=> INVERT <tag>
-
n

Inverts the order of the lines in the specified range. If no range is
specified, two lines is assumed.

SUBST

K /string/ <indentation>
KC n

KR

KT

The operation desciuwed below is done up to column specified. It can be
specified as a column number or as a delimited string. The delimiter {shown
here as a '/') may be any non-numeric, non-blank character not in the string.
The column designated is the first of the first occurence of that string. When
done and if specified by a number, the then current line is indented by that:

amount,

K: Splits the current line at the column. The second part becomes the current
line and 1t is lined up with the first word of the first part,

KC: Combines the current and next lines by overlaying the second at the column.
If no column is specified 1t is taken toc bf one after the last word on the

first line.

KR: Removes columns 1 through the column on the current line,

KT: Truncates the current line at the column.

See: COMMAND CASE {Controls handling ~f case in column specification)
COMMAND DESERIALIZE {(Controls serializtion field to be cleared)
COMMAND IMAGE (Controls handling of back-space and tab)
COMMAND TRUNC {Controls part of the line that will remain)
KC see K
KR see K
KT see K

Macros

LAND

<-> LAND /stringl</string2 ... ></>

Goes to the next occurence of & line after the current line containing all of
the specified strings. The delimiter (shown here as a '/') may be any non-
blank character not in any of the strings. LAND will run somewhat faster if
the most likely strings are specified early. Two strings in a line can
overlap; thus LAND /ABC/BCD/ will locate the string "ABCD'.

See: COMMAND CASE (Controls handling of lower-case letters)
COMMAND ZONE {Controls the part of the lines searched)
MACRO AVAND {Locate next line missing any specified string)
MACRO LOR {Locate next line with any specified strings)
MACRO AVOR (Locat> next line missing all specified strings)

LAST see RANGE

LCASE

<-> LCase </stringi</string2>/> <tag>
n
*

No strings specified: Converts the lines in the specified range to lower-case,

One string specified: Converts the first word starting with that string to
lower-case on cach line of the specified range,

Two strings specified: Converts the first string that starts with the first
specified string and ends with the second to lower-case on each line of the
specified range,

<-> UCase </stringi</string2>/> <tag>»
n
"

Same as LCASE, except the conversion is to upper case.

The separator (shown here as '/') mav be any special character not in the
strings except an '%' or blank.

See: COMMAND DESERIALIZE {Controls gerialization field to be cleared)
COMMAND IMAGE {(Controls the handling of back-space and tab)
COMMAND ZONE {Crntrols the art of the lines considered)

The standard SETUP P-EXEC awefines the necessaty synonyms,

LEFT see RIGHT

LF see FILELIST

.08 . PEDIT User Guide

LHEX

<=> LHEX </>hex</> <tag>)
. n ' L]
-

Like LOCATE, éxcept the string to be located is expressed as the hexidecimal
(EBCDIC), The separator character, shown as '/', may be any non=blank
character that 'is not a rexidecimal digit. Since it serves no purpese, otheg
than to make the analogy witii LOCAYE Sstronger, it may be ommitted.

LINKS

LINKS <vaddr>

Virtual disk specified: Displays all current links to the disk in the message
area,

No disk specified: Picks up the virtual disk address from the second word of
the current line (the format produced by DISKS) and inserts comment lines that
show the current links,

See: MACRO DISKS {Creates a file of accessed disks)

LISTFILE see FILELIST

LM see FILELIST

LMCASE see MCASE

LONGEST

LOR

Macros

<-> LONGEST

Goes to the longest line in the file. If there is more than one line whose
length is equal to the longest, goes to the next one following the current]imne
or, if ncne, the first one in the file,

<=> LOR /stringli</string2 .., ></>

Goes to the next occurence of a line after the current line containing any of
the specified strings. The delimitor (shown here as a '/') may be any non-
blank character not in any of the strings. LOR will run somewhat faster 1f the
most likely strings are specified early.

See: COMMAND CASE {Controls handling of lower-case letters)
COMMAND ZONE (Controls the part of the lines searched)
MACRO AVOR (Locate next line missing all specified strings)
MACRO LAND (Locate next line with all specified strings)
MACRO AVAND (Locate next 1i ._ missing any specified string)

]

LT see FILELIST

LUF

LUF /straing</>

Locate the unique occurrence of the specified string in the current file, 'Not
found' or 'Not unique' is reported if so {return code of '1' for macros),

The delimiter, shown here as '/', may be any non-blank character not in the
string.

See: COMMAND CASE (Controls the handling of lower-case letters)
COMMAND ZONE (Controls the part of the lines considered)
MACRO CUF (Analogous CHANGE command)

MACRO Lus {Locates unigue string on screen)

LUS
LUS /string</>
Locate the unigue occurence of the specified string on the screen, 'Not found'.
or 'Not unique' is reported if so (return code of '1' for macros). If SCOPE 1is
OFF, 'Not found' is reported.
The delimiter, shown here as '/', may be any non-blank character not in the
strinyg,
Characters not being displayed because they are lost due to lines being
displayed bright, are still considered to be "on the screen”,
See: COMMAND CASE (Controls the handling of lower-case letters)
COMMAND SCOPE {Controls whether SCOPE is ON)
COMMAND WINDOW (Controls the part of the lines considered)
MACPRO CUr (Analogous CHANGE command)
MACRO LUF {(Locates unigue string in file)
MAKESAME

MAKESAME <file>

Modifies the current file in the "minimum" fashion to make it the same as the
file with the specified file number {(or the previous file in ring, if none}.
The two files must either by non-parametric or have sufficient masks set to
entirely fix them. MAKESAME uses the executable module, QCOMPARE 370, to find
the "minimum" differences.

See: CONCEPT PARAMETRIC FILES

P-EDIT User Guide

example

MAKESAME permits two files that share a common origir~to be merged into one

parametric file that represents'both of them. Thus it is both a way to get
started using the parametric facility of P-EDIT and to integrate the modifi-
cations made by those who don't with a parametric file under development. A
sequence of commands like the following can be used to merge two files into one
that represents them both:

P-EDIT FIRST FILE

P-EDIT SECOND MODEL

{Respond with 'FILE', the file type in this example, when prompted)
GET SECOND FILE

MASK FILE=FIRST

MAKESAME

UNMASK

MCASE

<-> MCase command

Issues the specified command with mixed case set temporarily on (CASE M M.
The command name may be specified as a prefix on MCASE by defining the
appropriate synonym.

<=> CMCase </stringl/string2/ <n <g>>>>>>

The same as the built in CHANGE command except temporarily imposes mixed casea.
<-> LMCase /string/

The same as the built in LOCATE command except temporarily imposes mixed case,
See; COMMAND CASE (Controls the treatment of lower-case characters)

The standard SETUP P-EXEC defines the necessary synonyms,

MORE

MORE <i <3>>

Displays the lines around the current line in a COMPARE output file by going
and reading the appropreate CMs files. The positive numbers i and j specify
the left and right margins for the display. The maximum window is 78, Default
values are: i =1, j = 1 + 77,

See: MACRO COMPARE (Produces a COMPARE output file)

Marcros - lo] .

MOVE

<-> MOve <<tagl»-tag2> <To tagli>

Copy n Up m . R T
» U[J L] v
Down m
Down *
Here

Moves (copies) the lines in the specified range to the specified destination
The range may be specified by a line count in the normal fashion, by two tags
(the first will default to the current line but the '-' must be coded), or by
prior use of FIRST and LAST. The destination may be specified relative to the
current line (UP, DOWN or HERE), by a tag (TO), or by prior use of TO. It
FIRST, LAST or TO are used, all default tags are cleared.

The range may be in a different file than the destination. However, in the
case of MOVE, any tags on the moved lines will not move with them as normal
(they remain on the now deleted original lines).

Sew; MACRO RANGE (Used to set default tags: FIKST, LAST and TQ)

The standard SETUP P-EXEC defines tlhie necessary synonyms.

NOTE

NOTE <text>

This macro is used to leave short-term notes containing a location in the file
and some text (often a P-EDIT command). If text is spegified, it is remem=-
bered along with the current line. If not, the earliest note is put 1into the
input area and cleared.

ORDER

ouT

- 102 -

<~-> ORDER <tag>

n
.

Re-ORDERs (in the CP'sense} the spool files designated by the lines in the
specified range {in CP-LIST format). That 1s they are made the next files to
be processed in their respective devices. Lines are not moved to reflect the
new order, however, lines designating files that do not exist are modified
accordingly. The current line will be the last line of the range (or, if a
ling with improper format 1s found, that line).

See: MACRO CPLIST (Generates CP-LIST files)

our

ouits editing all files except those that have not been saved and are not dummy
files (have an '*' as their file name, type or mode}. Edits a file of the
remaining files or leaves P-EDIT if none.

See: MATRO QUIT {Quits editing one file}
MACRO CANCEL (Quits editing all files with no protection the unsaved)

PEDIT User Guide

P-EDIT

P-Edit <fn <ft <fm <form> <width>>>> <{options>
Erf] Al

Arguments specified: Performs the same operation as P-EDIT EXEC unless the file
specified is unique and is already being edited, in which case 1t is resumed,

No arguments: If the current file is of one of the following types, a file name
will be picked up from tle current line 1f it is in the expected format and the
file will be edited or rosumed. Otherwise, a file of type P-LIST describing
all files being edited is generated and edited.

LIST: MACRO FILELIST (Generates lists of files on disk)

CP-LIST: MACRO CPLIST (Generates lists of spool files)

P-LIST: MACRO P-LIST {Generates lists of files being edited)
TELL: MACRCO TELL {Generates TELL files with cross-references)
MAIL: (MAIL files might have cross-references)

In any case, if more than one copy of the file 1s already being edited, a a
file of type P-LIST describing them

Se..; CONCEPT INITIALIZATION {How initialization by file type is done)
MACRO QuIT (Stops editing the current file)
MACRO FILE (Saves and then stops editing the current file)

The standard SETUP P-EXEC defines the necessary synonyms.

P-LIST

<-> P-LIST <tag>
n
]

No arguments: Edits a file that has a line for each file that is in the ring of
files being edited,

Argument: Reads all the files designated by the lines in the specified range
{in LIST file format) into the ring of files being edited if they are not
already there. A file is then edited, a subset of the above file, that has a
line for soach corresponding file in the ring.

This macro may be aborted by entering 'HE"'.

See: MACRO P-EDIT (Will resume the file described on the current line)

P-SCROLL

Macros

<-> P=-S5CROLL <type>

Goes to the next reasonable piece of the file according to file type. If no
file type is specified, the file type of the current file is used,

File types;:

TELL: Goes to the line that will center the next page of documentation on the
screen (1f SCOPE 1s OFF, prints the next page of documentation) .,
See: MACRO TELL {Produces the pre-formatted TELL type files)

LISP: Goes to the next start of a LISP function if one can be found close
enough for some text to overlap between the text displayed before and after;
otherwise, the same as SCROLL, The test for the start of a LISP function is a
left parenthesis in column 1 or 2.

Any other: Does the same as SCROLL.
See: COMMAND SCROLL

P-SCROLL 1s antended to be used as a PF-key assignment by P-SETUP files. They

look in the variable, SCROLL.PFKEYS, to find the proper keys.

See: CONCEPT INITIALIZATION

PARA

PARA <n <p <g>>> <(<Indent> <Cap> <No.><)>>
* " *

B

Formats the lines in the specified range as a single paragraph that extends
from column 1 {or or p) to column 70 (cr g). If the range 1s specified as 'B',
the lines from the current line to the next blank line will be formatted.

Words will in general be separated by a single space. An extra space will be
inserted at the end of each sentence. The [ollowing options are permitted:

INDENT: Indent the first line by five additional spaces.

CAP: Capitalize the first letter of each sentence.

NO. : Treat ',' as any other character.

See: COMMAND DESERIALIZE {(Controls serialization field to be cleared)
CUMMAND TRUNC (Controls part of line used and maximum produced)

use of special variables
By setting certain P-EDIT variables, the behavior of PARA can be modified.

PARA.DEFAULTS: Up to three values to be used as default values for the first
three arguments to PARA. If the variable, PARA.DEFAULTS.type (where "type" is
the file type of the current file), is found, it is used instead. 1If fewer
than three values are found, the missing ones are taken to be 1, 1 or 70,

respectively.

PARA.LINE: PARA normally leaves the current line at the last line in the para-
graph. If this variable has one of the following values, this action is

modified:
FIRST: Leave current line at the first line of the paragraph.
NEXT: Leave current line at the line after the paragraph or, if it is
blank, the line after that.

See: CONCEPT VARIABLES (How to set P-EDIT variables)
CONCEPT INITIALIZATION (How to get them set automatically)

PARENTHESES see BALANCE

PASTE

<->PASTE

Appends: the current line to the end of the previous line.

See: MACRO cuT (Opposite of PASTE)
RESOLVE KC (Similar to PASTE)

. 104 - PEDIT User Guide

PAUSE

PAUSE

Does the following time consuming clean-up operations that are appropriate when
the user feels that he will not want to interact with P-EDIT for a while. This
1s a good candidate for a PF-key.

1= All files that have been modified since they were last saved are Saved.

2- Storage reclamation is done if less than 100,000 bytes are available,

See: COMMAND SAVE
CONCEPT RECLAMATION

PEDIT

PEDIT fn ft <fm <format <width>>> < <Dummy> <Nodef> <Quiet> <DARK> <)>>

L
Invokes the PEDIT editor while remaining in P-EDIT. Primarily used to compare
features in these two very similar editors.

See: COMMAND VERSION (Can be used in either editor to print which)
COMMAND EDIT (For details of arguments (NODEF 1s like NOSETUP))

PRESUME

PRESUME <prefix>
OFF

Prefix specified: Enters a mode where all further lines typed in until another
PRESUME command will be prefixed by the specified text unless the line is null
or ends with a blank (for special treatment of named interrupts and immediate
commands see below) . For convenience, if the specified text does not end 1in a
blank, one will be brovided unless it ends with a back-space (often typed as
'@') which will be removed. Three useful examples are:

FRESUME INSERT (Defaults to insert lines into file)
PRESUME INDENT {Defaults to inserting and lining up lines)
PRESUME CHANGE //a (Defaults to placing text at beginning of ZONE)

OFF specifed: Clears the presumption mode.
Nothing specified: Prints {stacks) the current presumption.

Note -- Since immediate CMS commands and named interrupts (like HX and HC) will
be interpreted by CMS unless they are followed by a blank, there would be no
way to get the presumption prefixed to such a line unless they were treated
specially. Therefore the blank will be ignored on such a line. In the very
unlikely event that a macre has been given the same name, it can be called by
following its name with two blanks.

The standard SETUP P-EXEC defines PRESUME.HEADER.NAME as a variable to lock to
for the header. wWhen thus defined, the current presumption is displayed in the
header.

PROMOTE

Macros

PROMOTE |
The current line is forced to be in all versions of the file consistent with

the current masks. That 1s, its Boolean expression is changed to be its old
value ORed with the AND of the current masks. |

- 105 -

PUFF

<=> PUFF <disk> <tag>
» n
L

The file identified in each line of the specified range (in LIST file format)
is PUFFed onto the specified disk or the same disk if '*' or unevecified. The
file 1s updated to reflect the change.

1f the range is specified by a tag of only one letter, the disk must be
specified to avoid ambiguity,.

PURGE

PURGE relation

Makes the current file less parametric. Any version under cortirol of the
specified relation will be deleted. Examples:

PURGE TIME<79 Remove history before 1979

PURGE TIME>=79.1.2 Back up to file as of January 1, 1979
PURGE TIME<CURRENT (TIME) Purge all histo.y

PURGE OPTION=1 Get rid of option 1

PURGE OPTION-=1 Make option 1 the only case

1f the intention is to reduce the size of ihe phycical file, take care to reset
all masks (such as the TIME mask), since the deletion is done under cheir
control as usual.

PUSHPOP

PFKEY n IMM PUSHPOP

Intended for use by a PF-key. If the PF-key 1s struck once, same as PUSHMASK;
if struck twice, same as POPMASK. In reality, if the current default mask is
not TRUE (which would ind1cate it had not been set since previous PUSHMASK) a
PUSHMASK 1s executed; if i1t &s TRUE, two POPMASKs are executed.

The PF-key should end with a blank (not shown above) so that PRESUME will
recognize 1t as a command.

See: COMMAND PUSHMASK

PUTBOOL

- 106 -

PUTBOOL name fn<.<ft<.fm>>> <boolean>

Appends the Boolean expression (with functions expanded) to the specified file
associated with the specified name. If the file already has a Boolean
expression associated with the name, it is deleted. 1If no Boolean expression
is specified, any existing definition is deleted. 1If the file type is not
specified, 'P-BOOLS' is assumed; if the file mode is not specified, the mode of
the current file is assumed. The file name must be a legal parameter value as
as specified.

See: CONCEPT PARAMETRIC FILES

FUNCTION READ {Retrieves Boolean expression from file)
FUNCTION MASK {Can be used to save a mask value)

FUNCTION FETCH (Can be used to save an edit variable value)
FUNCTION MASKS " (Can be used tc save the AND of current masks)

P-EDIT User Guide

QCOPY

<=> QCOPY <disk> <tag>
n
»

Copies the CMS files designated on each line in the specified range (in LIST

file format) onto the specified disk (or the A-disk, if none is specified),

Inserts a comment line describing the new files after each line corresponding

to the original file,

If the range is speciried by a tag of only one letter, the disk must be

specified to avoid ambiguity.

See: MACRO FILELIST {(Generates LIST files)

QMOVE

<=> QMOVE <disk> <tag>

n
»

Moves the CMS files designated on each line in the specified range {(in LIST
file format) onto the specified disk (or the A-disk, 1if none is specified),

Updates each line to it describes the new file. If the original disk is not

accessed read/write, HIDE is used to simulate the move .,

If the range is specified by a tag of only one letter, the disk must be

specified to avoid ambiguity.

See: MACRO FILLLIST (Generates LIST files)

QUIT

Quit

Stops editing the current file and returns to CMS if it was the only

file being

edited. Unless one of the following conditions is met, a warning is given that
an unsaved file has been QUITed (if it was the only active file, the return to

CMS will be inhibited) :

Most recent change has been saved
File's name, type, or mode is 's!' (a dummy file)

See: MACRO FILE {(Saves file on disk and then quits)
MACRO oOuUT (Quits all files that have been saved)
MACRO CANCEL (Quits all files no matter what)

The standard SETUP P-EXEC defines the necessary synonym.

Macros

-107 -

RANGE

<=> FIRST <Cancel>

LAST

TO
No argument specified: Sets the specified default tag to the current line
unless it is unfixed. If it is unfixed, it must be the first {or last for

LAST) unfixed line in the view among a consecutive group of unfixed lines; the
default tag will be set to the first (last) unfixed line in the group.

CANCEL specified: Clears the sprcified default tag.

<~> RANGE <n>
Cancel

No argument specified: Same as FIRST if not yet set, otherwise same as LAST if
not yet set. If both set, they are cleared. This is a good candidate for a
PF-key.

Number specified: Same as a FIRST issued on the i:urrent line and a LAST issued
on the line n-1 lines forward.

CANCEL specified: Clears the default tags, FIRST and LAST.

The standard SETUP P-EXEC defines the necessary synonyms. If used with a
synonym that does not begin with 'F', 'L', or 'R', TO will be assumed.

These define the range and destination of several macros. Use of these default
tags will clear them.

See: MACRO MOVE

MACRO COPY
MACRO SORT

REACCESS

REACCESS

Re-accesses the disk designated by the current line. If the disk was accessed
read-only, 1t is re-acces:ied with the NONSHARE option,

Note -~ This command only re-accesses disks that are still linked to the
virtual machine, it will not re-link the disk as the CMS command, GIME, will.

See: MACRO DISKS (Generates a list of accessed disks)

RECEDIT

RECEDIT <fn <ft <fm <format> <width>>>> <{<Dummy> <Quiet> <Nosetup> <)>>

Calls P-EDIT recursively; otherwise just like the EDIT command. This is for
use by P-EDIT macros and EXEC's., If P-EDIT is your normal editor, NORMAL
EDITOR should contain the line: P-EDIT P-EDIT RECEDIT.

. 108 - P-EDIT User Guide

REINPUT

<-> REINPUT <command:>

Executes the speacified command and re-enters INPUT mode if the previous command

had entered INZFUT mode.

If no command is specified, it is taken as the next line read.

Primarily for use by PF-keys: PFKEY 03 IMM EREINPUT IE.

Thus, the

following PF-key will "prime" P-EDIT to take the next line, only, 4s a command

even though it is in INPUT mode:

PFKEY 03 IMM #REINPUT.

The prior existence of input mode is determined by lnoking at the header line

on the screen converted to upper case.

If it 1s <REVERSE> INPUT: or <REVERSE>

REPLACE: the I"PUT or REPLACE command is use to re-enter INPUT mode; if it is
<REVERSE> macro INPUT<:> the macro named is used to re-enter INPUT mode.

Commands that support various kinds of INPUT mode:

COMMAND INPUT
MACRO INDENT
MACRO BLIND

RENAME

<-> RENAME fn <ft <fm>>
* . "

= = =
Renames the CMS file designated on tb
the name specified. Parts of the file
remain unchanged. The current line 1is

If the disk 1s accessed read-only, *he
the change temporarily.

See: MACRO FILELIST

RENEW

RENEW <file>

(Normal INPUT mode)
(Lines up lines in structured files)
{Only refreshes sceen on request)

current line (in LIST file format)
name that are missing, '®' et

to
or '=' will

updated to reflect the change.

file directory will be modified to make

(Generates LIST files)

No argument specified: Updates the current line (in LIST file format) to the

current information about thc file named.
lines will be inserted for the excess files.

line i1s changed to a comment line,
no effect.

File specified: Inserts a line for each file specified.

specified as a FILELIST pattern.

MACRO FILELIST
MACRO FOR

See:

Macros

If more than or: file is found,
If the file no longer exists, the

Comment lines and lines with garbage cause

The files are

{(Similar command)
{Used if a number of lines are to be updated)

- 109 -

REPLAY

REPLAY <n>

Similar to UNDO, The specified number of commands are undone and each, in turn
is put into the input area. The commands can be modified however the user
wiches included using CP's line-end character (often '#') to execute more

than one command. When ENTER is pushed, REPLAY will execute the commands in
the input area, and will put the next undone command in it,

The maximum number of commands that can be REPLAYed is two less then the
number established with the REMEMBER command; therefore the default maximum is

seven,

RESERIAL

RESERIAL <incr>

The lines around the current line that have blank serialization fields will be
serialized with values between the serialization values on the two lines pefore
and after them. The increment specified will be used or, if none, a reasonable
one will be used. It is computed by finding the power of ten less than the
difference between the two bracketing serialization fields. If the bracketing
serialization fields have alphabetic headers, these will be honoured but mast

be equal.

The current position in the file will be unchanged unless the increment is too
large to fill in all the blank serialization fields. In that case, the line
after the last one reserialized will become the current line (returr code of 1

for macros).

See: COMMAND DESERIALIZE (Controls serialization field to be used)

RETCODE

- 110 .

RETCODE command

Issues the command, prints its return code, and then undoes all effects of the
command (in so far as possible). Primarily used during the process of writing
macros in order to test which return code the macro would get if it issued the

command .

See: CONCEPT MEMORY (Which effect. of the command can be undone)
CONCEPT MACROS (How to write macros)

P-EDIT User Guide

RETROFIT

RETROFIT <fnumber>

Modifies the current file so0 that it includes the modifications made
parametrically to the specified file, The intention is that the two files were
at one time the same and were modified independently, The algorithm looks for
the unique and fixed occurence in the current file of the view of cach unfixed
section in the specified file. If found, it makes the change to the current
file; if not, the change 1s put at the top of the current file for manual
handling. Because the view 15 used to trigger a match, it should be adjusted
to be as much like the current file as possible,

If no file is specified, the default of the pPrevious file is taken. That file
must be parametric, If the current file is not parametric, it is made so and
the file type is changed to *. At the epd of the operation, the two files will
share the same control., A return code of 1 indicates that sonie modifications
were not found. A return code of 2 indicates some other problem; no change has
been made.

Typing ?? during operation will type an indication of how much has been done.

REVEAL

Macros

REVEAL /string</>
command
OFF

String specified with '/': Enters REVEAL mode with every line with the string
revealed,

Another command specified: Enters REVEAL mode with every line that "satisfies"
the command revealed. The command should be in the "LOCATE family", that is, a
command the searches for something starting with the next line and returns 0 or
1 depending on whether it is found, A line “"satisfies" the command if it
returns a 0 with it as the current line. Since the command 1is executed at
different points in the file, it should not have a range specified as a line
count,

OFF specified: Leaves REVEAL mode. This must be done before saving the file on
disk,

REVEAL uses the parametric feature of P-EDIT to create a version of the file
consisting of only the lines that satisfy the specification. P-EDIT commands
will operate on both the full file and the short version thus Ccreated. How-
ever, only the short version will be seen. Lines of the short version will be
highlighted where a line in the full file is not being displayed. While in
REVEAL mode, the file mode of the current file is changed to 's' tg discourage
writing it on disk. ;

Note -- REVEAL assumes that the lines to be revealed constituge a small percen-
tage of the total lines. If this is not true and the current file is large,
it will take an excessive length of time to complete,

See: CONCEPT PARAMETRIC FILES'
COMMAND HILITE {Controls the method of highlighting)
MACRO UNHIDE {Can be used to see the full file)

RIGHT

RIGHT <n>
> »

LEFT
<

The current definition of WINDOW is moved right .(left) by the specified amount
with the width of the WINDOW kept constant. If no amount is specified, the
width of the WINDOW is assumed. If '#*' is specified, the max.mum amount is

assumed. If the amount specified goes beyond the current WIDTH of the file, it
is lessened so the WINDOW is the first {last) whatever the WINDOW width is,

SAME

<=> SAME <Name> <Type> <Disk>
Inserts lines describing all files with the same file name, type, and/or disk
{as speacified) as the file designated by the current line (in LIST file for-
mat). If no argument is specified, NMAME and TYPE are assumed.

If the current line is null or begins with an '*' or there no other file is
found, nothing is done,

See: MACRO FILELIST (Generates LIST type files)

SAMPLE

This is intended to be a good base for writing macros. It has the following
facilities:

ECALL -EXIT <retcode <message>>

If macro was called by user, warning message is issued; if called by macro,
retcode 1s returned., If retcode = 0 any message will be printed without
warning.

EIRREVOCABLE = YES
After this, any interruots (no storage or user) will warn the user that the

macro was partially ex_.cuted. This 1s important after 1ssuing a CMS command
that modifies tha file system, say.

EMUST = ESTRING OF command

It cimes crucial that some P-EDIT command is executed even if an
in. - occurs. The value of EMUST.DO will be executed after interrupt
clean-up,

Also contained in this vample macro is the logic necessary to parse and loop
over a range of the form: <tag>

n
]

SAVEFIX

SAVEFixed <fn <ft <fm <format> <width>>>>
L] L -

Unfixed lines in current file: Prompts the user for which version of the
logical file he wishes to write on disk and then writes it as specified.

Logical file is already fixed: Simply writes the logical file on disk as
specified,

-112. rEDIT User Guide

The format, if specified, must be F, V, or VB. The file type, if not
specified, will be the current file type unless the P-EDIT variable,
FIXED,FILE.TYPE.fnumber, is set, If this variable is not set, some argument
must be specified,

See: COMMAND SAVEVIEW {éimilar command for files already fixed)
MACRO INFIX {Used to do the interactive fixing)
CONCEPT PARAMETRIC FILE

The standard SETUP P-EXEC defines the necessary synonym, The standard MODEL
P-SETUP defines FIXED.FILE,TYPE. fnumber (where fnumber 1is the file number of
the current file) to the appropriate file type,

SAVEFIXED see SAVEFIX

SAVEFORM

SAVEFORM fn <ft <fm>>

This is to be issued while in a FORM file, FORM files are parametric files
with fill-in fields, They typically start with SCRIPT comment lines describing
the parameterization. SAVEFORM generates a SCRIPT fiie called name which
contains only the SCRIPT comment lines and the fill-in fileds., The intention
is that this would be filled out by someone for later entry by someone else
into the system.

See: MACRO VERSION (Used tc generate one version from a FORM file)
MACRO FILLIN (Basic information about fill-in fields)

SCALE

<-> SCALE <width>

Inserts a scale line after the current line in the file. The scale line
extends from column 1 through the specified width. If no width 1s specified,
it 1s assumed to be 80, !

See: CONCEPT SCREEN FORMAT

SEARCH

Macros

<=> SEARCH n <command>
&

The files designated by the current and next n-1 lines of the LIST of files
currently being edited are searched for those files which "satisfy" the
command. If a file is suspended, it will be resumed, otherwise edited anow,
then the command {typically a LOCATE or FIND) is performed on the file,
Whenever the command is satisfied, a new level of the editor is entered to read
commands from the o,nsole {or stack). Upon EXITing (QUITing or FILEing) from
that level, the search resumes. If the command is not satisfied, the file wyl]
be DROPped if it is saved and was not previously being edited, otherwise 1s 14
retained by the editor for later resumption,

A command 1is "satisfied" 1f, when executed starting at top-of-file, 1t does not
give return code 1 {e.g. does not go to end-of-file). Sta) ('*') is vaiid for
n and means all remaining lines of the LIST file.

The search may be stopped when done with the current file by entering the HE
named interrupt.

For the purposes of UNDO and ?, the searching of each file is a separate
command if the SEARCH command was issued from command level.

.

SETCOL

<=2 SETCOL column /string</ <tag>>
.
n

Changes the characters starting from the specified column to the specified
string over the spccified range. The delimiter {shown here as '/') may be any
non-blank character not in the string. The final delimiter may be ommited if
the command 1s to operate on the current line.

This command is unusual in that it will do the change without regard to the
text in the lines or file characteristics (such as WIDTH),

SETUP

SETUP <type>
Re-initializes the current file as it would have been initialized when editing
of it began had it been of the file type specified (or the file type DEFAULT 1if
not) .

See; CONCEPT INITIALIZATION

SHORT

SHORT name <command>»

Defines the specified name as a synonym for the X command so it can be used as
a short name for commands just as X and Y are. If a command is specified, it
is defined as the meaning of the name.

The SHORT command is also useful to assign a command to X or Y that those
commands do not permit, such as SHORT X ?

See: COMMAND X

SHOW
<=> SHow <tag>
VIEWSHow n
VSHow *

<114

Starts a loop, under user control, to step through each version of the lines in
the specified range. If no range is specified, all consecutive unfixed lines
around the current line are assumed. Normally the stepping through is accom-
plished by setting a mask, however, if the optional prefix, 'V' or 'VIEW', is
specified, the versions are stepped through by changing the view. A SHOW
issued in the middle of another show loop acts reasonably,

STep <<+>n>
-n

Advances the lastest SHOW loop as specified {or to next version, if not), A
negative adrance will go back to a previous version.

P.EDIT User Guide

UNSHOW and GOSHOW

UNShow

Terminates the lastest SHOW loop., If it was a loop within a loop, the previous

loop 1s resumed,
GOShow

Goes to the first line in the range of lines the lastest SHOW loop is stepping

through the versions of,
See: CONCEPT PAFRAMETRIC FILES

The standard SETUP P-EXEC defines the neccesary synonyms,

SHOWMASK

SHOWMasks

Creates a file showing all mask names and their values for the current file,

This file is then edited.

The standard SETUP P-EXEC defines the necescary synonym.

SHOWMASKS see SHOWMASK

SHOWPARM

<-> SHOWPArms <tag>

n
®

Ed:ts a file showing all parameters with assoclated values for the lines in the

specified range (or the entire file, 1f none). This operation is independent
of any masks that are set (except for the meaning a numeric range specifica-
tion).

See: CONCEPT PARAMETRIC FILES

The standard SETUP P-EXEC defines the necessary synonym,

SHOWPARMS see SHOWPARM

SHOWPF

SHOWPFkeys

Creates a file showing the current settings of pfkeys 1-12 in an array of the
same form as the keys themselves: 4 rows and 3 columns. This file is then

edited.

The standard SETUP P-EXEC cefines the necessary synonym,

SHOWPFKEYS see SHOWPF

Macros

SHOWSYNONYMS see SHOWSYNS

SHOWSYNS

SHOWSYNS
SHOWSYNonyms

The current P-EDIT synonyms are put into a temporary file which is then edited.
The file consists of two sets of columns, the first is sorted by command, the
second by synonym, The synonym beyond its minimum length is displayed in lower
case.

The standard SETUP P-EXEC defines the necessary sysnonym.

SHOWYARS

SHOWVars

Creates a file showing all edit variables and their values. This file is then
edited.

The standard SETUP P-EXEC defines the necessary synonym.

SHOWYERS

SHOWVERs Lons

Creates and edits a file showing all versions of the current (parametric) file
that are permitted by the current masks. This file begins with the Boolean
expressions that define each versien. This is followed by the lines in the
logical firle. From each Boolean expression, a line, formed with '|', is made
runnindg the the length of the file. The '|' is changed to an '*' for each line
in the logical file corresponding to the versions it is in.

This macro is not really practical on very large files or files which have many
versions consistent with the current masks). The header on the screen is
modified after vach version 1s handled,

The standard SETUP P-EXEC defines the necessary synonym.

SHOWVERSIONS sce SHOWVERS

SIMEDIT

- 116 -

SIMEDIT ON
QFF

SIMEDIT 1s a P-EDIT macro which provides an interface to P-EDIT which removes
the distinction between the "Input" and "Edit" modes of operation.

Under SIMEDIT, any line entered from the terminal which is not a legal P-EDIT
command is treatzd as input, thus obviating the need for a special input mode,
(Note that the UY-ELTT input mode is still supported.} This is useful in most
cases where text entry and editing are performed simultaneously. It does
require some awareness about unknown P-EDIT macros which may be executed when
text entry was intended.

P-EDIT User Guide

discussion of macro handling

Any standard P-EDIT command will be executed Just as it would be under P-EDIT.

Thus caution is required during text entry if not in input mode, (1f a valid
P-EDIT command is to be entered as text, it can of course always be preceded by
I and a blank). But Suppose you wish to enter "Add 1 to ...". There exists a

macro called ADD, and without trapping, it would be executed, and unexpected
things could happen to You. Trapping works as follows:

The first time you encounter a macro, you will be prompted to enter an
indication of whether to execute the macro, input the line or lgnore the line.
If you select execution or input, you may also specify whether You wish this to
occur just this time, for the duration of the SIMEDIT session, or for all
SIMEDIT sessions in the future. You may also specify if that the macro only be
S0 processed for this file type or for all file types (this is handy for macros
that only make sense for certain file types) .,

NOTE: After trapping, the reply MUST come from the terminal (READ 1MMEDIATE) .
This protects you from problems that could occur when "typing ahead" etc,

which are not in files of type SIMEDIT {on your A-disk); the file LIST SIMEDIT,
for example, records the actions to be taken for macros issued when editing a
file of type LIST, The file DEFAULT SIMEDIT records this information for those
macros which are to be processed the same for all types of files. The
brocessing associated with a particular file type takes precedence over the
default processing.

SORT

€72 SORT <tag-tag> <<+><keyl> <<+><key?> ... 55
tag - -
n
"

Where a key is : coll-col2 | AGe | CLass I DIst | FM | FN | PT
LAbel | MOde | NAme | OR1gin | SIze | SPoolid I'TYpe

The lines in the specified range are sorted according to the keys, If more
than one key 1s specified, the first is the most significant (major) the, second
15 the next most significant down to the last key being the least significant.,
If no keys are specified, the lines are sorted in ascending (default) or
descending order using as the key the entire field specified by the current
ZONE settings,

A range is a specification of a first and last line to be sorted. If no first
15 specified, it defaults to the current line. The first 1s specified either
by a range of the form tag-tag or previously with the FIRST macro and no range
specification in the SORT itself. The last can be specified by a number, n, an
asterisk, a tag, or previously with the LAST macro and ' no specification in the
SORT itself. A number means n lines forward (or backwfrd for ~S0RT) from the
current line on. An asterisk means the end-of-file (ok top-of-file). The last
line may not be before (after) the current line.

The keys may be numerical or symbolic column designations. A numerical key
consists of a column number followed by a - followed by a column number,
optinnally preceded by an + or -; embedded blanks are not permitted. The
column numbers denote the first and last columns of the key field, and the
leading + or - denotes an ascending (default) or descending sort oh that key .

“8ymbolic keys are those listed on the lines above and denote the corresponding
fields in the following file types. The key AGE sorts on the date and time
fields in the opposite order as that specified. Symbolic keys may be
abbreviated by their first two letters.

Filetype Generator Sympolic keys permitted

LIST: MACRO FILELIST (AGE FM FN FT LABEL MODE NAME ORIGIN S1ZE TYPE)
CP-LIST: MACRO CPLIST {AGE CLASS DIST FN FT NAME ORIGIN SIZE SPOOLTD TYPE)
ARCHIVES: MACRO ARCY (AGE FM FN FT LABEL MODE NAME SI1ZE TYPE)

Note -- If no range is: explieitely specified and the first key i1s symbolic,
an order ('+' or "-') must he specified.

Marcros <117,

SPELL

STEP see SHOW

- 118 -

<=> SPELL <text>
n
»

The user is warncd of any incorrectly spelled words in the text and possible
correcticons if known, 1If a range is specified, text is picked up from the
current line on until an incoirectly spelled word is found. Single letter
words are always considered correct,

SPELL uses a copy of PROOFERS dictionary made 3-15-80. It uses the following
phonetic hash to determine possible corrections. SPELL will offer as possible
corrections the words with the most triads matching.

SPELL can be terminated with the named interrupt, HE. The flle WORDS P-TABLE
can be used to provide a small number of additional recognized words

description of INSPELL
<-> INSPELL <Mixed> <Save> <MINimum n> <Display n>

Like SPELL * except whenever an incorrectly spelled word is found, it is shown
underlined and the user 1s permitted to leave 1t as 1s, replace it with a
specified correction, or replace it with one of the suggested corrections. IFf
the file is mixed case and the original word is entirely capitalized, the
correction will be forced to upper case. The response is remembered for the
duration of the command and automatically applied if the same incorrect
spelling occurs again unless that would cause truncation. If 1t occurs again
with letters in different cases, it will be offered as a suggested correction.

INSPELL can be terminated with the named interrupt, HE. The file WORDS P-TABLE
can be used to provide a small number of addition recognized words.

for meaning of options

MIXED: Words in upper case will be considered correct.

SAVE: Whenever the response to an error is a null line, that word is added
to the file WORDS P-TABLE A. (If it is correct but you do not want
it saved, a response of '0' can be used to change it to itself.)

MINIMUM n: Words shorter than n in length will be considered correct.

DISPLAY n: The screen will be redisplayed (or current line printed) at least
every n lines.

for phonetic hash

1. Letters are converted to upper case and special characters are converted to
blanks.

2. Letters are converted as follows: ABCDEFGHIJKLMNOPQRSTUVWXYZ
EBCDEBCHECCLMMEBCRCDEBHCEC

3. All H's are converted to the previous letter unless at the beginning of a
word or following a D.

4. Consecutive letters that are the same are reduced to one occurrence.

5. All E's are removed unless at the beginning of a word.

rEDT User Guide

SuUBST

<=> SUBSTitute /strxng1</strin92</string3</ <tag>>>
J n

Changes the first ceccurrence of string designated by the first two specafiied
strings to the third specified string on each line of the specified range. The
designated strings are those that begin with the first specified string and end
with the second, having any characters between them. Changed lines are
recanonicalized if IMAGE is CANON, The ‘ne* line scanned becomes the new
current line,

The delimiter (shown here as '/') may be any non-blank character not in the
strings and is optional if at the end of the command. Missing strings are
taken as null.

examples of effects of null strings

SUBST //apple (Deletes all characters up to and including "apple")
SUBST / (Clears the current line (within the ZONE))
SUBST ///pear/4 (Replace 4 lines with "pear")
SUBST ///pear/4 (Replace the 4 lines with "pear")
See: COMMAND CASE (Controls handling of lower-case letters)
COMMAND DESERIALIZE (Controls serialization field to be cleared)
COMMAND IMAGE (Controls handling of back-space and tab)
COMMAND ZONE (Controls part of the lines considered)

The standard SETUP P-EXEC defines the necessary synonyms,

SUBSTITUTE see SUBST

SUM

<->S5UM token <*>
n

Displays or stacks the sum of the lntegers at the specified token position in
the current line and the next n-1 lines.

TELL

Macros

TELL <<class> name>

P-EDIT is a self-documenting text editor. TELL is used to see some part of the
documentation. If no class is specified, TELL will show the documentation for
the command, macro or concept specified. For example, TELL N, will show the
documentation for the NEXT command.

If no arguments are specified, TELL will attempt to pick them up from the
current line (SCROLL twice for an example of such a line).

- 119 -

description of classes

The following classes can be specified:

Command: Look for
Macro: Look for
Resolve: Look for

Setup: Look for
Function: Look for
CONcept: Look for
Pfkey: Look for

a P-EDIT command

a P-EDIT macro

a command, then a macro, then a concept;
Exec: Look for a P-EDIT EXEC (file type P-EXEC)

a P-EDIT setup EXEC (file type P-SETUP)

a Boolean expression function (file type P-FUNC)

a P-EDIT documented concept

a documented value for specified PP-key

P-MACRO, P-EXEC, P-SETUP and P=-FUNC are acceptable synonyms for Macro, Exec,
Setup and Function. In addition, they may be specified after the file name.

for list of P-EDIT command menus

CONCEPT BASIC COMMANDS
CONCEPT BUILT-IN COMMANDS
CONCEPT CMS CUMMANDS
CONCEPT DISPLAY COMMANDS
CONCEPT FILE COMMANDS
CONCEPT GLOBAL COMMANDS
CONCEPT MODIFICATION COMMANDS
CONCEPT PARAMETRIC COMMANDS
CONCEPT POSITION COMMANDS
CONCEPT RING COMMANDS
CONCEPT OTHER COMMANDS

{Most commonly used commands)
(P-EDIT commands excluding macros)
(Interface to CMS and disks)

(Control display or request information)
(Change file characteristics)

(Change P-EDIT characteristics)
(Modify the text of files)

(Deal with parametric files)
{Redefine the current line)

(Change which files are being edited)
(Other commands)

for list of other documented concepts

CONCEPT CUR: TNT LINE
CONCEPT DICTIONARY
CONCEPT DIRECTION
CONCEPT IMAGING
CONCEPT INITIALIZATION
CONCEPT INTERRUPTS
CONCEPT MACRO3

CONCEPT MAINTENANCE
CONCEPT MEMORY

CONCEPT PARAMETRIC FILES
CON"EPT SCREEN FORMAT
CONLEPT STATUS

CONCEPT STORAGE
CONCEPT SYNTAX

CONCEPT TAGS

CONCEPT VARIAEBLES

Boolean expression functions

FUNCTION CURRENT (Get current value of name from disk, CMS or P-EDIT)
FUNCTION MEMBER (Parameter equals one of set of values)
FUNCTION FETCH (Gets value of edit variable)
FUNCTION READ {Gets Boolean expression from disk)
TIME
TIME

Further restricts the TIME mask by TIME>=currcnt GMT. If there is no TIME
mask, sets one to TIME>=current GMT.

See: CONCEPT PARAMETRIC FILE

TO see RANGE

- 120 -

F-ENT User Guide

this 1s the default

TRANSIN

TRANSIN <from to <back>»>
QFF
CLEAR

Character translation specified: Whenever P-EDIT reads input, 1t will translate
the first character to the second. Whenever P-EDIT wrltes the input area (as
in the CHANGE command with no argument), it will translate the second character
to the third. The thira character should normally be the same as the first;
this is the default, The characters may be specified as characters or as
hexidecimal,

No arguments specified: The current input translations will be displayed or
stacked.

OFF or CLEAR specified; aAll input translation is reset.

See: MACRO TRANSOUT (Controls output translation)
COMMAND TRANSINX (Built-in command needed to set input translation)
TRANSOUT

TRANSOUT <from to>
OFF
CLEAR

Character translation specified: Whenever P-EDIT writes output, it will
translate the first character to the second. The characters may be specified
as characters or as hexidecimal,

No arguments specified: The current output translations will be displayed or
stacked,

OFF or CLEAR specified: All output translation is reset.

See: MACRO TRANSIN (Controls translatation of input)
COMMAND TRANSOUX (Built=in command needed to set output translation)

TRIM

<-> TRIM <* <length <ellipsis>>>
n L]
tag

The lines in the specified range (or current line if none) are shortened to the
specified length (or the current TRUNC column) if longer. If an ellipsis is

specified (often '..."), shortened lines will end with it; in this case lines,
of course, more characters will be lost,

UCASE see LCASE

Macros -121.

UNFID) ED

<~>UNFixed

Goes to the next group of unfixed lines. The earliest (without regard to any
'-' prefix) of the found lines that are consistent with the current view
becomes the current line. If they all are hidden, the line before them (with-
out regord to any '~' prefix) becomes the current line.

See: CONCEPT PARAMETRIC FILES
CONCEPT STATUS

The standart SETUP P-EXEC defines the necessary synonym,

UNHIDE

UNHIDE

Changes the definition of the current view so that it includes the current
line.

See: CONCEPT PARAMETRIC FILES
MACRO HIDE {Similar command to remove line from view)

UNSEFRIAL

<=> UNSERIAL <tagy>
n
L]

Clears the serialization field in the lines in the specified range.

Se2: COMMAND DESERIALIZE {Controls the serialization columns)

UNSHOW see SHOW

UNUPDT

- 122 -

UNUPDT <fn <ft <fm>>>
& " &

Writes an UPDATE file with the specified mame on disk. This command requires
that the current file be parametric with the necessary masks set so that
exactly two versions of the file are still in the logical file., The UPDATE
file produced is such that were it applied to the hidden file, the viewed file
would be produced. '

Arguments that are missing or '*' default to cfn UPDATE cfm, where cfn and cfm

are the name and mode of the current file,
f

P-EDIT User Guide

UNUPDT can be used to communicate the latest version of a file to a remote
location in the form of a "delta" from the previous version received by that
location. This could be accomplished by a seguence of commands like:

PUSHMASK
MASK (VERSION=CURRENT (OTHER.LOCATION) | VERSION=CURRENT(VERSION)}

VIEW VERSION=CURRENT (VERSION)

UNUPDT
POPMASK
See: CONCEPT PARAMETRIC FILES
FUNCTION CURRENT (Used to remember parameter values)
MACRO UPDATE (Will apply UPDATE files)

UPDATE

UPDATE <Fn <Ft <Fm>>>
L * L]

Applies the specified update file to the file currént file. When done, the
current line is at the last line inserted (or abovée the last deleted).

Arguments that are missing of '*' default to cfn UPDATE cfn, where cfn and cfm
are the name and mode of the current file.

example

One use of UPDATE is as an aid in switching from using the UPDATE facility to
maintain versions of a file to using P-EDIVT's parametric file facility. This
could be accomplished by a sequence of commands like:

P-EDIT PROGRAM MODEL

{(Enter 'ASSEMBLE' when prompted)
GET PROGRAM ASSEMBLE

MASK VERSION>=UPDATE.1

UPDATE 1

MASK VERSION>=UPDATE.2

UPDATE 2

UNMASK

See: CONCEPT PARAMETRIC FILE
MACRO UNUPDT (Used to regenerate UPDATE files when necessary)

VIEWSHOW see SHOW

VSHOW see SHOW

WHO
WHO

Prints information about the current user, machine and systems being used, and
the current time and date.

Macros - 123 -

PEDIT User Guide

Boolean Functions

CURRENT

CURRENT (name)

Files with called CURRENT P-TABLE are searched in the roormal order to find name
as the first word, 1If found, the second word on that line is returned. If it
is not found, it must be USER, DATE, TIME, or FILE; in which case the current

user id, current GMT date (yy.mm.dd), current GMT (yy.mm.dd.hh.mm.ss), or
current file (name, type.mode) is returned,

FETCH

FETCH (name)

The value of the edit variable specified will be returned.

MASK

MASK (<name>)

The value of the mask name specified will be returned., TIf no mask name 1s
specified, the current default mask name will be used.

MASKS

MASKS ()

The AND of the current masks will be returned.

MEMBER

MEMBER (PARM, (VALUE1<, VALUE2<, . .>>))

Returns 'PARM=VALUE1 | PARM=VALUE? +-+' in order to test whether parameter is
within set of values specified,

READ

READ (name, fn<J<ft<.fm)>>)

Reads the Boolean expression named from the specified file. If no file type is
specified, P-BOOLS, is used; if no file mode, * is used,

Related TELL:
MACRO PUTBOOL

Boolean Functions -125.

PENT User Guule

Other exece Files

ERROR

RESOLVORDER SYNONYM COMMAND+ MACRO+ ERROR

Edits the documentation (using TELL) of any command for which there is a syntax
error. The above resolution order should be set during edit session initiali-
zation (say in PROFILE P-EXEC).

See: CONCEPT RESOLUTION
CONCEPT INITIALIZATION
CONCEPT SYNTAX

If a different treatment of syntax errors is desired, the file ERROR DP-EXEC Moty
be modified, -

NUMBER

<->n

Goes to the line being displayed the specified distance from line 10 on the
display device (where the current line starts).

See: COMMAND SCROLL (The standard NUMBER P-EXEC is the same as SCROULL)

If a different interpretation of a number as a command is desired, the file
NUMBER P-EXEC may be modified.

SETUP

Whenever the CMS command, P-EDIT, starts an edit session, the EX[L('2 file, SETUP
P-EXEC, is executed to initialize various values as follows. A standard SETUP
P-EXEC is provided. Users may define their own if they wish to initialize in a
A.fferent fashion, but this is not recommended for the typical uscer. Father,
the standard one provides various ways a user can specify his own 1nitiali-
zation described below (PROFILE P-EXEC, TERMINAL P-EXEC and PFKEYS P-EXEC) .

The standard SETUP P-EXEC does the following unless the NOSETUP option has beoen
specified in the P-EDIT command:

See: CONCEPT INITIALIZATION

Variables used for scope header: P-EDIT searches a specified list of edit
variables to determine the left most field of the header line on the 3270
screen (the WHO field). A number of macros need a variable to be set for them
if they are to effect the header. The standard definition is:

TEMP .HEADER . NAME Used by macros that keep control
FIRST.LAST.TO Used by RANGE (MOVE, COPY and SORT)
SHOW.HEADER . NAME Used by SHOW (VSHOW)

PRESUME . HEADER , NAME Used by PRESUME

SIMEDIT.HEADER . NAME Used by SIMEDIT

Synonyms: Many macros need synonyms defined for them to work as documented
(their TELL will say "The standard SETUP P-EXEC defines the necessary
synonyms."). They define their needs with an ®SYNONYMS line at the beginning
of their P-MACRO file.

See: MACRO GETSYNS (Inserts the standard SYNONYM commands)

Other EXEC? Files = St

o

<

8-

Terminal: The following is bypassed if a file named TERMINAL P-EXEC is found on
the A-disk and it is executed instead.

Terminal initialization consists of:

Setting SCOPE: The SCOPE mode is set to APL or NORM if the terminal heing
used is a 3270 (and the CMS switéh, GRAFDEV, .is ON). Otherwise, it is set

CFF.

Setting VERIFY; If the SCOPE is set OFF, VERIFY mode ig set ON,

Character translation: If the SCOPE is set ON, translation tables are
setup to provide '¢' for tab (X05) and 'a' for back~space (X16),

See: COMMAND SCOPE
COMMAND VERIPFY
TRANSIN

MACRO

PF-keys: The following is b

the A-disk and it is executed inst

ead,

{Sets SCOPE mode)
(Sets VERIFY mode)
{Sets input translation)

ypassed if a file named PFKEYS P-EXEC is found on

PF-key initialization consists of:

Defining PF-keys for certain macros:

INCHANGE . PFKEYS
INFILLIN, PFKEYS
INFIX.PFKEYS
INMERGE . PFKEYS
BLIND. PFKEY
SCROLL , PFKEYS

PFO2
PFO2
PFO2
PFO2
PF11
PFO4

Setting PF-keys themselves (where
stands for a terminal blank):

01
n2
03
04
05
06
07
08
09
1
12

IMM
IMM
IMM
IMM
IMM
IMM
IMM
IMM
1MM
TMM

Value

#COVERT -SCROLL _
H#COVERT -UP _
#BACK _

HCOVERT SCROLL _
#COVERT NEXT _

ﬂ"

#RANGE _

#PUSHPOP _
#REINPUT _
#P-EDIT

RETRIEVE

PF05 PF08 PF11
PF05 PFO8

PF0O5 PF08 PF11
PF05 PF0O8 PF11

PFO1
'#' stands for 15 (hexidecimal) and)
Meaning

(Display previous screen)

(Go to previous line)

(Undo another command)

(Display next screen)

(Go to next line)

(Do previous command again)

(Set current line as FIRST or LAST)
{Once for PUSHMASK; twice for POPMASK)
(Execute command in input area)

(Edit file named on current line)
(Retrieve latest line not yet retrieved)

If a PF-key is being used for tab, P-EDIT is told.

Additional initialization:
found on the A-disk.

At this point the file PROFILE P-EXEC is executed if
There a user can place any other commands he wishes,

P-EMT User Guide

PF-keys

BACK

IMM #BACK

This PF-key undoes the effect of the last command, If used again, one more
command will be undone, and so forth,

If P-EDIT was in INPUT mode, all lines inserted will be removed and it no

longer will be in INPUT mode, The last the last character is a blank (not
shown) so that PRESUME will recognize it as a command,

See: CONCEPT MEMORY
MACRO BACK

EXECUTE COMMAND

IMM #REINPUT

This PF-key is used to execute P-EDIT commands while in INPUT mode. To do so,
enter the command, push the PF-key, and then push ENTER,

The last character is a blank (not shown) so that PRESUME will recognize it as
a4 command,

See: MACRO REINPUT

INDENT

IMM #REINPUT CHANGE // /

This PF-key is used to indent the current line, Indenting adds a double blank
to the beginning of the line,

If P-FPLIT was in INPUT mode, it will be restored after indenting the line. The
last character is a blank (not shown) so that PRESUME will recognize it as a
command .,

LISP SCROLL

IMM HCOVERT P-SCROLL LISP

This PF-key moves the current line down to the last start of a LIsp function
definition if one can be found close enough for some text to overlap between
the text displayed before and after. Otherwise, it moves the current line as
much as possible to breserve some overlap. The test for the start of a LISP
function is a left parenthesis in column 1 or 2,

If P-EDIT was in INPUT mode, it no longer will be. The last character is a
blank (not shown) so that PRESUME will recognize it as a command,

See: MACRO P-SCROLL

PF-keys -129.

NEXT

P-ED

IMM #NEXT #
This PF-KEY moves the current line to the next line in the file.

If P-EDIT was in INPUT mode, 1t no longer will be., The last character is a
blank (not shown) so that PRESUME will recognize it as a command,

See: COMMAND NEXT

IT

IMM #P-EDIT

This PF-key is used to edit the file described on the current line of the types
of files used to contain lists of files (LIST for CMS files, P-LIST for files
currently being edited, CP-LIST for CP files, and TELL for further TELLs). 1If
the current file is not one of these types or the current line is not in the
correct format, a P-LIST file showing all files currently being edited will be
generated and edited,

If P-EDIT was in INPUT mode, it no longer will be, The last character is a
blank (not shown) so that PRESUME will recognize 1t as a command.

See: MACRO P-EDIT

PAUSE

IMM #REINPUT PAUSE

This PF-key is used to tell P-EDIT that the user does not intend to interact
with P-EDIT for a while and it can use the time to save files on disk and

reclaim storage,

If P-EDIT was in INPUT mode, it will be restored when complete, The last
character 1s a blank (not shown) so that PRESUME will recognize it as a
command.

See: MACRO PAUSE

PUSH/POP MASK NAME

- 130 -

IMM H#PUSHPOP

This PF-key is used to get a new default mask name or drop the latest, If
pushed once, a new default mask name will be generated. This will prevent a
MASK command (with no explicit mask name} from destroying previously
established masking information, If pushed twice, the latest default mask name

will be cleared,

The PF-key is considered to have been pushed twice if the current default
mask's value is TRUE when pushed.

If P-EDIT was in INPUT mode, 1t no longer will be. The last character is a
blank (not shown) so that PRESUME will recognize it as a command.

See: CONCEPT PARAMETRIC FILES

MACRO PUSHPOP
COMMAND PUSHMASK

EEDIT User Guide

RANGE SET

IMM #RANGE

This PF-key is used to define the current line as being the first or last line

of a range of lines. The next MOVE, COPY or SORT will operate on these lines
1f no other specification is made. The first time this PF-key 185 used it

defines the current line as the first, the second time the last, and the third

*ime both definitions are forgotten.

If P-EDIT was in INPUT mode, it no longer will be. The last character is a
blank {not shown) so that PRESUME will recognize it as a command.

See;: CRO RANGE

REPEAT

IMM #"
This PF-key will do the previous P-EDIT command again,

If P-EDIT was in INPUT mode, the effect is merely to wrap up the lines so far
inserted as the effect of one INPUT command and re-enter INPUT mode. 'The las
character is a blank (not shown] so that PRESUME will recognize it as a
command,

See: CONCEPT MEMORY
COMMAND "

RETRIEVE

RETRIEVE

This PF-key is the RETRIEVE-key, If used, CP will put the last line entered
into the input area. If pushed again, the line previous to that line will be
placed into the input area, and so forth,

REVERSE LISP SCROLL

Pr-keys

IMM HCOVERT -P-SCROLL LISP

This PF-key moves the current line up to the last start of a LISP function
definition if one can be found close enough for some text to overlap between
the text displayed before and after, Otherwise, it moves the current line as
much as possible to preserve some overlap. The test for the start of a LIsP
function is a left parenthesis in column 1 or 2,

If P-EDIT was in INPUT mede, it no longer will be., The last character is a
blank (not shown) so that PRESUME will recognize it as a command.

See: MACRO P-SCROLL

t

REVERSE SCROLL

IMM #COVERT -SCROLL

This PF-key moves the current line up as much as possible so that the text
displayed still overlaps the text that was displayed.

If P-EDIT was in INPUT mode, it no longer will be. The last character is a
blank (not shown) so that PRESUME will recognize it as a command,

See: COMMAND SCROLL

REVERSE TELL SCROLL

IMM #COVERT ~P-SCROLL TELL
This PF-key displays the previous screen of a TELL file.

If P-EDIT was in INPUT mode, it no longer will be. The last character is a
blank (not shown) so that PRESUME will recognize 1t as a command.

See: MACRO P-SCROLL

SCROLL

IMM #COVERT SCROLL

This PF-key moves the current line down as much as possible so that the text
displayed still overlaps the text that was displayed.

If P-EDIT was in INPUT mode, it no longer will be. The last character is a
blank (not shown) so that PRESUME will recogiize 1t as a command.

See: COMMAND SCROLL

TAB

TAB <tabl <tab2 .,, >>
This PF-key is the TAB key. CP will simulate a tab-key on a typewriter when

used. To see the the current tab settings for any file, enter '"TABS' while in
that file,

TELL SCROLL

IMM HCOVERT P-SCROLL TELL
This PF-key displays the next screen of a TELL file.

If P-EDIT was in INPUT mode, it no longer will be. The last character is a
blank (not shown) so that PRESUME will recognize it as a command.

Sec: MACRO P-SCROLL

< 1A PEDIT User Guigde

UNDENT

UP

IMM HREINPUT CHANGE / //

This PF-key is used to "unindent" the current line. "Unindenting" removes the
first two double blanks.,

If P-EDIT was in INPUT mode, it will be restored after unindenting the line,
The last character is a blank (not shown) so that PRESUME will recognize it as

a command,

IMM #Up
Tnis PF-KEY moves the current line to the previous line in the file,

If P-EDIT was in INPUT mode, it no longer will be. The last character 15 a
blank (not shown) so that PRESUME will recognize 1t as a command,

See: COMMAND UP

-133 .

PF-keys

