RC 8550 (#37269) 11/7/80

Computer Science 50 pages

Research Report

A Sparse Table Implementation Of Priority Qucues

Alon Itai'”, Alan G. Konheim'?’ and Michael R.mlch”'

iBM Thomas J. Watson Research Center
Yorktown Heights. New York 10598

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if
acceptad for publication. It has been issued as a Research Report for early dissemination of its
contents. In view of the transfar of copyright to the outside publisher, its distribution outside of IBM
nrior to publication should be limited to peer communications and specific requests. After outside
publication, requests should be filled only by reprints or legaily obtained copies of the article le.g..
paymeant of royalties).

zgg R!s“rc“ D““‘IBH
N San Jose Yorktown - Zurnch

/

RC 8550 (#37269) 11/7/80
Computer Science 50 pages

A Sparse Table Implementation Of Priority Queues

Alon Itai", Alan G. Konheim® and Michael Rodeh'®

IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

Abstract : A data structure is suggested for efficient implementation
of operations such as Search, Insert, Delete, Min, Next, Scan. The
idea (proposed independently by Franklin and by Melville and Gries)
is to maintain an ordered list of the elements (keys) in which an
element may appear more than once. Insertion, as a typical operation,
is done by (binary) search followed by some move operations. We
show that the expected number of move operations is bounded (in
the size of the table), provided that the density of dummy keys in the
table is bounded away from 1. The probabilistic model assumes that
all permutations of the input are equiprobable. As a result of the
analysis, a flaw in both Franklin’s and Melville and Gries’ analyses
was found. To improve the worst case behavior, a variant of the
sparse table scheme is suggested. In that version, a sequence of n
insertions into a table of size n may not take more than O(n (log n)?).

(1 Computer Science Department, Technion ~ Israel Institute
of Technology, Haifa, Israel

(2) Mathematical Sciences Department, IBM Thomas J. Watson
Research Crnter

(3) IBM Israel Scientific Center, Technion City, Haifa, Israel

1. Introduction

Priority queues have been defined in several ways. In this paper a priority queue is
a data structure on which the following operations can be executed:

Search(x) Determine if x is in the queue.
Insert(x) Enter x into the queue.
Delete(x) Remove x from the queue.
Min Find the smallest item in the queue.
Next(x) Find the item following x in the queue.
Scan Scan all members of the queue.

There are numerous implementations of priority queues, in which each of the first
five operations requires no more than O(log, n) time (n is the number of keys
currently in the queue). All of these implementations use trees: 2-3 trees [AHU],
AVL-trees, weight balanced trees [RND], binomial trees [V] and require large
overhead, both in time and in space. In many cases the algorithms devote much of
their running time and storage manipulating the priority queue, often rendering a
theoretically efficient algorithm to be infeasible or inefficient for all practical

purposes.

An implementation of priority queues by means of sparse tables is presented in this
paper. Data is stored in a linear array and requires only a single pointer. Insertion
requires three operations:

. searching — to locate the table address at which a record will be inserted,

. moving - shifting of records in the table to free space for the record to be
inserted, and

. reconfiguring — increasing the size of the table and distributing the keys
evenly in the larger table.

Searching a table of size m requires O(log,m) time using binary search and O(log,log,m)
time using interpolation search [PIA]. While moving may in the worst case take
O(m) time, the expected number of moves is bounded (in m) provided the density \

of records in the table is bounded from one. The main contribution of this paper

is an exact analysis of the complexity of the move operation (see Sections 3-6).

Melville and Gries [MG] and Franklin [FR] have independently proposed a
scheme which is similar to this sparse table. To carry out the analysis of their
structure, both relate the insertion of keys in a sparse table to the length of a
probe in hashing with linear probing [KN2, KW, BK]. While such a relationship
exists, the probabilistic models underlying these two processes differ so that the
analyses offered in [FR] and [MG] are incorrect. We discuss this in Section 7.

To improve the worst case behavior, a more complicated sparse table scheme is
introduced in Section 8 which requires no more than O(m(logzm)z) time.

Deletion may be implemented by maintaining a bit vector which marks the records
that have been deleted. This idea was also used by Bentley et. al. [BDGS] and by
Guibas et. al. [GMPR] and is discussed in Section 9,

2. A Sparse Table Scheme

Associate a key K = K(R) with each record R such that the correspondence
between records and keys R «» K(R) is biunique. When records are stored in a
table with their keys in sorted order, Search(K) is efficient. If records are stored
contiguously, Insert(K) is carried out by moving records to free space for the
record to be inserted. The efficiency of insertion will be improved by introducing
gaps in the table thereby storing n records in a table of capacity m for some m 2
n. A key is assigned to each address in the tabls by introducing fictitious or
dummy keys. We describe the state of the table by the vector

y= (yg; Yoo qu) Yo < Yy €..8 ¥Yin-1

indicating with this notation that the (genuine or dummy) key y, is stored at
address i for 0 < i < m. If the genuine keys in the table are

Vig < ¥iy <o < Vi 0 <iy<i; <. <ipy =m-—1

then dummy keys, each with the value y,, are stored at each address in the conti-
guous block of i,—i, ,—1 addresses

i+, +2, 01 O<t<ni,=-1)
so that
Yo= - =Y < Yige1 = o = ¥ < i G yin-1+l =,.= yi,.-l
For example, genuine keys are located at addresses 2, 5, 6 and 8 in the table
y=(2,2,2,3,3,3,4,5,5) n= 4, m=9
It will be useful to consider the table as a circular array; address 0 follows address
m—1 and address calculations are made modulo m. A head of the table pointer'”
PB (initially 0) translates between the (logical) address in memory and the
(virtual) address in the table

logical address i = (PB + virtual address i) (modulo m)

The building of a table by means of the insertion of keys is determined by two
sequences of integers

{n :0 S k <o} fm, : 1 < k <}
l=n<n < <. << e n <nm 1<k<e
which have the following interpretation:
(i) The size of the table m can only take the values n,_,m, for k=12,..

(ii) The size of the table is m = n,_,m, when the number of distinct keys in
the table n satisfies n,_; < n < ;.

(@) The state of memoryz = (Zg> Zys -+ Zyy.1) and the state of the tabley = (Yo, ¥1» s Y.1)
are related by ¥, = Z, pp (moduio m) (0 S 1< m).

(iii) To insert the key x in a table of size m = n,_m, containingn,_, < n < n,
genuine keys, the address s satisfying

Vo, <xX<y, 0<s<m

is determined by a binary search. s = 0 means that x is either smaller or
larger than any key presently in the table. If y, is a dummy key, it is
replaced by x yielding the table

(Vs s ¥ B Vigrs + Taur)

If y, is a genuine key, the block of t (say) consecutive genuine keys

ys # ys-|-1 # o # ys+t-1 ¥* ys+l - ys+t+l

is moved circularly to the right one position, the pointer PB is adjusted
if necessary and x is inserted at address s yielding the table

(Fsiss oo X T o0 Vi Yeswwns = Vint)

(iv) A reconfiguration of the table takes place when the key x is to
be inserted into a table of size m = n,_;m, containing n, genuine keys.
The size of the table is first increased to nm, _,; the n, genuine keys

Yig < ¥ig < oo < iy
are uniformly distributed 1~ cOtain the table
(7)™, o (5,)™

where (k)® denotes s copies of k. A binary search for x in this expanded
table is carried out and the key x is inserted as in step (iii).

The numbers {mk} are the (multiplicative) expansion factors; the ratio

o = n/n,_m, with n,, < n < n, is the density of genuine keys in the table. Note
that 1/m, <p < 1. The expansion factor m, adds approximately log, m, steps to
the binary search but reduces the numbers of keys which must be moved to insert a
new key. The cost of reconfiguration is O(n,m, ,1) so that if the number of keys
inserted since the last reconfiguration, n,—n, ,, is proportional to the size of the

R

expanded table, the cost of reconfiguration per key is constant. As for the worst
case, O(n—n,_,) keys may be moved to insert the n'P-key. We will show in Sections
3-6 that the expected number of moves required remains bounded as n,+« provid-
ed p is bounded away from one.

Example 2.1: nk=2k(05k<w)andmk=3(i5k<w).

Suppose the keys 0, 1, 2, ..., 7 are inserted in the order 7, 3, 1, 0, 5, 6, 4, 2. The
state of the table and the number of moves to insert each key is shown below.

Key Inserted Number of Moves
(Virtual) Address 0 1 2 3 4 5 6 7 8 9 10 11
7 7 7 7 0
3 3 7 7 0
1 1 3 3 7 7 7 0
0 0] 3 7 7 7 1
5 0 0 0 1 1 1 3 3 3 5 7 7 0
6 0 0 0 1 1 1 3 3 3 5 [7 0
4 0 0 1 1 1 3 3 3 4 5 6 T 3
2 0 0 1 1 | 2 3 3 4 5 6 7 0

In this example, the cost of reconfiguration is

m,/(1-n,,/n) =6 (= O(1) as k+).
per insertion.
3. An Occupancy Discipline

We consider an occupancy discipline for the placement of j (indistinguishable) balls
(0 € j < ic) into a system of i urns

URN,, URN,, ..., URN, ,

each of capacity c (balls). The urns are arranged cyclically so that URN,_, is "to
the right" of URN, for 0 < t < iand URN; = URN,.

The process of placing balls in the urns is sequential; it starts from an assignment
sequence ag, &y, ..., @, specifying the urn into which each ball is assigned. The
constraint on an urn’s capacity does not allow the placement of the tth-ball into (its
assigned urn) 'URNml if this urn is now full — meaning that URNmt contains ¢ balls
after the placement of balls 0,1, ..., t—1. In this case the ti"-ball is placed into the
first urn "to the right" of URN, which is not presently full. The placement value
of the t!"-ball B, is the index of the urn into which the t™-ball is placed.

We have thus defined a mapping from a sequence of assignment values ag, ¢y, .-y @,
to a sequence of placement values Bii Bysreor B

P (ag &y, - “j-t) = By Bys +or ﬁi_l

We associate with the sequences of assignment and placement values an assign-
ment vector a and a placement vector b

Uy Ay ey Xjy DB = (ag @y oo ai_l)
Bo» Bys -oes By » b= (Dg, By s b.,)
in which
a, : number of terms it ag, &y, -, & equaltot
b, : number of terms in By, B, ---s By equaltot
The vectors a and b satisfy the constraints
(3.1a) ag+a, + ..+, =]
(3.1b) 2,20 0<t<i
(3.2a) by+b, +..+b,= j

(32b) 0<b <c 0gt<i

URN, is full (after the placement of the j balls) if b, = c. The set of (assignment)
vectors a satisfying equations (3.1a-b) corresponds to the C(i+j—1,i—1)® ordered
partitions of j nto i parts and will be denoted by A(i,j). The set of (placement)
vectors b satisfying equations (3.2a-b) corresponds tc the ordered partitions of j
into i parts each no larger than c and will be denoted by B_(i,j).

While the placement function P_ has been defined as a mapping from assignment
sequences &g, ay, ..., @;; 0 placement sequences B, B,, ..., ﬁi_l, it will be useful to
consider P_ (with a slight abuse of notation) to be a mapping from assignment
vectors in A(i,j) (with 0 <€ j < ic) to placement vectors in B _(i,j)

Pc : A(in]) " Bg(i!i)

That P_ can be so defined follows from two observations; first, a placement
sequence B, B, .., Bj_] determines in an obvious way a placement vector

(bg, by, ..., b;;) so that the mapping P_induces an obvious mapping (also denoted
by P_) of assignment sequences a, &,, ..., a; , to placement vectors (bgs bys s b 1)

P (agy @y ooy @410 = (b, by s by)

Second, the mapping P, (now with range B_(i.J)) is "constant" on assignment
sequences which are related by a coordinate permutation. More precisely,

Lemma 3.1: Let 7 be an arbitrary permutation of (0, 1, ..., j—1). The two assign-
ment sequences

Ugs Qyy oees @, A0 Ea(1)r =+» Ea(j-1)
yield the same placement vectors.

Proof: The proof is by induction on j; for j = 1 the assertion is trivially true. By
induction it suffices to prove that both assignment sequences

(5) C(s,t) denotes the binomial coefficient s!/t!(s—t)!

gy Qyy oeey @ gy & gy Oy eeey Dy Oy

yield the same placement vector. Suppose «; = ¢ and that
P (ag, 2y ooes “g-l) = (bg, by, -5 b))
There are three cases to examine:
Case 1: b <c
Case2: b, =b =..= b, =¢> b,,,and aJ.ﬁ,;{r, r+1, .., r+s—1}

In both Cases I and 2, it is easy to see that the insertion of baus with assignment
values o, and a; do not mutually interfere so that

P(ag, .y @0 ¥y ai) =P (ag, --» @5 9 aj_l)
Case3: b, =b ,=..= b, =¢> b, and a]._le{r, r+1, ..., r+s-1}

For the assignment sequence a;, @, --., &, &; the (j—1)*-ball (with assignment
value «; ;) has placement value B, = t withr < t <r+s while the j""-ball (with
assignment value ;) has placement value B; = r+s (modulo i). For the assignment
sequence ag, ;, ..., &, & the (j—1)"-ball (with assignment value aj) has place-
ment value B, =t while the j-ball (with assignment value «;,) has placement
value B, | = r+s (modulo i). m

Thus, we may consider P_ to be a mapping from assignment vectors acA(i,j) to
placement vectors be B (i)

We consider next the calculation of the number N(b) of assignment vectors 2
which satisfy the equation

(3.3) Pa)=b beB(ii)

for 0 < j < ic. When j = ic, B.(i,j) contains the single vector (c, ¢, ..., ¢) and each
element of A(i,ic) is a solution of equation (3.3); henceforth we assume 0 < j < ic.
In this case, there exists (at least one) index r with 0 € r < i such that URN_ is not
full. The cyclic arrangement of the urns and Lemma 3.1 imply that the cyclic shift
operator

o(ay, a,, ..., ;) = (3,, 35, ..., 3, 3)
commutes with P,
P o=0oP,
so that if a satisfies equation (3.3) then
P(a,, ;s e B gs Bgs oo a) = (b, - by by oo b).
Thus when counting the solutions of P(a) = b we may assume that the
"rightmost" urn is not filled (b, , < c). In this case we have the explicit formula

for P,

b, = min{c,a,}
b, = min{c,a, +(a,—c)*}

b11 = minfc,(... ((a,—c)* + a,—c)* + ..)* + 3.}
where z+ = max{z,0}.
If (b, b,, .., b, ,) is a placement vector with b, < cletry, 1y, ..., Ty,
0<r,<r, <...<r, =i-1
denote the urns which are not full
b <c 0st<s
b=c igfrg,r,.., 1,1

The occupancy discipline implies that (b,t_1 + b,'_1 + b,t) is determined only by
the values of (arl_' o1 A g2 arl)

P (8, 41 By 420 o B) = Or s Bya 0 D)

10

so that

N(.I.’.) = H0$t<s N(br,_1+l’ br,_,+2' v I:’rt)

Thus the problem of calculating N(b) reduces further to counting assignment
vectors a which fill all but the "rightmost" urn in a system of urns.

Define the counting functions v (i,j) and y(i,j) as follows:

Definition 3.1: For 1 < i < »let v (i,j) denote the number of i-tuples (a, a,, ..., 3 ;)
of non-negative integers which satisfy

ag+..+a,2tc 1<t<i
Bt .+ 8, =]

When (i-1)c < j < ic, v (i,j) is the number of assignment vectors for j balls into i
urns each of capacity ¢ for which all but the right most urn are full.

Definition 3.2: For 1 <i<=and 0 < j <ic, let v,(i,j) denote the number of
i-tuples (a,, a,, ..., a,,) of non-negative integers which satisfy

a,+..+a,=]j
(... ((ag—C)* + 2, -c)*+..)"+3,,<c
We define v_(i,j) for other values of j by
0 forj2icandi#* 0
Y. (i) =
1 ifi=j=0.

y.(i,j) is the number of assigment vectors for j balls into i urns each of capacity c in
which urn i—1 is not full.

In the next group of lemmata we obtain formulae for and relationships between
the counting functions v (i,j) and v (i,j).

11

Lemma 3.2:
(3.4) »(i,j) = C(j+ij+1) = (c+DC(j+i—1,j+1)
= C(j+i—1,i—1) = cC(j+i—1,j+1)®
Proof: The proof is by induction on i; for i = 1 we have »(1,j) =1 which is

consistent with equation (3.4). For i > 1, v (i,j) obviously satisfies the recurrence
relation

(1)) = E(i-llcsisi v (i-1.Y

which is obtained by considering the possible values for
t=a,+23, +..+3,
By the induction hypothesis
1) = D eaig; Ca=144t+1) = (C+DCE-2+t,t+1)

which yields equation (3.4) using the formula C(i+j+1,j) = Eosisj C(i+tt) m
Lemma 3.5: Fori> 0, y(i,j) satisfies
(3.5) 7.(i]) = Do crci Doenegscte el i—t,j=3)
Proof: Let Bc.o(i'i) denote the subset of B_(i,j) consisting of placement vectors
which do not fill the rightmost urn (b, ; < c). The inverse image P1(B, (i) is of

cardinality v,(i,j) = | P'(B4(i,j)) | . Partition B (i) as follows; for fixed t and
s, B,(i, | t,8) consists of all vectors b in B, o(iyj) for which

(6) Note that equation (3.4) expresses » (i,j) as the difference of the number of
partitions of j into i parts and ¢ times the number of partitions of j+1 into i—1
parts. We have not found a direct combinatorial proof of this formula. Equation
(3.4) also implies that v (i,j) satisfies the recurrence v (1,j) = v (i,ji—1) + » (i—1.j).

e —

12

b,=..=b,=c URN,, URN,,,,, ... URN,, are full
s=b_ +..4+b, the rightmost t urns contain s balls
b <€ URN, , is not full

j=s=Dby+ .. + b, the leftmost i—t urns contain j—s balls

B (i,jits) may be identified with the Cartesian product of B (i-t,j-5) and
B.(t,s|t,5) in the sense that each bcB (i,j|t,8) is the concatention of the two
vectors

(b bys .. b

i By)eB (i-t,j-s) (b.,b ... b_)eB (1,511,8).

i-1-1 =t i-t41?

Since N(b) = N(b,,b,,...,0, IN(b_ ;b ...,) it follows that
PU(B,(Ljlt,s) | = | P(B(i-tj-s)) | x |P(B(ts [t,s) | = v (i-t,j-s)r (t,S)
from which equation (3.5) follows. =
Equation (3.5) is the (two-dimensional) convolution of the sequences
fr.(i,j)) : 0 € j<ic, 0 € i < =}
fr (i) : (i-Degj<ic1<i< w}.

Convolution of sequences corresponds to the multiplication of their respective
generating functions. Thus, we introduce the generating functions

H, (z) = E(i-l)csjcic v (i,j)z! H.(z,w) = lei(- w' H, (z)
GLC(Z) = 205i<ic Yc(i!i)zl Gc(z'!w) = 205i<- wi th(z)

Since both # (i,j) and v.(i.j) are bounded above by C(i+j—1,i—1), the generating
functions H (z,w) and G (z,w) are analytic in a neighborhood of (z,w) = (0,0).

The term 3 1yecocte Ve(bS)(i=t,j—s) is the coefficient of 2 in H, (2)G,,, (2) and
the right-hand-side of equation (3.5) is the coefficient of w'z in H (z,w)G(z,W)
for 1 € i < =. We thus have proved

13

1

Lemma 3.4: G (zW) = ——r
1 - H (z,w)

It remains to determine H_(z,w); for this purpose we use the following

Lemma 3.5: 1f | {| < c¢/(c+1)*!, the equation

5' = (x_l)/xc-H

has a root X(¢) which is analytic in { in the open disk about { = 0 of radius
c¢¢/(c+1)*! and takes the value 1 at { = 0. Moreover, if f(z) is analytic in the
open disk {z: |z—1| < 1/c} of radius 1/c about z = 1, then

(3.6) ((XE)) = K1) + Dy gie. G/ [(/dut) FUD]
where ' denotes differentiation.

Proof: For each {, there are c+1 roots of the equation {x°*! = x — 1. When
|¢] < c¢/(c+1)°+1, the inequality

exe+' | < Ix=1]

is satisfied for all x on the boundary of the disk (in the complex plane) of
radius 1/c about x = 1

fx: |x=1] <1/c}.

Thus by Rouche’s Theorem [AHLY], the equation ¢{x**! = x — 1 has a unique root
X(¢) in the interior of this disk. At { = c¢/ (c+1)c+!, the equation {x**! = x — 1
has the root (c+1)/c of multiplicity two. Equation (3.6) is an immediate conse-
quence of Lagrange’s Theorem [WW]. =

To evaluate H (z2,w) we use the special case of equation (3.6) with f(z) = z*:

. S . i
B X = Dpcice mc(l(0+1)+sﬂ)

,

14

By Lemma 3.2
- A i—1
Pc(l;]) = C(l+],l—-1)[1 -— (C+1) -i-:':j—]

so that

s cyi S+1 £ .
H (z,w) = wEUchz 205i<_(wz) m C(i(c+1)+s+1,1)

(W/2) Dogsce (ZX(WZ))*!

N wX(wzt)—-X(wz)+1
B 1—-zX(wz°)

Lemma 3.4 now yields

1—-zX(wz°)
(1-w—2z)X(wz°)

G (z,w) =

Finally, we define the sequence of numbers ALK 1 i<, 0<j<ic,0<k}
by

(38))\c(i’j’k) = 2{%,5:]stsi.(t—l]cgs(tc.s-&-i)k} Iilt:(t’s).}’r:(i_t’-i_'s)

A (i,j,k) counts the number of assignment vectors (a,, a,, ..., a, ,) for which for
some s,t withs +t >k

b,<c URN, , is not full
b,=b,, =..=b,=c URN, , URN,_,, ..., URN,, are full
b +by ok b, =s URN,, URN,,,,; ..., URN,, contain s balls

b,,<¢ URN,, , is not full

by + b, + ... +b,,, =j=s URNy, URN,,..., URN,, contain j~s balls

15

We shall show in Section 5 that, apart from the normalization constant C(i+j,i),
A (i,j,k) is the probability that an insertion will require the movement of k records
in a table withi = n,_;, j = n—n,, and ¢ = m,—1. To calculate the expected
number of moves required for an insertion we need to compute

> kA Gjk)
For this calculation, we introduce the generating functions
A) = D0 Al k)ut
A (z,w,u) = Elsi-ca Eosmc Ay 0w
From equation (3.6) we obtain

Lemma3.6: A, (v) = S it cesi e negscies (b= tj=s) (1-us*)/(1-v)

H_ (z,w) — H/(uz,uw)
1-u

(3.9) A[(zwu) = G (z,w)

Proof: Wi have
H (uz,uw) = 21: ut E{i.}:lsi(:.(i-l)csj(ic. ji=k} v (i,j)wz
so that
[H, (z,w)—H_(uz,uw)] / (1-u) = 21: uk Em:l deulitigick, jusky Pe)w2
from which equation (3.9) easily follows. ®

Equation (3.9) shows that to calculate the expected number of moves to insert a
record, we need to calculate the coefficient of w'zi in

0.5G (z,w) [(8*/8v?) H (uz,uw)], .,

The calculation is straightfoward albeit tedious and is given in an appendix. The
result is

16

Theorem 3.7: When j = tc + T with
0<T<c 0<t<i

(3.10) Y, kA (k) = —Ci+id) + o ket Dokegss; CkHSEICHE—k+j—s,j—$)

4. The Relationship Between Key Insertion And The Occupancy Discipline

In this section we provide a correspondence between the insertion of keys in a
sparse table (as defined in Section 2) and the placement of balls in a system of urns
(as defined in Section 3). These processes differ in two respects:

. balls are indistinguishable, while keys are labelled by their values
and are hence distinguishable.

. if the t™h-ball is assigned to URN_ which presently contzins ¢ = m,—1
balls, the t ball is placed in the first urn "to the right" of URN,
which contains less than ¢ balls; if the t™-key x, is to be inserted at
(virtual) address s which presently contains a genuine key, y, rather
than x, is moved "to the right" and x, is inserted at (virtual) address s.

Definition 4.1: Let the sparse table with state vector y = (Yo, ¥1» -+» Y1) With
m = n,_,m, result from the insertion of the n Keys Xg, X;, - Xy (B, <0 £ n,),
PB the value of the head of table pointer and z = (Zy, Zy, ---» z. ,) the correspond-
ing state of memory.
The h-Elock (of logical addresses) in z is tm,, tm, + 1,..., (t+1)m_—1.
Associate with the insertion sequence X,, X, -.-s X,

(i) asequence of assignment values

a(xnk,ﬁ-s | Kgs Xps eens xﬂk-l'l) 0<s<n—n,

(i) an assignment vector a = (ap gy -0 a,,k_i_l).

17

(iii) asequence of placement values
(xnk.ﬁ's | X5 Xy ey xn,_,-l) 0<s<n-n,
(iv) a placement vectorb = (bg, b, ..., bnm-l)

defined as follows: let the permutation n = (3(0), n(1), ..., n(n,_,—1)) of the integers

0, 1,...,n,_,—1 sort the key values Xy, X, ..., X,

X0 < Xpeny < o0 <Xy oy

and define

0 if xnkq-i-s < x,](()]. or xnk_lq-s > xn(nk.r—l]‘

a(nl:. 1+s I Xor xl’ ke nk ,-I) = {
A if X, 1) < Xy yas < X withl St <n,

a:

, - number of indices s, 0 < s < n—n,_, for which az(xﬂk_l+s § X Xgsoons xnw,) =t

B(xy, 45| Xor Xps woos X, 1) | the index of the block in z in which the key x, . is inserted

b, :

.+ number of placement values equal to t.

It is clear from these definitions that

(i) alx, b gy X 63 Dra(x, | Xgs Xy ==es X H_,). voos QX g | Xgs Xy ooy X 1)

nk 1~ “k 1

constitutes a sequence of assignment values in the sense of Section 3

0 < alX, .ol %p Xps ooes Y<n,, (O<s<n-n)

I'Ik 1-1

(ii) B(x.,k_‘lxo,xi.--.,xﬂk,l_,),ﬂ(x,,k_,“Ixﬂ,xl.---.xnk.i_l).---,ﬁ(x_.lxn,x,,...,x)

ny.1-1

constitutes a sequence of placement values in the sense of Section 3

0< B(xnk_”slxo, , T x“k-l'l) <n_, (O<s<n-n,)

18

(iiij) aeA(n,_,,n=-n,_,) is the assigment vector determined by the
asmgnmem sequence

fa(x, ol %0 Xy oo X) 10 S 5 <0=ny]
in the sense of Section 3, and

(iv) beB, ,(n, ;,n-n,_,) is the placement vector determined by the
placement sequence

B(x,, 45| X Xpp Xy)0 <5< n—0, i}

Let I . denote the mapping from an insertion sequence X, X,, ..., X, ; t0 its

assignment vector a = (3, a,, ..., 3,)

Ink.hmk(xﬂ' Xys voes X y) = (80 Bpy oeis aﬂk.rl)

We will prove that a and b defined above are related by P ,(a) = b. Thus the
insertion of the n keys x,, X,, .., X, into the sparse table corresponds to the
placement of n—n,_, balls into a system of n,_, urns each of capacity ¢ = m,—1.

Example 4.1: Referring to Example 2.1 where:

n,=4 m=3 n=8 (X5X,.., x,)=(7,3,1,0,5,6,4, 2).

(7(0), n(1), 7(2), n(3)) = (3,2, 1,0)

¢ 3=100,0,1,1,1,2,3,3,4,56,7

. 2=(7,0,0,1,1,1,2,3,3,4,5,6) (PB= 1)
. 2=(0,0,1,3)

. b=(1,0,1,2)

Lemma 4.1: With a and b as in Definition 4.1, P, _,(a) = b.

e

Proof: The proof makes use of the equivalence of the following three statements;
if binary search determines the (virtual) address s for which z__, . pp)modulo m) =

Vo1 € X, < Yy = Z5,pB) (modulo m tHEN

1. insertion of the key x_ causes some genuine key to be placed in the first
location at or "to the right" of (virtual) address s in y which presently
contains a dummy key.

2. insertion of the key x_ causes some genuine key to be placed in the first
location at or "to the right" of (logical) address (s+PB) (modulo m) in z
which presently contains a dummy key.

3. insertion of the key x_ causes a genuine key to be placed in the first block at
or "to the right" of the t"-block in z which presently contains less than ¢ =
m,—1 genuine keys where t = L(s+PB) (modulo m) / m, J.

where L J denotes the integer part of.

Suppose X, < X, <X, Withl <r<mn .M so that the assignment value of x

7(r-1) n 7(r) k-1 n
is r. If the placement value of x_ist =L (s+PB) (modulo m) / m, |, we must prove
thatb = .. =b_, =m—1 2 b. Since z, pg)moduio m) < *n < Z(s+PB) (modulo m)
we must have

(4.1) X,y € Zs.14PB)(modulo m) < Xn < Z(s4PB)(modulo m) < X

But the key x,, was stored at logical address (r+1)m, —1 at the last reconfigura-
tion, so that equation (4.1) implies

o if Y, = Z, pp) (modulo m) is a dummy key, then the genuine key
X,,, femains stored at logical address (r+1)m,—1 implying

t = L(s+PB) (modulo m)/mkj =ir

() We leave the reader to make the minor modifications required in the proof when
r=0.

e d

20

. if y, is a genuine key, then all of the keys stored at the logical addresses
rm,~1, rm,, ..., (s+PB) (modulo m) are genuine. In this case we:
either have

z(s+PB] (modulo m) < Z(:a+l“l.‘.+l) (modulo m)< e < Z(s+PB+u-l) (modu'o m) < z(s+PB+u) (modulo m)

Z(s+PB+u} {modulo m) = z(s+PB+u+l) (modulo m) = Jls;(r)

implying t =1, or
Z(4PB) (modulo m) < Z(s+PB+1) (modulo m)<S e

< z{‘.;+l?'l.’,-1-1.1-l) (modulo m) < z{s+l’B+|.'|) (modulo m) = xq(r)

implyingt >randb = ..=b_ =m-~—12b,.

t

In either case the first block at or "to the right" of the assigned block of key x,
(block r) which is not full is the same as the first block at or "to the right" of the
fh_block which is rot full which proves the lemma. M

Suppose the insertion sequenc> Xy, X;, ..., X is some permutation of the integers
0, 1, ..., n—1. The mapping Inx-. i from insertion sequences to assignment vectors

I“k-hmk(xo’ e Ll X,.1)= a€ A(n,_;,n-n, ;)

is clearly many-to-one; indeed, any insertion sequence formed by permuting the
values in the two subsets

{xgv xll aryy xnk_‘_l} {x“k-t’ xnk-l+l' weey an}

yields the same assignment vector a.

21

f
Example 4.2: For assignment vector a = (0, 0, 1, 3) of Example 4.1 withn,_, = 4,
n=8andm, =3
o« (Xy0p Xy Xp2p Xqpy) = (0, 1,3, 7)
" {x{p Xy Xy X;} = {0, 1,3,7%

. {x4! Xs» xﬁr X7} = {2v 4; 5; 6}

. there are 4! x 4! insertion squences which produce the assignment
vectora = (0,0, 1, 3).

The cardinality of the inverse image of a under I, . - the number cf insertion
sequences (of the key values 0, 1, ..., n—1) which produce the same assignment
vector a is given by the next lemma.
Lemma 4.2: For each acA(n,_,,n-n,) there are (1+ay)n,,!(n—n,,)! insertion
sequences X,, X,, .., X,., — permutations of the key values 0, 1, ..., n—1 which yield
the assignment vector a.
Proof: Let acA(n,_,,n-n,_,) and suppose
Ink_,.mk(x()’xl""’xn-l) -

If the permutation 7 of {0, 1, ..., n,_,—1} sorts X, X;, ..., L S

X300 < F) <o < Koy 1)
then

. the integers {0,1,....X, o)~ l}u{xw(nwn+1, ...,n—1} have assignment value 0,

. theintegers {x . ;)+1, ..., X,(,—1} have assignment value t for 1 < t <m, .

22

Thus

(4.22) 2y =X+ 0= 1= X)
(42b) a, =x) — Xy — 1 1€t<n,.

Equa:tion (4.2a) shows that 0 < x,,, < 3,50 thatif x o =a,—] for some j with
0<j<a,then :

(43) x,, =23, +2, +..+a+t—-j 1st<n,

by equation (4.2b). Conversely, by setting X, = 3, — j for some j, 0 < j < a,,
and defining a, by means of equation (4.3), we obtain a set of possible values for

X100 Xq1y =+ Xyngg-1) B

Remark 4.1: Note in passing the summation formula

(4.4) EAiﬁ(ﬂk-i-ﬂ‘ﬂk.l} |I“k-l-n'“k-l.l(!) | = EA'E*\(N.l-"-ﬂu-n) (1+ao)nk-1!(n-nk-l)!
= n!
which counts the n! insertion sequences formed from the key values {0, 1, ...,n—1}.

Remark 4.2: Lemma 4.2 characterizes the set T, of possibie key values that may

appear in the insertion subsequence X, X;, ..., X, ;- IfavalueinT, is specified
for any x, ,,, then the values of X, for 0 < s <m, ;, 5 # tand {x, , X, g Xyl

are then determined. This yields:
Corollary 4.3: For each assignment vector a, index t (0 € t < n,,) and (possible)

key value qel, ,, there are n,,!(n—n,_,)! insertion sequences X,, X;, .., X, such
that) '

’ I“k—h“‘ﬂk-l(xﬂ’xv--wxn.l) =a

. q=X, where 7 is the permutation that sorts Xy, X,, ..., X, ;-

We will need a slight extension of Lemma 4.2 in Section 5.

Example 4.3: For the assignment vectora = (0,0, 1, 3) withn, , = 4,n=8,

23

- m,_ = 3 consider the insertion sequences which correspond to the cyclic shifts of a:

I, 4(X0,00 Xg,10 -
14‘4(:{1‘0, > ST
I a(X500 X5 15

I 4 (%500 X5 15 -

" Xo,) =% = (0,0,1,3)
’ xl.T) = 01! = (0! lv 3! 0)
. %,,) =0o%=(1,3,0,0)

) Xy7) = o’a=(3,0,0,1)

Suppose the permutations 1, = (n,(0), 7,(1), 1,(2), 7,(3)) sorts the values

Xuo Xy 10 Xy Xyp for0 cu<8

The possible values of x nu(t) 3T€ shown in the following table:

[PUR S N]

X < Xunah) < Fua@ < Xuny3)

X, mu(0)

{0}

{0}

{0,1}
{0,1,2,3}

Xumu(1)

{1}

{2}
{4,5}
{1,2,3,4}

Xumu(2)

{3}

{61

{5,6}
{2,3,4,5}

0<u<4

Xumu(3)

{7}

{7}

6,7}
{4,5,6,7}

If we rearrange the table — tabulating X, () modulo 4 it the i*’-column

W= O

xlw,,(o-l)

{0}

{7}

{5,6}
{1,2,3,4}

X, u(1-u)

{1}

{0}
16,7}
{2,3,4,5}

X nu(2-u)

i3}

{2}
{0,1}
{4,5,6,7}

Xumy(3-u)

{7}

{6}

{4,5}
{0,1,2,3}

we note that in each column each key value in {0, 1, ..., 7} appears exactly once.
Thus specifying a key value determines the cyclic shift. The general statement is

given next in

24

Lemma 4.4: Let acA(n,_,,n-n,_,) and suppose
Ly (%) = 0% 0 5 u<n,
where
» o is the shift operator
a*(a;, 8y ankd't) =(a,a,,p a, 123 3 a,)

o x, = (X, X, 15 s X, o.y) iS an insertion sequence of the
key values {0, 1, ..., n—1}

Let 9, = (1,(9), n,(1), -, n,(n,_,—1)) be the permutation of 0, 1, ..., n,_,—1
sorting X, o) < Xupty < = < Kygy(opeye1y If T, is the set of possible values for
X u(tv)? then {I',, :0<u< n,_,} is a partition of the integers {0, 1, ..., n—1}; each

key value in {0, 1, ..., n—1} is a possible value for SR forsomeu,0 <u<n,.

Proof: We argue as in the proof of Lemma 4.2 that the possible values for S
are

fa,, +a,,,+..+a +i—u—l+s:0<s<al if0<uc<t

fag+a,+... 42+ 2, H8y oty 0 —(U—t+D)+s: 0 S s < a)
ift<u<n,

It is easily seen that the sets {I“Im :0<u<n}forma partition of {0, 1, ...,n—1}. ®

Remark 4.3: The hypothesis that the key values are the integers 0,1, .. n-1was
made to simplify the statement of the results; given any set of key values

k, <k, <..<k,,

and an assignment vector a, there is precisely one cyclic shift 0" of a for which k,
appears in (Xg, Xy s X, 1) € (o)" @)

25

5. The Distribution Of The Number Of Moves

Assume now that
« n,<n<n

. thetable (Y, Y,, ..., Y,)® (m = n,_m,) has been constructed by the
insertion of n keys X, X, ..., X, , using the sparse table scheme

- an(n+1)"-key X_is to be inserted into (Y, Y,, ..., Y,)

Let 7 = (7(0), #(1), ..., 7(n)) be the permutation of {0, 1, 2, ..., n} which sorts the keys
X X, .oy X, namely,

X0 <Xy <o <X

Our probabilistic model describing the insertion of keys assumes each of the
(n+1)! permutations are of equal probability. There is no loss of generality in
further assuming that the key values {X, X,, ..., X} are the integers {0, 1, ..., n}.

Let Mmk(nk_I,n—-nk_,) denote the number of moves needed to insert X into the
table. If X =1iand M_ (n, ;,;n—n,,) = e, binary search determines an address s
forwhich Y, , <i<Y,iffC<i<nands=0ifi=0orn Since e moves are
required to insert X = i, it follows that the (virtual) addresses s, s+1, ..., s+e—1
(modulo m) contain genuine keys
Ys = i+1’ Ys+l = i+2’ b Ys+c-1 = i+e

where the addition of the key values i+1,i+2, ..., i+e~1 is modulon+1 and Y__,
is a dummy key with value i+e+1 (modulo n+1). Define ty, 1 <t < m, by

(8) We generally adhere to the convention of using capital letters to denote random
variables. Thus (Y, Y,, ..., Y, ;) is the "random" table that results when the
"random" sequence of keys X, X,, ..., X, are inserted.

26

sS4 see+l = 0 T Lseet

Y. . =Y Y .= i+e+1 (modulo n+1)

YHH,HR = j+e+2 (modulo n+1)
so that s+e+t, (modulo m) is the (virtual) address to the right of s containing the
genuine key with value i+e+1 (modulo n+1). Also define t,; by
Y = i—tL, I

sy, =i-1

Y Y

st T Tsey
so that s—t, —1 (modulo m) is the first (virtual) address to the left of s containing a
dummy key. It is clear that t; > 1.

Since Y, and Y . +1p 1€ genuine keys which have a dummy key with the same
value "to their left", we may conclude that Y, and Y ., Were inserted in the
table before the last reconfiguration and from this deduce that

. t_+ e + t, must be a multiple of m,
t, + e+t = Nm,

. exactly N—1 of the keys {i—t, +1,i-1, i+1, ..., i+e} (modulo n+1)
were inserted before the last reconfiguration, and

. the remaining t, + € — N of these keys were inserted after the last
reconfiguraiion.

Thus, n,_, — N < n — (e+t}).

We have thus decomposed the event {M_, (n, ;,n-n,,) = ¢, X, =i} into disjoint
events E(i,e,tg,t ,N). The probability of this latter event is the number of inser-
tion sequences which produce a table state with the parameters i, €, tg, t;, N as
described above divided by the normalizing factor (n+1)!. To make this count we
use the correspondence in Section 4; let b = (bg, by, -, b, ..1) be any placement
vector satisfying

27

(i) bng.l-N = bnx.rNH = .. = bnk‘|_2 =m,—1

(i) b, ,=m~—1-t; <m~1

(iii) b, N+b, e+ +b, =Nm—1) -ty =1t +e~N

g,
(iv) bnm-N—l <m.~-1
(v) 2:}sj<nk_,-w b, = n—n, ,—(t, +e—N)

The placement vector for a table described by the event E(i,e,t;,t;,N) is clearly
some cyclic shift of # placement vector b satisfying (i)-(v) above.

The number of assignment vectors a for which Pmk_l(g) = b satisfies (i)-(v) is
”mk-|(N't1.+°_N) ymk_I(nk_I-N,n-nk_l—(tL+e—N)).

We now use Lemma 4.4; if a is any assignment vector for which Pmk-l(!) =b
satisfies (i)-(v), then

« there exists a unique cyclic shift c“a of a (u depending on a) such that
the key i+e+1 is a possible value in {X, X, ..., X}

. there are n_,!(n—n,_,)! insertion sequences in E(ie,t, ,t;,N)
corresponding to each o'a.

We have thus proved that Pr{Mmk(nk_l,n—n,(_,) = e, X, = i} is the summation

n,_!(n-n_)!

1) (n+1)!

DN P (Nt +e=N) v, (0, =N,n—n, ,=(t, +e=N))

over the admissible values of t, and N. Finally, the summation in equation (5.1) is
independent of the value of the key X_ so that we obtain

Theorem 5.1: Whenn,_, < n<n,

(5.2) PriM, (n,,n-n,) =€} =

(n-n,_)'n !

it Eit.s: 1 <t p(t-Dmy-1) €s<time-1) s+1>e} my-1 (t's).!mk-l (n, ,—t,n—-ny ,—s)

e i

28

Example 5.1: m, =3, n_, =5, n=11, X,=5e=3t=1t=1 N=2
The vector b = (b, b,, b,, by, b,) satisfies the conditions:
(i) by=2
(i) b, <2
(iii) by +b,=3
(ivy b,<2
(v by+b +b,=3
We list below all solutions b of (i)-(v), the corresponding assignment vectors g, the
cyclic shift ¢”a which permits X, te+l =9to have been inserted before the last

reconfiguration and the table state y. (The keys in bold-face are those inserted
before the reconfiguration.)

b a shift u Y

(2,1,0,2,1) (3,0,0,3,0) 0 (0,1,2,2,3,3,3,4,6,7,8,9,9,10,11)
(3,0,0.2,1) 0 (0,1,2,2,3,3,3,4,6,7,8,9.9,10,11)
(2,1,0,3,0) 0 (0,1,2,2,3,3,3,4,6,7,8,9,9,10,11)
(2,1,0,2.1) 0 (0,1,2,2,3,3,3,4,6,7,8,9.9,10,11)

(2,0,1,2,1) (2,0,1,3,0) 0 0,1,1,1,2,3,3,3,4,6,7,8,9.9,10.11)
(2,0,1,2,1) 0 (0,1,1,1,2,3,3,4,6,7,8,9,9,10,11)

0.2,1,2,1) (0,3,0.2,1) 1 (0,1,2,3,3,4,6,7,8,9,9,10,10,10,11)
(0,2,1,2,1) 1 (0,1,2,3,3.4,6,7,8,9,9,10,10,10,11)
(0,3,0,3,0) 1 (0,1,2,3,3,4,6,7,8,9.9.10,10,10,11)
(0,2,1,3,0) 1 (0,1,2,3,3,4,6,7,8,9,9,10,10,10,11)

(1,2,02,1) (1,2,0,3,0) 1 (0,1,2,3,3,3,4,6,7,8,9,9,10,11,11)
(1,2,0,2,1) 1 (0,1,2,3,3,3,4,6,7,8,9,9,10,11,11)

(1.1,1,2.) (1,1,1,3,0) 1 (0,1,1,2,3,3.4,6,7,8,9,9,10,11,11)
(1,1,1,2,1) 1 (0,1,1,2,3,3,4,6,7,8,9.9,10,11,11)

Equation (5.2) shows that
C(n,nk_l)Pr[Mmk(nk_l,n-nk_,) =e} = ?\mk_l(nk_,,n—nt_l,e)

so that

29

Mg @W0) = 2 Wy (2 Dosot CU+iii) PriM,, (ij)=k}

Theorem 3.7 now yields

Theorem 5.2: Whent = L(n—n,_,)/(m,~1)) 1
(5.3) E{M, (n,,.n-n,,)} =
—1+ (C)" Dogic Ditmnsisnny, CUHLDCA—i=jin=n, ,~j)
In Figure 1 we plot E{M,(i,j—1)} for 1 < j < 3iandi= 2,3, .., 20.
Remark 5.1 E{M, (n, ,n-—n,)} is strictly increasing in n for n, , < n <m0, ,.
Proof: Let
T(nn,,irj) = Cln—i—j,n—n, ,—j)/Cla,n,)
Then
T(n+1,0,,i)) / T(a,n i) = (n+1=i—)(n-n,_+1)/(a-n_+1-D@+1) 2 1 =
Remark 5.2 E{Mmk(nk_‘,nk_](mk—I)-—l)} = (n,_m,—2)/2.

Proof: The n, m,—1 possible states of the table after the insertion of the keys X,
X5 oor Xy m,.2 (a permutation of the integers 0, 1,..,n,_m—2)are

ny_ym

I(T) = (0, l, vusy T—l, I, I, r+1g r+2g wauy nl\-!mk—z)

witn 0 < r < n,_ ym,—1. A symmetry argumen. shows that each of these states is
equally likely (and hence of probability 1/(n,_m,—1)). Inserting X, . , into
the table y® requires an expected number of moves equal to

(r + 0.5(n,_m,~—1) (111(_,;11,(_1—2))/1'1k.lrnk_l

and hence averaging over the possible states {y : 0 < r <n,_;m,—1} yields the
result. m

—d

30

i=2

I

0

40

| _ 1 |
Q [Te} o [Ts) o n o
™ o~ o~ -

—

35~

8jge pa.nByuoday u| A yi-f 1u8su| 0 saAo JO Jequinp peloadxy

Figure 1

.. 20

2,3,

j: 125 esi 3i

31

6. Asymptotic Analysis

We determine the asymptotic behavior of E{M(i,j)} as i,j+« with a fixed density
p = (i+j)/id. Let p(p) denote this limit and assu.ne that (1 /d) < p < 1. Using
Stirling’s formula [FE]

(217)l/2nn+1/26-n+1/(12n+l} < n! < (2ﬂ)lf2nn+l/2e—n+1/(l2n}

we find
C(i+j—k—s,j—8)/C(i+j,i) = (1/pd)*(1 — 1/pd)* R, (i,k,5)R,(i,k,s)
where
R,(k,8) = [1 — (k-+5)/ipd]ed*s+05 [1 — k/i]0-0-05 [1 — s/i(pd—1)]i(ed-N+s-05
and

1/12(ipd—k—s)+1

~ 1/12(i(pd—~1)~s)

- 1/12(i-k)

- 1/12ipd

+1/12i(pd—=1)+1

+1/12i41 < logR,(iks) € 1/12(ipd—k—5)
— 1/12(i(pd—1)=s)+1
—1/12G-k)+1
- 1/12ipd+1
+1/12i(pd—1)
+1/12i

If k,s = O(vi), limit__R,(i,k,s) = limit,__ R,(i,k,s) = 1 and
limit,_ C(i+j—k—s,j—s)/C(i+j,i) = (1/pd)*(1 = 1/pd)*

leading to the formula

32

Theorem 6.1: 1f i,j+= with p = (i+j)/id (c = d—1), then®

6.1) 1o = = 1+ Sores (/o0 Dpere. ClkbsR)(1=1/pdy

To simplify the right-hand-side of equation (6.1) we write
C(k+s.k) (1—1/pd)* = (1/k!) [(d*/du*) u**], /00

so that

(62) 1y(0) = =1+ Docre. (1/pd)/K D [(d/du) w0
=] EG cxe. (1/pd)¥/K! [(d¥/du¥) 05/ (1=0)] oy /pa

By Cauchy’s theorem

‘pkd
d
A—DG-(=1/p)"

(1/K!) [(d*/du¥) ukd/(1—u)]| 1 /pq = 1/ 27 f‘l’

where ¥ is a circle centered at ¢ = 1—1/pd, excluding ¢ = 1 and on which the
inequality | (1/pd)¥¢| < | = (1=(1/pd)) | is satisfied'?). Substituting the

9 The convergence of the series (equation (6.1)) when pd > 1 together with the
monotonicity of C(i+j—k—s,j—s)/C(i+j,i) with k and s implies that the "tail"

S e smaxtersowiyy Ck+8,K)C(+j—k—s5,j=)/Cli+}i) is negligible as i,j+e

(10) To show the existence of a circle ¥ with the requisite properties, we need to prove
that the inequality (1/pd) (1 — 1/pd + ¢)d < e is satisfied for some €, 0 < e < 1/pd.
If f,(e) = ¢, f,(e) = (1/pd)(1 — 1/pd + £)9, the properties:
(i) 0="f(0)<f)0) (ii) £,(1/pd) = f,(1/pd)
("") (d/de) f](e) |e=1/pd =1< l/p = (d/dE) fg(e)h.l/‘,d

imply the existence of ¢ in the interval (0, 1/pd) such that f,(e) < f,(e).

33

integral representation into equation (6.2), and interchanging the order of integra-
tion and summation, we obtain

dy
¥ (-9 @-(1-1/pd)—(1/pd)¥%)

koo = =1+ 1/20i §

We claim that the polynomial P,(z) = —(1/pd)z® + z — (1—1/pd) has a single
real simple zero w,(p) in the unit interval if 1/d < p < 1; indeed since

P,((1-1/pd)z) = (1-1/pd)[z = 1 - (1/pd)(1—-1/pd)4-1z¢]

the zeros of P,(z) are those of the polynomial considered in Lemma 3.5 with
d=c+1and{ = (1/pd)(1-1/pd)*!. Observe that (1/pd)(1-1/pd)*' monoton-
ically decreases to 0 from (d—1)4!/d¢ as p increases from 1/d to 1. Thus by the
residue theorem :

Theorem 6.2:

wy(p)
(1—w (pN[d(1-1/pd) = wy(p)(d—1)]

(6.5) kyp) =—1+

Remark 6.1 If i,j> such that p(i,j) = (i+j)/id + p < 1, then
limit, . E{M,(i,)} = #4(p)
Remark 6.2 1f i,j(i)+e such that E{M(i,j(i))} is unbounded, then limit;_ j(i)/ic = 1.
Proof: Suppose on the contrary that j(i)/ic < B < 1. Then the utilization
p(i) = (i+j(i))/id
is bounded away from 1, which yields a contradiction using Remarks 5.1 and 6.1.

Remark 6.3: w,(p) = 2p—1and p, = -1 + p/2(1=p)%

e |

34
Remark 6.4. The root w,(p) is not analytic in p in a neighborhood of p = 1. Never-
theless the limits '
limit | (d*/dp*) wy(p) k=0,1,..
exist. To show this, differentiate the defining relationship
(6.6) 1 — (w,(p))* = pd(1 — w4(p))
and obtain
(6.7) o — (04N T @ (p) = 1 — wylp)
[p — (0g(@)¥1 6,"(p) = [=2 + (d=1)(w4(0))* w4 (p)] &y (p)
where
0,/ (p) = (d/dp) w,(p) w,"(p) = (d?/dp?) wy(p)
We claim that w'(p) 2 0; using equation (6.7), it suifices to show that
(wg(p))*1 < p

Suppose on the contrary that (wy(p))*! 2 p; then using equation (6.6) and the
fact that w,(p) < 1, we have

pd =1+ wy(p) + ... + (0 ()" <pd
which is a contradiction. Thus w,'(p) 2 0, so that w,(1) = limit ,, w,(p) exists and
(1 = (wy(1))9) = d(1 — wy(1))

which implies that @ (1) = 1. A similar argumenti preves that the derivatives from
the left w /(1) and @ 4 (1) are finite and

g (1) =2/(d-1)

Expected Number Of Moves

30 | | I |
l
!.'
25 L_.
!
I
;
!
20 !." —
.‘I.'
," r'
.’! /
15 _,-' =
! I
/ !
;)
,' I
.f. ;;
/ ;‘
10 B !’ IJ i
ra 4
d = 4 K ,l’
s I./ If/,d = 3)
5 B ,-’./ II/, ‘ n
e "__.—"'/ d =2
0 N it S i [| |
0.2 0.3 0.4 0.5 0.6 0.7 0.8
Figure 2

Expected Number Of Moves As A Function Of Utilization p

36

The mean value theorem now yields

(6.8) wy(p) =1 +2(p—1)/(d—1) + o((1-p) pt1

Equation (6.8) then yields

d-1 1

e s 1
2 (1-pk ot

F‘d(P) ~

for which the special case of d = 2 was noted in Remark 6.3.

In Figure 2 we plot p,(p) for 1/d < p < 0.8andd = 2,3, 4.

7. The Relationship Of Key Insertion To Hashing With Linear Probing

A hashing function is a mapping from a set of possible key values to an address
space {0, 1, ..., i—1}. The term kashing with linear probing is used to describe the
following process whereby a set of keys k, k;, ..., k; ; are assigned distinct ad-
dresses;

(i) the hashing function h determines the assignment sequence
(h(k,), h(k,), ..., h(k; ;)

(ii) having stored keys K, k;, ..., k,, in addresses B, B,, .., B, ;, the keyk, is
stored in address B, = (h(k,) + s) (modulo i) where s is the smallest
non-negative integer such that (h(k)+s) (modulo i) does not appear in
the subsequence By, B;, ---» B,.;- The length of the probe is s; to retrieve a
key k whose address has been determined by this hashing procedure
requires a computation of h(k) and s+1 comparisons.

Thus the occupancy discipline defined in Section 3 with ¢ = 1 corresponds to
assignment of address by hashing with linear probing and the number of moves is
equal to the length of a probe. An analysis of of the length of a probe withc = 1
is found in [KN2, KW] and for ¢ > 1 in [BK].

37

Just as in Section 5, we may argue that a linear probe of length e corresponds to a
configuration of the (hash) table with parameters t, and t; The number of assign-
ment sequences]

h(X,,) B(X,, s o hCX,)

which result in a probe of length e is
vmr](B.tL+e—B) ymk_l(nk.l-—B,n-—nk_l—(t,_+e—B)).

In the case of sparse tables, we assign each of these sequences the probability
(C(n,n,_,))', while the linear probe model assigns the different probability
(n_)0, Ifn_ =1i,n—n_, = jwithp = (i+j)/2i and i+, then the asymptotic
probabilities are

i@V in the linear probing model
(27i) V2 (1 = 1/2p)?-D+1/2(1/2p)" in the key insertion model

Thus one cannot directly use the results in [KN2, KW] as Franklin [FR] and
Melville and Gries [MG] both do. It should be mentioned that Melville and Gries
are aware that their analysis is suspect since the positions of values are changed
during an insertion.

8. Improving The Worst Case Of Insertion

As we remarked in Section 2, the worst case of insertion may be quite bad. For
example, if m, = 2, n_, = 100 and n = 150, inserting a new key may cause 100
keys to move while the expected value is 5 from Figure 2. To improve the worst
case performance an additional structure is imposed on the sparse table, yielding a
more complicated scheme which we refer to as the hierarchical sparse table. The
basic idea is to redistribute the keys locally when the local density becomes high.
The insertion algorithm to be described below is somewhat different than the one
described in Section 2.

Let m be the size of the table, h = legzm — log,log,m | and b = m/2". Note that
log,m < b < 2log,m. Divide the table into m/b = 2" blocks B, B,, ..., B,, ; the

I——

38

first 2" b1—m blocks are of size Lbl and the athers are of size b1 where Lx)
and rx1 denote the irteger part of x (floor of x) and the smallest integer > x
(ceiling of x), respectively.

Now consider a full binary tree of height h with leaves L, L,, ..., L,., (scanned
from left to right) and associate with each of its nodes v a segment s(v) of the
table as follows:

(i) to the leaf L, associate the block B, (0 <i < 2")

(ii) for an internal node with children u and w, s(v) = s(u)us(w)
For every node v, let m(v) be the size of s(v). Thus if r is the root, then (v} = m,
the size of the table. The density p(v) of s(v) is the number of genuine kcys in s(v)
divided by m(v).
The nodes of the tree are divided into levels; the root r is at level 0, and the level
of any other node is greater by one than that of its parent. The level of the leaves
is obviously h. A distinct maximum density is associated with each of the levels.

Let 0 < 7, < 7y < 1 and define the sequence 7, 7, ..., T, of threshold densities of
nodes in levels 0, 1, ..., h by:

7, =T +a(ry—7)/h 0<q<h
Thus 7, =7, < 7, <. < Ty =1y and ol — Tq= (ry = 7)/h.
During the process of insertion into a hierarchical sparse table, the density p(L,)) of
each leaf L, satisfies p(L;) £ 7, = 7. However, it may happen that for an interval

node v of level q that p(v) > 7. An insertion is performed as fcllows:

(i) conduct a binary search and insert the new key as in Section 2

39

(ij) assume that the block into which the new key has been added is B,. If the
density of B, is less than or equal to 7,, then insertion process has been
completed. Otherwise, consider the ancestorsr = v, v,, ..., v, , of L,
and find the maximal value of q for which p(vq) < Ifsuchaqis
found. then the genuine keys of s(v q) are redistributed locally; the size of
s(vq) is not changed, only its genuine keys are evenly distributed.
However, if no such g exists, then the density of the entire table is
greater than or equal to 7, = 7, and the table size is increased.

One way to increase the size of the table is by expanding to a table of size nm,_,
where n is the number of genuine keys currently in the table. Note that n may be
different that n, so that the sequence {n,: 0 < k < «} no longer plays its former
role. Other possibility is to reconfigure when n = n, even if there is no need to do
so according to the local densities criterion. In this case, one can use 7, =
n,/n,_m, which conforms with the (reguiar) sparse table scheme in the sense that
in both schemata table expansion occurs for the same table state.

The advantage of hierarchical sparse tables is the improvement of their "worst
case'' performance over the original scheme.

Theorem 8.1: Performing n—n, , insertions into a hierarchical sparse table of size
m = n,_,m, requires at most O((n—n,_,)(log,m)?/(r,~,)) operations.

Proof: The density of a block is bounded by 7, = 7; < 1. Therefore, each biock
contains some dummy keys and the length of a move is less than the size of two
blocks 2rb1 < 2 + 4iog,m.

Some insertions trigger a redistribution of the entire table which costs m opera-
tions. However others are not immediately followed by redistribution. We wish to
bound the entire time spent on redistribution while inserting n—n, , keys. To this
end we first estimate the number of insertions iato s(v) between two successive
redistributions.

40

After redistributing s(v), the density of s(v) and therefore the densities of both of
its children is at most 7, where q is the level of v. At the next redistribution of
s(v), v must have at least one child u with density = 441 0T higher. Thus, the density
of s(u) has increased by at least 7, —7, = (v —7y)/h. Hence at least
(TU—-‘TL)m(U)/ h dummy keys have been replaced by genuine keys in s(v) between
two redistributions of s(v). The cost of a single redistribution of s(v) is m(v).
Therefore, the cost per insertion is at most

m(v) / (ry—=r)m(u)/h = (m(v)/m(@))b/ (ry—,)
However,
m(v)/m(u) €2+ 1/b
and thus the cost per insertion for s(v) is at most

(2+1/b)h/ (ry=1,)

Each block has one ancestor at each level, and therefore each insertion contributes
to at most h redistributions. Thus the cost of inserting n—n,_, keys is at most

(n—n,)(2+1/0)02/(r,—7,)
Since b and h are both of the order log,m, the theorem is proved. =
As for the implementation of this tree, several possibilities exist:

(i) Explicit Representation: The tree is stored by using nodes to contain
the current density (o(v)), and pointers to the two children. The pointers
can be eliminated if we use an array where locations 2i and 2i+1 are the
children of location i. The number of leaves is 2" = m/b and the number
of nodes is less than twice as much. Thus the storage requirements
are o(m). On each insertion the densities of the ancestors must be
updated. This can be done within O(h) = O(log,m) time.

41

(ii) Implicit Representation: No tree structure is maintained. On insertion,
we first calculate the boundaries of the block which has received an
additional key. Then the entire block is scanned to calculate its density.
If the density is found to be toc high then the sibling block is scanned to
calculate the density of the common parent. This process is
continued until arriving at the node v to be redistributed. The scan time
is O(m(v)) which is proportional to the redistribution time, and therefore
the worst case time bound does not change. However, a scan of length b
must be conducted even if no redistribution takes place, thus increasing
the cost of insertion somewhat.

(iii) Compromise Representation: The insertion cost using the implicit
representation can be reduced if a vector containing the densities of
the blocks is maintained. If no redistribution is required then we must
only update the density of a single block (in O(1) time). In case of
redistribution of s(v) the densities of all of the offsprings of v must be
updated but the time required for the update is negligible compared
to the redistribution time. As for storage, the extra space is equal to the
number of blocks m/b = o(m).

Note that these schemata are equivalent in the sense that redistribution occurs for
the same table states and affects the same blocks.

(iv) Alternative Scheme As in the implicit representation, no tree structure
is maintained. The boundaries of the blocks and their densities are
calculated when needed. Redistribution occurs whenever a
scan of length 2b or more is conducted. This implies that at least one
block is full and requires redistribution. Note that in this scheme,
redistribution does not occur at the same time and does not occur for the
same table state and does not have the same scope as in the other three
schemata. An analysis similar to that used in proving Theorem 8.1 may
be carried out.

42

9. Deletions

Deletions, though easy to implement, are difficult to analyze statistically. We
propose two deletion schemes:

(i)

physical removal — to delete the key k from the table y = (¥, ¥y5 -os yﬂk-lmk'l)

conduct a search to find s such that
ys-l < k= ys'

Suppose L satisfies

ys = ys+l == ys+L-I # ys+L

where the subscripts are taken modulo n,_m,. Then replace the block
(For Yogts - Ysar1) DY Fgyrs Yoars -+o» ¥spr) ODtINIng the table

f = (yo' yl’ ey ys-l’ ys+L’ yS+L’ e ys+L’ ys+L+l’ 228 ynk_lmk—l)

In addition to the reconfiguration which occurs whenever we attempt to
insert a key into a table y = (Y, ¥;» s ¥n,_m,.1) Presently containing n, keys,
a reconfiguration will also occur whenever deletion reduces the number of
genuine keys to some threshold. There are a variety of ways to specify these
contraction thresholds; the simplest is to reconfigure (after deletion) when
the number of genuine keys remaining is n,_,.

We are not able to provide an analysis of sparse tables under a sequence of
insertions/deletions. To begin with the set of possible table states attain-
abie by a sequence of insertions/deletions is larger than the set of possible
table states attainable by only insertions. (For example, delete the key 4
from the table (0, 0, 0, 1, 2, 2, 4, 4, 4, 6, 6, 6, 8, 8, 8).) The analysis of the
pure insertion process is simplified by the existence of renewal points — the
epochs of reconfiguration. The insertion/deletion process might be com-
pared with a birth and and death process and the analysis given in Sections
3-5 has determined a probability distribution on the state space of the pure
birth (= insertion) process.

43

(ii) tagged deletions — Like indexed sequential files (ISAM) this scheme requires
an additional Boolean vector of length m to distiguish between genuine and
dummy keys. A key is deleted by setting the appropriate entry to false. The
physical removal of keys is postponed until reconfiguration time; until then,
at least one copy of each key must remain. The time for deletion consists
principally of the search time O(log,m). Additional O(m,) time is required
to set the bits corresponding to all entries of the key to be deleted. By
marking only the rightmost copy of a key as deleted, the additional opera-
tion requires only O(1) time.

10. Fingers

Guibas et. al. introduced the idea of fingers (see also Brown and Tarjan [BT]):
Assume that many search operations accumulate near some prespecified keys,
called fingers. Given a key k which is close to some finger f, it is required to
design an algorithm which searches for k in time O(log,d) where d is the distance
between the location of f and the location of k. This feature can be incorporated
into the sparse table scheme by keeping the fingers in a special sorted list and their
locations in the sparse table by means of an additional list of pointers. Searching
for a key k is done by first finding the appropriate finger, using its corresponding
poin:ur to access the table (updating the pointer if necessary), and then using the
unbounded search technique of Beniley and Yao [BY].

11. Indexed Sequential Files

An indexed sequential file consists of a sorted disk file which resides on several
cylinders. The value of the key uniquely determines the cylinder on which the
record resides. The identity of this cylinder is found by means of an index. To
enable insertions, each cylinder has several overflow tracks, into which all additions
to the cylinder are placed. The advantage of this system is the single motion of the
read arm required to locate a record. If many insertions occur, then the overflow
tracks might become full after which additional records are placed in a general
overflow area. To locate a record in the overflow area, two arm motions are
required. To avoid excessive arm motion, it is advisable to reconfigure the entire
file. '

44

Given the characteristics of the file, it is interesting to estimate the average
number of insertions until one of the cylinders overflows. Each cyclinder corre-
sponds to an urn, whose capacity is equal to the size of the cylinder overflow area.
Indexed sequential files resemble sparse tables also in the fact that the maximum
key in each urn depends on the sequence of prior insertions, and the probabilistic
model assigns equal probability to each sequence.

12. Linear Sparse Tables

Replace the circular table by a linear one, with additional space on the "right
end". This extra space is used for storing keys which would otherwise shift the
origin (PB) of the table. The additional amount of storage depends on the density.
It is conjectured that for density p bounded away from unity, o(m) extra space is
sufficient.

13. Conclusions

The sparse table scheme is an extremely simple data structure. As indicated by
Melville and Gries [MG], it can be used for sorting. Another application is to
B-trees, where all nodes have the same prespecified size m, and the number of
keys may be as low as m/2. Implementing each node as a sparse table trades a
reduced search time within a node (from O(m) to O(log,m)) for an increased
storage allocation. Even though many memory management systems (such as
Buddy systems [KN1]) allocate space in predefined quantities, not many data
structures take advantage of his. (The exceptions are hash tables, sparse tables
and some list processing system with garbage collection.)

For constant m,, average behavior of sparse tables is optimal (up to a constant).
However the worse case behavior is O(n). To effectively control the worst case, a
hierarchical scheme has been introduced, and an upper bound of O((log,n)?) has
been proved. This bound is not tight and the its true value is an open question. A
second open question is the average number of moves in a hierarchical scheme.
We conjecture the bound is O(1) for constant m,.

45

14. References
[AHL] L. V. Ahlfors, "Complex Analysis", McGraw-Hill, 1953.

[AHO] A. V. Aho, J. E. Hopcroft and J. D. Ullman, "The Design And Analysis
Of Computer Algorithms'', Addison-Wesley, 1974.

[BDGS] J. L. Bentley, D. Detig, L. Guibas and J. Saxe, ''An Optimal Data Struc-
ture For Minimal-Storage Dynamic Searching', Computer Science De-
partment, Carnegie-Mellon University, 1978.

[BK] I. F. Blake and A. G. Konheim, "Big Buckets Are (Are Not) Better",
JACM, 24, 4, October 1977, pp. 591-606.

[BT] M. R. Brown and R. E. Tarjan, "Design And Analysis Of A Data Struc-
ture For Representing Sorted Lists", STAM Journal of Computing, 9, No.
9, pp. 594-614, Augusi 1980.

[BY] J. L. Bently and A. C. Yao, "An Almost Optimal Algorithm For Search-
ing", Information Processing Letters, 5,3, 1976, pp. 82-87.

[FE] W. Feller, "An Introduction To Probability Theory And Its Applica-
tions", Volume 1, John Wiley, 1950.

[FR] W.R. Franklin, "Padded Lists: Set Operations In Expected O(log log N)
Time", Information Processing Letters, 9, 4, November 1979, pp. 161-
166.

[GMPRI]L. J. Guibas, E. M. McCreight, M. F. Plass and J. R. Roberts, "A New
Representation For Linear Lists", 9th Annual Symposium Theory Of
Complexity, pp. 49-60, 1977. '

[KN1] D. E. Knuth, "The Art Of Computer Programming : Fundmanetal
Algorithms"', Addison-Wesley, 1969.

[KN2] , "The Art Of Computer Programming : Searching And
Sorting'", Addison-Wesley, 1973.

46

[KN3]

[KW]

[MG]

[PIA]

[RND]

V]

[(Ww]

[Y]

, "Deletions Which Preserve Randomness'", IEEE Trans-
actions On Software Engineering, SE-3, pp. 351-359, 1977.

A. G. Konheim and B. Weiss, ""An Occupancy Discipline And Applica-
tions', SIAM Journal Of Applied Mathematics, 14, 6, November 1966,
pp- 1266-1274.

R. Melville and D. Gries, "Sorting And Searching Using Controlled
Density Arrays'', TR 78-362, Cornell University, Ithaca, New York.

Y. Perl, A. Itai and H. Avni, "Interpolation Search a LogLog N Search",
CACM, 21, 1978, pp. 550-553.

E. M. Reingold, J. Nievergelt and N. Deo, "Combinatorial Algerithms:
Theory And Practice", Prentice Hall, 1977.

V. Vuillemin, "A Data Structure For Manipulating Priority Queues',
CACM, 21, pp. 309-315, 1978.

E. T. Whittaker and G. N. Watson, "A Course Of Moderr: Analysis",
Cambridge University Press, 1952.

A. C. Yao, "On Random 2-3 Trees", Acta Informatica, 9, pp. 159-170,
1978.

L

47

Appendix

Proof of Theorem 3.7: To compute the coefficient of wizi with 0 € j < icin

[(8/8u) A (z,w,0)],,., = 0.5G (z,w) [(3*/au®) H (uz,uw)], _,

we expand the numerator and denominator of

(uw—1)X(wus+1z5) +1
1—uzX(wuct!z°)

H (uz,uw) =

in Taylor series about u = 1
(uw—1)X(wuc+'z°) + 1
= [(w=1)X(wz°) + 1] + (u—1)[wX(wz°) + (w—1)D X (wz°)]
+ 0.5(u—1)*(w-1)D,X(wz°) + 2wD,X(wz°)] + O((u—-1)?)
1=uzX(wut'z®) = 1 — zX(wz°) — (u—-1)[zX(wz°) + zD, X(wz°)]

- 0.5(u—1)*[2zD,X(wz°) + zD,X(wz°)] + O((u-1)?)

where
D X(wz°) = [(3/au) X(wu*'z9)], i=1,2
Then
[(8/6u) A(zwW] o =T, + T, + T, + T, + T
where
T z/2 1+(w=1)X(wz°) D,X(wz%)+2D, X(wz°)
1= Xwz) ~ 1-zX(wzd) 1-w—z

- 2 1+(w=1)X(wzt) [X(wz5)+D,X(wz°)\"
g X(wz°) l—w—2 1=-zX(wz°)

48

2 wX(wz)+(w—1)D,X(wz9) X(wz9)+D,X(Wz°)

T, =
3 X(wz) 1—-zX(wz°) 1-w—z
T,=1/2 w—1 D, X(wz)+2D,X(wz°)
X(wz®) 1-w—z
T = 1 D,X(wz°)
57 1-w—z X(wz°

Expressions for the derivatives DiX(wzc) (i = 1,2) may be found by differentiat-
ing the relationship

waeuer! (X (wuet129)) = (X(wuet129)-1)
yielding
(A1) D XWzl — c(X(wze=1)] = (c+)X (wze)(X(wz)—1)
(A2) DXWz)[l - c(X(wz~1)] = = DX(wWzO[1 = e(X(wz'=1)]
+ (c4+1)(2X(Wz9)—1)D, X(wz°) + ¢[D,X(Wz9)]

Combining the terms we obtain

-1 DZX(wz°)+2D1X(wz°)

3 =
(A3) T, +T, 2X (wz°) 1—zX(wz")
z X(wz)+D, X(wz°) 3
(Ad) T,+T,=-— X(wz*) (1—zX(wz°))

z X(wz®)+D, X (wz°)
1-w—2z 1—-zX(wz®)

+

Let #;; denote the operator on generating functions F(z,w) defined by

J{i.jF(z,w) = fi'j

F(z,w) = Eosm- w Eosic- f,@

49

Equation (3.6) shows that
H,X(wz9) =0 0<icm, 0<j<ic (ij) # (0,0)
and that more generally
H, f(X(wz?)) =0 0<i<w, 0<j<ic (ij) # (0,0)

whenever f is analytic in a neighborhood of 1. From equations (A.1-2) it follows
that

.?fi.kaX(wz°) =0 0<j<gic (i,j)#(0,0) k=1,2
and therefore from equations (A.3-4) that
H(T+T)=0 0<i<« 0<i<ijc (ij) # (0,0)

and

z X(wz®)+D,X(wz°)

H. (T, +T,) = H..
1.1(2+T5) Mo l—w—z 1—zX(wz°)

0<i<= 0<j<ic (i) # (0,0)

so that it remains to identify the coefficient of wizi in

-1 . 1 X(wz°) 1
1-w—z 1-w=—z 1-=2zX(wz’) 1—c(X(wzf)-1)

with 0 < j < ic. Writing
X(wz°) 1 X(wz°) 1
1-zX(wzf) 1-c(X(wzf)-1) 1-zX(wz?) 1—cwze(X(wzc))c+!

= 205 U< z" 205v<. (wzo)Y (X (wze))ut+i+(c+Dyv

and using equation (3.6) we find

50

X(wz°) 1

H
k.ck+s 1 _zx(wzc) 1 —C(X(ch)_ 1)

u(c+1)+s+1
= v — . C 1)k 1,5—
¥ enen® TES)T ((c+Dk+s+1,5—1)

- 20 s CU(e+ Dk +s+1,5-u) — (c+1)c"C((c+1)k+s,s—u—1)]
= C((c+1)k+s,k)
Thus, when
j=tc+T 0<T<c 0<t<i
we have
#;,;[(3/ou) A(z,w)] ., = — C(+ji)

+ zﬂskStEOSss(i-r)wT C(i—k+ (t-k)c+T-—s,i—k) C((c+ 1)k+8,k)

which simplifies to equation (3.8). =

