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Abstract

The analysis of network connections, diffusion processes and cascades
is of practical and academic interest across many disciplines. Many prob-
lems in this analysis involve evaluating properties of the diffusion network.
However, these properties often involve variables that are not explicitly
observed in real world diffusions, such as the network connection strengths
and the diffusion paths of infections over the network. These hidden vari-
ables therefore need to be estimated for these properties to be evaluated.
In this paper, we propose and study this novel problem in a Bayesian
framework by capturing the posterior distribution of these hidden vari-
ables given the observed cascades, and computing the expectation of these
properties under this posterior distribution. We identify and characterize
interesting network diffusion properties whose expectations can be com-
puted exactly and efficiently, either wholly or in part. For properties that
are not ‘nice’ in this sense, we propose a Gibbs Sampling framework for
Monte-Carlo integration. In detailed experiments using various network
diffusion properties over multiple synthetic and real datasets, we demon-
strate that the proposed approach is significantly more accurate than a
frequentist plug-in baseline. We also propose a map-reduce implementa-
tion of our framework and demonstrate that this scales easily for large
datasets.
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1 Introduction

The study of networks and diffusions over them has a long history in epidemi-
ology, sociology, econometrics and marketing. Interest in the problem has in-
creased many fold over the last two decades in the context of information diffu-
sion and social networks, first because of the growth of the internet, and then
the social media revolution [2, 13]. The study typically involves three differ-
ent objects of interest: a network that defines strengths of connection between
entities, a stochastic diffusion process that defines how ‘infections’ diffuse over
the network, and cascades tracing the diffusion of specific infections over the
network. Many different problems have been studied in the context of these
three objects of interest. A problem that has received a lot of attention is that
of network inference [21, 7, 6, 8, 4, 9, 19, 22, 15], where the task is to infer the
hidden network of connection strengths from the cascades, assuming a diffusion
process.

However, inferring the network of diffusions is often an intermediate task
in the analysis. The main objective is often to compute some property of the
network and/or the cascades, such as centrality and reach of individual nodes,
and optimal seeds for viral marketing [14, 12, 10], community structures [17, 1],
the likelier diffusion mechanism [18], etc.

Goyal et. al. [10] propose the problem of finding ‘tribe leaders’, who are well
connected to a large tribe of nodes in the network, and whose tribe nodes follow
their actions frequently in the cascades. While finding and counting such tribe
leaders is a computationally expensive property, consider a simplification of this
definition. Imagine we wish to find (and count) influential leaders, where the
influence of a leader is measured by his out-degree in the network, where an edge
is counted in the degree only if it is strong and frequently used in the cascades.
This influence score is much simpler to compute given completely observed
networks and cascades, and yet is useful for marketers and epidemiologists.

In Fig. 1, we show the strength-frequency distribution of edges in four
different synthetically-generated network diffusions, where edge strength (α) is
the x-axis and transmission frequency ρ is y. These correspond to Forest Fire,
Core-Periphery, Random and Hierarchical graphs respectively, each with 1024
nodes and ∼ 2000 edges. In each case, we generated 20 splitting, independent
cascades [22] on top these graphs with 2 randomly chosen seeds for each cascade.
The distribution only considers actual edges used in the cascades. An alternative
interpretation is that these show the summed influence score (defined above) of
all users in a specific α−ρ region. We are not aware of any earlier investigation
of such strength-frequency distributions for network diffusions. The plots clearly
show that these distributions look very different depending on the underlying
network connections and possibly also the diffusion mechanism. Thus, given
network diffusion data from some network with unknown structure and diffusion
mechanism, it is clearly of interest to construct and study such distributions.

In this paper, we investigate such joint properties of networks and cascades.
The main difficulty in evaluating such properties for real-world network diffu-
sions is that the connections strengths in the network are unknown. Addition-
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(a) Forest fire (FF)
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(b) Core-Periphery (CP)
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(c) Random (Rnd)
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Figure 1: Edge distribution for cascades from different synthetic graphs

ally, the cascades only record the catchers of the infections and the infection
times, but not the actual path traced by specific infections. For example, in
social information flows, the friends and followers are known, but not the extent
of influence between them, and most often users report information without re-
vealing their sources. Therefore, to evaluate the properties, these hidden aspects
need to be inferred from the observed cascades.
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(b) Bayesian Expectation

Figure 2: CP: Inferred Edge distribution

One possible way for reconstructing a property is to take the ‘frequentist
plug-in approach’, that finds a point estimate of the network given the cascade,
and also of the diffusion paths followed in the cascades, and then uses only these
point estimates for computing the property. The most popular point estimate
used for network inference is the maximum likelihood estimate [6, 22]. This so-
lution suffers from two different drawbacks. The first is the well known problem
of overfitting for a frequentist approach. More importantly, for properties that
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are not one-to-one functions of the network and the diffusion paths, the most
likely value of the property need not correspond to the most likely network and
diffusion paths. As an example, Fig. 2(a) shows the reconstructed edge dis-
tribution corresponding to the Core-Periphery diffusion data. It has failed to
recovering the signature shape of the distribution.

In this paper, we motivate and propose a Bayesian solution to this problem,
where both the network and the diffusion paths are modeled as random vari-
ables. Then the network diffusion properties are also random variables, and our
problem becomes one of computing the expectation of the property under the
posterior distribution of the hidden variables given the observed features of the
cascade.

An obvious challenge for the Bayesian approach is the cost of computing
expectations, which seem daunting for the network inference problem with its
large number of coupled discrete and continuous hidden variables. However, our
analysis shows that, for the popular independent cascade model, many inter-
esting network diffusion properties are ‘nice’, in that their expectations can be
computed exactly and efficiently, at least in part. For parts of the expectations
that are not ‘nice’, we propose a Gibbs Sampling technique for efficient Monte
Carlo approximation. Fig. 2(b) shows the reconstruction of the Core-Periphery
edge distribution using our proposed approach. Clearly, it has been able to
recover the distinctive form to a much better extent.

In detailed experiments using various network diffusion properties over mul-
tiple synthetic and real datasets, we demonstrate that the proposed approach is
significantly more accurate than the MLE plug-in baseline. We show that using
a map-reduce implementation the approach scales easily to very large datasets.

Our main contributions are as follows. (A) We propose a new problem which
we believe has wide application and has not been studied in this generality be-
fore. (B) We propose a Bayesian solution framework, and characterize network
diffusion properties that are efficiently computable within this framework. We
show that the Bayesian framework is very effective for traditional network in-
ference as well. (C) We perform detailed experiments that demonstrate the
effectiveness of our solution for real and synthetic datasets, and also its scala-
bility for large datasets.

2 Related Work

Different problems have been studied in the context of diffusion networks [2,
13]. The network inference problem [21, 7, 6, 8, 4, 9, 19, 22, 15] has been
investigated in depth, starting with stationary discrete time models [7], to the
more recent models that consider features [22] and time-varying networks [9].
The approaches have mostly been based on maximum-likelihood estimation.

Apart from inferring the complete network structure, there has been work on
inferring summaries of the network, such as community structures [17, 1]. Other
investigated properties are estimating influence of nodes [3], and subsequently
selecting a subset of nodes that maximize influence [12]. Sadikov et. al. [20]
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study various properties of cascades assuming completely missing infections.
Milling et. al. [18] study the problem of deciding which of two given net-

works caused a specific diffusion with its path properties observed. Efficient
algorithms have been designed for identifying leaders and tribes [10] and min-
ing propagation summaries [16] from cascades, assuming the underlying network
and the diffusion paths to be known. These problems may be seen as computing
joint properties of networks and cascades, with all variables observed.

In summary, we are not aware of any general framework for estimating joint
properties of networks and diffusion processes in the context of hidden network
and diffusions paths. We are also not aware of any Bayesian framework for
network diffusion analysis.

3 Background & Problem Definition

In this section, we first review the network diffusion setting and the indepen-
dent cascade model and define network diffusion properties and the problem of
computing expectations of such properties.

Network Diffusion and Independent Cascade Model : We assume a network
G = (V,E) with nodes V and edges E. For (u, v) ∈ E, let αuv ∈ R+ denote
the connection strength between nodes u and v. We have a set C of cascades
corresponding to spreading infections over the network G = (V,E). Each cas-
cade c ∈ C consists of a set of time-stamped infections: c = {(ui, zi, ti)}, where
ui ∈ V , zi ∈ 1 . . . i− 1, ti ∈ R+ and ti < tj for i < j. The ith infection records
that node ui got infected at time ti by its parent infection zi. Let πi denote
the set of ‘potential parents’ for the ith infection, so that zi ∈ πi. Observe that
using knowledge of the infecting parent zi for all infections in the cascade, it
is possible to uniquely reconstruct the path of the diffusing infection over the
network.

The joint distribution p(C|α) on the cascades C given the network strengths
is typically defined using a generative process that captures the dynamics of
spreading infections. While many diffusion models have been proposed, we fol-
low the popular Continuous Time Independent Cascade Model [6]. Under this
model, cascades are generated in an iid fashion. Each cascade starts with an
initial set of seed nodes getting infected. Then at any time, each currently unin-
fected node has non-zero probability of getting infected by its currently infected
neighbors in the network. A node gets infected when its first potential parent
infects it. We consider the setting where nodes can get infected multiple times
in the same cascade, and the splitting model for this [22], where all infections
between the current and the previous infections of a node are considered as its
potential parents.

The main building block of the model is the probability density function
f(ti|ui, uj , tj , αji), which models the conditional likelihood of node ui getting
infected at time ti by node uj which got infected at time tj for tj < ti. The
likelihood of a cascade c with observed parent information z looks as follows

6



[6, 22]:

p(c|α) =
∏
iH(ti|tzi ;αzii)

∏
j∈πi S(ti|tj ;αzji) (1)

where S(t) = 1 − F (t) is the survival function, and H(t) = f(t)/S(t) is the

hazard function corresponding to CDF F (t) =
∫ t

0
f(t)dt. The likelihood of the

set of cascades C is given by the products of the likelihoods of the individual
cascades: p(C|α) =

∏
c∈C p(c|α).

For most real-world network diffusions, many of the variables above are un-
observed. We will assume that the observed trace Co = {co} of the cascade
C only contains the infected node ui and the infection time ti: c

o = {(ui, ti)}.
Specifically, the identify of the infecting parent zi is not observed. The pos-
terior distribution p(z|{co}, α) over infection parents, conditioned on observed
cascades {co} and α, has the following form:

p(z | {co}, α) =
∏
i

H(ti|tzi ;αuziui)∑
j∈πi H(ti|tj ;αujui)

(2)

Observe that this decouples into terms involving individual infection parents
zi. This will be a key property for efficient computation of network diffusion
properties in Sec. 5.

The network connection strengths αuv are also typically unobserved. Addi-
tionally, we will assume that set of network edges E is also not known. There-
fore, we will consider α to be a |V |× |V | matrix of unknown variables. The goal
of the popular network inference problem is to reconstruct this α matrix using
{co} [6, 22]. The state-of-the-art approach is to obtain a maximum likelihood
estimate:

α̂ = arg max
α

log p({co}|α) = arg max
α

log
∑
z

p(C|α) (3)

The Exponential, Power-law and Rayleigh distributions have been proposed
for f(ti|ui, uj , tj , αji) [6, 22]. For the Exponential distribution,

f(ti|tj ;αji) = αjie
−αji(ti−tj)

H(ti|tj) = αji; S(ti|tj) = e−αji(ti−tj)

and for the Rayleigh distribution,

f(ti|tj ;αji) = αji(ti − tj)e−
1
2αji(ti−tj)

2

H(ti|tj) = αji(ti − tj); S(ti|tj) = e−
1
2αji(ti−tj)

2

Network Diffusion Properties and Expectations: Given this background, we
now define our problem. We are interested in computing properties f(C,G) of
the cascades C and the network G. The properties may be binary or real-valued,
scalars, vectors or even matrices. Consider as examples strength-frequency dis-
tribution of edges, or influence of leader nodes. We will see more examples in
Sec. 5.
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The main difficulty is that for most real-world network diffusions α and z are
unobserved, so that the functions are not directly computable. We investigate
a fully Bayesian solution to the problem, where we imagine both α and z to
be random variables, so that the property f(α, z) is also a random variable.
Further assuming a joint distribution p(C,α) to be defined on the cascade C
and the network connections strengths α, we consider the posterior distribution
p(z, α|{co}) over the hidden variables z and α conditioned on the observed
trace co = {(ui, ti)} of the cascades. Then we consider its expectation f̄(C,α)
of f(C,α) under this posterior distribution:

f̄(C,α) = Ep(z,α|{co})[f(C,α)] (4)

For properties that do not involve z, we consider the expectation under the
marginal posterior distribution p(α|{co}) =

∑
z p(z, α|{co}). We similarly define

expectations of properties that do not involve α.
Recall that existing approaches only model the conditional distribution p(C|α)

assuming α to be given. In the rest of this paper, our goal is two fold: (a) aug-
ment this conditional to model the joint distribution p(C,α) using a Bayesian
framework, (b) investigate tractability of this expectation for interesting net-
work diffusion properties. We look at the first aspect in Sec. 4 and the second
in Sec. 5.

4 A Bayesian Framework

In this section, we define a Bayesian framework for network diffusion analysis
that will enable us to compute expectations of network diffusion properties. For
a Bayesian analysis, we need to model α as a random variable, with a prior dis-
tribution and a posterior distribution. Assuming a iid prior p(α) =

∏
uv p(αuv),

the joint distribution would simply be p(C,α) = p(C|α)
∏
uv p(αuv), so that the

posterior distribution p(α|{co}, z) looks as follows:

p(α | {co}, z) =
∏
uv

H̄uvS̄uvp(αuv)∫
αuv

H̄uvS̄uvp(αuv)dαuv
(5)

where H̄uv =
∏
i∈Auv H(ti|tzi ;αuv) and

S̄uv =
∏
i,j∈Puv S(ti|tj ;αuv)

∏
j∈Tuv S(T |tj ;αuv), whereAuv = {i : ui = v, uzi =

u} denotes actual infections of v by u, Puv = {i, j : ui = u, uj = v; j ∈ πi} de-
notes potential infections of u by v, Tuv = {j : uj = u, lv < tj} denotes survivals
of v from u, lv is the time of last infection of node v, T the final time stamp
in the cascades. Observe that this decouples into terms involving individual
network strengths αuv. Efficient computation of network properties in Sec. 5
hinges critically on this, as on the decoupling in Eqn. 2.

Another requirement for us is analytical integration of network properties
with respect to αuv. For this, it is convenient to consider conjugate priors.
Both Rayleigh and Exponential are special cases of the Weibull distribution
(corresponding to shape parameters 1 and 2) [3]. For likelihoods involving the

8



Weibull distribution with given shape parameter, the conjugate distribution is
the Gamma distribution:

Gamma(αuv; a, b) =
ba

Γ(a)
αa−1
uv exp{−bαuv} (6)

Substitution into Eqn. 5 gives us the following:

p(α|{co}, z) =
∏
uv

Gamma(a+ ρ(u, v), b+ ∆uv) (7)

where ρuv = |Auv|, ∆uv =
∑
i,j∈Puv

δij +
∑
j∈Tuv (T − tj), and δij = (ti − tj)

for the Exponential distribution and 1
2 (ti − tj)2 for the Rayleigh distribution.

We observe that this posterior is very suitable for the network inference
problem. Consider a < 1. Then for no transmissions across as edge, ρ(u, v) = 0,
and the posterior is the same as the prior distribution Gamma(a, b), which is
peaked sharply around 0. This implies that in the absence of any transmission
evidence in the cascade, there is very little belief in the existence of an edge.
Once an observation is made and we have ρ(u, v) ≥ 1, the posterior distribution
is unimodal and peaked at (a + ρ(u, v))/(b + ∆uv). This lies between 0 and
the MLE, which is ρ(u, v)/∆uv. When we have large volumes of data so that
ρ(u, v)� a and ∆uv � b, the mean of the posterior approaches the MLE. While
the parameterization a < 1 models prior belief in sparse network connections,
it is also possible to make the Gamma prior noninformative if necessary, using
a, b� 1 [5].

5 Network Diffusion Properties

In this section, we consider the multiple types of network diffusion properties,
and analyze the tractability of computing their expectations under the poste-
rior distribution p(z, α|{c0}). Consider, as a motivation, the network diffusion
property in the introduction that counts leaders of tribes. Computing such
properties is hard even when all the network diffusion variables are observed,
and we will see that computing the expectations with unobserved variables is
not tractable. However, we will investigate simplifications of these properties
that are interesting and useful, and at the same time their expectations can be
computed efficiently.

We will consider two different categories of network diffusion properties that
involve the network and the cascade: network centric and cascade centric prop-
erties. In a network-centric property, the focus is on entities in the network,
such as nodes, or edges, which satisfy some property in the network, as well as
some property in the cascade. The ‘counting leaders’ property is an example
in this category, with nodes in the network being the focus. A cascade-centric
property, on the other hand, is about entities in the cascade, such as individual
infections, which satisfy certain cascade property and additionally some network
property. Before discussing more about such properties in Sec 5.2 and Sec 5.3,
we first investigate conditions under which expectations of network diffusion
properties are efficiently computable.
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5.1 Niceness of Properties

Given the large size of real-world network diffusion data, in all of the following
discussion, we will say that a computation is efficient if it is linear in the size
of the network and the lengths of the cascades. Computing the expectation
involves marginalizing out two variables: an integration over possible network
strengths α, and a summation over possible network paths defined by the infec-
tion parent variables z. We first analyze these two marginalizations separately,
before looking at computing the complete expectation.

Integrating over α: First, we characterize properties for which the in-
tegration over α can be performed efficiently. We call such properties nice-α.
Intuitively, a nice-α property decomposes into terms that involve the parent vari-
ables z, and individual connection strengths αuv. Additionally, the functions
involving αuv should be amenable to analytical integration with p(αuv|z, {co})
which is in the Gamma form.

Definition A property f(α, z) is nice-α if it can be written as f(α, z) =
g(z)

∏
u,v huv(αuv, z) or as

f(α, z) = g(z)
∑
u,v huv(αuv, z) where∫

huv(αuv, z) p(αuv|z, {co})dαuv can be performed analytically ∀ u, v.

Theorem 5.1 Let f(α, z) be nice-α. Then computing the z-marginal fz(z) =∫
α
f(α, z)p(α|z, {co})dα is O(|V|2).

The notion of nice-α can be extended to properties that are depend only on
α and not on z. Such properties f(α) need to be of the form

∏
u,v huv(αuv) or∑

u,v huv(αuv), where
∫
huv(αuv)p(αuv|z, {co})dαuv can be performed analyti-

cally for all z. Note that the z-marginal fz(z) is still a function of z through
p(α|z, {co}) Also, properties that are independent of α are trivially nice-α. Fi-
nally, this complexity corresponds to the scenario when no edge information is
available to begin with. Given a set E of potential edges, the complexity above
would be O(|E|).

Summing over z: Now we characterize properties for which the summa-
tion over infection parents z can be performed efficiently. We call such properties
nice-z. Recall from Eqn. 2 that the posterior distribution p(z|α, {co}) decom-
poses into terms involving individual zi variables. Intuitively, the summation
over z can be performed efficiently if the property f(α, z) also decomposes over
z.

Definition A property f(α, z) is nice-z if it can be written either as f(α, z) =
g(α)

∏
i hi(zi, α) or as f(α, z) = g(α)

∑
i hi(zi, α)

Theorem 5.2 Let f(α, z) be nice-z. Then the α-marginal fα(α) =
∑
z f(α, z)p(z|α, {co})

can be computed in O(π|C|) time, where π = maxi πi is the maximum number
of potential parents over all infections.

As for nice-α, the notion of nice-z can be extended to properties that involve
only z and ignore α. Note that for such properties, the α-marginal fα(α) still
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depends on α through the posterior distribution p(z|α, {co}). Also, a function
which is independent of z is trivially nice-z. Finally, π � |C| and the complexity
above can be written as O(|C|).

Marginalizing both α and z: For computing the complete expectation in
Eqn. 4, both marginalizations above need to be performed. We now investigate
strategies for dong this. Interestingly, it turns out that the complete expectation
can be computed efficiently and exactly for some network diffusion properties,
which we call nice-z, α.

Definition A property f(α, z) is nice-z, α if it can be written as

f(α, z) =
∏
u,v

guv(αuv)

|D|∏
i=1

hi(zi)

αuziui
(8)

where
∫
guv(αuv)p(αuv|z, {co})dαuv can be performed analytically ∀u, v.

Lemma 5.3 A property that is nice-z, α is both nice-α according to Defn. 5.1
and nice-z according to 5.1.

In addition to being nice-α and nice-z, it is necessary that nice-z, α properties
decouple the α and z variables, not just in the property, but also in the posterior
distribution p(α, z|{co}). This is achieved by introducing the αuziui terms in the
property definition. These cancel out the corresponding terms in p(α, z|{co}),
which are responsible for the coupling.

Theorem 5.4 Let f(α, z) be nice-z, α. Then the expectation f̄(α, z) can be
computed in O(π|D|)) +O(|V|2) time, up to a multiplicative constant.

The multiplicative constant in question here is the inverse of the data like-
lihood p({co}) of the observed variables {co} in the cascades. This implies that
we may not be able to compute the exact value of any nice-z, α efficiently, but
we can compare the values of two different nice-z, α properties.

In general, there will be properties for which any one or both marginaliza-
tions cannot be performed analytically or efficiently. In such cases, we resort
to Monte Carlo techniques. Here, we will assume that it is possible to draw
iid samples (α(s), z(s)) from the joint distribution p(α, z|{co}), and similarly
(α(s)) ∼ p(α|{co}) and (z(s)) ∼ p(z|{co}) from the marginal distributions. In
Sec 6, we describe a Gibbs Sampling algorithm for drawing such samples.

First consider properties which are nice-α but for which the subsequent
marginalization

∑
z fz(z)p(z|{co}) over z cannot be performed efficiently. For

such properties, we first obtain the z-marginal fz(z) efficiently, and then use
Monte Carlo summation for z:

f̄(α, z) ≈ 1

S

∑
s

fz(z
(s)), where z(s) ∼ p(z|{co}), s = 1 . . . S

On the other hand, consider properties which are nice-z but for which the
subsequent marginalization

∫
fα(α)p(α|{co})dα over α cannot be performed
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analytically. For such properties, we first obtain the α-marginal fα(α) efficiently,
and then use Monte Carlo integration for α:

f̄(α, z) ≈ 1

S

∑
s

fα(α(s)), where α(s) ∼ p(α|{co}), s = 1 . . . S

Finally, for properties where neither of the two marginalizations can be per-
formed efficiently, we use Monte Carlo integration for both α and z:

f̄(α, z) ≈ 1

S

∑
s

f(α(s), z(s)),

where (α(s), z(s)) ∼ p(α, z|{co}), s = 1 . . . S

Having characterized the notion of niceness for network diffusion proper-
ties in terms of computing the expectation, we now return to our motivating
properties, and analyze them in this light.

5.2 Network-centric Properties

We first discuss network-centric properties, which involve computing scores for
specific entities in the network, such as nodes, edges, etc. These scores are
functions of the connection strengths α in the network and also of the cascades.
Recall that the network and the cascades are connected through the node id’s
ui in the individual infections.

The basic building blocks, for network scores of network entities, is the direct
connection strength αuv between nodes u and v. Using this, we can define

α
(2)
uv =

∑
w αuwαwv or its approximation maxw min(αuw, αwv) as the second-

order connection strength between u and v in the network. Generalizing further,

α
(r)
uv =

∑
w α

(r−1)
uw αwv is the rth-order connection strength between them, and

α∗uv =
∑R
r=1 α

(r)
uv .

The other building block, for cascade scores of network entities, is the direct
transmission frequency ρuv =

∑
ij I(ui = v, zi = j, uj = u) between u and

v in the cascades. This can be generalized the same way as αuv to define

ρ
(2)
uv =

∑
w ρuwρwv or its approximation maxw min(ρuw, ρwv) as the second-order

transmission frequency between u and v in the cascades. The interpretation is
that u frequently infects some node w, who in turn frequently infects v in the

cascades. This can also be generalized to similarly define ρ
(r)
uv as the rth-order

transmission frequency, and finally ρ∗uv.
Node-centric Properties: We now formally define our first motivating

network diffusion property, that of finding influential nodes considering both
network strengths α∗uv and transmission frequencies ρ∗uv.

Node influence score : Intuitively, a node’s influence score fu(α, z) is high
if it has many ‘followers’ v with high α∗uv and high ρ∗uv. One way to capture
this is to define

fu(α, z; a, r) =
∑
v

I(α∗uv > a)I(ρ∗uv(z) ≥ r) (9)
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Alternatively, we could couple together α∗uv and ρ∗uv: fu(α, z) =
∑
v α
∗
uv ◦ ρ∗uv

or fu(α, z) =
∑
v α
∗
uv
ρ∗uv Unfortunately, all of these forms are nice neither in α

nor in z even when R = 2, or in other words we consider first and second order
infections. So the only way to estimate them is to sample over both α and z.
But it turns out that the definition for R = 1 is more tractable.

Node influence score for direct infections: This is the special case of node
influence score where we only consider directly connected nodes in the network
who are also directly infected in the cascades.

fu(α, z; a, r) =
∑
v

I(αuv > a)I(ρuv(z) ≥ r) (10)

While this does not provide as much information about the influence of a node,
this a reasonable surrogate. It turns out that this property is nice-α, so that
the expectation can be partly calculated efficiently and exactly. The reason
for not being nice-z is that while ρuv(z) is itself nice-z, discretization of ρuv(z)
through I(ρuv(z) ≥ r) leads to coupling across zi variables. This implies that
the alternatives fu(α, z; a) =

∑
v I(αuv > a)ρuv(z) and fu(α, z) =

∑
v αuv

ρuv(z)

are both nice-α and nice-z, though not nice-z, α, which provides two different
routes for partly approximating their expectations.

We may restrict the node influence score above to consider only the network
connections and ignore the cascade:

f(α; a)u =
∑
v

I(αuv > a) (11)

Interestingly this is also nice-α and (trivially) nice-z, but not nice-z, α, like
the definition above. Alternatively, we could consider only the transmission
frequencies:

f(z, r)u =
∑
v

I(ρuv(z) ≥ r) (12)

This is (trivially) nice-α but not nice-z because of the discretization.
Edge-centric Properties: Edge-centric properties compute scores for

edge (u, v) in the network. As before, we will focus on scores involving connec-
tion strengths αuv and transmission frequencies ρuv.

Edge Distribution : Given a range (r1, r2) for the transmission frequency,
and a range (a1, a2) for the connection strength, this counts the number of
edges (u, v) in the network whose connection strengths αuv and transmission
frequencies ρuv lie in this range.

f(α, z) =
∑
u,v

I(a1 < αuv < a2)I(r1 ≤ ρuv(z) < r2)

The resultant distribution of the edges over the α, ρ space can help in under-
standing how effective viral marketing strategies can be for this network. Addi-
tionally, the edge distribution can be viewed as the distribution of the summed
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(or averaged) direct node influence scores. Recall that the plots in the intro-
duction corresponded to this property.

Marginals or projections of this distribution along the ρ and α dimensions
can also be useful.

f(z) =
∑
u,v

I(r1 ≤ ρuv(z) < r2); f(α) =
∑
u,v

I(a1 < αuv < a2)

All of these properties are nice-α, but not nice-z.
Observe that removing the binning for the α-projection recovers the well

studied network inference problem.

f(α, z) = α (13)

However, taking the expectation gives the Bayesian formulation of the net-
work inference problem, where we are seeking the expected network connection
strengths given the cascades. This is again nice-α, but not nice-z.

We have seen that all these network-centric properties can at best partially
nice. We conclude this discussion by presenting an interesting property that
is nice-z, α. Imagine that we are interested in finding strong edges that are
not frequent, and weak edges that are frequent. For this, the following score is
useful:

fuv(α, z) = α−ρuv(z)
uv (14)

It can be shown that this function satisfies Defn. 5.1, and therefore the complete
expectation can be computed exactly and efficiently.

5.3 Cascade-centric Properties

For cascade centric properties, the focus is on entities in the cascade, such as
individual infections, for which we compute some score based on the network as
well as the cascade. We illustrate such properties using individual infections.

Infections due to Strongest Neighbor: The strongest neighbor of a node v
in the network is the one with the maximum connection strength αuv. Now, we
can count the number of infections i, for which the infecting parent uzi is the
strongest neighbor for ui in the network.

f(α, z) =
∑
i

I(uzi = arg max
v

αvui) (15)

We can similarly count number of infections by the nth-strongest neighbor, for
n > 1. Such an analysis is helpful for designing viral marketing strategies for a
network. This property is nice-z, but not nice-α.

As an even simpler example of a network property, we can consider the
checking parents nodes for individual infections. Infection parent identification:
This indicates if node u is the parent of infection i.

f(α, z)iu = 1 if zi = u; = 0 otherwise (16)
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This is equivalent to recovering the diffusion tree for a cascade. This second
infection-centric property is nice-z and also trivially nice-α.

It is worth observing that complete likelihood p({co}, z | α) of a cascade C
given network strengths α can be seen as a cascade-centric property, where the
entity of interest is the entire cascade.

f(α, z) = p({co}, z | α) =
∏
u,v

e−αuv∆uv

∏
i

αuziui (17)

The likelihood function can be viewed similarly as a cascade-centric property.
Unlike complete likelihood, this considers the likelihood of only the observed
infection variables, and the parent variables z are summed out.

f(α) = p({co} | α) =
∏
u,v

e−αuv∆uv

∏
i

∑
zi∈πi

αuziui (18)

Both of these properties are nice-z (likelihood trivially so), but not nice-α.
The expectation of this property can be interpreted as considering the entire
posterior distribution over α, learnt from the training cascades, to explain the
test cascades. In contrast, the frequentist strategy uses only the maximum
likelihood point estimate.

6 Inference

We have seen in Sec. 5 that computing the expectation for network diffusion
properties that are not completely nice requires drawing samples from the pos-
terior distribution p(α, z|{co}) over network strengths α and infection parents z
conditioned on the observed cascades {co}. In this section, we propose a Gibbs
Sampling framework for this. In this framework, we iterate over all latent vari-
ables, sampling a new value for it from its conditional distribution, given the
current values of all other variables. Under ergodicity conditions, asymptotically
the samples are from the joint posterior distribution over all latent variables.
For our problem, we need to draw samples from p(zi|{co}, α, z−i) and from
p(αuv|{co}, z, α−uv), where z−i and α−uv denote variables other than zi and
αuv. (All expressions below are for the Exponential Distribution. Expressions
for the Rayleigh are similar.)

First, the posterior distribution p(z, α | {co}) over both z and α looks as
follows:

p(z, α | {co}) ∝
∏
uv

αρuv(z)+a−1
uv e−αuv(∆t

uv+b)

Given this, the conditional distribution for the ith infection parent zi turns
out to have a very simple form:

p(zi = j | z−i, α, {co}) ∼ αji (19)
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The conditional distribution for individual network strengths αuv also has a
simple Gamma density form:

p(αuv | {co}, z, α−uv) ∼ Gamma(ρuv + a,∆uv + b) (20)

For network properties that are nice-α, only samples of z are required. In
such cases, an alternative is to perform collapsed Gibbs Sampling, by analytically
integrating out α:

p(z|{co}) ∝
∫
α

p(z, {co} | α)p(α)dα

∝
∏
uv

Γ(ρuv(z) + a)

(∆uv + b)(ρuv(z)+a)

(21)

Given this conditional, the conditional distribution for individual infection
parents zi looks as follows:

p(zi = j | z−i, {co}) ∝
(ρ−iujui(z) + a)

∆ujui + b
(22)

The collapsed Gibbs Sampling algorithm simply involves repeatedly sampling
the parents of the individual infections from a Multinomial distribution, given
the parents of all other infections. To the best of our knowledge, this is the first
Gibbs Sampling algorithm for network analysis.

Recently, the independent cascade model has been extended to handle fea-
tures of individual infections [22], which is useful to capture contents of social
media posts when inferring influences. Our approach can be extended in an
straight forward manner to incorporate features in this way. The analysis in
Sec. 5 remains unchanged since the decoupling in Eqns. 2 and 7 still hold. The
Gibbs Sampling updates acquire an additional feature term. We omit further
details due to space constraints.

Map-Reduce Implementation To sample a parent for an infection of node v, we
only require ρ∗v and ∆∗v in case of collapsed sampler, and α∗v in the case
of uncollapsed sampler. To sample α∗v, we again require only ρ∗v and ∆∗v.
Moreover, after sampling we update only ρ∗v and α∗v. As a result, we can run
the sampler for each node v in parallel if we know the set of possible parents of
each infection. The reducer, where the sampler is run, exploits this parallelism.
When computing ∆uvs , we can process each cascade in parallel and add these
values for each u, v pair, to get the final values across cascades. The Mapper,
which computes ∆uv and the set of possible parents for each infection exploits
this parallelism.

Each mapper computes ∆uv for the set of cascades given to it and emits
(v:∆uv) pair. It also generates a list of possible parents for each infection and
emits (v:[Infection,{possible parent Infections}]) pair.

Each reducer performs sampling for a subset on nodes. For each node v, it
combines the ∆uvs from different mappers to compute the final ∆uv. It then
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creates a list of infections of node v with possible parent set. It performs the
sampling for these infections and generates the samples. The samples from
various reduces are be combined to generate the final samples.

7 Experiments

In this section, we report experimental evaluations of various network diffusion
properties defined in Sec. 5 using our Bayesian approach on synthetic and real
world datasets. We report how accurately we are able to estimate the properties
and also how well our algorithms scale for large datasets.

Baseline : We note at the outset that this general problem has not been
studied before, so that there is no baseline we can compare against as such.
However, one potential strategy is to first recover a point estimate α̂ (e.g. MLE)
of the network strengths α using a state-of-the-art approach, consider the most
likely infection parents ẑ = arg maxz p(z|α, {co}) given α̂, and then evaluate the
property f(α̂, ẑ) at α̂, ẑ. While this suffers from deficiencies outlined in Sec.
3, this is the best existing approach for our problem. As the state-of-the-art
network inference approach for the continuous time independent cascade model,
we used the featureless version of MONET [22]. We do not use NETRATE [6],
since it does not support multiple infections of a node in a cascade. We have
used the Exponential distribution for all experiments. In the rest of this section,
we will refer to this approach as the frequentist plug-in approach (FP), and to
our proposed approach of computing expectations as the Bayesian Expectation
approach (BE).

Synthetic data experiments: We first conducted experiments on mul-
tiple synthetic datasets. First, they allowed us to evaluate accuracy against a
gold-standard, which unfortunately is unavailable for most real-world network
diffusion datasets. Secondly, they helped us understand how well our proposed
approach works for different kinds of graphs. Following earlier experiments on
network inference [7, 6], we created synthetic graphs with 1024 nodes using the
Forest Fire (FF), and the Random (Rnd), Hierarchical (HI) and Core-Periphery
(CP) Graph models, the last three being instances of Kronecker Graph mod-
els. We the same parameter values ([0.5, 0.5; 0.5, 0.5] for Rnd, [0.9,0.1;0.1,0.9]
for HI, [0.9,0.5;0.5,0.9] for CP) as Gomez-Rodriguez et. al. [6]. To generate
weights αuv for each edge (u, v), we sampled uniformly from (0.01, 10) [3]. We
then generated 20 splitting cascades on top these graphs with 2 randomly chosen
seeds for each cascade. Finally, we had 2046 edges and 48,947 infections for the
Random graph, 1496 and 38046 for the Hierarchical, 2042 and 58062 for the
Core-Periphery and 2023 and 55274 for the Forest Fire graph.

Recall that one of the reasons behind the synthetic data experiments is to
be able to evaluate accuracy. For the infection parents z, we considered the
true parents as the gold-standard. However, for the real-valued network con-
nections αuv, the true values are very difficult to recover for any algorithm given
finite length cascades. For example, it is impossible to recover the strength for
any edge that has no transmission in the cascade. Therefore, we considered
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as our gold-standard the best achievable αuv given the true infection parents
in the cascades: α∗ = arg maxα f({co}, z∗;α). To evaluate accuracy of a com-
puted property, we used absolute error between the gold-standard f(α∗, z∗) and
the estimated value of the property for scalars, and root mean squares of the
individual errors for vectors and matrices.

Network-centric Properties: In this category, we first evaluate the edge-
distribution (Eqn. 5.2) as an example of a property on edges. Evaluating
this property is challenging, because of the threshold parameters a and r. We
discretized the α and the ρ ranges, and within each region of the α, ρ space,
computed the actual, BE and FP values of these properties, and the errors for
BE and FP to determine which is better.

1 2 3 4 5 6 7 8 9 10
α

10

20

30

40

50

60

70

80

90

100

ρ

Forest Fire Freq

0

60

120

180

240

300

360

420

480

540

(a) Frequentist

1 2 3 4 5 6 7 8 9 10
α

10

20

30

40

50

60

70

80

90

100

ρ

Forest Fire Bayes

0

20

40

60

80

100

120

140

160

180

(b) Bayesian Expectation

Figure 3: Inferred Edge distribution for Forest Fire
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Figure 4: Inferred Edge distribution for Random

The actual plots for the four networks were introduced in Fig. 1. The FE and
BE reconstructions for the Core-Periphery graph were also introduced earlier
in Fig. 2. The reconstructions for the other three graphs are shown in Figs.
3, 4, and 5. It can be seen quite clearly that while BE is able to reconstruct
the actual distributions to a reasonable extent for all 4 graphs, FP does quite
poorly. In fact, the FP reconstruction looks similar for all 4 cases, and fails to
pick up the signatures for the different graphs.

We also calculated the actual errors for the two approaches over the α, ρ
space. Since it is difficult to visualize the plots in 2D, we next evaluate the pro-
jections on the α-dimension and z-dimension (Eqn. 5.2) for the edge distribution
in more detail for the 4 graphs.
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Figure 5: Inferred Edge distribution for Hierarchical

Table 1: α-proj. for edge distribution: Abs. error
NW CP HI Rnd FF

α BE FE BE FE BE FE BE FE

0 1 591 6514 156 1501 470 4004 432 4008

1 2 169 1587 5 287 34 1085 30 1039

2 3 13 618 18 166 6 497 8 379

3 4 9 340 1 87 6 265 15 196

4 5 8 159 2 57 32 139 9 101

5 6 6 138 1 51 14 127 11 61

6 7 3 75 1 34 7 86 13 62

7 8 1 82 14 9 9 70 4 64

8 9 2 48 8 17 13 45 1 38

9 10 1 46 1 16 4 44 4 36

Table 2: ρ-proj. for edge distribution: abs. error
NW CP HI Rnd FF

ρ BE FE BE FE BE FE BE FE

0 10 524 4373 69 1032 344 3339 287 2903

10 20 348 228 14 15 108 8 89 21

20 30 20 82 3 0 40 87 20 51

30 40 59 91 1 14 28 64 29 73

40 50 47 100 3 19 13 44 10 43

50 60 43 59 5 16 6 16 8 34

60 70 19 27 0 3 1 13 9 12

70 80 1 1 1 0 2 6 2 3

80 90 4 4 2 0 0 4 2 12

90 100 3 5 2 1 1 2 2 8

In Tab. 1, we record the errors for BE α-projection and the FP α-projection
for different α-intervals. We can see that for the α-projection, the FP errors
are an order of magnitude bigger for all intervals, except for α ∈ (7, 8) for
Hierarchical. Similarly, in Tab. 2, we record the errors for BE ρ-projection and
the FP ρ-projection for different ρ-intervals. In this case as well, FP error is
significantly lower for the (10-20) interval for CP and Rnd.

Finally, we come to properties on nodes. We evaluated direct node influence
(Eqn. 10), and indirect node influence for 2nd-order neighbors (Eqn. 9) for the
4 graphs. Again, we partitioned the α, ρ-space into regions. However, reporting
detailed results is even harder here, since we have actual, BE and FP scores
for each node for each α, ρ-region. One option is to sum (or average) over the
influence score over all nodes. However, recall that one interpretation of the
edge-distribution is the distribution of the sum of direct influence scores over
all nodes. So the edge-distribution evaluation above additionally serves as an
evaluation of the direct node influence scores at an aggregate level.

Due to space constraints, in Fig. 6, we show the (averaged) node indirect
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Figure 6: Indirect Edge distr. for Hierarchical

influence distribution only for the Hierarchical graph. Again, we see that BE is
able to pick up the signature of the distribution to a reasonable extent, whereas
FP has failed completely.

Table 3: Node influence scores: Agg. error
NW CP HI Rnd FF

BE FP BE FP BE FP BE FP

Dir 29 124 22 46 30 104 30 98

InDir 62 417 15 98 27 288 27 273

In Tab. 3, we report the aggregated errors over all nodes and over all (α, ρ)
regions, for both direct and indirect influence scores. We have scaled the values
down by the total number of nodes, which is 1024. We can see again see that
the BE errors are significant smaller than the FP errors across the board.

Cascade-centric Properties: Under cascade-centric properties, we evaluate
infections due to nth strongest neighbor (Eqn. 15) for n = 1, 2, 3.

Table 4: Infections by nth-strongest nbr: abs. error
NW CP HI Rnd FF

n BE FP BE FP BE FP BE FP

1 3711 22090 631 13537 578 21613 127 23476

2 2374 6171 691 2506 1352 3533 1284 712

3 191 59 194 3924 152 4825 388 6828

Tab. 4 records the absolute error of counting infections by the nth-strongest
neighbor for n = 1, 2, 3. Notice that FP has very high errors for n = 1. There
are just two instances where FP works better than BE: for n = 2 in Forest Fire
and for n = 1 in Core-Periphery, where the values are comparable. In all other
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cases, FP has significantly higher errors than BE.
Likelihood, Network Inference and Parent Identification: We have seen that

BE outperforms FP for various network diffusion properties. Such performance
difference is attributable to two different kind of issues. Many to one functions.
Bayesian approach of using the full posterior distribution versus frequentist plug-
ging in. To evaluate the second aspect we look at the basic inference problems
for network analysis, and generalization ability on held-out data.

Table 5: Log-likelihoods on synthetic data
NW CP HI Rnd FF

BE, FP BE, FP BE, FP BE, FP

Test 1.0e4, 0.6e4 6.5e3, 2.4e3 1.1e4, -1.5e4 1.2e4, 926

Train 2.8e4, 3.6e4 2.0e4, 2.2e4 2.3e4, 2.9e4 2.8e4, 3.3e4

In Tab. 5, we record the train and test likehoods for the 4 synthetic datasets.
We see that BE consistently has higher test likelihood, while the train likelihood
is higher for FP, suggesting overfitting.

Table 6: Network Inf. (NI) & Parent Id. (PI)
NW CP HI Rnd FF

BE FP BE FP BE FP BE FP

NI 0.116 2.553 0.884 3.210 0.147 17.483 0.329 736.821

PI 0.533 0.406 0.861 0.783 0.757 0.646 0.770 0.674

In Tab. 6, we record the errors in recovery of α for BE and FP. Observe
that the errors are consistently lower for BE across the 4 datasets. In fact, the
FP errors are very high for the Random and Forest Fire datasets. In Tab. 6,
we also see that parent identification accuracy of BE is consistently around 10%
more than that of FP. Though loglikelihood, network inference and parent iden-
tification can be also seen as network diffusion properties within our framework,
these three experiments serve more to demonstrate the strength of the Bayesian
approach in general for network diffusion analysis independently of properties.

Iterations vs Error : Before moving on to experiments on real-world data,
we make a note about Gibbs Sampling iterations. Gibbs Sampling algorithms
often take thousands of iterations to converge, which can be a serious problem
for large real-world datasets. For all our experiments, accuracy increases very
sharply in the initial iterations, and is close to the best value within 100-200
iterations.

Experiments on real-world data: We now report experiments on real-
world data, where the graph structures could be more complex than the syn-
thetic settings. What is more likely is that underlying diffusion process is dif-
ferent from the Independent Cascade model, which our models assume, and
which we had used for generating the synthetic cascades. We have performed
experiments on two real-world network diffusion datasets from the information
diffusion and social media domains. The nature of insights from the two datasets
is similar. Due to space constraints, we only report our findings on one of them.

The Meme Tracker dataset1 records the duffusion of ”memes” or catch-

1http://snap.stanford.edu/infopath//data.html
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phrases across 5000 most active blogs and news sites between March 2011 and
February 2012. The flow of each meme corresponds to one cascade. Related
memes are grouped into one topics. For our experiments, we selected 5 topics,
2 of which have been used in earlier experiments involving non-stationary net-
works [9], and 3 others that seem stationary. Basketball has 1460 Nodes, 15417
Infections in 158 cascades, Alcohol 1993 nodes and 17321 infections in 167 cas-
cades, Technology 2701 nodes and 35037 infections in 323 cascades, NBA 2481
nodes and 22736 infections in 229 cascades, and Occupy 1921 nodes and 21109
infections in 200 cascades. In each topic, we consider all sufficiently long cas-
cades (length > 75). We split the cascades randomly (80-20 split) to generate
the training and test cascades, and then prune infections of users in test cas-
cades, who are not present in the training cascades.

Since no gold-standard is available for even α or z for this dataset, the only
quantitative comparison between BE and FP that we were able to perform was
using loglikelihood on held-out test data, using the knowledge of α learnt from
training data. Recall that likelihood can be considered as nice-z property in our
framework. However, it is the best scenario for the baseline since likelihood is
a one-to-one function of α for this problem.

Table 7: Loglikelihood for Meme Tracker
Bball Alcohol Tech. NBA Occupy

BE -3.57e5 -5.91e5 -3.69e5 -6.1e5 -6.03e5

FP -10.61e5 -18.41e5 -53.52e5 -12.87e5 -8.28e5

In Tab. 7, we report the loglikelihood values for the 5 selected topics. We
can see that the BE values are significantly better than the FP values. Based on
this, we feel that BE will outperform FP to a larger extent for other properties
on real-world datasets.
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Figure 7: Edge distribution for Meme Tracker topics

Though we were unable to compare against a gold standard, we computed
the network-centric and cascade-centric properties for Meme Tracker. In Fig. 7,
we plot the edge distribution for two of the topics. We can see that the nature
of the plots is different from all of the synthetic datasets. The mass is more
concentrated towards weaker, infrequent edges. We suspect that this is because
of the way users were sampled for this dataset.
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Table 8: Millions of Infections vs time (secs)
# Infections Time (12 nodes) Time (1 node)

15 552 3635

31 888 6873

43 1311 10277

63 1948 14783

Scaling experiments : We also experimented with larger volumes of the Meme
Tracker data using our map-reduce implementation. We created increasingly
larger dataset sizes by randomly sampling cascades and checking the execution
time for 100 iterations of Gibbs Sampling. We performed experiments on a
Intel Xeon server with 100GB RAM, which supports 12 mapper/ reducer tasks
in parallel.

In Tab. 8, we record execution time with increasing data size using 12 nodes
and compare against the time taken on a single node. We can see that the map-
reduce implementation allows us to scale our analysis by providing a (roughly)
linear speed-up in terms of number or nodes.

In summary, the experiments clearly demonstrate that computing expecta-
tions under the posterior distribution leads to significantly better reconstruction
of a wide variety of network diffusion properties. The proposed Bayesian frame-
work that combines exact efficient computation with Gibbs Sampling based ap-
proximations outperforms state-of-the-art algorithms even for the well-studied
network inference and parent identification problems, and in generalizing to
held-out test data. The map-reduce implementation is promising in terms of
scaling up the analysis to study properties of large network diffusion datasets.

8 Conclusions

In this paper, we have investigated the novel problem of computing expecta-
tions of properties of network diffusions involving hidden variables. We have
proposed a Bayesian framework for computing such expectations, and proposed
and characterized network diffusion properties that can be handled efficiently
in this framework. In experiments over synthetic and real world datasets, we
have shown that we are able to reconstruct network properties significantly more
accurately than a frequentist baseline.
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