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A SHORTER-STEP TRUST REGION ALGORITHM FOR THE MINIMIZATION
OF NONLINEAR PARTIALLY SEPARABLE FUNCTIONS.
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Abstract. In trust region algorithms for nonlinear minimization, the fit between the objective function and its
model is tested in each iteration to update the trust region radius. This radius restricts the step length equally in
all directions. However, for a partially separable function, the accuracy of the model may be different for the various
parts of the objective function. One would like to allow longer steps in the subspaces of the more accurately modeled
parts, with the expectation that the extra flexibility will give faster convergence.

The excellent idea of structuring the trust region for partially separable problems belongs to [A. R. Conn, Nick
Gould, A. Sartenaer, and Ph. L. Toint, Convergence properties of minimization algorithms for convex constraints
using a structured trust region, SIAM J. Optim., 6 (1996), pp. 1059-1086]. They prove global first order convergence
for convex-constrained problems. Their trust region update mechanism and second order analysis are complex.

The sufficient decrease condition in Conn et al. is changed so that the exact minimizer of the model within the
trust region will always satisfy it. However, we add another condition on the step that is needed to guarantee global
convergence. New and simpler update mechanisms for the trust region radii are investigated. First order convergence
is proved for the convex-constrained problem. Second order convergence results are proved for the unconstrained case.
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1. Introduction. Among nonlinear programming approaches, trust region algorithms are known
to have strong convergence properties, globally converging to a local minimum. The main idea in
these algorithms is to adjust the maximum allowed length of each iterative step depending on how
accurately the nonlinear objective function is modeled by a quadratic. This allowed step length is
known as the trust region radius. Each step is computed as an exact or approximate minimizer of
a quadratic model of the problem within a spherical region defined by the trust region radius. The
convex-constrained minimization problem that we are interested in is:

(P)  min f(z),
where X is a closed convex subset of £, and f : R” — R.

Partially separable optimization problems may arise from any system that is modeled as a set of
loosely connected subsystems. There has been much recent research trying to improve the efficiency
of the algorithms used to optimize partially separable functions, as in [1], [7], [8], [13].

A nonlinear function f(z), z € R™ is defined to be partially separable if it can be written as

P
f@) =" filw),
i=1
where each f;(z), i = 1,...,p, is a nonlinear function with a large invariant subspace. The functions
filx), i=1,...,p, are known as element functions.

A simple instance of an element function with a large invariant subspace is one which depends
on only a few of the variables, as is often the case in large problems. We do not specify how large a
large invariant subspace needs to be.

Usual trust region algorithms maintain a single trust region radius that restricts the step length
equally in all directions. But is the function equally nonlinear in all directions? The original
structured trust region idea, as proposed in [3], responds to the observation that not all parts of a
partially separable function are equally nonlinear, and the step can be allowed to be longer in the
parts that are more accurately modeled. One would expect that the extra flexibility allowed would
lead to faster convergence.

The structure of the new trust region is intuitive, and we use the same structure as in [3].
There is a separate trust region radius for each of the elemental subspaces. The intersection of the
elemental trust regions thus defined is then the structured trust region.

However, the strong convergence results that go with trust region methods do not carry over
to the structured case easily. The trust region strategy loses some robustness in the process of
structuring. This well-known strategy is: when the trust region size decreases, the function and the
model are more in agreement. We look more carefully, and we see that only when the quadratic terms
predominate over higher order terms, will this agreement happen. And these terms predominate
only in good directions such as the negative gradient direction, directions of negative curvature, or
the Newton direction. There are other directions where these terms may be negligible in comparison
with higher order terms, and as the trust region size decreases, the function and the model may
diverge from agreement.

Unstructured approaches have a spherical trust region, where only the good directions are ever
chosen for a step. In contrast, structured trust regions may be shaped to be skewed against such
directions after a step is taken. For example, the trust region shape may allow only a tiny step in the
direction of the negative gradient, while allowing a long step in an orthogonal direction. Allowing
such steps, as we see in this paper, prevents us from proving that all limit points of the sequence of
iterates generated by this algorithm are first order critical, although it does allow us to prove that
at least one limit point must be first order critical.

Thus, the typical class of sufficient decrease conditions used for trust region algorithms does not
guarantee convergence of a structured approach. (Sufficient decrease conditions put a lower bound
on the decrease in the quadratic model that an acceptable approximate solution must satisfy.)
Unstructured trust region algorithms are globally convergent (converge to a local minimum from
any starting point) only if the step satisfies such a condition.

We propose two conditions to overcome this problem, one of which is a sufficient decrease
condition, while the second is an additional restriction on the step direction. In [3], a sufficient
decrease condition is used that the exact minimum of the model in the iterative subproblem cannot
always attain. Thus, an additional restriction on the step is hidden within it. This hidden condition
is explicitly stated by our second condition. (Despite the apparent similarity, our conditions on
the step were proposed independently of theirs, after we had pointed out to them that an earlier
condition they had been using was unsuitable.)



Ideally, instead of conditions on the step, the trust region update mechanism should naturally,
as it does for the unstructured approaches, bias the trust region shape towards the good directions.
So we experimented with the update mechanisms as well. Five simpler and more intuitive update
mechanisms than in [3] are described here. Our results have been proved for only one of update
mechanisms so far. But the other ones are shown to have good characteristics.

The next section has the basic notation and assumptions, and concludes with our structured
trust region algorithm. In the third section are the two conditions we need on the step. In the fourth
are the new trust region update mechanisms and some results about them. The fifth section has
proofs of first order convergence results for the convex-constrained minimization problem, modeled
on the analysis in [3]. The sixth has second order convergence results for the unconstrained case,
modeled on the analysis in [9]. Our aim is to evaluate structured approaches, and it is appropriate to
begin with the simpler unconstrained minimization problem for the more complicated second order
analysis.

2. The Shorter-Step Algorithm. The problem (P) is solved iteratively, with z, as the given
starting point. In each iteration, f(zy +s) — f(zx), k =0,1,2,...is modeled in terms of its gradient
and Hessian. The model, denoted by my(s), is approximately minimized at sj. The trust regions
of the elements are then updated, and so is x. An iteration where zr1 = xp + si is called a
successful iteration. Otherwise, z,41 = x, and the iteration is called unsuccessful. If the iteration
is unsuccessful, trust region sizes of some of the elements will be reduced, and the same model will
be minimized over the new trust region in the next iteration.

The ls-norm is used throughout this paper unless otherwise specified. (For other norms, the
convergence proofs remain valid with changes in values of the appropriate constants.)

We begin with a feasibility assumption on the convex feasible region X of the minimization
problem (P):

Assumption 2.1. X has a non-empty interior.
The following basic assumptions are needed on f:
Assumption 2.2. The function f is bounded below on the set L:={zx € X : f(x) < f(zo)}.

Assumption 2.3. Fach f;, i = 1,...,p, and hence f, is twice continuously differentiable on
an open set containing L.

Assumption 2.4. There exists a positive constant xg > 1 such that ||V f(z)|| < xu and
IV2fi(2)|| < xm, i=1,...,p, on an open set containing L.

Define gy, := Vf(x1). Let By be an approximation to the Hessian V2 f(xy,).
DEFINITION 2.5. The overall model my(s) of f(xy + s) — f(xy) is defined as:

1
my(s) := gi's + §STBkS,

Each element function is modeled in terms of the first three terms of its Taylor series. Let
gik = Vfi(zy). Let B, be an approximation to V2 f;(z),) such that Y7 B; = By.
DEFINITION 2.6. The elemental model for f;(z; + s) — fi(xr) is defined as follows:

1
ml’k(s) = gij:ks + §STBi’kS.

Gradient and criticality measure. We assume that the exact derivative g, is available to
simplify our analysis. The derivative is sometimes generalized to the following approximation as
in [3], 9]: llgr — Vf(zr)l| < KeAmink, where Amin g is the minimum of all the elemental trust
region radii, and k, is a nonnegative constant. Our analysis would continue to hold for such an
approximation.

We define a(xy) as a criticality measure for the problem (P) as follows:
gid

2.1 alzr) = ap = min
@1) (o) = o =1 e ]



Notice that when X is convex, o = 0 if and only if x;, satisfies first order criticality conditions for
the problem (P). (See [3] for a proof of this.) If X = R" (the problem is unconstrained) then it is
easy to see that ay = ||gk||-

Two functions are defined next. The first is a generalization of the criticality measure «y,, and
the second one is a path that follows the negative gradient projected onto the feasible region X.

o ; T
ag(t) =] min gpd|,
lan<e
(2.2) <
di(t) := arg ,min g d.
llan<e

We need the following lemmas about the criticality measure (for proofs, see Lemmas 2.2 and 3.1

in [4]).

LEmMMA 2.7. If Assumptions 2.8 and 2.1 hold then for all k > 0, the function t — a(t) is
continuous and nondecreasing and the function t — D"‘T(t) is mon-increasing for t > 0.
LEMMA 2.8. If Assumptions 2.3 and 2.1 hold then the function « is continuous with respect to

its argument.

We need « to be uniformly continuous on £. This certainly holds if £ is bounded (by the lemma
above), or if the problem is unconstrained, since then a(z) = ||V f(z)|| whose derivative is bounded
by Assumption 2.4. Otherwise, assume the following;:

Assumption 2.9. The function a(x) is uniformly continuous in an open set containing L.

Hessian approximation and Rayleigh quotient. Several different assumptions related to
the Hessian approximations Bj have been used by earlier authors. Most trust region algorithms
assume that ||By|| is uniformly bounded, as in [2], [6], [9]. Powell ([11]) allowed the bound on || Bg||
to grow linearly with the iteration number k, while still obtaining the same convergence results. His
work motivates an assumption about By used in a series of trust region algorithms by Conn, Gould
and Toint ([3], [4], [12]), which is weaker than assuming it to be uniformly bounded, and which
holds when certain quasi-Newton updates are used. This is the assumption used in our first order
convergence analysis, described in the rest of this section.

We define the generalized Rayleigh quotient of a function f at z along s # 0:

w(frz,s) = @mx +5)— f@) — Vi()Ts].

Because of the assumption that V2 f is bounded, |w(f;,z,s)| < Ly, for all i if x and = + s lie in £,
where Ly > 1 is a positive constant. We define a version of the generalized Rayleigh quotient of my:

B =1+ max (max(lw(mq,0,5,)|, max (k(miq,0,5,))):

IEREE)

Assumption 2.10. > reo i = 400.

The trust region structure. We define A; ;,¢ = 1,...,p to be the trust region radii for the p
element functions. These are updated in each iteration and together define the overall trust region
structure in the following manner:

DEFINITION 2.11. The null space N of a function f(z) is defined to be the set {v | f(x +v) =
f@)}.

DEFINITION 2.12. The range space R of a function f(x) is defined to be the subspace orthogonal
to N in R™.

Let R; denote the range space of an element function f;,¢ = 1,...,p. Elemental models m;
have the same range space R; as f;, for all i, k.

Let Pg, (s) denote the projection of a vector s onto R;. The constraints in the subproblem (SP)
then define the structured trust region as the intersection of elemental trust regions. We solve the
problem (P) by approximately solving a sequence of subproblems of this form.

. 1
(SP) mig m(s) = gk s+ §STBk

|1Pr: ()l < Ajgs i=1,...,p.
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Fic. 2.1. The allowed step s2 is likely to be longer than the unstructured trust region step si, if the trust region
is structured.

Notice that my(s) = Y0, m; 1 (s).
We need definitions of the following functions of the trust region radii A; :

Aming = min (A;g),

i=1,...,p
(23) Amax,k = 'HllaX (Ai’k)’
i=1,...,p

Ay r=max{||s|| : s =tgr, t <0, ||Pr,(s)]| < Aj, Vi=1,...,p}.

Notice that Aming < Agx < /NAmax k- The function A, represents the maximum allowed
length of a step in the negative gradient direction, not considering the feasible region X of the
original minimization problem.

An example. With the trust region structure and subproblem defined, we can now show how
a longer step may be allowed by the above trust region structure. Refer to Figure 2.1 where a
possible trust region configuration for the objective function f(z) = z} + e(®1+22)* is shown. The
elemental range spaces are Ry = S((1,0)') and Rs = S((1,1)"), where S(v1, - . ., v ) stands for the
span of m vectors vy, ..., vn. Since fi(x) = x? is modeled perfectly by a quadratic, its trust region
radius would be large. The function fo(z) = e(®1+72)* is nonlinear and one would expect a small
trust region radius. The intersection of these two trust region radii for the range spaces of fi(x)
and f>(z) would give rise to the trust region shown, allowing us to take the step s in the figure,
assuming that a high negative gradient dominates the subproblem (SP) solution. If the size of the
unstructured trust region was determined by the more nonlinear of the two elements (the circle in
the figure), then only the smaller step s; in the figure would be allowed.

We now present the shorter-step algorithm. The algorithm follows the general form of the
classical, unstructured, trust region algorithm. Two steps are a little different. In step 2 we must
compute an approximate solution that satisfies another condition besides the usual sufficient decrease
condition. This solution may be obtained by any standard technique for obtaining an approximate



solution. Then in step 4, the multiple elemental radii are updated, rather than a single trust region
radius.
2.13. The shorter-step algorithm. Given 0 < p1 < pa < 1, a feasible xy, and starting
values for the trust region sizes, the kth iteration takes the following form:
1. Given xy, calculate gy and By. Stop if xy, is a local minimum.
2. Solve subproblem (SP) approximately, to get si. satisfying both the sufficient decrease con-
dition (3.1) and the shorter-step condition (3.2).
3. Evaluate f(xy + sg), and hence ry.
4. Update the trust region radii according to one of the mechanisms in Section 4:
If ri, > po, some of the elemental radii increase.
If uy < ry < p2, increase some of the elemental radii, and decrease some of them.
If ri, < p1, some of the elemental radii decrease.
5 Ifri, > p1 set xpp1 = xp + Sk, else xpp1 = Ty,

Other possible ways to structure the trust region. There are some simpler but less
flexible methods than the ones to be presented, that are likely to be first and second order globally
convergent.

First, look at the following subproblem, similar to (SP) that has been described in detail in [6],
[9]. Assume that the elemental subspaces are spanned by basis vectors corresponding to the variables
used by the respective element functions. Of the trust region radii that affect a given variable, let
the minimum radius be denoted by A, j = 1,...,n. This is taken as the trusted length in that
coordinate direction. Define Dy to be an n-by-n diagonal matrix with 1/A£, j=1,...,n, as its
diagonal entries. The trust region here is ellipsoidal.

1
min my(s) = g} s + §STBks
sT'DI Dys < 1.

The original use of Dy is as a scaling matrix. Good convergence results have been proved for the
above subproblem with suitable assumptions on Dj. But this subproblem is hard to solve if Dy, is
ill-conditioned. Thus, this approach to structuring has limited flexibility because it would not allow
widely differing trust region sizes.

A second way to structure would be to impose an upper bound on Apax k/Amink (€.8., by
allowing only reductions in A; ;’s that correspond to a large enough Apnax k). This approach is not
very different from using a variable and bounded scaling matrix to define the trust region constraint,
as discussed above.

Yet a third way to structure would be to impose the condition that s7 g, > &l/sk|||lgk|| (this
would take the place of our condition (3.2)), where & is a small positive fraction and thus obtain
first order convergence. Then s! V2 f(zy)sy > —rAg||sk]|?, where g is the smallest eigenvalue of
V2 f(z), obtains second order convergence. Our attempt is to find more general conditions than
either of these for s, to satisfy. (See [3] for a discussion on this.)

3. The Conditions on the Step. Before we go on we need some terms that are used to
compare changes in the values of the functions and their models:

6fk = flzr) — fzr + sk),
Ofiw = filzr) — filzr + sk),

dmy = —mg(sk),
omi . = —mj 1 (Sk),
Tk = 0 fr/0my,

Tik = 0 fik/0m k.

The step sy must minimize my(s) approximately, so as to satisfy the following sufficient decrease
condition.

(3.1) omy > kg min(%, Amin g, 1),

Br

where k > 0 is a constant, ay, is the criticality measure defined in (2.1), and Apinx is as defined in
(2.3).



This sufficient decrease condition is fairly typical of the ones existing in the literature. Also,
there always exists a step that satisfies it. For a proof, see [4]. One point at which it is achieved is
the point defined below.

DEFINITION 3.1. The generalized Cauchy point si. is defined as the minimizer of my(dy(t))
over t.

In other words, si. is the minimizer of my(s) along the projected gradient path di(¢), defined
n (2.2). See Section 2.2 in [3] for justification. (In the unconstrained case, the projected gradient
path is simply the negative gradient direction, and here si. is known as the Cauchy point.)

We need one other condition on the step, which we motivate next.

Motivation for the shorter-step condition. To explain why another condition on the step
is required, we revert to the unconstrained situation, and compare the behavior of the normal
unstructured trust region, against a structured trust region.

Unstructured trust region algorithms converge whenever dmy, > —myg(sg.), (e.g., see [9],) where
Ske 18 the Cauchy point as defined above. In other words, for some k > 0:

s > wlgul min<%,m

For a structured trust region, dmy > —my(ske) would translate to, for some x > 0:

. k
dmp > k|| gl mln(M,Ag,k),

Br

where Ay, is as defined in (2.3). Now suppose that A,y is small enough that the term that
dominates in the above condition is the Ay j term.

In the unstructured trust region case, ||sg|| < Ap = Ay, from the definition of Ay ;. Now on
an iteration where 7, < pq and s; is orthogonal to the gradient, the trust region size reduces equally
in all directions. With ||sj41|| encouraged to be smaller by this, the solution to the subproblem is
likely to be dominated more by the first order term in my and less by its higher-order terms, and
since the trust region is symmetric, sj41 is likely to be more parallel to the gradient, and thus we
expect that rpy1 > rp.

However, in a particular iteration of a structured trust region algorithm, this mechanism of
improving the accuracy of fit between the function and model by reducing trust region size does not
carry over. Here one may find that v, < p1, Ay gr1 < Ay g (of course, according to Algorithm 2.13,
lgk+1ll = llgxll), while ||skr1]] > ||skl|, because Apax, is due to a well-modeled element and thus
did not decrease. In this way, ||sk+1]| may be more orthogonal to g1 than sy is to g, even if it is
shorter in some elemental subspaces.

Thus we do not any longer expect that r4; be greater than 7, (since the first order term is may
not become more dominant) for bad iterations. The inequality in the trust region sizes resulting
from this may tend to encourage successive steps to be turned away from the negative gradient
direction, causing worse and worse fits. Thus, there is no guarantee that reduction of trust region
sizes would lead to a chance of a better fit between function and model, unless we do it cleverly
enough. If we did not reduce the sizes appropriately, the algorithm may stall far from ||gx|| = 0.

Ideally, we should solve this problem by showing the relative trust region sizes in the various
directions to be well-behaved (these fluctuate according to the trust region update mechanism). We
were unable to show this for our update mechanisms, and found that we needed another condition,
which we call the shorter-step condition to ensure first order convergence:

(3.2) dmy, > K'||sk||ak,

where k' is a positive constant. We call this the shorter-step condition. It is not too restrictive
with a small constant of proportionality x’. In our implementations, we have not come across a case
where our choice of step violates this condition.

In the unconstrained case, where ay = ||gx||, condition (3.2) is weaker than assuming that sy, is
bounded away from orthogonality to gr. We show below that for any feasible xj,, there exists an sy,
fulfilling both these conditions simultaneously. Unfortunately, the exact minimizer of the subproblem
does not satisfy (3.2) and so somewhat limits our choice of step. However for the unstructured trust
region subproblem, both the exact minimizer as well as the Cauchy point always satisfy (3.2).

Is it possible to satisfy the sufficient decrease (3.1) and the shorter-step (3.2) conditions simulta-
neously? The following lemma shows that a projected gradient step inside a region of radius Amin £
satisfies both the conditions at once.



LEMMA 3.2. Let d denote di(t) as defined in (2.2), where t :== min(1, Amin ). Let sy minimize
my(s) as defined in (2.5) over s € {t'd : 0 <t < 1}. Then si is feasible in (SP) and satisfies
both conditions (3.1) and (3.2), for k and k' at most 1/2.

Proof. We have ||si]| < ||d|| <t =min(1, Amin,k) < 1. This and (2.2) show that s is feasible in
(SP).

Case 1. dTByd < 0. We see that the decrease in the model corresponding to sy is dmy(sk) >
—gfd = ai(t). But by Lemma 2.7, ay(t)/t > ai(1)/1 = aj. Thus, dmg(sg) > tay. So (3.1) is
satisfied for any x < 1. Notice that ¢ > ||sg||; hence (3.2) is also satisfied for any ' < 1. So both
the conditions hold in this case.

Case 2. d"Bpd > 0. We see that the change in the model corresponding to s, = t'd is

dmy(sy) = —t'ghd — ngBkd. If ¢' were unconstrained, the exact maximizer of dmy(t'd) would be
# =t =
* = 4TByd-

Now if £, > 1, then sy = d and d' Byd < —gl'd so that dm; > —%ggd = a’“Q(t) ZT %;ﬁak,

(9 d)” _

satisfying both conditions, for any k, k' < 1/2. Else, t. < 1 and s; = t.d so that dmy, = 2 Bd =
—t.gfd/2 (from the definition of t.) = ay(t)||skll/2/|d|| > ar(®)||skll/2t > arllsk]|/2, as before.

.. . . T d)? ()2 o? . .
So condition (3.2) is satisfied for any «' < 1/2. Now dmy = ;g;B)kd > 3’;2% > 55, satisfying
condition (3.1) for any x < 1/2. O

4. Trust Region Update Mechanisms. The sizes of the elemental trust region radii in each
iteration must be updated, so that a good match between the elemental functions and models is
maintained. An algorithm that cannot guarantee that at least one trust region radius decreases in
an iteration where there is a bad match between function and model, may stall. Also, at least one
trust region radius should increase if need be (if the step lies well within a trust region, the radius
need not be increased), when the function is modeled accurately, in order to allow the most flexibility
possible in a given step (but this is not essential to the theory). Let us look at the difficulties in
ensuring conditions such as these.

We classify the iteration depending on how well the function is modeled. As before, a successful
iteration is one where ry > u1, so that x,41 = z + sg. Otherwise the iteration is unsuccessful. Let
0 < pp < pe <1, asin Algorithm 2.13. A bad iteration is one where r; < p1. A good iteration is
one where r > p2. An adequate iteration is one in which py < rg < pa.

Similarly, we divide elements into three categories. Those with the best match between element
function and its model are called good elements, those with the worst fit are called bad elements,
while all the others are known as adequate elements.

The relative error problem. We simplify the following discussion by taking pu; = us = p.
One would expect a naive version of Algorithm 2.13 that simply imitates the unstructured trust
region algorithm, to update the radii in the following manner in each iteration: solve (SP) and then
check the ratios 7; . Decrease the radius for which r;p < p, i = 1,..., p, where p € (0,1), is a
constant. Else increase the radius, if need be (there is no need to increase the radius if the actual
step length is much smaller than the radius in a given elemental subspace).

However, this strategy may not be globally convergent. This is because some elements dm;
may be negative, in contrast to the unstructured case where dmy, is always positive. Conn, Gould
and Toint point out this complication in [3], and call it the relative error problem.

To understand what happens, refer to Figure 4.1. When the function is modeled accurately,
the point (df; r,dm; ) is close to the line with slope equal to 1. Thus, the point 2 in the figure
represents a better fit between function and model, than the point 1, and the point 3 has a better fit
than the point 4. Now let us apply the usual criterion to increase the trust region radius: r; ) > .25.
Point 3 is on the acceptable side of the line of slope .25, and point 4 on the other side when dm;
is positive. However, when dm; ;, is negative, the line allows point 1 to be acceptable but not point
2, even though point 2 has the better fit.

The picture suggests the following form to replace the one above:

1. If ri, < p then
(i) If dm;p >0, and r;p < ay, at € (0,1), then decrease the trust region radius A; .
(ii) If om;p <0, and r; ) > a—, a— € (1,00), then decrease the trust region radius A; j.
2. If r;, > p and if conditions (i) and (ii) are both false, increase the trust region radius A; .
This separation criterion, depicted in Figure 4.2, is still not safe from stalling. Stalling can happen
because of the non-convexity in the separation shown in the figure. For an arbitrary choice of slopes
for the two lines separating good and bad elements, there is no way to ensure that at least one trust
region radius decreases whenever there is a bad iteration. Indeed, suppose conditions (i) and (ii) are



of;

slope=1
-3 slope=.25
s [ ]
acceptable .
reg?gn e \ 4
/t\ [ ]
\ (0’0/) 2 6mi’k
1e® L7
2. / 7

F1G. 4.1. A naive separation of elements can go wrong: Even if §f; , = 0m; i, a perfect fit, the ith trust region
radius would reduce if dm; j < 0.

both false for all . Then,

p
Ofr = me,k > oy Z omyp + a— Z oMy g,

i=1 i:dm; ) >0 i:dm; 1, <0

which does not guarantee that r, > 0. So we could have an iteration where r, < 0, and none of the
elemental trust regions A; j, decrease. And this means stalling at the point xj. In other words, even
when the ratios df; r/dm; \ are close to 1, the overall ratio d fy /dmy is not guaranteed to be close
to 1. Since elemental differences (or errors) between function and model are individually small but
the overall difference (or error) may be large, this difficulty is called the relative error problem. This
happens whenever there is a large cancellation between positive and negative dm; ’s.

We have found a way to calculate the slopes ay and a_ so as to guarantee that when both
conditions (i) and (ii) are false for all 4, then rj, > p. We describe this method in the next subsection.

Figure 4.3 illustrates another way to avoid relative error, which has been used in [3]. Their
criterion to separate good elements from bad elements is quite complicated, but the basic idea is the
one depicted in the figure:

1. If rp, > pand if 6 f; > omy g — u;fm&mk then increase the trust region radius A; .

2. Else if r, < pu, decrease A; .
The dark line in the figure separates the good elements from the bad elements, and the distance of
the line from the origin is dependent on the value of dmy.

To summarize this subsection, we must look for separation criteria that ensure that at least one
trust region gets reduced in a bad iteration, and, if possible, at least one trust region is increased in
a good iteration. There are two types of difficulties that can happen with an incorrect separation
criterion — first, the algorithm could stall (i.e., stay stuck at the same non-optimal zj, with no
decrease in trust region radius), and second, it could cycle (i.e., stay stuck at the same non-optimal
Zg, with the same pattern of increases and decreases in trust region radii repeated in a cycle). We
have two possible forms for such separation criteria as depicted by Figures 4.2 and 4.3. In the next
subsection we look at separation criteria motivated by this discussion.

Earlier separation criteria. A lot of flexibility is allowed in the choice of separation criterion
and the way trust region radii are updated, and many variants of these schemes exist. We first
briefly describe some of these different updating methods to give a sense of the substrate we are
building on. We then go on to propose our separation criteria, proving some simple lemmas that
are needed for the convergence theory that follows in later chapters, showing that at least one trust
region radius decreases in a bad iteration.
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Fic. 4.2. The dark boundary separates the good and bad elements. Trust region radii for elements that map
onto the right of this line, are decreased. The proposed sloped criteria for separation of elements are of this form.

of ik

Fic. 4.3. A line parallel to the line of slope=1 is used to distinguish good and bad elements. This is the basis
for the proposed parallel separation criterion.

Here are some of the separation criteria used for unstructured trust region algorithms in the
past.
Fletcher [6]:
1. If rp, < .25 then Agyy = ||Sk||/4,
2. if i > .75, and ||sg|| = Ag then Agyq = 27,
3. otherwise Apy1 = Ay.



Moré [9]:
Let 0 < p1 < pa <land 0<y <1<y be given.

1. If ri < py then Agiq € (0,7 Ag],

2. if g € (p1, p2) then Ay € [y1Ag, Ayl

3. if rp > po then Agyy € [Ak,’)/QAk].
LANCELOT [5]:
Let0<u1<,u2<land0<Tm < v <1< be given,

1—

7= max{’yl’ (1—H2)(fk(+g£ﬁiiT|)lljlztli5mk—5fk
good step), 11" = max{y1, yol|sxll/Ax], and 78" = max(1, o|sk[|/Ax].

1. If r < 0 then Apyy = yAg,

2. if ry, € (0,/11) then Ak—i—l = ’y{k)Ak,

3. if rg € [u1, pe) then Agyy = Ay,

4. if r, > po then Agyq = yék)Ak.

Notice the flexibility of Moré’s scheme in updating the trust region radius between iterations,
where the constants are restricted only to the extent that they lie within certain intervals. It has
been seen that the algorithm is insensitive to the value of the constants [6]. Another noticeable fact
is that the algorithms try to cut off a bad step (a step where 7, < 0) and to increase the trust region
size (on a good iteration) only if it is likely to lead to a longer step (you can see this wherever Ay
is dependent on sy in the above criteria), to prevent excessive and unnecessary blowup in the size
of the radius. All this goes to say that the trust region updates are fairly heuristic, subject to a
minimal requirement: the radius must decrease on a bad iteration.

Conn, Gould and Toint in [3], divide elements into negligible elements and meaningful elements.
They choose the constants so as to ensure that at least one trust region radius must be decreased on
a bad iteration. They allow trust regions to increase or decrease in the good iterations, and allow
only decreases in bad iterations, to prevent cycling as discussed above.

Conn, Gould and Toint [3]:
Let 0 <71 <7 <1<y3,0<m <m <z <1, 0<m <pe <1
Define the set of negligible elements as Ny :={i € 1,...,p : |dm;x| < Etomy}.

} (this formula comes from trying to interpolate to find a

Define the set of meaningful elements as its complement My, := {1,...,p} \ N.
1. For ¢ € My,
(i) if rg > m and Ofik > 0mip — 1;773 dmy, then A; 41 € [17')/3]Ai,k,
(11) if 5mi’k — 1_1)773 omy, > 6fi,k > 5mi’k — 1—1)772 omy, then Ai,kJrl S [’72, ]-]Ai,k,
(i) if 5fz,k: < 5mi7k — 1;:72 omy, then Ai,k+1 € [’Yl,’yQ]ALk,
(iv) otherwise A; py1 = Ay k.
2. For i € Ng,

(1) if r, >m and |6fz,k| < %&nk then Ai,k+1 = [1573]Ai,k7
(ii) if |6fz,k| > %&nk then Ai,k-ﬁ-l € [71772]Ai,k7
(iii) otherwise A; g+1 = Aj k-

It has been proved in [3] that the above criterion reduces at least one trust region radius on
a bad iteration. It is unclear why the authors needed to make the distinction between meaning-
ful and negligible elements. They perhaps wished to have a less restrictive criterion to classify
negligible elements as good. But their treatment of meaningful elements (see Figure 4.3) has a
natural concession towards elements with a small dm; ; — since it always classifies a neighborhood
of (0myk,0fir) = (0,0) as ‘good’.

New separation criteria. We have come up with three sorts of separation criteria for a
structured trust region. Two of them correspond to the pictures in Figures 4.2 and 4.3, while a third
is a combination of the two. In this subsection we demonstrate that the sort of stalling described
above cannot take place cannot take place for any of these criteria. To prevent cycling, no increases
in trust region radii on a bad iteration are allowed.

For ease of description, we adopt the following conventions for the criteria we propose. Let
0<vm <y <1<y <9, 0<p <py < 1. We assign each iteration a parameter 7. If r > o
then 1, = 2, if py < ri < po then 7, = 1, and otherwise 7, = 0. We then assign each element a
parameter Ti{k € {0,1,2}. For each of the three criteria we describe, there is a different method to
assign Til’ x- We then calculate 7 = 7 + Til’ > and use the following method to update the sizes of
the elemental trust regions:

If Tik =4 then Ai,k+1 = [1574]Ai,k7

if Tik = 3 then Ai’k+1 = [L'YB]Ai,k;

if Tik = 2 then Ai’k+1 = Ai,k;
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F1G. 4.4. The general scheme for change in A; j, given the type of iteration (depending on the match between
0fr and dmy,), and the type of element (depending on the match between 6 f; . and dm; i).

if Tik = 1 then Ai’k+1 = [’}/2, 1],

if Tik =0 then Ai,k—i—l = [71,72]Ai,k-

See Figure 4.4 for a pictorial representation of how the trust region radii are updated. The
arrows show whether A;; would get decreased or increased, and the number in the bottom right
corner of each box shows the value of 7; ;. The 7’s correspond to good, adequate and bad iterations,
and the Ti{k’s correspond to good, adequate and bad elements.

We also define the following terms:

6m+ = Z 6mi,k,
(i:dmi,k>0)

(4.1) Sm_:= > Smi,

(i:0m; 1, <O0)

p:=0dm_/dm,.
Note that p is negative. Now we can state the criteria.

4.1. First sloped criterion.
Let ar = 5[u (1 + p) + /1ii (1 + p)? — 4p),
and as = §[pa(1 + p) + /3 (1 + p)* — 4p].

If dmiy >0,
if Ti > az then Tilyk
if rig < an then T},
else Ti{k =1.

If 6m;, <0,
if rig < 1/ao then Ti{k =2,
if rik > 1/aq then Ti{k =0,
else T/} = 1.

=2,
=0,

The second criterion has a different way of calculating a; and as, and is otherwise almost ex-
actly the same as the previous one. We call it the second sloped criterion.



4.2. Second sloped criterion.
Let oy = m—?f—pul P’ and o = uz—%{—pp&)ﬂ_
If 6m; > 0,
if rik > o then Tilyk
if rig < then T},
else Ti{k =1.
If dm;; <0,
if riy <2— ay then Ti{k =2,
if rig >2— ay then Tllk =0,
Else ), = 1.

2
=0

)

Notice that 3 < a3 <1 and ps < as < 1. This is easy to check for the second sloped criterion.
For the first, note that «q is the positive root of

(4.2) o — (1 +p)a+p=0.

By considering the values of the left-hand-side at 0, 1 and 1, we see that pu; < a; < 1. The same
holds for subscript 2. In both criteria a; and as are monotonic functions of p that approach 1 as p
approaches —1. They approach p; and ps as p approaches 0. So we make the criterion to distinguish
good elements more strict when there is more cancellation, compensating for it.

Rewriting the criterion for the unstructured trust region method ¢ fi/dmy > p as % <
(1 — p), motivates the next criterion (corresponding to Figure 4.3). We want the error between the
change in the function value and the change in the model value to be small relative to the change
in the model value. We are tempted to extend it to check the elemental fits in the following way:
W < (1 — u)/p, where p is the number of elements. Notice that this update criterion is a
part of the update criterion used in [3]. We call this the parallel criterion, since the separating line
in Figure 4.3 is parallel to the 45-degree line that represents ¢ f; = dm; .

4.3. Parallel criterion.

Let 0 < py < pp < 1.
If 6 fs . > Oy — (1;,”2)577%1@ then T}, = 2,
=0

if 6fir <Omip — (17_:1)5mk then T},

-

2

~

else T/}, = 1.
Finally, we have combined criteria to allow more flexibility in the first and second sloped criteria.

4.4. First combined criterion.
Let g = —(1—p1)p, 2 = —(1 — p2)p, pt = w1 +m1, ph = pa +n2. Let g, as be defined as in
the first sloped criterion above, except that we replace py, po by pl, ub.
If 6m;y, > 0,
if fir > Omyy — %26mk or if ri ) > s then Ti{k =2,
if 0fir < Omyp — %6mk and if rip < oy then Ti{k =0,
else Tilyk =1.
If om; p, < 0,
if 0fir > Omy g — %26mk or if rix < 1/as then Ti{k =2,
if 0fir < Omyp — %6mk and if ik > 1/as then Tllk =0,
else T/} = 1.

4.5. Second combined criterion.
Letmy = —(1—p1)p, 2 = —(1 — p2)p, p) = p1 +m1, ph = po +n2. Let g, as be defined as in
the second sloped criterion above, except that we replace uy, po by p', pb.
If 6m;y, > 0,
if 0fir > Omy g — %26mk or if rix > as then Ti{k =2,
if 0fir < Omyp — %6mk and if rip < oy then Tilyk =0,
else Tilyk =1.
If 5mi7k <0,
if 0fir > Omy g — %26mk or if rix <2 —as then Tllk =2,
if 0fin < Omyp — %6mk and if ik > 2 — oy then Tllk =0,
else T/} = 1.



Notice that when p = 0, both 7, and 7> are 0. So uj = p1 and ph = pe. In other words, the
above criteria then reduce to the first and second sloped criteria.

When p = —1, we have n; = (1 — 1) and 12 = (1 — us), while pf and p, are both 1. And so,
in this case, the above criteria both reduce to the parallel one.

Thus, the criteria reduce to that corresponding to the unstructured trust region method when-
ever there is no cancellation among dm; ;’s, and they become more strict (approaching the parallel
criterion) for an element with a large dm; j, as the amount of cancellation increases.

An analysis of the new criteria. The proof of a lemma that shows that the new separation
criteria do satisfy our expectations.

LEMMA 4.6. For all the criteria described above, if all Tllk > 1 then 1, > 1. And if all Tilyk <1,
then 1, < 1.

Proof. We prove only the first assertion. The proof of the second assertion is similar.
(i) For the first sloped criterion:
If all 7} > 1, then from (4.1),

p
1
(4.3) 0fx =Y 0fix > crdmy + a—15m_.

i=1
But «; is a root of (4.2):
om_
2
— (14 2=
al lu’l( + 6m+ )Oé 6m+
Since 0 < u1 < ag <1 and dmy > 0, ay satisfies

ardmy — py (dmy +dm_) + ailém_ =0,

or,
1
a1dmy + —om_ = pupdmy.
(65}
So from (4.3),
(4.4) Ofk > p16me,

which is the same as 73, > 1.
(ii) For the second sloped criterion:
We see that a; is the solution to

a10my + (2 — a1)dm— = p1dmy,.

and just as in (4.3), if none of the elements is bad,

14
Z 6ft,k Z a16m+ + (2 - al)ém_.

i=1

Combining these, once again we get (4.4), which is the same as 7, > 1.
(iii) For the parallel criterion:
If none of the elements is bad,

~ar s S (e, L= )
> 0fin > > (Omiy > Smy,).
i=1 i=1

So, 6 fr, > omy, — (1 — p1)dmy, and (4.4) holds again.

(iv) For the first combined criterion:

We define the following sets: Z4 := {i: dm;p > 0}, I_ :={i: 0m;p <0}, Ty :c={i € I 1 0fip <
a1omiit, I :={i € I_:0fip < a%&mi,k}. Now if all the elements are adequate or good,

p
1
Ofk = E Ofik > E a1 0mi e + E : a—15mi,k +
i=1 €Ty €T

_ o A ™
> (1= a)dmis p6mk)+2((1 Oﬂ)(sm,,,c p6mk).

1€1, i1€1s



But 3,7, (1dmiy) = ardmy, and Y-,c; (570mik) = 3-0m—. Also, (1 —a1)dm;, is nonnegative

fori € 7; and (1 — ail)émi,k is nonnegative for ¢ € Z,. Using the same argument that led to (4.4)
from (4.3),

8fr > pydmy — nidmy, = py Smy.

(v) For the second combined criterion:
The proof is similar to that of part (iv). O

In the last two sections we looked at the two major issues that any structured trust region
approach must address: first, a need to address the relationship between the subproblem minimizer
sk, and directions in which my(s) dominates over higher-order terms in the Taylor series of f(z +5);
and second, ensuring that the trust region update mechanism satisfies our expectation that (a) the
algorithm does not cycle or stall, (b) the trust region radius of at least one element be decreased on
a bad iteration, and (c) the trust region radius of at least one element is a candidate for increase on
a good iteration.

We then looked at separation criteria used in the past to update the trust region sizes, and then
proposed some more of our own, showing how they satisfy the conditions (a), (b), and (c). We show
convergence of our algorithm using only the parallel separation criterion.

5. First Order Convergence Analysis. The aim of our first order convergence analysis for
the convex-constrained problem (P), is to show that limy_,~ aj = 0.

We make Assumptions 2.1-2.10, 2.9, as discussed before. We also assume that the parallel
separation criterion is used. We show that limy_, o a; = 0.

We begin with a technical lemma that establishes a lower bound on the accuracy of the model.

LEMMA 5.1. If Assumption 2.4 holds, then there exists a constant L > 1 such that for each
k=0,1,2,..., |6fr — dmy| < LBk||sk||?, and for each i = 1,...,p, |6fir — dmix| < LBk||sikll?,
where s; 1, is the projection of s, onto the range space R;.

Proof.

|0 fr — omi| = |f(wx) — fzr + sk) — m(0) +m(sy)]
= lof s+ el 2, 0) — gl sk = 3 swlPeolmes 0, 1)
< SlswlP(tf, o0, 50)] + om0, ) )
< L+ Bl

1
< §(Lh + 1) Bellskl)?
< LB|lskll?,

where L := %(Lh + 1) and Lj, < xg is an upper bound on the generalized Rayleigh quotient of f
for any choice of z and s.
The proof for the elemental differences |6 f; r, — dm; x| < LBk|sik||* is similar. a

The next lemma shows that the step size wont become too small for points away from a critical
point. A sequence of three theorems completes the analysis.

LemMA 5.2. Consider a sequence of iterates generated by the algorithm and assume that there
exists a constant € > 0 such that oy, > € for all k. Then for sufficiently small €, Amin g > %, where
c1 =y min(L,e€, %1;“2)) for all k.

Proof. We can suppose € small enough so that A; o > Z- - L and we satisfy the lemma when k& = 0.
The rest of the proof is by contradiction. Therefore, assume that A, becomes smaller than E—i
for the first time on iteration k. Let A, i be the trust region radius of the ith element. Since
Ajg < Bl for the first time, A; 1 > 551_1 so that A; g1 > A, (since {f} is a non-decreasing
sequence); similarly, Amink—1 > Amink- We will show that A; 1 > A;; could not have been

possible. A
We have Apinr—1 < Ajp_1 < “j/—l" - <5 <35 < g’“ L This also implies that

Amnin,k-1 <le < Bk < 1. We substitute this into the sufficient decrease condition (3.1), to get
6mk 1 > KE€Qmin,k—1 > HeAmm k > ’ie’YlAi,kfl-




Now from Lemma 5.1 we have dm; y—1 — 6 fik—1 < LBr—1|sik—1|> < LBr—1AZ,_,
LBr—1A; kdmg_1

< e < (1;"2)6mk,1. Therefore the ith trust region radius could not have been re-
1

duced. a

THEOREM 5.3. For the sequence of iterates generated by the algorithm,

liminf ap = 0.
k—o0

Proof. Assume, to obtain a contradiction, that there exists € > 0 such that ay, > € for all k, and
suppose € is small enough so that Lemma 5.2 holds and € < 1 . To prove our result, we will try to
contradict the assumption that 220:1 BL;C = 00 by breaking up the sum over specific subsequences of
k. Let S denote the index set of successful iterations (where ¢ fi,/0my > py1) generated by the algo-
rithm. Then Zkes Ofe > 1 Zkes dmy > pike Ekes min(ﬁik, Apink, 1) > prkemin(e, ¢;) Ekes BL;C
, applying the sufficient decrease condition (3.1) and the result of Lemma 5.2. So, from the assump-
tion that f(x) is bounded below, we have that ), ¢ i < 00.

Now let 7 be an integer such that y4v5 ' < 1. Define ny = |S N {1,...,k}|, the number of
successful iterations up to iteration k > 1. Define 1 = {k : k <rngp}and Fo = {k : k> rng}.
First we show that ), i B% is finite. If it has only finitely many terms, its convergence is obvious.
Otherwise, we may assume that F; has an infinite number of elements and then we construct another
subsequence F3 of indices in S in ascending order, with each index repeated r times. Since each
k € S contributes at most r terms, each at least k, to the sequence Fi, the jth term of F3 is no
greater than the jth term of F;. This and the monotonicity of the sequence {3} give us that

1 1 1
doker o S ke B =T Xkes By < 0

Now we show that Ekefz B% is finite. We can immediately see that Ay i < v4* ,Yé?—nk Apax.0-

Using the result of Lemma 5.2, we have Y, - B% <

Amax,0 ne  k—mng Amax,0 (r—1)

E
Sl N hem (Ve ) < =Ee ST e ()T < oo

Therefore the sum 32,2 2= = 3", 7 37 + D, 5o < 00, which contradicts our assumption.
a

Here is an example to understand the relationship between F; and F3. Suppose that the suc-
cessful iterations are k = (1,4, 5,10,...) and suppose r = 2; then rn; =
(2,2,2,4,6,6,6,6,6,8,...), F1 = (1,2,4,5,6,...), and F3 = (1,1,4,4,5,5,...). Notice that r = 2,
that & = 1,5 contributed 2 terms each to Fi, and that the other successful k’s each contributed
fewer than 2 terms.

THEOREM 5.4. If the algorithm generates an infinite sequence of successful iterates, then
limges ap = 0, where S denotes the sequence of successful iterations.

Proof. Once again, the proof is by contradiction. Assume that there exists e; € (0,1) and
a subsequence {q;} of successful iteration indices such that, for all j, ag, > €. Let €2 € (0,€1).
Theorem 5.3 guarantees the existence of another subsequence {l;} such that ay > €, for ¢; < k <;
and a;; < e2. We now look at the subsequence whose indices are in K = {k : k€ S,q; <k <I;}.
For k € K we have, from (3.2) and the fact that iterations in K are successful, that 6 fy > p1k'ea]|sk]|-
From this we have:

g, — 2, | < D Nwkgr — il
keK

=D llsxl

keK

1
<
- luleglil

(5.1) = L (f(ag,) — flar,):

1€k’

> (flwr) = flzrs))

keK

But Assumption 5.1 implies that the right-hand side of (5.1) converges to zero as j tends to
infinity. Hence, by Assumption 2.9 on the uniform continuity of g, |ag, — ai;| < 3(e1 — €2) for j
sufficiently large. Thus, ay;, < ag; + %(61 —€) < %(61 + €2) < €1, which contradicts our original
assumption. 0



THEOREM 5.5. If the set of successful iterations (i.e., iterations where x+1 = xp+ i) generated
by the algorithm is finite, then all its iterates xy are equal to some x, for k large enough, and x, is
critical.

Proof. From the algorithm, a finite number of successful iterations means that z; is unchanged
for k large enough, and that ., =z, where j — 1 is the index of the last successful iteration. Now
if @; > 0, we can apply the result of Theorem 5.3 to get a contradiction. Hence a(z.) = a; = 0.
d

6. Second Order Convergence for the Unconstrained Case. The unconstrained mini-
mization problem (P1) is as follows
P1 i
(P1)  min f(),

where f: R™ — R is a partially separable function.
Here the structured subproblem takes the following form:

1
(SP1) min myg(s) = ngs + §STBks
|Pr; ()|l < Aige, i=1,...,p.

We use the Assumptions 2.1-2.4, with X = R" for our second order convergence analysis.
Our second order analysis replaces Assumption 2.10 by the stronger Assumption 6.1, as below:

Assumption 6.1. There ezists a positive constant xp > 1 such that ||By|| < xp and || B; x| <
xB, it =1,...,p, for all k.
We begin with a lemma corresponding to Lemma 5.1, needed for second order convergence.

LEMMA 6.2. If Assumptions 2.4 and 6.1 hold, |§fr — dmy| < L||sg||* and |6 fix — omyp| <
L||sikl|?, for alli=1,...,p and all k, where L := %(Lh + xB) > 1, where xp is an upper bound on
|Bil| and || B |-

Proof. The proof is similar to that of Lemma 5.1. d

We need to further strengthen our assumptions about the second derivative.
Assumption 6.3. B, = V2f(zy) and B,y = V2 fi(zk), i =1,...,p.

Since we continue to assume that all the second derivatives are bounded from the first order
convergence theory, Assumption 6.1 about the boundedness of By automatically applies (replacing
the weaker Assumption 2.10). In addition, we assume:

Assumption 6.4. V2f; ;. is Lipschitz continuous with a constant L. for all i =1,...,p.

Secondly, there are changes in the conditions we need the step to satisfy. Note that in the
sufficient decrease condition (3.1), we can now replace ay, by ||gkl|:

19k
(6.1) omy > K||gk| mln(%,Amin,k, 1).
The shorter-step condition (3.2) is tightened to the following pair of conditions, ensuring sufficient
decrease when there is a direction of negative curvature.

omi > &'l grlllsell

6.2
( ) omy > —NIAkHSkHQv

where ' is a small positive constant whose value depends on the method used to find an approximate
solution to the subproblem in step 2 of the algorithm, and A denotes the minimum eigenvalue of
V2 f(z). Also, for (6.2) we have used the same constant ' as in (3.2). If we had a solution method
that satisfied the two conditions for two different constants, we would simply choose the minimum
of the two constants to be &’ for all of our results to hold. We now show that conditions (6.1) and
(6.2) are satisfiable simultaneously.



LEMMA 6.5. There exists a step s within the trust region that satisfies conditions (6.1) and
(6.2) simultaneously for k and ' at most %, such that ||sk|| > Aminx whenever =X\ Amin ke > |9k |-

Proof.

Case 1. When —A\;Aming > ||gx|| the following step s is taken: let g be a unit length
eigenvector corresponding to Ag such that qkTgk < 0, without loss of generality. Let s, be the step that
minimizes my(s) in the two-dimensional subspace spanned by g and g subject to ||sg]| < Amin,k-
We will show that each of the three conditions in the statement of the lemma hold.

Now dmp(sx) > 0mi(qrAmink) > —qkTgkAmm,k — M AL L (since ¢f V2 f(zr)ge = M) >

)\kAmm & (from our assumption that qk gr < 0). Since ||sg|| < Amin,k, Sk satisfies the second part
of (6 2) for k' < 1/2.

AISO from 5mk(sk) Z AkA?nm k and AkAmmk > ||gk|| we have 5mk(sk) > IiIHngAmm k
(for k' <1/2) > n’||gk||||sk|| (glven that |sk]l < Amin,k), satisfying the first part of (6.2).

Because the problem is unconstrained, notice that the step from Lemma 3.2 satisfies (6.1), lies
along the direction —g; and has norm less than Apnin 5. It is thus a feasible alternative to s;. Since
s must give at least as much decrease as this feasible alternative, it satisfies (6.1) as well.

Since sy, lies on the boundary of the trust region, we see that ||sg|| > Amin,k is also satisfied.

Case 2. When —A\;Aning < ||gk|| we take what we call the reduced Cauchy step, defining it
to be minimizer of the model along the negative gradient direction within the trust region and with
the further restriction that ||sg|| < Amin,k-

With this choice of step (the same as the step in Lemma 3.2 applied to the unconstrained case,
as in Case 1, if Aming > 1) it is possible to satisfy (6.1) and the first part of (6.2).

If A\, > 0, the second part of (6.2) is trivially satisfied. If not, from the first half of (6.2) and
—MeAmingk < |lgkll, we have dmy > &/||gkl||sel] > —&'AeAmink||sel] > —&'Ak||sk]|?, satisfying the
second part of (6.2). O

Finally we state a technical lemma proved in [10].

LEMMA 6.6. Let z. be an isolated limit point of a sequence {xr} in R". If {x1} does not
converge then there is a subsequence {x;;} of successful iterations which converges to x. and an
e > 0 such that

||xlj+1 - mlj“ Z €.

The next theorem contains the main result in this section.

THEOREM 6.7. Let sy satisfy conditions (6.1) and (6.2), with ||sk|| > Amin,r when —ApAmin k>
llgrll, at each iteration. If {z;} is the sequence generated by Algorithm 2.18 with the parallel sepa-
ration criterion, then the following are true:

(a) The sequence {gi} converges to zero.

(b) If {x1} is bounded then there is a limit point x. with V?f(z.) positive semidefinite.

(¢c) If z. is an isolated limit point of {zy} then V2 f(x.) is positive semidefinite.

(d) If V2 f(z.) is nonsingular for some limit point x. of {xy}, then V2 f(x.) is positive definite,
{zr} converges to ., all iterations are eventually successful, and {Amink} is bounded away
from zero.

Proof.

(a) This follows from the first order theory in the last section.

(b) The proof is by contradiction. Assume that there is a ¢; > 0 such that for all &k large
enough, say k > kg, —Ar > €;. We will show that this contradicts the assumption that f

is bounded. We begin by showing that Apinx > c2 for all k > ko (also by contradiction),
where ¢y 1= (1“2)% We choose €; to be small enough that Ak, > c2. Now suppose
Amin,i < ¢ for the first time on the kth iteration, & > k. Consider the ith element, where

Ak = Amin,k- We have A; ;1 < Apin /7. From (6.2) and the mean-value theorem,

|0 fik—1 — Omi k—1] < lIsik—1 1> maxeepo 17 |V fi(zh—1 + Esp—1) — V2 filwp—1) ||
Omp_1 - —K'Ag||sk—1]|?

Lellsig—1|

~ Klelsk—|?

(by Lipschitz continuity)
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Therefore by the parallel separation criterion the ith element is not a candidate for reduction
of its trust region, or Apinr < ¢ is not possible. If we had only a finite number of steps
where vy > 11, Apin,x would converge to zero. Since it cannot, we must have an infinite
number of successful steps, where A, and —X; are bounded away from zero for all
sufficiently large k. Since ||gx|| converges to zero, for large enough k we have —ApAmin x >
llgkll, and so ||sg|| > Amink. Thus, for all subsequent successful steps dfr > pidomy >
pik'er||sel]? > ,um’elAfnin’k, which contradicts the boundedness of f.

(c) If {xr} converges to x., the result follows from (b). If {z)} does not converge then
Lemma 6.6 applies, and yields a subsequence {z;; } converging to x, with ||z, 11 —2[| > €.
Notice that the sequence {l;} contains only successful iterations. But ém;; > —«' 5\11. 71, 41—
y,||? implies that 8 f;; > p16my, > —n’ulj\l].@, where 5\11. := min();,,0). Since f is bounded,
{;\lj} must converge to zero and so V2 f(z,) is positive semidefinite.

(d) If V2f(x.) is nonsingular for a limit point z,, then z, is an isolated limit point by (a).
Hence V2f(z.) is positive definite from parts (b) and (c). To prove the rest we go to the
following variant of this theorem.

]

THEOREM 6.8. Let {z} be the sequence generated by the algorithm under the same conditions
on the step as in Theorem 6.7. If z. is a limit point of {x)} with V2 f(x,) positive definite then
{zr} converges to x., all iterations are eventually successful, and {Aminr} is bounded away from
zero.

Proof. We first prove that {x} converges to z.. Choose € > 0 and h > 0 so that the minimum
eigenvalue of V2 f(z) is at least € for ||z — .|| < h. Since the change in the value of the model dmy,
is nonnegative, we have ||gi||||sk|| > —gF sk > 5$5F V2 f(zk)sk > £ Ag||sx||?, where A4 is the minimum
eigenvalue of V2f(zy). Thus ||z — z.|| < h implies that

1
(63) Sellsall < llgell.

Theorem 6.7 guarantees that {g; } converges to zero, and thus there is an index k; for which [|gx|| <
eh for all k > ky. Hence, (6.3) shows that if ||z, — 2.|| < L for k > ki, then ||zg41 — 2.]| < h.
Since g, = 0, from the Taylor series expansion of f about x, we have

f@) = f(z.) = (¢ = 2) TV f(@s + E2) (2 — 24) /2,

where 0 < ¢ < 1. This 1mphes that for 1h < ||z — z.|| < h, V2f(z, + £2) is positive definite and
flz)— ( ) > tellz— x| > geh?® Thus there exists an index ks > kp such that ||zg, —z.|| < h/2
and f(zk,) < f(z.) + s€h®. Applying (63) to xp, and Tp,41, We get ||Tp, 1 — T, || < h/2. But then
[2hy 1 — 2|l < he Now f(xi) + Fellpyt1 — 2l < f@not1) < flan,) < flaa) + geh®, implying
that ||zg,+1 — z«|| < h/2.

Hence, ||z — z«|| < h/2 for k > ky. But since h can be chosen arbitrarily small, {z}} converges
to Ty.

We now prove that all iterations are successful. From (6.2) and (6.3), there exists an ¢; > 0 with
dmy > e1]|sk]|? for all sufficiently large k. Here we can use an argument similar to that in part (b)
of the last theorem to get |6f’j5:nim’“| < Lclels’“”

, and hence that {|ry — 1|} converges to zero. Hence
all iterations are eventually successful and {Apin x} is bounded away from zero. 0

7. Conclusions. The unstructured trust region size has some intrinsic robustness that is for-
feited for a relatively unreliable Aminr when we try to structure. Our algorithm introduces a
condition to compensate for this. It is shown to converge in a first and second order sense under
general and unrestrictive assumptions. However, our new condition on the step takes the place of a
better trust region update mechanism.
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