
RI02001 25 April 2000 Operations Research

IBM Research Report

A shorter-step trust region algorithm for the
minimization of nonlinear partially separable

functions

Johara Shahabuddin

IBM Research Division

IBM India Research Lab

Block I, I.I.T. Campus, Hauz Khas
New Delhi - 110016. India.

IBM Research Division

Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside

of IBM and will probably be copyrighted is accepted for publication. It has been issued as a Research

Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher,

its distribution outside of IBM prior to publication should be limited to peer communications and speci�c

requests. After outside publication, requests should be �lled only by reprints or legally obtained copies of

the article (e.g., payment of royalties). Copies may be requested from IBM T.J. Watson Research Center,

Publications, P.O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports

are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

1

A SHORTER-STEP TRUST REGION ALGORITHM FOR THE MINIMIZATION

OF NONLINEAR PARTIALLY SEPARABLE FUNCTIONS.

JOHARA SHAHABUDDIN�

Abstract. In trust region algorithms for nonlinear minimization, the �t between the objective function and its
model is tested in each iteration to update the trust region radius. This radius restricts the step length equally in
all directions. However, for a partially separable function, the accuracy of the model may be di�erent for the various
parts of the objective function. One would like to allow longer steps in the subspaces of the more accurately modeled
parts, with the expectation that the extra
exibility will give faster convergence.

The excellent idea of structuring the trust region for partially separable problems belongs to [A. R. Conn, Nick
Gould, A. Sartenaer, and Ph. L. Toint, Convergence properties of minimization algorithms for convex constraints
using a structured trust region, SIAM J. Optim., 6 (1996), pp. 1059{1086]. They prove global �rst order convergence
for convex-constrained problems. Their trust region update mechanism and second order analysis are complex.

The suÆcient decrease condition in Conn et al. is changed so that the exact minimizer of the model within the
trust region will always satisfy it. However, we add another condition on the step that is needed to guarantee global
convergence. New and simpler update mechanisms for the trust region radii are investigated. First order convergence
is proved for the convex-constrained problem. Second order convergence results are proved for the unconstrained case.

Key words. trust region algorithm, partial separability, unconstrained, convex constraints, global convergence,
structured problem, nonlinear programming, large-scale programming

AMS subject classi�cations. 90C30, 65K05

�IBM-India Research Lab, Indian Institute of Technology, Hauz Khas, New Delhi 110 016, India
(sjohara@in.ibm.com)

2

1. Introduction. Among nonlinear programming approaches, trust region algorithms are known
to have strong convergence properties, globally converging to a local minimum. The main idea in
these algorithms is to adjust the maximum allowed length of each iterative step depending on how
accurately the nonlinear objective function is modeled by a quadratic. This allowed step length is
known as the trust region radius. Each step is computed as an exact or approximate minimizer of
a quadratic model of the problem within a spherical region de�ned by the trust region radius. The
convex-constrained minimization problem that we are interested in is:

(P) min
x2X

f(x);

where X is a closed convex subset of <n, and f : <n ! <.
Partially separable optimization problems may arise from any system that is modeled as a set of

loosely connected subsystems. There has been much recent research trying to improve the eÆciency
of the algorithms used to optimize partially separable functions, as in [1], [7], [8], [13].

A nonlinear function f(x), x 2 <n is de�ned to be partially separable if it can be written as

f(x) =

pX

i=1

fi(x);

where each fi(x); i = 1; : : : ; p; is a nonlinear function with a large invariant subspace. The functions
fi(x); i = 1; : : : ; p; are known as element functions.

A simple instance of an element function with a large invariant subspace is one which depends
on only a few of the variables, as is often the case in large problems. We do not specify how large a
large invariant subspace needs to be.

Usual trust region algorithms maintain a single trust region radius that restricts the step length
equally in all directions. But is the function equally nonlinear in all directions? The original
structured trust region idea, as proposed in [3], responds to the observation that not all parts of a
partially separable function are equally nonlinear, and the step can be allowed to be longer in the
parts that are more accurately modeled. One would expect that the extra
exibility allowed would
lead to faster convergence.

The structure of the new trust region is intuitive, and we use the same structure as in [3].
There is a separate trust region radius for each of the elemental subspaces. The intersection of the
elemental trust regions thus de�ned is then the structured trust region.

However, the strong convergence results that go with trust region methods do not carry over
to the structured case easily. The trust region strategy loses some robustness in the process of
structuring. This well-known strategy is: when the trust region size decreases, the function and the
model are more in agreement. We look more carefully, and we see that only when the quadratic terms
predominate over higher order terms, will this agreement happen. And these terms predominate
only in good directions such as the negative gradient direction, directions of negative curvature, or
the Newton direction. There are other directions where these terms may be negligible in comparison
with higher order terms, and as the trust region size decreases, the function and the model may
diverge from agreement.

Unstructured approaches have a spherical trust region, where only the good directions are ever
chosen for a step. In contrast, structured trust regions may be shaped to be skewed against such
directions after a step is taken. For example, the trust region shape may allow only a tiny step in the
direction of the negative gradient, while allowing a long step in an orthogonal direction. Allowing
such steps, as we see in this paper, prevents us from proving that all limit points of the sequence of
iterates generated by this algorithm are �rst order critical, although it does allow us to prove that
at least one limit point must be �rst order critical.

Thus, the typical class of suÆcient decrease conditions used for trust region algorithms does not
guarantee convergence of a structured approach. (SuÆcient decrease conditions put a lower bound
on the decrease in the quadratic model that an acceptable approximate solution must satisfy.)
Unstructured trust region algorithms are globally convergent (converge to a local minimum from
any starting point) only if the step satis�es such a condition.

We propose two conditions to overcome this problem, one of which is a suÆcient decrease
condition, while the second is an additional restriction on the step direction. In [3], a suÆcient
decrease condition is used that the exact minimum of the model in the iterative subproblem cannot
always attain. Thus, an additional restriction on the step is hidden within it. This hidden condition
is explicitly stated by our second condition. (Despite the apparent similarity, our conditions on
the step were proposed independently of theirs, after we had pointed out to them that an earlier
condition they had been using was unsuitable.)

Ideally, instead of conditions on the step, the trust region update mechanism should naturally,
as it does for the unstructured approaches, bias the trust region shape towards the good directions.
So we experimented with the update mechanisms as well. Five simpler and more intuitive update
mechanisms than in [3] are described here. Our results have been proved for only one of update
mechanisms so far. But the other ones are shown to have good characteristics.

The next section has the basic notation and assumptions, and concludes with our structured
trust region algorithm. In the third section are the two conditions we need on the step. In the fourth
are the new trust region update mechanisms and some results about them. The �fth section has
proofs of �rst order convergence results for the convex-constrained minimization problem, modeled
on the analysis in [3]. The sixth has second order convergence results for the unconstrained case,
modeled on the analysis in [9]. Our aim is to evaluate structured approaches, and it is appropriate to
begin with the simpler unconstrained minimization problem for the more complicated second order
analysis.

2. The Shorter-Step Algorithm. The problem (P) is solved iteratively, with x0 as the given
starting point. In each iteration, f(xk+ s)�f(xk); k = 0; 1; 2; : : : is modeled in terms of its gradient
and Hessian. The model, denoted by mk(s), is approximately minimized at sk. The trust regions
of the elements are then updated, and so is xk . An iteration where xk+1 = xk + sk is called a
successful iteration. Otherwise, xk+1 = xk, and the iteration is called unsuccessful. If the iteration
is unsuccessful, trust region sizes of some of the elements will be reduced, and the same model will
be minimized over the new trust region in the next iteration.

The l2-norm is used throughout this paper unless otherwise speci�ed. (For other norms, the
convergence proofs remain valid with changes in values of the appropriate constants.)

We begin with a feasibility assumption on the convex feasible region X of the minimization
problem (P):

Assumption 2.1. X has a non-empty interior.

The following basic assumptions are needed on f :

Assumption 2.2. The function f is bounded below on the set L := fx 2 X : f(x) � f(x0)g:

Assumption 2.3. Each fi; i = 1; : : : ; p, and hence f , is twice continuously di�erentiable on
an open set containing L:

Assumption 2.4. There exists a positive constant �H � 1 such that kr2f(x)k � �H and
kr2fi(x)k � �H ; i = 1; : : : ; p; on an open set containing L.

De�ne gk := rf(xk). Let Bk be an approximation to the Hessian r2f(xk).
Definition 2.5. The overall model mk(s) of f(xk + s)� f(xk) is de�ned as:

mk(s) := gTk s+
1

2
sTBks;

Each element function is modeled in terms of the �rst three terms of its Taylor series. Let
gi;k := rfi(xk): Let Bi;k be an approximation to r2fi(xk) such that

Pp
i=1 Bi;k = Bk.

Definition 2.6. The elemental model for fi(xk + s)� fi(xk) is de�ned as follows:

mi;k(s) := gTi;ks+
1

2
sTBi;ks:

Gradient and criticality measure. We assume that the exact derivative gk is available to
simplify our analysis. The derivative is sometimes generalized to the following approximation as
in [3], [9]: kgk � rf(xk)k � �x�min;k, where �min;k is the minimum of all the elemental trust
region radii, and �x is a nonnegative constant. Our analysis would continue to hold for such an
approximation.

We de�ne �(xk) as a criticality measure for the problem (P) as follows:

�(xk) = �k := j min
(xk+d)2X

gTk d

kdk j:(2.1)

Notice that when X is convex, �k = 0 if and only if xk satis�es �rst order criticality conditions for
the problem (P): (See [3] for a proof of this.) If X = <n (the problem is unconstrained) then it is
easy to see that �k = kgkk.

Two functions are de�ned next. The �rst is a generalization of the criticality measure �k, and
the second one is a path that follows the negative gradient projected onto the feasible region X .

�k(t) := j min
xk+d2X

kdk�t

gTk d j;
(2.2)

dk(t) := arg min
xk+d2X

kdk�t

gTk d:

We need the following lemmas about the criticality measure (for proofs, see Lemmas 2.2 and 3.1
in [4]).

Lemma 2.7. If Assumptions 2.3 and 2.1 hold then for all k � 0; the function t 7! �k(t) is

continuous and nondecreasing and the function t 7! �k(t)
t

is non-increasing for t � 0:

Lemma 2.8. If Assumptions 2.3 and 2.1 hold then the function � is continuous with respect to
its argument.

We need � to be uniformly continuous on L. This certainly holds if L is bounded (by the lemma
above), or if the problem is unconstrained, since then �(x) = krf(x)k whose derivative is bounded
by Assumption 2.4. Otherwise, assume the following:

Assumption 2.9. The function �(x) is uniformly continuous in an open set containing L.
Hessian approximation and Rayleigh quotient. Several di�erent assumptions related to

the Hessian approximations Bk have been used by earlier authors. Most trust region algorithms
assume that kBkk is uniformly bounded, as in [2], [6], [9]. Powell ([11]) allowed the bound on kBkk
to grow linearly with the iteration number k, while still obtaining the same convergence results. His
work motivates an assumption about Bk used in a series of trust region algorithms by Conn, Gould
and Toint ([3], [4], [12]), which is weaker than assuming it to be uniformly bounded, and which
holds when certain quasi-Newton updates are used. This is the assumption used in our �rst order
convergence analysis, described in the rest of this section.

We de�ne the generalized Rayleigh quotient of a function f at x along s 6= 0:

!(f; x; s) :=
2

ksk2 [f(x+ s)� f(x)�rf(x)T s]:

Because of the assumption that r2f is bounded, j!(fi; x; s)j � Lh for all i if x and x + s lie in L,
where Lh � 1 is a positive constant. We de�ne a version of the generalized Rayleigh quotient of mk:

�k := 1 + max
q=1;:::;k

(max(j!(mq ; 0; sq)j; max
i=1;:::;p

(j!(mi;q ; 0; sq)j))):

Assumption 2.10.
P1

k=0
1
�k

= +1:

The trust region structure. We de�ne �i;k; i = 1; : : : ; p to be the trust region radii for the p
element functions. These are updated in each iteration and together de�ne the overall trust region
structure in the following manner:

Definition 2.11. The null space N of a function f(x) is de�ned to be the set fv j f(x+ v) =
f(x)g.

Definition 2.12. The range space R of a function f(x) is de�ned to be the subspace orthogonal
to N in Rn.

Let Ri denote the range space of an element function fi; i = 1; : : : ; p. Elemental models mi;k

have the same range space Ri as fi, for all i; k.
Let PRi

(s) denote the projection of a vector s onto Ri. The constraints in the subproblem (SP)
then de�ne the structured trust region as the intersection of elemental trust regions. We solve the
problem (P) by approximately solving a sequence of subproblems of this form.

(SP) min
x2X

mk(s) = gTk s+
1

2
sTBk

kPRi
(s)k � �i;k; i = 1; : : : ; p:

sm
all

er
 ra

diu
s

larger radius

structured
trust
region

single
trust
region

s -g

x

(0,0)

1

k1

s2

x

2

Fig. 2.1. The allowed step s2 is likely to be longer than the unstructured trust region step s1, if the trust region
is structured.

Notice that mk(s) =
Pp

i=1mi;k(s).

We need de�nitions of the following functions of the trust region radii �i;k :

�min;k := min
i=1;:::;p

(�i;k);

�max;k := max
i=1;:::;p

(�i;k);(2.3)

�g;k := maxfksk : s = tgk; t � 0; kPRi
(s)k � �i;k; 8i = 1; : : : ; pg:

Notice that �min;k � �g;k � p
n�max;k: The function �g;k represents the maximum allowed

length of a step in the negative gradient direction, not considering the feasible region X of the
original minimization problem.

An example. With the trust region structure and subproblem de�ned, we can now show how
a longer step may be allowed by the above trust region structure. Refer to Figure 2.1 where a
possible trust region con�guration for the objective function f(x) = x21 + e(x1+x2)

2

is shown. The
elemental range spaces are R1 = S((1; 0)0) and R2 = S((1; 1)0); where S(v1; : : : ; vm) stands for the
span of m vectors v1; : : : ; vm. Since f1(x) = x21 is modeled perfectly by a quadratic, its trust region

radius would be large. The function f2(x) = e(x1+x2)
2

is nonlinear and one would expect a small
trust region radius. The intersection of these two trust region radii for the range spaces of f1(x)
and f2(x) would give rise to the trust region shown, allowing us to take the step s2 in the �gure,
assuming that a high negative gradient dominates the subproblem (SP) solution. If the size of the
unstructured trust region was determined by the more nonlinear of the two elements (the circle in
the �gure), then only the smaller step s1 in the �gure would be allowed.

We now present the shorter-step algorithm. The algorithm follows the general form of the
classical, unstructured, trust region algorithm. Two steps are a little di�erent. In step 2 we must
compute an approximate solution that satis�es another condition besides the usual suÆcient decrease
condition. This solution may be obtained by any standard technique for obtaining an approximate

solution. Then in step 4, the multiple elemental radii are updated, rather than a single trust region
radius.

2.13. The shorter-step algorithm. Given 0 < �1 � �2 < 1, a feasible x0, and starting
values for the trust region sizes, the kth iteration takes the following form:

1. Given xk, calculate gk and Bk. Stop if xk is a local minimum.
2. Solve subproblem (SP) approximately, to get sk satisfying both the suÆcient decrease con-

dition (3.1) and the shorter-step condition (3.2).
3. Evaluate f(xk + sk), and hence rk.
4. Update the trust region radii according to one of the mechanisms in Section 4:

If rk � �2, some of the elemental radii increase.
If �1 � rk < �2, increase some of the elemental radii, and decrease some of them.
If rk < �1, some of the elemental radii decrease.

5. If rk � �1 set xk+1 = xk + sk; else xk+1 = xk.

Other possible ways to structure the trust region. There are some simpler but less

exible methods than the ones to be presented, that are likely to be �rst and second order globally
convergent.

First, look at the following subproblem, similar to (SP) that has been described in detail in [6],
[9]. Assume that the elemental subspaces are spanned by basis vectors corresponding to the variables
used by the respective element functions. Of the trust region radii that a�ect a given variable, let
the minimum radius be denoted by �j

k, j = 1; : : : ; n. This is taken as the trusted length in that

coordinate direction. De�ne Dk to be an n-by-n diagonal matrix with 1=�j
k, j = 1; : : : ; n, as its

diagonal entries. The trust region here is ellipsoidal.

minmk(s) = gTk s+
1

2
sTBks

sTDT
kDks � 1:

The original use of Dk is as a scaling matrix. Good convergence results have been proved for the
above subproblem with suitable assumptions on Dk. But this subproblem is hard to solve if Dk is
ill-conditioned. Thus, this approach to structuring has limited
exibility because it would not allow
widely di�ering trust region sizes.

A second way to structure would be to impose an upper bound on �max;k=�min;k (e.g., by
allowing only reductions in �i;k's that correspond to a large enough �max;k). This approach is not
very di�erent from using a variable and bounded scaling matrix to de�ne the trust region constraint,
as discussed above.

Yet a third way to structure would be to impose the condition that sTk gk � �kskkkgkk (this
would take the place of our condition (3.2)), where � is a small positive fraction and thus obtain
�rst order convergence. Then sTkr2f(xk)sk � ���kkskk2, where �k is the smallest eigenvalue of
r2f(xk), obtains second order convergence. Our attempt is to �nd more general conditions than
either of these for sk to satisfy. (See [3] for a discussion on this.)

3. The Conditions on the Step. Before we go on we need some terms that are used to
compare changes in the values of the functions and their models:

Æfk = f(xk)� f(xk + sk);

Æfi;k = fi(xk)� fi(xk + sk);

Æmk = �mk(sk);

Æmi;k = �mi;k(sk);

rk = Æfk=Æmk;

ri;k = Æfi;k=Æmi;k:

The step sk must minimize mk(s) approximately, so as to satisfy the following suÆcient decrease
condition.

Æmk � ��kmin(
�k
�k

;�min;k; 1);(3.1)

where � > 0 is a constant, �k is the criticality measure de�ned in (2.1), and �min;k is as de�ned in
(2.3).

This suÆcient decrease condition is fairly typical of the ones existing in the literature. Also,
there always exists a step that satis�es it. For a proof, see [4]. One point at which it is achieved is
the point de�ned below.

Definition 3.1. The generalized Cauchy point skc is de�ned as the minimizer of mk(dk(t))
over t.

In other words, skc is the minimizer of mk(s) along the projected gradient path dk(t), de�ned
in (2.2). See Section 2.2 in [3] for justi�cation. (In the unconstrained case, the projected gradient
path is simply the negative gradient direction, and here skc is known as the Cauchy point.)

We need one other condition on the step, which we motivate next.
Motivation for the shorter-step condition. To explain why another condition on the step

is required, we revert to the unconstrained situation, and compare the behavior of the normal
unstructured trust region, against a structured trust region.

Unstructured trust region algorithms converge whenever Æmk � �mk(skc), (e.g., see [9],) where
skc is the Cauchy point as de�ned above. In other words, for some � > 0:

Æmk � �kgkkmin(
kgkk
�k

;�k):

For a structured trust region, Æmk � �mk(skc) would translate to, for some � > 0:

Æmk � �kgkkmin(
kgkk
�k

;�g;k);

where �g;k is as de�ned in (2.3). Now suppose that �g;k is small enough that the term that
dominates in the above condition is the �g;k term.

In the unstructured trust region case, kskk � �k = �g;k , from the de�nition of �g;k. Now on
an iteration where rk < �1 and sk is orthogonal to the gradient, the trust region size reduces equally
in all directions. With ksk+1k encouraged to be smaller by this, the solution to the subproblem is
likely to be dominated more by the �rst order term in mk and less by its higher-order terms, and
since the trust region is symmetric, sk+1 is likely to be more parallel to the gradient, and thus we
expect that rk+1 � rk .

However, in a particular iteration of a structured trust region algorithm, this mechanism of
improving the accuracy of �t between the function and model by reducing trust region size does not
carry over. Here one may �nd that rk < �1, �g;k+1 < �g;k (of course, according to Algorithm 2.13,
kgk+1k = kgkk), while ksk+1k > kskk, because �maxk is due to a well-modeled element and thus
did not decrease. In this way, ksk+1k may be more orthogonal to gk+1 than sk is to gk, even if it is
shorter in some elemental subspaces.

Thus we do not any longer expect that rk+1 be greater than rk (since the �rst order term is may
not become more dominant) for bad iterations. The inequality in the trust region sizes resulting
from this may tend to encourage successive steps to be turned away from the negative gradient
direction, causing worse and worse �ts. Thus, there is no guarantee that reduction of trust region
sizes would lead to a chance of a better �t between function and model, unless we do it cleverly
enough. If we did not reduce the sizes appropriately, the algorithm may stall far from kgkk = 0.

Ideally, we should solve this problem by showing the relative trust region sizes in the various
directions to be well-behaved (these
uctuate according to the trust region update mechanism). We
were unable to show this for our update mechanisms, and found that we needed another condition,
which we call the shorter-step condition to ensure �rst order convergence:

Æmk � �0kskk�k;(3.2)

where �0 is a positive constant. We call this the shorter-step condition. It is not too restrictive
with a small constant of proportionality �0. In our implementations, we have not come across a case
where our choice of step violates this condition.

In the unconstrained case, where �k = kgkk, condition (3.2) is weaker than assuming that sk is
bounded away from orthogonality to gk. We show below that for any feasible xk, there exists an sk
ful�lling both these conditions simultaneously. Unfortunately, the exact minimizer of the subproblem
does not satisfy (3.2) and so somewhat limits our choice of step. However for the unstructured trust
region subproblem, both the exact minimizer as well as the Cauchy point always satisfy (3.2).

Is it possible to satisfy the suÆcient decrease (3.1) and the shorter-step (3.2) conditions simulta-
neously? The following lemma shows that a projected gradient step inside a region of radius �min;k

satis�es both the conditions at once.

Lemma 3.2. Let d denote dk(t) as de�ned in (2.2), where t := min(1;�min;k). Let sk minimize
mk(s) as de�ned in (2.5) over s 2 ft0d : 0 < t0 � 1g. Then sk is feasible in (SP) and satis�es
both conditions (3.1) and (3.2), for � and �0 at most 1=2.

Proof. We have kskk � kdk � t = min(1;�min;k) � 1: This and (2.2) show that sk is feasible in
(SP).

Case 1. dTBkd � 0. We see that the decrease in the model corresponding to sk is Æmk(sk) �
�gTk d = �k(t): But by Lemma 2.7, �k(t)=t � �k(1)=1 = �k: Thus, Æmk(sk) � t�k: So (3.1) is
satis�ed for any � � 1. Notice that t � kskk; hence (3.2) is also satis�ed for any �0 � 1. So both
the conditions hold in this case.

Case 2. dTBkd > 0: We see that the change in the model corresponding to sk = t0d is

Æmk(sk) = �t0gTk d� t02

2 d
TBkd: If t

0 were unconstrained, the exact maximizer of Æmk(t
0d) would be

t0 = t� :=
�gTk d
dTBkd

:

Now if t� � 1; then sk = d and dTBkd � �gTk d so that Æmk � � 1
2g

T
k d = �k(t)

2 � 1
2 t�k;

satisfying both conditions, for any �; �0 � 1=2: Else, t� < 1 and sk = t�d so that Æmk =
(gTk d)

2

2dTBkd
=

�t�gTk d=2 (from the de�nition of t�) = �k(t)kskk=2kdk � �k(t)kskk=2t � �kkskk=2; as before.

So condition (3.2) is satis�ed for any �0 � 1=2: Now Æmk =
(gTk d)

2

2dTBkd
� �k(t)

2

2t2�k
� �2k

2�k
; satisfying

condition (3.1) for any � � 1=2.

4. Trust Region Update Mechanisms. The sizes of the elemental trust region radii in each
iteration must be updated, so that a good match between the elemental functions and models is
maintained. An algorithm that cannot guarantee that at least one trust region radius decreases in
an iteration where there is a bad match between function and model, may stall. Also, at least one
trust region radius should increase if need be (if the step lies well within a trust region, the radius
need not be increased), when the function is modeled accurately, in order to allow the most
exibility
possible in a given step (but this is not essential to the theory). Let us look at the diÆculties in
ensuring conditions such as these.

We classify the iteration depending on how well the function is modeled. As before, a successful
iteration is one where rk � �1, so that xk+1 = xk + sk. Otherwise the iteration is unsuccessful. Let
0 < �1 � �2 < 1, as in Algorithm 2.13. A bad iteration is one where rk < �1. A good iteration is
one where rk � �2: An adequate iteration is one in which �1 � rk < �2.

Similarly, we divide elements into three categories. Those with the best match between element
function and its model are called good elements, those with the worst �t are called bad elements,
while all the others are known as adequate elements.

The relative error problem. We simplify the following discussion by taking �1 = �2 = �.
One would expect a naive version of Algorithm 2.13 that simply imitates the unstructured trust
region algorithm, to update the radii in the following manner in each iteration: solve (SP) and then
check the ratios ri;k . Decrease the radius for which ri;k � �; i = 1; : : : ; p, where � 2 (0; 1), is a
constant. Else increase the radius, if need be (there is no need to increase the radius if the actual
step length is much smaller than the radius in a given elemental subspace).

However, this strategy may not be globally convergent. This is because some elements Æmi;k

may be negative, in contrast to the unstructured case where Æmk is always positive. Conn, Gould
and Toint point out this complication in [3], and call it the relative error problem.

To understand what happens, refer to Figure 4.1. When the function is modeled accurately,
the point (Æfi;k; Æmi;k) is close to the line with slope equal to 1. Thus, the point 2 in the �gure
represents a better �t between function and model, than the point 1, and the point 3 has a better �t
than the point 4. Now let us apply the usual criterion to increase the trust region radius: ri;k � :25.
Point 3 is on the acceptable side of the line of slope .25, and point 4 on the other side when Æmi;k

is positive. However, when Æmi;k is negative, the line allows point 1 to be acceptable but not point
2, even though point 2 has the better �t.

The picture suggests the following form to replace the one above:

1. If rk < � then
(i) If Æmi;k � 0; and ri;k < �+; �+ 2 (0; 1); then decrease the trust region radius �i;k :
(ii) If Æmi;k < 0; and ri;k � ��; �� 2 (1;1); then decrease the trust region radius �i;k:

2. If rk � � and if conditions (i) and (ii) are both false, increase the trust region radius �i;k.

This separation criterion, depicted in Figure 4.2, is still not safe from stalling. Stalling can happen
because of the non-convexity in the separation shown in the �gure. For an arbitrary choice of slopes
for the two lines separating good and bad elements, there is no way to ensure that at least one trust
region radius decreases whenever there is a bad iteration. Indeed, suppose conditions (i) and (ii) are

slope = 1

slope = .25

1

2

3

4
acceptable
region

(0,0)

δ

δ

f

m

i,k

i,k

Fig. 4.1. A naive separation of elements can go wrong: Even if Æfi;k = Æmi;k , a perfect �t, the ith trust region
radius would reduce if Æmi;k < 0:

both false for all i. Then,

Æfk =

pX

i=1

Æfi;k � �+
X

i:Æmi;k>0

Æmi;k + ��
X

i:Æmi;k<0

Æmi;k;

which does not guarantee that rk > 0. So we could have an iteration where rk � 0, and none of the
elemental trust regions �i;k decrease. And this means stalling at the point xk. In other words, even
when the ratios Æfi;k=Æmi;k are close to 1, the overall ratio Æfk=Æmk is not guaranteed to be close
to 1. Since elemental di�erences (or errors) between function and model are individually small but
the overall di�erence (or error) may be large, this diÆculty is called the relative error problem. This
happens whenever there is a large cancellation between positive and negative Æmi;k's.

We have found a way to calculate the slopes �+ and �� so as to guarantee that when both
conditions (i) and (ii) are false for all i, then rk � �. We describe this method in the next subsection.

Figure 4.3 illustrates another way to avoid relative error, which has been used in [3]. Their
criterion to separate good elements from bad elements is quite complicated, but the basic idea is the
one depicted in the �gure:

1. If rk � � and if Æfi;k � Æmi;k � (1��)
p

Æmk then increase the trust region radius �i;k :
2. Else if rk < �, decrease �i;k :

The dark line in the �gure separates the good elements from the bad elements, and the distance of
the line from the origin is dependent on the value of Æmk.

To summarize this subsection, we must look for separation criteria that ensure that at least one
trust region gets reduced in a bad iteration, and, if possible, at least one trust region is increased in
a good iteration. There are two types of diÆculties that can happen with an incorrect separation
criterion | �rst, the algorithm could stall (i.e., stay stuck at the same non-optimal xk , with no
decrease in trust region radius), and second, it could cycle (i.e., stay stuck at the same non-optimal
xk, with the same pattern of increases and decreases in trust region radii repeated in a cycle). We
have two possible forms for such separation criteria as depicted by Figures 4.2 and 4.3. In the next
subsection we look at separation criteria motivated by this discussion.

Earlier separation criteria. A lot of
exibility is allowed in the choice of separation criterion
and the way trust region radii are updated, and many variants of these schemes exist. We �rst
brie
y describe some of these di�erent updating methods to give a sense of the substrate we are
building on. We then go on to propose our separation criteria, proving some simple lemmas that
are needed for the convergence theory that follows in later chapters, showing that at least one trust
region radius decreases in a bad iteration.

slope = 1

slope = .25

1

2

3

4
acceptable
region

(0,0)

δ

δ

f

m

i,k

i,k

Fig. 4.2. The dark boundary separates the good and bad elements. Trust region radii for elements that map
onto the right of this line, are decreased. The proposed sloped criteria for separation of elements are of this form.

slope = 1

acceptable
region

(0,0)

i,kfδ

i,kmδ

Fig. 4.3. A line parallel to the line of slope=1 is used to distinguish good and bad elements. This is the basis
for the proposed parallel separation criterion.

Here are some of the separation criteria used for unstructured trust region algorithms in the
past.

Fletcher [6]:

1. If rk < :25 then �k+1 = kskk=4,
2. if rk > :75; and kskk = �k then �k+1 = 2�k,
3. otherwise �k+1 = �k:

Mor�e [9]:
Let 0 < �1 < �2 < 1 and 0 <
1 < 1 <
2 be given.

1. If rk � �1 then �k+1 2 (0;
1�k];
2. if rk 2 (�1; �2) then �k+1 2 [
1�k;�k];
3. if rk � �2 then �k+1 2 [�k;
2�k]:

LANCELOT [5]:
Let 0 < �1 < �2 < 1 and 0 <
1 <
0 < 1 �
2 be given,

 = maxf
1; (1��2)g
T
k kskk

(1��2)(fk+gTk kskk)��2Æmk�Æfk
g (this formula comes from trying to interpolate to �nd a

good step),

(k)
1 = max[
1;
0kskk=�k]; and

(k)
2 = max[1;
2kskk=�k]:

1. If rk < 0 then �k+1 =
�k,

2. if rk 2 (0; �1) then �k+1 =

(k)
1 �k;

3. if rk 2 [�1; �2) then �k+1 = �k;

4. if rk � �2 then �k+1 =

(k)
2 �k:

Notice the
exibility of Mor�e's scheme in updating the trust region radius between iterations,
where the constants are restricted only to the extent that they lie within certain intervals. It has
been seen that the algorithm is insensitive to the value of the constants [6]. Another noticeable fact
is that the algorithms try to cut o� a bad step (a step where rk < 0) and to increase the trust region
size (on a good iteration) only if it is likely to lead to a longer step (you can see this wherever �k+1

is dependent on sk in the above criteria), to prevent excessive and unnecessary blowup in the size
of the radius. All this goes to say that the trust region updates are fairly heuristic, subject to a
minimal requirement: the radius must decrease on a bad iteration.

Conn, Gould and Toint in [3], divide elements into negligible elements and meaningful elements.
They choose the constants so as to ensure that at least one trust region radius must be decreased on
a bad iteration. They allow trust regions to increase or decrease in the good iterations, and allow
only decreases in bad iterations, to prevent cycling as discussed above.
Conn, Gould and Toint [3]:
Let 0 <
1 �
2 < 1 �
3, 0 < �1 � �2 < �3 < 1; 0 < �1 < �2 < 1:
De�ne the set of negligible elements as Nk := fi 2 1; : : : ; p : jÆmi;kj � �1

p
Æmkg:

De�ne the set of meaningful elements as its complement Mk := f1; : : : ; pg nNk:
1. For i 2Mk,

(i) if rk � �1 and Æfi;k � Æmi;k � 1��3
p

Æmk then �i;k+1 2 [1;
3]�i;k ;

(ii) if Æmi;k � 1��3
p

Æmk > Æfi;k � Æmi;k � 1��2
p

Æmk then �i;k+1 2 [
2; 1]�i;k;

(iii) if Æfi;k < Æmi;k � 1��2
p

Æmk then �i;k+1 2 [
1;
2]�i;k ;

(iv) otherwise �i;k+1 = �i;k:
2. For i 2 Nk,

(i) if rk � �1 and jÆfi;kj � �2
p
Æmk then �i;k+1 = [1;
3]�i;k ;

(ii) if jÆfi;kj > �2
p
Æmk then �i;k+1 2 [
1;
2]�i;k ;

(iii) otherwise �i;k+1 = �i;k:
It has been proved in [3] that the above criterion reduces at least one trust region radius on

a bad iteration. It is unclear why the authors needed to make the distinction between meaning-
ful and negligible elements. They perhaps wished to have a less restrictive criterion to classify
negligible elements as good. But their treatment of meaningful elements (see Figure 4.3) has a
natural concession towards elements with a small Æmi;k | since it always classi�es a neighborhood
of (Æmi;k; Æfi;k) = (0; 0) as `good'.

New separation criteria. We have come up with three sorts of separation criteria for a
structured trust region. Two of them correspond to the pictures in Figures 4.2 and 4.3, while a third
is a combination of the two. In this subsection we demonstrate that the sort of stalling described
above cannot take place cannot take place for any of these criteria. To prevent cycling, no increases
in trust region radii on a bad iteration are allowed.

For ease of description, we adopt the following conventions for the criteria we propose. Let
0 <
1 �
2 < 1 �
3 �
4; 0 < �1 � �2 < 1: We assign each iteration a parameter �k: If rk � �2
then �k = 2; if �1 � rk < �2 then �k = 1, and otherwise �k = 0: We then assign each element a
parameter �1i;k 2 f0; 1; 2g: For each of the three criteria we describe, there is a di�erent method to

assign �1i;k: We then calculate �i;k = �k + �1i;k, and use the following method to update the sizes of
the elemental trust regions:

If �i;k = 4 then �i;k+1 = [1;
4]�i;k;
if �i;k = 3 then �i;k+1 = [1;
3]�i;k;
if �i;k = 2 then �i;k+1 = �i;k ;

r

r

r

≥

> ≥

<

τ ττ = 2 = 1 = 0

4 3 2

3 2 1

2 1 0

i,k
1

i,k
1

i,k
1

2

1k2

1

k

k

µ

µµ

µ

Good BadAdequate
Element Element Element

Adequate
Iteration

Iteration
Good

Iteration
Bad

Fig. 4.4. The general scheme for change in �i;k, given the type of iteration (depending on the match between
Æfk and Æmk), and the type of element (depending on the match between Æfi;k and Æmi;k).

if �i;k = 1 then �i;k+1 = [
2; 1];
if �i;k = 0 then �i;k+1 = [
1;
2]�i;k:
See Figure 4.4 for a pictorial representation of how the trust region radii are updated. The

arrows show whether �i;k would get decreased or increased, and the number in the bottom right
corner of each box shows the value of �i;k : The �k's correspond to good, adequate and bad iterations,
and the �1i;k's correspond to good, adequate and bad elements.

We also de�ne the following terms:

Æm+ :=
X

(i:Æmi;k>0)

Æmi;k;

Æm� :=
X

(i:Æmi;k<0)

Æmi;k;(4.1)

� := Æm�=Æm+:

Note that � is negative. Now we can state the criteria.

4.1. First sloped criterion.

Let �1 =
1
2 [�1(1 + �) +

p
�21(1 + �)2 � 4�];

and �2 =
1
2 [�2(1 + �) +

p
�22(1 + �)2 � 4�]:

If Æmi;k � 0,
if ri;k � �2 then �1i;k = 2;

if ri;k < �1 then �1i;k = 0;

else �1i;k = 1:

If Æmi;k < 0,
if ri;k � 1=�2 then �1i;k = 2;

if ri;k > 1=�1 then �1i;k = 0;

else �1i;k = 1:

The second criterion has a di�erent way of calculating �1 and �2, and is otherwise almost ex-
actly the same as the previous one. We call it the second sloped criterion.

4.2. Second sloped criterion.

Let �1 =
�1�(2��1)�

1�� ; and �2 =
�2�(2��2)�

1�� :

If Æmi;k � 0,
if ri;k � �2 then �1i;k = 2;

if ri;k < �1 then �1i;k = 0;

else �1i;k = 1:

If Æmi;k < 0,
if ri;k � 2� �2 then �1i;k = 2;

if ri;k > 2� �1 then �1i;k = 0;

Else �1i;k = 1:

Notice that �1 � �1 � 1 and �2 � �2 � 1. This is easy to check for the second sloped criterion.
For the �rst, note that �1 is the positive root of

�2 � �1(1 + �)�+ � = 0:(4.2)

By considering the values of the left-hand-side at 0, �1 and 1, we see that �1 � �1 � 1. The same
holds for subscript 2. In both criteria �1 and �2 are monotonic functions of � that approach 1 as �
approaches �1. They approach �1 and �2 as � approaches 0. So we make the criterion to distinguish
good elements more strict when there is more cancellation, compensating for it.

Rewriting the criterion for the unstructured trust region method Æfk=Æmk > � as Æmk�Æfk
Æmk

<

(1� �), motivates the next criterion (corresponding to Figure 4.3). We want the error between the
change in the function value and the change in the model value to be small relative to the change
in the model value. We are tempted to extend it to check the elemental �ts in the following way:
Æmi;k�Æfi;k

Æmk
< (1 � �)=p, where p is the number of elements. Notice that this update criterion is a

part of the update criterion used in [3]. We call this the parallel criterion, since the separating line
in Figure 4.3 is parallel to the 45-degree line that represents Æfi;k = Æmi;k:

4.3. Parallel criterion.

Let 0 < �1 � �2 < 1:
If Æfi;k � Æmi;k � (1��2)

p
Æmk then �1i;k = 2,

if Æfi;k < Æmi;k � (1��1)
p

Æmk then �1i;k = 0,

else �1i;k = 1:

Finally, we have combined criteria to allow more
exibility in the �rst and second sloped criteria.

4.4. First combined criterion.

Let �1 = �(1� �1)�; �2 = �(1� �2)�; �
0
1 = �1 + �1; �

0
2 = �2 + �2: Let �1; �2 be de�ned as in

the �rst sloped criterion above, except that we replace �1; �2 by �01; �
0
2:

If Æmi;k � 0,
if Æfi;k � Æmi;k � �2

p
Æmk or if ri;k � �2 then �1i;k = 2,

if Æfi;k < Æmi;k � �1
p
Æmk and if ri;k < �1 then �1i;k = 0,

else �1i;k = 1:

If Æmi;k < 0,
if Æfi;k � Æmi;k � �2

p
Æmk or if ri;k � 1=�2 then �1i;k = 2,

if Æfi;k < Æmi;k � �1
p
Æmk and if ri;k > 1=�1 then �1i;k = 0,

else �1i;k = 1:

4.5. Second combined criterion.

Let �1 = �(1� �1)�; �2 = �(1� �2)�; �
0
1 = �1 + �1; �

0
2 = �2 + �2: Let �1; �2 be de�ned as in

the second sloped criterion above, except that we replace �1; �2 by �01; �
0
2:

If Æmi;k � 0,
if Æfi;k � Æmi;k � �2

p
Æmk or if ri;k � �2 then �1i;k = 2,

if Æfi;k < Æmi;k � �1
p
Æmk and if ri;k < �1 then �1i;k = 0,

else �1i;k = 1:

If Æmi;k < 0,
if Æfi;k � Æmi;k � �2

p
Æmk or if ri;k � 2� �2 then �1i;k = 2,

if Æfi;k < Æmi;k � �1
p
Æmk and if ri;k > 2� �1 then �1i;k = 0,

else �1i;k = 1:

Notice that when � = 0; both �1 and �2 are 0: So �01 = �1 and �02 = �2: In other words, the
above criteria then reduce to the �rst and second sloped criteria.

When � = �1; we have �1 = (1� �1) and �2 = (1 � �2), while �
0
1 and �02 are both 1. And so,

in this case, the above criteria both reduce to the parallel one.
Thus, the criteria reduce to that corresponding to the unstructured trust region method when-

ever there is no cancellation among Æmi;k's, and they become more strict (approaching the parallel
criterion) for an element with a large Æmi;k, as the amount of cancellation increases.

An analysis of the new criteria. The proof of a lemma that shows that the new separation
criteria do satisfy our expectations.

Lemma 4.6. For all the criteria described above, if all �1i;k � 1 then �k � 1: And if all �1i;k � 1,
then �k � 1:

Proof. We prove only the �rst assertion. The proof of the second assertion is similar.
(i) For the �rst sloped criterion:
If all �1i;k � 1, then from (4.1),

Æfk =

pX

i=1

Æfi;k � �1Æm+ +
1

�1
Æm�:(4.3)

But �1 is a root of (4.2):

�21 � �1(1 +
Æm�

Æm+
)�1 +

Æm�

Æm+
= 0:

Since 0 < �1 � �1 � 1 and Æm+ > 0, �1 satis�es

�1Æm+ � �1(Æm+ + Æm�) +
1

�1
Æm� = 0;

or,

�1Æm+ +
1

�1
Æm� = �1Æmk:

So from (4.3),

Æfk � �1Æmk;(4.4)

which is the same as �k � 1:
(ii) For the second sloped criterion:
We see that �1 is the solution to

�1Æm+ + (2� �1)Æm� = �1Æmk:

and just as in (4.3), if none of the elements is bad,

pX

i=1

Æfi;k � �1Æm+ + (2� �1)Æm�:

Combining these, once again we get (4.4), which is the same as �k � 1:
(iii) For the parallel criterion:
If none of the elements is bad,

pX

i=1

Æfi;k �
pX

i=1

(Æmi;k � (1� �1)

p
Æmk):

So, Æfk � Æmk � (1� �1)Æmk; and (4.4) holds again.
(iv) For the �rst combined criterion:
We de�ne the following sets: I+ := fi : Æmi;k � 0g, I� := fi : Æmi;k < 0g, I1 := fi 2 I+ : Æfi;k <
�1Æmi;kg, I2 := fi 2 I� : Æfi;k <

1
�1
Æmi;kg: Now if all the elements are adequate or good,

Æfk =

pX

i=1

Æfi;k �
X

i2I+

�1Æmi;k +
X

i2I�

1

�1
Æmi;k +

X

i2I1

((1� �1)Æmi;k � �1
p
Æmk) +

X

i2I2

((1� 1

�1
)Æmi;k � �1

p
Æmk):

But
P

i2I+
(�1Æmi;k) = �1Æm+, and

P
i2I�

(1
�1
Æmi;k) =

1
�1
Æm�: Also, (1��1)Æmi;k is nonnegative

for i 2 I1 and (1 � 1
�1
)Æmi;k is nonnegative for i 2 I2: Using the same argument that led to (4.4)

from (4.3),

Æfk � �01Æmk � �1Æmk = �1Æmk:

(v) For the second combined criterion:
The proof is similar to that of part (iv).

In the last two sections we looked at the two major issues that any structured trust region
approach must address: �rst, a need to address the relationship between the subproblem minimizer
sk, and directions in which mk(s) dominates over higher-order terms in the Taylor series of f(xk+s);
and second, ensuring that the trust region update mechanism satis�es our expectation that (a) the
algorithm does not cycle or stall, (b) the trust region radius of at least one element be decreased on
a bad iteration, and (c) the trust region radius of at least one element is a candidate for increase on
a good iteration.

We then looked at separation criteria used in the past to update the trust region sizes, and then
proposed some more of our own, showing how they satisfy the conditions (a), (b), and (c). We show
convergence of our algorithm using only the parallel separation criterion.

5. First Order Convergence Analysis. The aim of our �rst order convergence analysis for
the convex-constrained problem (P), is to show that limk!1 �k = 0.

We make Assumptions 2.1{2.10, 2.9, as discussed before. We also assume that the parallel
separation criterion is used. We show that limk!1 �k = 0.

We begin with a technical lemma that establishes a lower bound on the accuracy of the model.

Lemma 5.1. If Assumption 2.4 holds, then there exists a constant L � 1 such that for each
k = 0; 1; 2; : : :, jÆfk � Æmkj � L�kkskk2; and for each i = 1; : : : ; p, jÆfi;k � Æmi;kj � L�kksi;kk2;
where si;k is the projection of sk onto the range space Ri:

Proof.

jÆfk � Æmkj = jf(xk)� f(xk + sk)�m(0) +m(sk)j
= jgTk sk +

1

2
kskk2!(f; xk; sk)� gTk sk �

1

2
kskk2!(mk; 0; sk)j

� 1

2
kskk2(j!(f; xk ; sk)j+ j!(mk; 0; sk)j)

� 1

2
(Lh + �k)kskk2

� 1

2
(Lh + 1)�kkskk2

� L�kkskk2;
where L := 1

2 (Lh + 1) and Lh � �H is an upper bound on the generalized Rayleigh quotient of f
for any choice of x and s.

The proof for the elemental di�erences jÆfi;k � Æmi;kj � L�kksi;kk2 is similar.

The next lemma shows that the step size wont become too small for points away from a critical
point. A sequence of three theorems completes the analysis.

Lemma 5.2. Consider a sequence of iterates generated by the algorithm and assume that there
exists a constant � > 0 such that �k � � for all k. Then for suÆciently small �, �min;k � c1

�k
, where

c1 =
1min(1; �; ��
1(1��2)
Lp

), for all k.
Proof. We can suppose � small enough so that �i;0 � c1

�0
and we satisfy the lemma when k = 0.

The rest of the proof is by contradiction. Therefore, assume that �min;k becomes smaller than c1
�k

for the �rst time on iteration k. Let �min;k be the trust region radius of the ith element. Since
�i;k < c1

�k
for the �rst time, �i;k�1 � c1

�k�1
so that �i;k�1 > �i;k (since f�kg is a non-decreasing

sequence); similarly, �min;k�1 > �min;k. We will show that �i;k�1 > �i;k could not have been
possible.

We have �min;k�1 � �i;k�1 � �min;k

1
< c1

�k
1
� �

�k
� �

�k�1
� �k�1

�k�1
: This also implies that

�min;k�1 < c1
�k
1

� 1
�k

� 1: We substitute this into the suÆcient decrease condition (3.1), to get
Æmk�1 � ���min;k�1 � ���min;k � ��
1�i;k�1:

Now from Lemma 5.1 we have Æmi;k�1 � Æfi;k�1 � L�k�1ksi;k�1k2 � L�k�1�
2
i;k�1

� L�k�1�i;kÆmk�1

2
1
��

� (1��2)
p

Æmk�1: Therefore the ith trust region radius could not have been re-

duced.

Theorem 5.3. For the sequence of iterates generated by the algorithm,

lim inf
k!1

�k = 0:

Proof. Assume, to obtain a contradiction, that there exists � > 0 such that �k > � for all k, and
suppose � is small enough so that Lemma 5.2 holds and � < 1 . To prove our result, we will try to
contradict the assumption that

P1
k=1

1
�k

=1 by breaking up the sum over speci�c subsequences of

k. Let S denote the index set of successful iterations (where Æfk=Æmk � �1) generated by the algo-
rithm. Then

P
k2S Æfk � �1

P
k2S Æmk � �1��

P
k2S min(�

�k
;�min;k; 1) � �1��min(�; c1)

P
k2S

1
�k

, applying the suÆcient decrease condition (3.1) and the result of Lemma 5.2. So, from the assump-
tion that f(x) is bounded below, we have that

P
k2S

1
�k

<1.

Now let r be an integer such that
4

r�1
2 < 1. De�ne nk = jS \ f1; : : : ; kgj, the number of

successful iterations up to iteration k � 1. De�ne F1 = fk : k � rnkg and F2 = fk : k > rnkg.
First we show that

P
k2F1

1
�k

is �nite. If it has only �nitely many terms, its convergence is obvious.
Otherwise, we may assume that F1 has an in�nite number of elements and then we construct another
subsequence F3 of indices in S in ascending order, with each index repeated r times. Since each
k 2 S contributes at most r terms, each at least k, to the sequence F1, the jth term of F3 is no
greater than the jth term of F1. This and the monotonicity of the sequence f�kg give us thatP

k2F1
1
�k
�Pk2F3

1
�k

= r
P

k2S
1
�k

<1.

Now we show that
P

k2F2
1
�k

is �nite. We can immediately see that �min;k �
nk4
k�nk2 �max;0:

Using the result of Lemma 5.2, we have
P

k2F2
1
�k
�

�max;0

c1

P
k2F2

(
nk4
k�nk2) � �max;0

c1

P
k2F2

(
4

(r�1)
2)

k
r <1.

Therefore the sum
P1

k=0
1
�k

=
P

k2F1
1
�k

+
P

k2F2
1
�k

<1, which contradicts our assumption.

Here is an example to understand the relationship between F1 and F3. Suppose that the suc-
cessful iterations are k = (1; 4; 5; 10; : : :) and suppose r = 2; then rnk =
(2; 2; 2; 4; 6; 6; 6; 6; 6; 8; : : :), F1 = (1; 2; 4; 5; 6; : : :), and F3 = (1; 1; 4; 4; 5; 5; : : :). Notice that r = 2,
that k = 1; 5 contributed 2 terms each to F1, and that the other successful k's each contributed
fewer than 2 terms.

Theorem 5.4. If the algorithm generates an in�nite sequence of successful iterates, then
limk2S �k = 0, where S denotes the sequence of successful iterations.

Proof. Once again, the proof is by contradiction. Assume that there exists �1 2 (0; 1) and
a subsequence fqjg of successful iteration indices such that, for all j, �qj � �1. Let �2 2 (0; �1).
Theorem 5.3 guarantees the existence of another subsequence fljg such that �k � �2 for qj � k < lj
and �lj < �2. We now look at the subsequence whose indices are in K = fk : k 2 S; qj � k < ljg.
For k 2 K we have, from (3.2) and the fact that iterations inK are successful, that Æfk � �1�

0�2kskk:
From this we have:

kxqj � xljk �
X

k2K

kxk+1 � xkk

=
X

k2K

kskk

� 1

�1�2�0

X

k2K

(f(xk)� f(xk+1))

=
1

�1�2�0
(f(xqj)� f(xlj)):(5.1)

But Assumption 5.1 implies that the right-hand side of (5.1) converges to zero as j tends to
in�nity. Hence, by Assumption 2.9 on the uniform continuity of �k, j�qj � �lj j � 1

2 (�1 � �2) for j
suÆciently large. Thus, �qj � �lj +

1
2 (�1 � �2) � 1

2 (�1 + �2) < �1; which contradicts our original
assumption.

Theorem 5.5. If the set of successful iterations (i.e., iterations where xk+1 = xk+sk) generated
by the algorithm is �nite, then all its iterates xk are equal to some x� for k large enough, and x� is
critical.

Proof. From the algorithm, a �nite number of successful iterations means that xk is unchanged
for k large enough, and that x� = xj , where j � 1 is the index of the last successful iteration. Now
if �j > 0, we can apply the result of Theorem 5.3 to get a contradiction. Hence �(x�) = �j = 0.

6. Second Order Convergence for the Unconstrained Case. The unconstrained mini-
mization problem (P1) is as follows

(P1) min
x2<n

f(x);

where f : <n ! < is a partially separable function.
Here the structured subproblem takes the following form:

(SP1) minmk(s) = gTk s+
1

2
sTBks

kPRi
(s)k � �i;k; i = 1; : : : ; p:

We use the Assumptions 2.1{2.4, with X = <n for our second order convergence analysis.
Our second order analysis replaces Assumption 2.10 by the stronger Assumption 6.1, as below:

Assumption 6.1. There exists a positive constant �B � 1 such that kBkk � �B and kBi;kk �
�B ; i = 1; : : : ; p; for all k.

We begin with a lemma corresponding to Lemma 5.1, needed for second order convergence.

Lemma 6.2. If Assumptions 2.4 and 6.1 hold, jÆfk � Æmkj � Lkskk2 and jÆfi;k � Æmi;kj �
Lksi;kk2; for all i = 1; : : : ; p and all k, where L := 1

2 (Lh + �B) � 1; where �B is an upper bound on
kBkk and kBi;kk.

Proof. The proof is similar to that of Lemma 5.1.

We need to further strengthen our assumptions about the second derivative.

Assumption 6.3. Bk = r2f(xk) and Bi;k = r2fi(xk); i = 1; : : : ; p.

Since we continue to assume that all the second derivatives are bounded from the �rst order
convergence theory, Assumption 6.1 about the boundedness of Bk automatically applies (replacing
the weaker Assumption 2.10). In addition, we assume:

Assumption 6.4. r2fi;k is Lipschitz continuous with a constant Lc for all i = 1; : : : ; p.

Secondly, there are changes in the conditions we need the step to satisfy. Note that in the
suÆcient decrease condition (3.1), we can now replace �k by kgkk:

Æmk � �kgkkmin(
kgkk
�k

;�min;k; 1):(6.1)

The shorter-step condition (3.2) is tightened to the following pair of conditions, ensuring suÆcient
decrease when there is a direction of negative curvature.

Æmk � �0kgkkkskk
(6.2)

Æmk � ��0�kkskk2;

where �0 is a small positive constant whose value depends on the method used to �nd an approximate
solution to the subproblem in step 2 of the algorithm, and �k denotes the minimum eigenvalue of
r2f(x). Also, for (6.2) we have used the same constant �0 as in (3.2). If we had a solution method
that satis�ed the two conditions for two di�erent constants, we would simply choose the minimum
of the two constants to be �0 for all of our results to hold. We now show that conditions (6.1) and
(6.2) are satis�able simultaneously.

Lemma 6.5. There exists a step sk within the trust region that satis�es conditions (6.1) and
(6.2) simultaneously for � and �0 at most 1

2 , such that kskk � �min;k whenever ��k�min;k � kgkk.
Proof.

Case 1. When ��k�min;k � kgkk the following step sk is taken: let qk be a unit length
eigenvector corresponding to �k such that q

T
k gk � 0, without loss of generality. Let sk be the step that

minimizes mk(s) in the two-dimensional subspace spanned by gk and qk subject to kskk � �min;k.
We will show that each of the three conditions in the statement of the lemma hold.

Now Æmk(sk) � Æmk(qk�min;k) � �qTk gk�min;k � 1
2�k�

2
min;k (since qTkr2f(xk)qk = �k) �

� 1
2�k�

2
min;k (from our assumption that qTk gk < 0). Since kskk � �min;k, sk satis�es the second part

of (6.2) for �0 � 1=2.

Also, from Æmk(sk) � � 1
2�k�

2
min;k and ��k�min;k � kgkk, we have Æmk(sk) � �0kgkk�min;k

(for �0 � 1=2) � �0kgkkkskk (given that kskk � �min;k), satisfying the �rst part of (6.2).

Because the problem is unconstrained, notice that the step from Lemma 3.2 satis�es (6.1), lies
along the direction �gk and has norm less than �min;k. It is thus a feasible alternative to sk. Since
sk must give at least as much decrease as this feasible alternative, it satis�es (6.1) as well.

Since sk lies on the boundary of the trust region, we see that kskk � �min;k is also satis�ed.

Case 2. When ��k�min;k < kgkk we take what we call the reduced Cauchy step, de�ning it
to be minimizer of the model along the negative gradient direction within the trust region and with
the further restriction that kskk � �min;k.

With this choice of step (the same as the step in Lemma 3.2 applied to the unconstrained case,
as in Case 1, if �min;k � 1) it is possible to satisfy (6.1) and the �rst part of (6.2).

If �k � 0, the second part of (6.2) is trivially satis�ed. If not, from the �rst half of (6.2) and
��k�min;k < kgkk, we have Æmk � �0kgkkkskk � ��0�k�min;kkskk � ��0�kkskk2; satisfying the
second part of (6.2).

Finally we state a technical lemma proved in [10].

Lemma 6.6. Let x� be an isolated limit point of a sequence fxkg in <n. If fxkg does not
converge then there is a subsequence fxljg of successful iterations which converges to x� and an
� > 0 such that

kxlj+1 � xljk � �:

The next theorem contains the main result in this section.

Theorem 6.7. Let sk satisfy conditions (6.1) and (6.2), with kskk � �min;k when ��k�min;k �
kgkk; at each iteration. If fxkg is the sequence generated by Algorithm 2.13 with the parallel sepa-
ration criterion, then the following are true:

(a) The sequence fgkg converges to zero.
(b) If fxkg is bounded then there is a limit point x� with r2f(x�) positive semide�nite.
(c) If x� is an isolated limit point of fxkg then r2f(x�) is positive semide�nite.
(d) If r2f(x�) is nonsingular for some limit point x� of fxkg, then r2f(x�) is positive de�nite,

fxkg converges to x�, all iterations are eventually successful, and f�min;kg is bounded away
from zero.

Proof.

(a) This follows from the �rst order theory in the last section.
(b) The proof is by contradiction. Assume that there is a �1 > 0 such that for all k large

enough, say k � k0, ��k � �1. We will show that this contradicts the assumption that f
is bounded. We begin by showing that �min;k � c2 for all k � k0 (also by contradiction),

where c2 :=
(1��2)
1�

0�1
pLc

. We choose �1 to be small enough that �min;k0 � c2: Now suppose
�min;k < c2 for the �rst time on the kth iteration, k � k0. Consider the ith element, where
�i;k = �min;k. We have �i;k�1 � �min;k=
1. From (6.2) and the mean-value theorem,

jÆfi;k�1 � Æmi;k�1j
Æmk�1

� ksi;k�1k2max�2[0;1] kr2fi(xk�1 + �sk�1)�r2fi(xk�1)k
��0�kksk�1k2

� Lcksi;k�1k3
�0�1ksk�1k2 (by Lipschitz continuity)

� Lc�i;k�1

�0�1
(sinceksi;k�1k � k�i;k�1k)

� Lc�min;k

1�0�1

� 1� �2
p

:

Therefore by the parallel separation criterion the ith element is not a candidate for reduction
of its trust region, or �min;k < c2 is not possible. If we had only a �nite number of steps
where rk � �1, �min;k would converge to zero. Since it cannot, we must have an in�nite
number of successful steps, where �min;k and ��k are bounded away from zero for all
suÆciently large k. Since kgkk converges to zero, for large enough k we have ��k�min;k >
kgkk, and so kskk � �min;k. Thus, for all subsequent successful steps Æfk � �1Æmk �
�1�

0�1kskk2 � �1�
0�1�

2
min;k, which contradicts the boundedness of f .

(c) If fxkg converges to x�, the result follows from (b). If fxkg does not converge then
Lemma 6.6 applies, and yields a subsequence fxljg converging to x� with kxlj+1�xljk � �.

Notice that the sequence fljg contains only successful iterations. But Æmlj � ��0�̂ljkxlj+1�
xljk2 implies that Æflj � �1Æmlj � ��0�1�̂lj �2, where �̂lj := min(�lj ; 0). Since f is bounded,

f�̂ljg must converge to zero and so r2f(x�) is positive semide�nite.
(d) If r2f(x�) is nonsingular for a limit point x�, then x� is an isolated limit point by (a).

Hence r2f(x�) is positive de�nite from parts (b) and (c). To prove the rest we go to the
following variant of this theorem.

Theorem 6.8. Let fxkg be the sequence generated by the algorithm under the same conditions
on the step as in Theorem 6.7. If x� is a limit point of fxkg with r2f(x�) positive de�nite then
fxkg converges to x�, all iterations are eventually successful, and f�min;kg is bounded away from
zero.

Proof. We �rst prove that fxkg converges to x�. Choose � > 0 and h > 0 so that the minimum
eigenvalue of r2f(x) is at least � for kx� x�k � h. Since the change in the value of the model Æmk

is nonnegative, we have kgkkkskk � �gTk sk � 1
2s

T
kr2f(xk)sk � 1

2�kkskk2, where �k is the minimum
eigenvalue of r2f(xk). Thus kxk � x�k � h implies that

1

2
�kskk � kgkk:(6.3)

Theorem 6.7 guarantees that fgkg converges to zero, and thus there is an index k1 for which kgkk �
1
4�h for all k � k1. Hence, (6.3) shows that if kxk � x�k � 1

2h for k � k1, then kxk+1 � x�k � h.
Since g� = 0, from the Taylor series expansion of f about x� we have

f(x)� f(x�) = (x � x�)
Tr2f(x� + �x)(x � x�)=2;

where 0 � � � 1. This implies that for 1
2h < kx � x�k � h, r2f(x� + �x) is positive de�nite and

f(x)�f(x�) � 1
2�kx�x�k2 > 1

8�h
2. Thus, there exists an index k2 > k1 such that kxk2 �x�k � h=2

and f(xk2) � f(x�)+
1
8�h

2. Applying (6.3) to xk2 and xk2+1, we get kxk2+1�xk2k � h=2. But then
kxk2+1 � x�k � h. Now f(x�) +

1
2�kxk2+1 � x�k2 � f(xk2+1) � f(xk2) � f(x�) +

1
8�h

2, implying
that kxk2+1 � x�k � h=2.

Hence, kxk � x�k � h=2 for k � k2. But since h can be chosen arbitrarily small, fxkg converges
to x�.

We now prove that all iterations are successful. From (6.2) and (6.3), there exists an �1 > 0 with
Æmk � �1kskk2 for all suÆciently large k. Here we can use an argument similar to that in part (b)

of the last theorem to get jÆfk�Æmkj
Æmk

� Lckskk
�2

, and hence that fjrk � 1jg converges to zero. Hence

all iterations are eventually successful and f�min;kg is bounded away from zero.

7. Conclusions. The unstructured trust region size has some intrinsic robustness that is for-
feited for a relatively unreliable �min;k when we try to structure. Our algorithm introduces a
condition to compensate for this. It is shown to converge in a �rst and second order sense under
general and unrestrictive assumptions. However, our new condition on the step takes the place of a
better trust region update mechanism.

8. Acknowledgement. This work was done as part of my Ph.D. at the School of Operations
Research and Industrial Engineering at Cornell University, Ithaca, New York. I thank Prof. Michael
J. Todd, who was my Ph.D. advisor there.

REFERENCES

[1] A. Bouaricha, and J. J. Mor�e, Impact of partial separability on large-scale optimization, Comput. Optim.
Appl., 7 (1997), pp. 27{40.

[2] T. F. Coleman, and Y. Li, An interior trust region approach for nonlinear minimization subject to bounds,
SIAM J. Optim., 6 (1996), pp. 418{445.

[3] A. R. Conn, N. Gould, A. Sartenaer, and Ph. L. Toint, Convergence properties of minimization algorithms
for convex constraints using a structured trust region, SIAM J. Optim., 6 (1996), pp. 1059{1086.

[4] A. R. Conn, N. Gould, A. Sartenaer, and Ph. L. Toint, Global convergence of a class of trust region
algorithms for optimization using inexact projections on convex constraints, SIAM J. Optim., 3 (1993),
pp. 164{221.

[5] A. R. Conn, Nick Gould, and Ph. L. Toint, LANCELOT: A Fortran Package for Large-Scale Nonlinear
Optimization, Springer-Verlag, 1992.

[6] R. Fletcher, Practical Methods of Optimization, Second ed., Practical Methods of Optimization, John Wiley,
New York, 1987.

[7] A. Griewank, and Ph. L. Toint, On the existence of convex decompositions of partially separable functions,
Math. Programming, 28 (1984), pp. 25{49.

[8] M. Lescrenier, Partially separable optimization and parallel computing, Ann. Oper. Res., 14 (1988), pp. 213{
224.

[9] J. J. Mor�e, Recent developments in algorithms and software for trust region methods, in Mathematical Pro-
gramming: The State of the Art, A. Bachem, M. Gr�otschel and B. Korte, eds., Springer-Verlag, 1982.

[10] J. J. Mor�e, and D. Sorensen, Computing a trust region step, SIAM J. Sci. Statist. Comput., 4 (1983), pp. 553{
572.

[11] M. J. D. Powell, On the global convergence of trust region algorithms for unconstrained minimization, Math.
Programming, 29 (1984), pp. 297{303.

[12] Ph. L. Toint, Global convergence of a class of trust region methods for non-convex minimization in Hilbert
space, IMA J. Numer. Anal., 8 (1988), pp. 231{252.

[13] Ph. L. Toint, Global convergence of the partitioned BFGS algorithm for convex partially separable optimization,
Math. Programming, 36 (1986), pp. 290{306.

