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Abstract. Trust region algorithms are strongly convergent, typically restricting the step to lie within a spherical
trust region. Structured trust region algorithms attempt greater eÆciency by allowing di�ering trust region radii
in di�erent partially separable subspaces. However, the unpredictable shape of this trust region takes away some
convergence strength for naive implementations. Restrictions on the step have been proposed in earlier work to
correct this.

We propose a trust region radius update mechanism that depends on the change in gradient direction between
iterations and thus avoids restrictions on the step. To simplify the analysis, we limit ourselves to the unconstrained
problem, and show �rst and second order global convergence. We also make the simpli�cation that the range spaces
are de�ned by canonical basis vectors.

Key words. trust region algorithm, partial separability, unconstrained, global convergence, structured problem,
nonlinear programming, large-scale programming
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1. Introduction. Partial separability is a form of sparsity in systems that are composed of
loosely-connected subsystems. Large optimization problems often have such a structure. A nonlinear
function f(x), x 2 <n is de�ned to be partially separable if it can be written as

f(x) =

pX

i=1

fi(x);

where each fi(x); i = 1; : : : ; p; is a nonlinear function with a large invariant subspace. The functions
fi(x); i = 1; : : : ; p; are known as element functions.

Trust region algorithms build a quadratic model of the objective function in each iteration and
solve the model for an approximate minimum within a region known as the trust region. Typically,
this region is a sphere de�ned by a radius, restricting the length of the step equally in all directions.

For a partially separable objective function, if a di�erent radius de�nes a separate trust region
for each of the various element functions, longer steps may be possible in the range spaces of the
more accurately modeled element functions. A family of structured trust region algorithms have
been proposed to investigate this possibility in [1].

The robustness of the basic trust region mechanism is a�ected by structuring. This well-known
mechanism is: when the trust region size decreases, the function behavior is more accurately pre-
dicted by its exact quadratic model. If we look more carefully, we �nd this is not true for all
directions, only for some such as the negative gradient direction, major directions of negative cur-
vature, or the Newton direction, where the quadratic model dominates over higher order terms in
the Taylor series expansion of the objective.

With a spherical trust region, only the good directions are ever taken, but a structured trust
region shape may become skewed against these good directions, especially after a successful step is
taken. For example, the trust region shape may allow only a relatively tiny step in the direction of
the negative gradient, while allowing a long step in a direction orthogonal to it.

Conditions on the step were proposed in [1] in order to deal with this problem. Ideally, the trust
region update mechanism should naturally take care of it by biasing the trust region shape towards
the good directions. The method we propose here does just this, avoiding any conditions (beyond a
conventional suÆcient decrease condition) on the step. At the heart of the algorithm is an update
mechanism that takes into account the change of gradient direction when an iterative step is taken.

The above problem does not a�ect the �rst order convergence results in [1] that show lim inf �k =
0, where �k is a �rst order criticality measure. The extra conditions in [1] come into play only later,
in the proof of limk!1 �k = 0. (In [1], a suÆcient decrease condition is used that the exact minimum
of the model in the iterative subproblem cannot always attain. Thus, an additional restriction on
the step is hidden within it.) This implies that in the limit the algorithms would move between
points with di�ering gradient values. Expanding the trust region shape to favor some of the good
directions described above, so as to compensate for the new slope conditions at the each iterate, we
ensure moving away from noncritical points towards the critical points in the limit.

Thus, our proposed trust region update mechanism has two parts: a normal structured update
based on model accuracy, on top of which there is an extra gradient-based increase in the elemental
trust region radii in each iteration. We only have proofs for the unconstrained case so far, since the
analysis here is complicated. The subproblem we use in the theory here has a `box' trust region
con�guration rather than a more general structure, due to an assumption that each elemental trust
region has a range space de�ned by canonical basis vectors.

We describe the algorithm in the next section. First and second order convergence results are
obtained in the following two sections.

2. The gradient-dependent algorithm. We begin with basic de�nitions and assumptions.
The unconstrained nonlinear minimization problem which we address is:

(P ) min f(x);

where f : <n ! < is partially separable.
The problem (P ) is solved iteratively, with x0 as the given starting point. In each iteration,

f(xk+s)�f(xk); k = 0; 1; 2; : : : is modeled in terms of its gradient and Hessian. The model, denoted
bymk(s), is approximately minimized at sk. The trust regions of the elements are then updated, and
so is xk. An iteration where xk+1 = xk + sk, is called a successful iteration. Otherwise, xk+1 = xk,
and the iteration is called unsuccessful.

The l2-norm is used throughout this paper, unless otherwise speci�ed.
The following basic assumptions are needed on f :
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Assumption 2.1. The function f is bounded below on the set L := fx : f(x) � f(x0)g:

Assumption 2.2. Each fi; i = 1; : : : ; p, and hence f , is twice continuously di�erentiable on
an open set containing L:

Assumption 2.3. There exists a positive constant �H � 1 such that kr2f(x)k � �H and
kr2fi(x)k � �H ; i = 1; : : : ; p; on an open set containing L.

De�ne gk := rf(xk): Let Bk be an approximation to the Hessian r2f(xk).
Definition 2.4. The overall model mk(s) of f(xk + s)� f(xk) is de�ned as:

mk(s) := gTk s+
1

2
sTBks;

Each element function is modeled, in terms of the �rst three terms of its Taylor series. Let
gi;k := rfi(xk): Let Bi;k be an approximation to r2fi(xk) such that

Pp
i=1 Bi;k = Bk.

Definition 2.5. The elemental model for fi(xk + s)� fi(xk) is de�ned as follows:

mi;k(s) := gTi;ks+
1

2
sTBi;ks:

If an iteration is unsuccessful, so that xk+1 = xk, then Bk+1 = Bk and Bi;k+1 = Bi;k for all i,
so that the overall and elemental models are unchanged.

Hessian approximation and Rayleigh quotient. Several di�erent assumptions related to
the Hessian approximationsBk have been used by earlier authors. We adopt the one used in [1],where
it has been explained to be weaker than assuming that Bk is uniformly bounded.

Definition 2.6. The generalized Rayleigh quotient of a function f at x along s 6= 0 is de�ned
to be:

!(f; x; s) :=
2

ksk2
[f(x+ s)� f(x)�rf(x)T s]:

Because of the assumption that r2f is bounded, we have j!(fi; x; s)j � Lh for all i if x and
x+ s lie in L, where Lh � 1 is a positive constant. We de�ne a version of the generalized Rayleigh
quotient of mk:

Definition 2.7.

�k := 1 + max
q=1;:::;k

(max(j!(mq ; 0; sq)j; max
i=1;:::;p

(j!(mi;q ; 0; sq)j))):c(2.1)

Given these de�nitions, the assumption is:
Assumption 2.8.

P1
k=0

1
�k

= +1:

The trust region structure. We de�ne �i;k; i = 1; : : : ; p to be the trust region radii for the p
element functions. These are updated in each iteration, and together de�ne the overall trust region
structure in the following manner:

Definition 2.9. The null space N of a function f(x) is de�ned to be the set fv j f(x + v) =
f(x)g.

Definition 2.10. The range space R of a function f(x) is de�ned to be the subspace orthogonal
to N in Rn.

Let Ri denote the range space of an element function fi; i = 1; : : : ; p. Elemental models mi;k

have the same range space Ri as fi, for all i; k. We simplify the trust region subproblem by making
an assumption on the range spaces.

Assumption 2.11. Each Ri is a coordinate subspace, i.e., the span of some set ej ; j 2 qi, where
qi � f1; : : : ; ng and ej denotes the jth unit vector, j = 1; : : : ; n.
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The partial separability assumption for f implies that for the most part, each ej is contained in
only a few of the Ri's. We de�ne:

pj := fi : ej 2 Rig � fi = 1; : : : ; pg;

where pj ; j = 1; : : : ; n maps a particular coordinate index j onto the set of elements which use it.
Notice that the reverse transformation from an element to a set of coordinates is given by qi.

Now, each elemental trust region is given by the following constraint:

kPRi
(sk)k1 � �i;k ;

where PRi
(s) denotes the projection of a vector s onto Ri. Because we use the 1-norm, the

elemental trust region constraints intersect to give upper and lower bounds on each coordinate,
together de�ning a box-shaped overall trust region.

We can now fully state the subproblem (SP ) to be solved in each iteration:

(SP ) minmk(s) = gTk s+
1

2
sTBks

jsj j � �j
k; j = 1; : : : ; n;

where sj ; j = 1; : : : ; n is the jth component of the step s, and �j
k := mini2pj �i;k is the trust region

radius for coordinate j, and is de�ned as the minimum of the elemental trust region radii that a�ect
that coordinate.

Having solved for sk, the minimizing value of s, we update each elemental trust region radius
twice. In the �rst update, separation criteria divide the elements into one of three classes depending
on how accurately each element function fi is modeled. Also, depending on how accurately the
overall function f is modeled, the iteration is put into one of three classes. The combination is used
to update the radii. The second update is to expand some of the elemental trust regions from the
previous update, depending on the change in the gradient.

To check the accuracy of �t between functions and models, the following terms will be used:

Æfk = f(xk)� f(xk + sk);

Æfi;k = fi(xk)� fi(xk + sk);

Æmk = �mk(sk);

Æmi;k = �mi;k(sk);

rk = Æfk=Æmk;

ri;k = Æfi;k=Æmi;k:

Separation criteria. The elemental trust region update is done in two stages, as described
in the introduction. In the �rst stage, we update according to the following separation criterion (a
way to classify the model accuracy for the element functions), and this stage is in common with the
approach in [1], although they use a di�erent separation criterion.

We assign each iteration a parameter �k: If rk � �2 then �k = 2; if �1 � rk < �2 then �k = 1,
and otherwise �k = 0:

2.12. Parallel separation criterion. Let 0 < �1 � �2 < 1:
If Æfi;k � Æmi;k �

(1��2)
p Æmk then �1i;k = 2,

if Æfi;k < Æmi;k �
(1��1)

p Æmk then �1i;k = 0,

else �1i;k = 1:

We calculate �i;k = �k + �1i;k, and update the elemental trust region radii as follows.
Let 0 < 
1 � 
2 < 1 � 
3 � 
4:
If �i;k = 4 then �i;k+1 = [1; 
4]�i;k;
if �i;k = 3 then �i;k+1 = [1; 
3]�i;k;
if �i;k = 2 then �i;k+1 = �i;k ;
if �i;k = 1 then �i;k+1 = [
2; 1];
if �i;k = 0 then �i;k+1 = [
1; 
2]�i;k:
The following result is of interest. It shows that in an unsuccessful iteration at least one elemental

trust region radius will decrease, and that, less crucially for proving convergence, in a successful
iteration at least one elemental trust region radius must increase.
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Lemma 2.13. For the criteria described above, if all �1i;k � 1 then �k � 1: And if all �1i;k � 1,
then �k � 1:

Proof. We prove only the �rst assertion. The proof of the second assertion is similar.

If �1i;k � 1 for all i, then

pX

i=1

Æfi;k �

pX

i=1

(Æmi;k �
(1� �1)

p
Æmk):

So, Æfk � Æmk � (1� �1)Æmk; and thus Æfk � �1Æmk.

The gradient expansion. The gradient-based expansion of elemental trust region radii is a
second stage of update applied to all the elemental trust region radii. As motivated in the introduc-
tion, we want to allow the algorithm to step away from non-critical points in the limit, by letting
the trust region size expand towards the negative gradient direction at the new point.

We �rst de�ne a function g0i;k of the overall gradient gk, that is the subvector, or `piece' of gk
that corresponds to the coordinates associated with the ith element function.

Definition 2.14. The partial elemental gradient g0i;k 2 <
jqij, is de�ned to be the subvector of

gk such that gjk is a component of g0i;k if and only if j 2 qi.
Let I� denote the set of elements which have kg0i;kk1 = kgkk1.

Let i� denote an element i in I� which has the smallest �i;k.

The update can now be stated:

�i;k+1 = max(
kg0i;k+1k1

kg0i�;kk1
�i�;k;�i;k+1); i = 1; : : : ; p:(2.2)

This update increases the trust region size of an element whose partial gradient is large in

relation to kg0i�;kk1 = kgkk1. We used I� because the update �i;k+1 = max(
kg0i;k+1k1
kg0

i;k
k1

�i;k;�i;k+1)

is not practical (since the denominator of the ratio of gradient subvectors may be equal to zero).
The 1-norm of the subvectors is needed for Lemma 3.3, which we could not prove with the l2-norm
of the subvectors.

SuÆcient decrease condition. Trust region algorithms do not need an exact solution to the
subproblem to converge. Approximate solutions, that guarantee suÆcient decrease in the value of
the model, do just as well. One such suÆcient decrease condition on the approximate step, that is
quite typical of the ones existing in the literature, is in [4]:

Æmk � �kgkkmin(
kgkk

kBkk
;�k);

where �k is the single trust region radius.

The gradient-dependent algorithm requires the following suÆcient decrease condition.

Æmk � � max
j2f1;:::;ng

(jgjkjmin(
jgjkj

jbjjk j
;�j

k))(2.3)

where, Æmk = �mk(sk), 0 < � < 1, gjk is the jth coordinate of gk, and bjjk is the jth diagonal
element of the matrix Bk.

We now show that such a decrease is achievable.
Lemma 2.15. There exists a step sk for which (2.3) holds for any constant 0 < � � 1

2 .

Proof. Consider �rst the decrease obtained when we minimize the model along the direction
djk = �sgn(gjk)ej for a given j. Let s�j be the minimizer of mk(s) over s = tdjk such that t � �j

k.

Then mk(s) = �sgn(gjk)tg
T
k ej +

t2

2 e
T
j Bkej = �tjgjkj +

t2

2 b
jj
k . When bjjk > 0, t� =

jgj
k
j

bjj
k

minimizes

mk(s).

If bjjk > 0 and t� � �j
k, then s�j = t�djk , and mk(s

�
j ) = �

jgj
k
j2

2bjj
k

. If bjjk > 0 and t� � �j
k, then

s�j = �j
kdjk , and mk(s

�
j ) � �jgjkj�

j
k+

1
2 (�

j
k)

2 jg
j

k
j

�j

k

= � 1
2 jg

j
kj�

j
k, since �

j
k � t� implies that bjjk �

jgj
k
j

�j

k

.

Now if bjjk � 0, then t2bjjk � 0 and so mk(s) � �tjgjkj. Choosing t = �j
k, we get mk(s

�
j ) �

�jgjkj�
j
k:
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Thus, mk(s
�
j ) � �(jgjkjmin(

jgj
k
j

jbjj
k
j
;�j

k)). To obtain the result, we choose

sk = arg min
j2f1;:::;ng

mk(s
�
j ):(2.4)

Corollary 2.16. There exists a step for which the following suÆcient decrease condition holds
for any 0 < � � 1

2 :

Æmk � � max
j2f1;:::;ng

(jgjkjmin(
jgjkj

�k
;�j

k)):(2.5)

Proof. Suppose we choose sk = s�j as in (2.4). Then �k � jbjjk j, so that (2.3) implies (2.5).

The above proofs show that the exact solution to (SP ) will always satisfy each of the two
suÆcient decrease conditions above. The condition (2.5) is used to prove the �rst order results. (It
allows more 
exibility in the choice of step than (2.3) allows.) In the third section we will use (2.3)
to prove our second order results. The results that hold with (2.5) would continue to hold with (2.3),
since the latter implies the former.

2.17. The gradient-dependent algorithm. Given 0 < �1 � �2 < 1, a feasible x0, and
starting values for the trust region sizes such that �i;0 � kg0k, for all i = 1; : : : ; p, the kth iteration
takes the following form:

1. Find an approximate solution sk to the subproblem (SP ) that satis�es a suÆcient decrease
condition.

2. Evaluate f(xk + sk) and hence rk.
3. Update the trust region radii according to one of the separation criteria, such as (2.12).
4. If rk < �1 then xk+1 = xk and the iteration ends here.

Else xk+1 = xk + sk, calculate gk+1; Bk+1 and go on to step 5.
5. Reset the trust region radii according to (2.2).
We have now stated the assumptions, the structure of the trust region and how it is updated in

each iteration, the suÆcient decrease conditions we will use and �nally, the algorithm. We now go
on to our convergence results.

3. First Order Convergence. We will show that every limit point of the sequence of xk 's
generated by the algorithm must be a critical point. The step must satisfy the suÆcient decrease
condition (2.5). The parallel separation criterion is used for the �rst trust region update stage.

We begin by a lemma that gives an upper bound to the di�erence between the change in the
model and the change in the function for a given step.

Lemma 3.1. If Assumption 2.3 holds, then there exists a constant L � 1 such that for each
k = 0; 1; 2; : : :, jÆfk � Æmkj � L�kkskk

2; and for each i = 1; : : : ; p, jÆfi;k � Æmi;kj � L�kksi;kk
2;

where si;k is the projection of sk onto the range space Ri:
Proof.

jÆfk � Æmkj = jf(xk)� f(xk + sk)�m(0) +m(sk)j

= jgTk sk +
1

2
kskk

2!(f; xk; sk)� gTk sk �
1

2
kskk

2!(mk; 0; sk)j

�
1

2
kskk

2(j!(f; xk ; sk)j+ j!(mk; 0; sk)j)

�
1

2
(Lh + �k)kskk

2

�
1

2
(Lh + 1)�kkskk

2

� L�kkskk
2;

where L := 1
2 (Lh + 1) and Lh � �H is an upper bound on the generalized Rayleigh quotient of f

for any choice of x and s.
The proof for the elemental di�erences jÆfi;k � Æmi;kj � L�kksi;kk

2 is similar.

Lemma 3.2. If, for any j = 1; : : : ; n, �j
k � c1jg

j
kj=�k, where c1 :=

(1��2)�

2
1

pL , and if �i;k �
�j

k


1
for some i 2 pj , then �i;k+1 � �i;k.
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Proof. Notice c1 � 1 (all terms in the numerator are less than or equal to 1, all terms in the

denominator are greater than or equal to 1). Hence �j
k � c1jg

j
kj=�k implies that min(

jgj
k
j

�k
;�j

k) = �j
k.

We substitute this into the suÆcient decrease condition (2.5) to get Æmk � �jgjkj�
j
k.

Let i 2 pj such that �i;k �
�j

k


1
. From Lemma 3.1, Æmi;k � Æfi;k � jÆmi;k � Æfi;kj � L�k�

2
i;k �

L�k(
�j

k


1
)2 � L�k

�j

k


2
1

Æmk

�jgj
k
j
� (1��2)

p Æmk, substituting in �j
k � c1jg

j
kj=�k and the value of c1. Thus,

looking at steps 3 and 5 of the algorithm, by the parallel separation criterion, the ith element is not
a candidate for reduction in its trust region size. So we have �i;k+1 � �i;k .

Lemma 3.3. For the sequence of iterates generated by the algorithm
�j
k � c1
1jg

j
kj=�k; for all j = 1; : : : ; n:

Proof. This will be proved by induction. Notice that �j
0's satisfy the lemma by our choice of

�i;0 in Algorithm 2.17. We assume that this lemma holds for iteration k and will now prove it will
hold for iteration k + 1.

If the iteration is unsuccessful (xk+1 = xk) and �j
k � c1jg

j
kj=�k for some j, then for all i 2

pj ;�i;k+1 � 
1�i;k � 
1�
j
k � 
1c1jg

j
kj=�k � 
1c1jg

j
k+1j=�k+1 since jgjkj = jgjk+1j and �k is an

increasing sequence, and the lemma holds.
If the iteration is unsuccessful and �j

k � c1jg
j
kj=�k for some j, then for i 2 pj , there are two

possibilities. First, �i;k �
�j

k


1
. Applying Lemma 3.2, �i;k+1 � �i;k. Or second, �i;k >

�j

k


1
, which

implies that �i;k+1 � 
1�i;k > �j
k: And so either way, �

j
k+1 = mini2pj �i;k+1 � mini2pj �i;k = �j

k:

Hence, �j
k+1 � 
1c1jg

j
k+1j=�k+1, as before.

Else, if the iteration is successful (xk+1 = xk + sk) then (2.2) we update the elemental trust

regions so that �i;k+1 �
kg0i;k+1k1
kg0

i�;k
k1

�i�;k. Note that for all j 2 q�i , �i�;k � �j
k � c1
1jg

j
kj=�k

(by the induction hypothesis). Hence, �i�;k � c1
1kg
0
i�;kk1=�k. From the update expression

given above, �i;k+1 � c1
1kg
0
i;k+1k1=�k � c1
1jg

j
k+1j=�k+1 for all j 2 qi and i = 1; : : : ; p. So,

�j
k+1 = mini2pj �i;k+1 � c1
1jg

j
k+1j=�k+1:

Theorem 3.4. If the algorithm has in�nitely many successful iterations, then

lim
k!1

kgkk = 0:

Proof. Suppose that lim supk!1 kgkk > 0: Then there exists an in�nite subsequence flg
of successful iterates and a j such that for some � > 0, jgjl j > �. For each successful itera-

tion, Æfl � �1Æml � �1�jg
j
l jmin(

jgj
l
j

�k
;�j

l ) from (2.5). Therefore by Lemma 3.3 we get Æfl �

�1��min( �
�k
; c1
1��k

) = �1�
1c1�
2=�k: But Assumption 2.8 now implies that f is unbounded below

and we have arrived at a contradiction. Thus, lim supk!1 kgkk = 0:

Theorem 3.5. If the algorithm has �nitely many successful iterations, then there is a single
limit point x�, such that g(x�) = 0.

Proof. From step 4 of the algorithm, a �nite number of successful iterations means xk is un-
changed for k large enough, and that x� = xl, where l�1 is the index of the last successful iteration.
Now we assume (for a proof by contradiction) kg(x�)k > 0. Hence, there exists an � > 0 for which
jgj�j = � for some j. By Lemma 3.3, there must then exist �1 > 0 satisfying �j

k � �1=�k for all k � l,
and therefore (from (2.5)), also an �2 > 0 such that for all k � l

Æmk � �2=�k:(3.1)

Since iteration l�1 is followed by only unsuccessful iterations and in each such iteration at least
one �i;k reduces (from Lemma 2.13), limk!1�i;k = 0 for at least one i 2 f1; : : : ; pg. We now show
that our assumption kg(x�)k > 0 contradicts this.

First note that, because the overall and elemental models are unchanged after the (l�1) iteration,
all subsequent �k's are bounded: for k � l, �k � max(�l;maxi(kBi;lk+ 1); kBlk+ 1).

Now let k be the �rst iteration after the (l�1)st where �i;k < c2=�k, where c2 := 
1(
(1��2)�2

pL )1=2,

for some i. Without loss of generality we can choose �2 small enough so that �i;l > c2=�l for all
i and so k > l. Thus, �i;k�1 < �i;k=
1 < c2

�k
1
. Now Æmi;k�1 � Æfi;k�1 � L�k�1�

2
i;k�1 (from

Lemma 3.1) �
L�k�1c

2
2

�2
k

2
1

(substituting for �i;k�1) �
(1��2)�2

p�k
(from the de�nition of c2) �

(1��2)
p Æmk
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(from (3.1)). Thus, �i;k < c2=�k is not possible for any i = 1; : : : ; p or k � l. But recall that �k is
bounded. Hence limk!1�i;k = 0 cannot hold for any i, giving us a contradiction.

4. Second order convergence. We begin with changes in our assumptions from the �rst order
theory. For Algorithm 2.17, we �nd that only the weaker second order results from among the ones
proved for unstructured trust region algorithms, as in [4], can be proved. We could not show that
there always exists a step such that the suÆcient decrease condition (2.3) for �rst order convergence,
and (4.3) required for the stronger second order results, could be simultaneously satis�ed. We then
make a change in the algorithm to prove the stronger results.

All the assumptions (Assumptions 2.1{2.3, 2.8 and 2.11) in the �rst order theory stand. We
must strengthen our assumptions on the second derivative as follows: We assume that the exact
second derivative is available to us.

Assumption 4.1. Bk = r2f(xk) and Bi;k = r2fi(xk); i = 1; : : : ; p.

Thus, Assumption 2.3 about the boundedness of the exact second derivatives now applies to Bk:
Assumption 4.2. There exists a positive constant �B � 1 such that kBkk � �B and kBi;kk �

�B ; i = 1; : : : ; p; for all k.

We also require:
Assumption 4.3. r2fi;k is Lipschitz continuous with a constant Lc for all i = 1; : : : ; p.

This allows us the following version of Lemma 3.1
Lemma 4.4. If Assumptions 2.3 and 4.2 hold, jÆfk � Æmkj � Lkskk

2 and jÆfi;k � Æmi;kj �
Lksi;kk

2; for all i = 1; : : : ; p and all k, where L := 1
2 (Lh + �B) � 1; where �B is an upper bound on

kBkk and kBi;kk.
The proof of this lemma is similar to that of Lemma 3.1.
We can guarantee (simply by choosing the best among the coordinate direction steps and a step

sk such that kskk = �min;k = min1�i�p�i;k along a direction of suÆcient negative curvature) that
both (2.3) and the following condition are satis�ed:

Æmk � ��1�k�
2
min;k;(4.1)

where �1 is a small positive constant and �k is the minimum eigenvalue of the second derivative of
f at xk. Further, if the step described above happens to lie along one of the coordinate directions
and kskk < �min;k, we reset sk to be the the above step plus an additional step along a negative
curvature direction that is a non-ascent direction for the model at the intermediate point, until we
reach the edge of the trust region, thereby ensuring that:

kskk � �min;k:(4.2)

Notice that, (4.2) also holds for the exact minimizer of the subproblem (SP ), whenever a direction
of negative curvature exists. We now prove a theorem resembling standard results for trust region
algorithms, in particular, as in [4].

Theorem 4.5. Suppose at each iteration sk satis�es conditions (2.3) and (4.1), with kskk �
�min;k when �k < 0. With the parallel separation criterion, for the sequence fxkg generated by
Algorithm 2.17:

(a) The sequence fgkg converges to zero.
(b) If fxkg is bounded then there is a limit point x� with r2f� positive semide�nite.
Proof.
(a) We need to show that the �rst order results still hold when the requirement on sk is the

suÆcient decrease condition (2.3) rather than (2.5).
We start by showing a slightly di�erent Lemma 3.2: de�ning c1 as before, we show that

if �j
k � c1jg

j
kj and �i;k �

�j

k


1
for some i 2 pj , then �i;k+1 � �i;k. The proof is similar

to that of Lemma 3.2. Due to the uniform boundedness of r2f(xk), Lemma 4.4 can be
used now instead of Lemma 3.1. Since Lc1 < 1 and L > jbjjk j, where L = 1

2 (Lh + �B) is as

de�ned in Lemma 4.4, we have �j
k � c1jg

j
kj � Lc1jg

j
kj=jb

jj
k j � jgjkj=jb

jj
k j which implies that

min(
jgj

k
j

bjj
k

;�j
k) = �j

k. We substitute this into (2.3) to get Æmk � �jgjkj�
j
k. Using the result

of Lemma 4.4, for i 2 pj such that �i;k �
�j

k


1
we have Æmi;k � Æfi;k � L�2

i;k � L(
�j

k


1
)2 �

L
c1jg

j

k
j


2
1

Æmk

�jgj
k
j
� (1��2)

p Æmk and the rest of the proof follows.
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Again, we have a modi�ed Lemma 3.3 where we show �j
k � c1
1jg

j
kj (instead of �j

k �

c1
1jg
j
kj=�k, which we had before). The proof applies Lemma 3.2 as modi�ed above, and is

similar to the one given in Section 1, the only change being to replace each mention of �k
or �k+1 by 1.
The proof of Theorem 3.4 is changed by replacing �k with jbjjk j. But since jb

jj
k j is bounded

above by �H , the lower bound �1��min( �
jbjj

k
j
; c1
1�) on Æfl (from the changed proof) implies

that f is unbounded below, giving us the contradiction we want.
Finally, the proof of Theorem 3.5 is the same as the one stated earlier except that every
mention of �k or �k�1 in it is replaced by 1.

(b) The proof is by contradiction. Assume that there exists �1 > 0 such that for all k large
enough, say k � k0, ��k � �1. We will show that this contradicts the assumption that f
is bounded. We begin by showing that �min;k � c2 for all k � k1 (also by contradiction),

where k1 > k0, and c2 :=
(1��2)


3
1�1�1

pLc
. We choose �1 to be small enough that �min;k1 � c2:

Now suppose �min;k < c2 for the �rst time on the kth iteration, k � k1. Consider the ith
element, where �i;k = �min;k. We have �i;k�1 � �min;k=
1 and �min;k�1 � �min;k. From
the mean-value theorem,

jÆfi;k�1 � Æmi;k�1j

Æmk�1
�
ksi;k�1k

2max�2[0;1] kr
2fi(xk�1 + �sk�1)�r

2fi(xk�1)k

��1�k�1�2
min;k�1

�
Lcksi;k�1k

3

�1�1�2
min;k�1

(by Lipschitz continuity and (4.1))

�
Lc�

3
i;k�1

�1�1�2
min;k�1

(from (4.2))

�
Lc�min;k


31�1�1

�
1� �2

p
:

Therefore by the parallel separation criterion the ith element is not a candidate for reduc-
tion of its trust region, or �min;k < c2 is not possible. If we had only a �nite number of
steps where rk � �1, �min;k would converge to zero. Since it cannot, we must have an in�-
nite number of successful steps, where �min;k and ��k are bounded away from zero for all
suÆciently large k. Thus, for all subsequent successful steps Æfk � �1Æmk � �1�1�1�

2
min;k,

which contradicts the boundedness of f .

We would have been able to prove the rest of the results that hold for unstructured trust region
algorithms, as in [4], if there was a guarantee that an sk that satis�es both (2.3) and (4.3) below,
exists:

Æmk � ��1�kkskk
2;(4.3)

where �1 and �k are as de�ned in (4.1) above. We have not been able to �nd a guarantee that (2.3)
and (4.3) can be simultaneously satis�ed.

However, instead of using (4.3), we can switch to the following algorithm which does allow us
to prove some of the stronger second order results. In Algorithm 2.17 we had an extra expansion
dependent on some gradient subvectors. In this one we make one more similar expansion: this one
is dependent on the minimum eigenvalue �k of the second derivative matrix at xk .

4.6. Gradient-dependent algorithm with a second order adjustment. Given 0 < �1 �
�2 < 1, a feasible x0, and starting values for the trust region sizes such that �i;0 � max(kg0k;��0),
for all i = 1; : : : ; p, the kth iteration takes the following form:

1. Find an approximate solution sk to the subproblem (SP ) that satis�es the suÆcient decrease
conditions (2.3) and (4.1).

2. Evaluate f(xk + sk), and hence rk.
3. Update the trust region radii according to one of the separation criteria, such as (2.12).
4. If rk < �1 then xk+1 = xk and the iteration ends here. Else xk+1 = xk + sk, calculate gk+1

and r2fk+1 and go to the next step.
5. Reset the trust region radii according to (2.2).

6. Once again, reset �i;k+1 = max(��2�k+1;�i;k+1), where �2 �
(1��2)�1


2
1

pLc
.
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The di�erences between Algorithm 2.17 and the above are: �rstly, �i;0 must ful�ll a di�erent
condition; and secondly, there is a new step 6 that involves expansion of elemental trust regions.
Neither of these changes invalidate the �rst order convergence proved in the last section.

De�ne �̂k := min(0; �k). Notice that �̂k is non-positive. We require the following result to prove
the next two theorems.

Lemma 4.7. For the sequence of iterates generated by the algorithm, �min;k � �c3�̂k, where

c3 :=
(1��2)�1


3
1

pLc
.

Proof. The proof is by induction. We see that our choice of �i;0 satis�es this lemma. Now
suppose that the lemma holds for �min;k. We will prove it for the (k + 1)th iteration by showing

that �i;k+1 � �c3�̂k+1 for all i = 1; : : : ; p: Note that there is nothing to prove if �̂k+1 � 0, so we

assume �̂k+1 < 0.
Case 1. The kth iteration is unsuccessful. For all i such that �i;k � �c3�̂k=
1 we have

�i;k+1 � 
1�i;k � �c3�̂k = �c3�̂k+1.

For i such that �i;k < �c3�̂k=
1 � �min;k=
1,

jÆfi;k � Æmi;kj

Æmk
� �

Lcksi;kk
3

�1�̂k�2
min;k

(by Lipschitz continuity)

� �
Lck�min;kk

�1�̂k
31

�
Lcc3
�1
31

(by our induction assumption)

�
(1� �2)

p
(substituting for c3):

Therefore none of these elemental trust region radii would be reduced. Or, �i;k+1 � �i;k � �c3�̂k =

�c3�̂k+1.
Case 2. If the iteration is successful then from the new expansion of elemental trust region sizes

in step 6, �i;k+1 � ��2�̂k+1 � �c3�̂k+1:

The stronger second order convergence results can now be stated and proved.

Theorem 4.8. r2f� is positive semide�nite for all limits points x� of the sequence of iterates
fxkg generated by Algorithm 4.6.

Proof. From condition (4.1), for all successful iterations k we have Æfk � �1Æmk � ��1�1�̂k�
2
min;k �

��1�1c
2
3�̂

3
k (applying Lemma 4.7). Thus by the boundedness of f , �̂k must converge to zero. This

implies that r2f� is positive semide�nite for all limit points x�.

The following theorem is the same as in the other algorithms:
Theorem 4.9. Let xk be the sequence generated by Algorithm 4.6 with sk satisfying the same

conditions as in Theorem 4.5. If x� is a limit point of fxkg with r
2f(x�) positive de�nite then fxkg

converges to x�, all iterations are eventually successful, and f�min;kg is bounded away from zero.
Proof. We �rst prove that fxkg converges to x�. Choose � > 0 and h > 0 so that the minimum

eigenvalue of r2f(x) is at least � for kx� x�k � h. Since the change in the value of the model Æmk

is nonnegative, we have kgkkkskk � �gTk sk �
1
2s

T
kr

2fksk �
1
2�kkskk

2, where �k is the minimum
eigenvalue of r2fk. Thus kxk � x�k � h implies that

1

2
�kskk � kgkk:(4.4)

Theorem 3.4 guarantees that fgkg converges to zero, and thus there is an index k1 for which kgkk �
1
4�h for all k � k1. Hence, (4.4) shows that if kxk � x�k �

1
2h for k � k1, then kxk+1 � x�k � h.

Since g� = 0, from the Taylor series expansion of f about x� we have

f(x)� f(x�) = (x � x�)
Tr2f(x� + �x)(x � x�)=2;

where 0 � � � 1. This implies that for 1
2h < kx � x�k � h, r2f(x� + �x) is positive de�nite and

f(x)�f(x�) �
1
2�kx�x�k

2 > 1
8�h

2. Thus, there exists an index k2 > k1 such that kxk2 �x�k � h=2
and f(xk2) � f(x�)+

1
8�h

2. Applying (4.4) to xk2 and xk2+1, we get kxk2+1�xk2k � h=2. But then
kxk2+1 � x�k � h. Now f(x�) +

1
2�kxk2+1 � x�k

2 � f(xk2+1) � f(xk2) � f(x�) +
1
8�h

2, implying
that kxk2+1 � x�k � h=2.
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Hence, kxk � x�k � h=2 for k � k2. But since h can be chosen arbitrarily small, fxkg converges
to x�.

For the rest,

Æmk � � max
j2f1;:::;ng

(jgjkjmin(
jgjkj

jbjjk j
;�j

k)) (from (2.3))

� � max
j2f1;:::;ng

(jgjkjmin(
jgjkj

jbjjk j
; c1
1jg

j
kj))

(modi�ed Lemma 3.3, as stated in the proof of Theorem 4.5(a))

� �c1
1 max
j2f1;:::;ng

(jgjkj
2)

(since L � jbjjk j implies that c1 < 1=jbjjk j)

�
�c1
1
n

kgkk
2

�
�c1
1�

2

4n
kskk

2 (from (4.4) where � is a positive constant).

Now from Assumption 4.3, for suÆciently large k, jrk � 1j = jÆfk�Æmkj
Æmk

� Lckskk
�1

, where

�1 = �c1
1�
2

4n . Hence jrk � 1j converges to zero. Hence all iterations are eventually successful and
f�min;kg is bounded away from zero.
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