
RI02003 25 April 2000 Operations Research

IBM Research Report

Computational comparisons of some structured
trust region approaches to the minimization of

nonlinear partially separable functions

Johara Shahabuddin

IBM Research Division

IBM India Research Lab

Block I, I.I.T. Campus, Hauz Khas
New Delhi - 110016. India.

IBM Research Division

Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside

of IBM and will probably be copyrighted is accepted for publication. It has been issued as a Research

Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher,

its distribution outside of IBM prior to publication should be limited to peer communications and speci�c

requests. After outside publication, requests should be �lled only by reprints or legally obtained copies of

the article (e.g., payment of royalties). Copies may be requested from IBM T.J. Watson Research Center,

Publications, P.O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports

are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

1

Abstract. Trust region algorithms are strongly convergent, and typically restrict the step to lie within a spherical
trust region. Structured trust region algorithms attempt greater eÆciency by allowing di�ering trust region radii
in di�erent partially separable subspaces. However, the unpredictable shape of this trust region takes away some
convergence strength for naive implementations. Restrictions on the step, as well as new update mechanisms for the
trust region radii, have been proposed in earlier work, to correct this.

In the �rst part of this paper we propose a new structured trust region algorithm to evaluate the practical
advantage of structuring the trust region. The new algorithm solves two subproblems in each iteration: a structured
set of constraints for one, and a classical spherical constraint in the other. The solution to the structured subproblem is
the new step only if it achieves the greater decrease. We prove that this is a �rst and second order globally convergent
strategy.

In the second part we give the results of computational tests on three structured algorithms, two proposed earlier
by the author and the one described here, against a typical unstructured trust region algorithm. The structured
approaches uniformly do better than the unstructured one.

Key words. trust region algorithm, partial separability, unconstrained, convex constraints, global convergence,
structured problem, nonlinear programming, large-scale programming

AMS subject classi�cations.

90C30, 65K05

2

1. Introduction. Trust region algorithms minimize a quadratic model of the nonlinear objec-
tive function in each iteration, within a region known as the trust region. Typically, the shape of
the trust region is spherical, de�ned by a radius that restricts the step equally in all directions. The
size of this radius is updated in each iteration so that that the decrease in the function is accu-
rately modeled by the quadratic. These algorithms have strong convergence properties and can be
shown to converge globally under rather generic assumptions even when the quadratic model is only
approximately minimized. They are also simple to implement, computationally eÆcient, and stable.

The minimization problem we are interested in is:

(P) min
x2X

f(x);

where X is a closed convex subset of <n, and f : <n ! <.
A nonlinear function is de�ned to be partially separable when it can be written as the sum of p

nonlinear element functions:

f(x) =

pX
i=1

fi(x);

where each fi(x) has a large invariant subspace. Such problems arise frequently in large systems
and there has been some work in using their structure to optimize them more eÆciently, [3], [11],
[14], [19].

Structured trust region algorithms allow the step to have di�erent lengths in the di�erent sub-
spaces, thus allowing longer steps in directions that are more closely approximated by quadratics.
Although this approach promises greater eÆciency, it is harder now to update the trust region radii
in a way so that the decrease in the function is accurately modeled by the quadratic for a computed
step. This is because, after a step is taken, the new point may have quite di�erent slope properties
from the original point. Thus, when the radii are updated in the conventional and intuitive way, the
lengths of the radii no longer re
ect the directions where the quadratic terms dominate over higher
order terms. An explanation of this is in [12].

In [7] and [12], a restriction on the step is proposed, since their radii update mechanisms cannot
ensure convergence. In [13], the gradient and Hessian of the objective function are used to update
the trust region radii.

In the �rst part of this paper we propose a method to evaluate these, and future, structured
approaches. We expect a properly designed structured approach to do better than the classical
approach, in the sense that between the structured step and the unstructured step, the former
should give a better function decrease for a large fraction of the acceptable iterates.

Thus, in the new algorithm, two trust region subproblems are approximately solved in each
iteration - one has a single trust region radius which is maintained and updated as in the unstructured
trust region algorithm. The other is any structured trust region approach. In each iteration, we �rst
examine a step in the structured trust region (there are no restrictions on this step - it could just
as well be a step from a di�erent algorithm altogether). If it satis�es certain conditions, we take
the step; and if not, we examine the classical step in the unstructured trust region. Convergence is
achieved independent of the structured update mechanism used.

This algorithm shows that it is possible to advantageously exploit the robustness of the single
trust region approach, while allowing ourselves the
exibility of a structured one. However, the
doubly-constrained algorithm, as we call it, has not been designed for computational eÆciency, as
we need to solve two subproblems to �gure out which gives a better step. The increase in the time
per iteration depends on the method used to �nd approximate solutions to the subproblems.

In the next section we give the algorithm, prove �rst order convergence for the convex-constrained
case, and second order convergence for the unconstrained version of the problem. In the third section
we describe the test problems and tools used, the programming of the algorithms, and the results
comparing the various algorithms.

2. The Doubly-Constrained Algorithm. The problem (P) is solved iteratively, with x0 2
X as the given starting point. In each iteration, f(xk + s); k = 0; 1; 2; : : : is modeled in terms of
the �rst three terms of its Taylor series. The model is denoted by mk(s), where s is the step to be
solved for. The computed minimizer is sk, and xk+1 = xk + sk if the decreases in the function and
its model are similar, and the iteration is called successful. Else if the decreases in the function and
model are dissimilar, xk+1 = xk, and the iteration is called unsuccessful. The trust region radii are
updated, and a new model is generated if required, for the next iteration.

3

We begin with some basic de�nitions and assumptions. The l2-norm is used throughout, unless
otherwise speci�ed. (For other norms, the convergence proofs remain valid with changes in values
of the appropriate constants.)

A feasibility assumption is made on the convex feasible region X of the minimization problem
(P):

Assumption 2.1. X has a non-empty interior.

The following assumptions are made about f :

Assumption 2.2. The function f is bounded below on the set L := fx 2 X : f(x) � f(x0)g:

Assumption 2.3. Each fi; i = 1; : : : ; p, and hence f , is twice continuously di�erentiable on
an open set containing L:

Assumption 2.4. There exists a constant � � 1 such that kr2f(x)k � � on an open set
containing L.

The following notation is used in the course of the argument:

Æfk = f(xk)� f(xk + sk);

Æmk = �mk(sk);

rk =
f(xk)� f(xk + sk)

�m(sk)

rak =
f(xk)� f(xk + sak)

�m(sak)

rbk =
f(xk)� f(xk + sbk)

�m(sbk)
:

Gradient and criticality measure. We assume that the exact derivative rf(xk) = gk is
available to simplify our analysis, as discussed in [12]. (The analysis here would continue to hold for
another assumption about gk in [7].)

Definition 2.5. We de�ne �(xk) as a criticality measure for the problem (P), as follows:

�(xk) = �k := j min
(xk+d)2X

gTk d

kdk j:(2.1)

Notice that when X is convex, �k = 0 if and only if xk satis�es �rst order criticality conditions
for the problem (P): (See [7] for a proof of this.) If X = <n (the problem is unconstrained), then it
is easy to see that �k = kgkk. We need the following strong assumption on �k.

Assumption 2.6. The function �(x) is Lipschitz continuous with the constant L�.
Hessian approximation and Rayleigh quotient. Several di�erent assumptions related to

the Hessian approximationsBk have been used by earlier authors. We adopt the one used in [7],where
it has been explained to be weaker than assuming that Bk is uniformly bounded.

Definition 2.7. The generalized Rayleigh quotient of a function f at x along s 6= 0 is de�ned
to be:

!(f; x; s) :=
2

ksk2 [f(x+ s)� f(x)�rf(x)T s]:

Because of the assumption that r2f is bounded, we have j!(fi; x; s)j � Lr for all i if x and
x+ s lie in L, where Lr � 1 is a positive constant. We de�ne a version of the generalized Rayleigh
quotient of mk:

Definition 2.8.

�k := 1 + max
q=1;:::;k

(j!(mq ; 0; sq)j):(2.2)

4

Given these de�nitions, the assumption is:
Assumption 2.9.

P1
k=0

1
�k

= +1:

We also make the following assumption, explained in [7], which is needed only for Theorem 2.18.
This assumption appears in [8] and [18] as well.

Assumption 2.10. limk!1 �kÆfk = 0.

The two subproblems and their trust regions. In the kth iteration, we choose the step
in iteration k to be one of the two approximate solutions sak and sbk, to the two subproblems (SPa)
and (SPb).

The trust region radius �k is used in (SPa), which is the usual unstructured trust region
subproblem:

(SPa) minmk(s) = gTk s+
1

2
sTBks;

ksk � �k;

xk + s 2 X:

The step sak must satisfy a commonly-used suÆcient decrease condition, as in [15]:

Æma
k = �mk(s

a
k) � ��kmin(

�k
�k

;�k; 1):(2.3)

Such a decrease is achievable. For a proof, see [8].
To de�ne the trust region for (SPb), we need the following pair of de�nitions.
Definition 2.11. The null space N of a function f(x) is de�ned to be the set fv j f(x+ v) =

f(x)g.
Definition 2.12. The range space R of a function f(x) is de�ned to be the subspace orthogonal

to N in Rn.
Let Ri denote the range space of an element function fi; i = 1; : : : ; p. Let �i;k; i = 1; : : : ; p be

the trust region radii for the p element functions. These radii may be updated in each iteration by
comparing the decreases in the element function with the element model decreases. The constraints
(SPb) then de�ne the structured trust region as the intersection of these cylindrical elemental trust
regions.

(SPb) minmk(s) = gTk s+
1

2
sTBks;

kPRi
(s)k � �i;k; i = 1; : : : ; p;

xk + s 2 X;

where PRi
(s) denotes the projection of a vector s onto Ri. Denote �mk(s

b
k) by Æmb

k. There is no
suÆcient decrease condition on Æmb

k required for our convergence results.
2.13. The doubly-constrained algorithm. Given 0 < �1 � �2 < 1, a feasible x0, and

starting values for the trust region sizes, the kth iteration takes the following form:
1. If the last iteration was successful, calculate gk and Bk.
2. Solve (SPa) approximately to get sak that satis�es the suÆcient decrease condition (2.3).
3. Solve (SPb) approximately to get sbk.
4. Calculate �bk := �(xk + sbk):

If rbk � �1, Æm
b
k � Æma

k and

�bk � �k � �1�k;(2.4)

where �1 is a constant, then sk = sbk. Else, sk = sak.
5. Update �i;k by any method. Update �k as follows:

If rak < �1; �k+12 [
1;
2]�k;

if rak � �2; �k+12 [1;
3]�k;

else, �k+1= �k:

5

6. If rk � �1, xk+1 = xk + sk. Else xk+1 = xk.

Some comments on the algorithm are in order:
1. Note that in a successful iteration, either, Æfk = Æfak � �1Æm

a
k; or, Æfk = Æf bk � �1Æm

b
k �

�1Æm
a
k: Thus, in either case,

Æfk � �1Æm
a
k:(2.5)

We can probably replace the pair of conditions rbk � �1; Æm
b
k � Æma

k by Æf
b
k � Æfak , without

a�ecting convergence. We chose the �rst set so as to allow a sbk to be accepted when r
b
k � �1,

independent of whether rak � �1 or not.
2. Calculating �k and �bk for step 3 is a diÆcult problem in general. (It is simple for the

unconstrained case where �k = kgkk.) The condition is almost always redundant for a large
constant �1. Without the condition 2.4 on �k for the acceptance of sbk, we would only get
lim infk!1 �k = 0, but not be able to prove limk!1 �k = 0; Theorem 2.18 depends on this
condition.

3. We are free to choose a method of solving for sbk, and a way to update the trust region radii
for the structured subproblem (SPb).

The convergence proofs follow those of the shorter-step algorithm in [12], where �k here takes
on the role of �min;k there.

2.1. First order convergence. Here we state and prove �rst order convergence results for the
convex-constrained problem (P). We show that every limit point of the sequence of xk 's generated
by the algorithm must be a critical point. We begin with a technical lemma proved in [12], that
establishes a lower bound on the accuracy of the model.

Lemma 2.14. If Assumption 2.4 holds, then there exists a constant L � 1 such that for each
k = 0; 1; 2; : : :, jÆfk � Æmkj � L�kkskk2:

Lemma 2.15. Consider a sequence of iterates generated by the algorithm and assume that there
exists a constant � > 0 such that �k � � for all k. Then, for suÆciently small �, �k � c1

�k
for all k,

where c1 =
1min(1; �;
��(1��1)

L
).

Proof. The proof is by contradiction. Therefore, assume that �k becomes smaller than c1
�k

for the �rst time on iteration k. If � is small enough, we can ensure that k is not 0. From the
description of the algorithm, this means that in the previous step rak�1 < �1. We try to contradict
this, completing the proof.

Now �k�1 � �k

1
< c1

�k
1
� �

�k
� �

�k�1
since f�kg is a non-decreasing sequence. Also, �k�1 �

c1
�k
1

� 1
�k
� 1:We substitute this into the suÆcient decrease condition to get Æma

k�1 � ���k�1. Now

we have
jÆfak�1�Æm

a
k�1j

Æma
k�1

� L�k�1�
2
k�1

���k�1
(from Lemma 2.14) = L�k�1�k�1

��
� L�k�1�k

��
1
� Lc1

��
1
� (1� �1)

(substituting in the value of c1). This implies that r
a
k�1 � �1:

Theorem 2.16. If the sequence of iterates generated by the algorithm is in�nite,

lim inf
k!1

�k = 0:

Proof. Assume, in order to obtain a contradiction, that there exists � > 0 such that �k > �
for all k, and suppose � is small enough that Lemma 2.15 holds and � < 1. To prove our result
we will now try to contradict Assumption 2.9 which states that

P1
k=1

1
�k

= 1 by breaking up the
sum over speci�c subsequences of k. Let S denote the sequence of successful iterations generated
by the algorithm. Then

P
k2S Æfk � �1

P
k2S Æm

a
k � �1��

P
k2S min(

�
�k
;�k; 1) � �1��c1

P
k2S

1
�k
,

applying the suÆcient decrease condition (2.3), (2.5), the result of Lemma 2.15, c1 < � and c1=�k < 1.
So, from the assumption that f(x) is bounded below, we have that

P
k2S

1
�k

<1.

Now let r be an integer such that
3

r�1
2 < 1. De�ne nk = jS \ f1; : : : ; kgj, the number of

successful iterations up to iteration k � 1. De�ne F1 = fk : k � rnkg and F2 = fk : k > rnkg.
First we show that

P
k2F1

1
�k

is �nite. If it has only �nitely many terms, its convergence is obvious.
Otherwise, we may assume that F1 has an in�nite number of elements and then we construct another
subsequence F3 of indices in S in ascending order, with each index repeated r times. Since each
k 2 S contributes at most r terms, each at least k, to the sequence F1, the jth term of F3 is no
greater than the jth term of F1. This, and the monotonicity of the sequence f�kg, gives us thatP

k2F1
1
�k
�Pk2F3

1
�k

= r
P

k2S
1
�k

<1.

6

Now we show that
P

k2F2
1
�k

is �nite. We can immediately see that �k �
nk3
k�nk2 �0: Using

Lemma 2.15, we have
P

k2F2
1
�k
� �0

c1

P
k2F2

(
nk3
k�nk2) �
�0

c1

P
k2F2

(
3

(r�1)
2)

k
r <1.

Therefore the sum
P1

k=0
1
�k

=
P

k2F1
1
�k

+
P

k2F2
1
�k

<1, which contradicts our assumption.

Before we prove a theorem claiming limk2S �k = 0, we need the following lemma related to
Lemma 2.15:

Lemma 2.17. Let k1 � k be the index of the �rst successful iteration at xk. Then sk1 achieves
a decrease Æfk1 � �1��min(

c1
�k1

;�k; 1), where �k = �k1 > � and c1 is as de�ned in Lemma 2.15.

Proof. Case 1. If �k < c1=�k then �k < min(1; �k=�k). Hence, Æma
k � ���k. Thus from

Lemma 2.14, using an argument similar to that in Lemma 2.15, we prove that the kth step is a
successful one. Thus k1 = k and the decrease given is achievable by (2.3).

Case 2. If �k � c1=�k the argument in Lemma 2.15 implies that �k1 � c1
�k1

: Now by (2.3), once

again the decrease is achievable.

Theorem 2.18. If the algorithm generates an in�nite sequence S of successful iterates , then
limk2S �k = 0.

Proof. Once again, we prove by contradiction. Assume lim supk2S �k > �1: From Theorem 2.16,
there exists �2 2 (0; �1) such that there is a subsequence frjg of successful iterates with �rj < �2.
Our contradiction assumption then guarantees a subsequence fqjg of successful iterates such that
for each j, �k � �1 for rj � k < qj and �qj > �1. By renumbering the subsequences if necessary, we
suppose rj+1 < qj .

For each j, we now �nd the index pj , where pj is set to the �rst k where �k < �2 is encountered
while looking at the iterates k in the order qj � 1; qj � 2; : : :. We now look at the in�nitely many
subsequences Kj = fk 2 S : pj < k < qjg: Notice that �k � �2 for all k 2 Kj , for all j. Let
K = [jKj .

Case 1. �pj+1 < (�1 + �2)=2 for in�nitely many j's. For each k 2 K, we have from the
suÆcient decrease condition, and the fact that all iterations in K are successful, that Æfk �
�1��2min(

�2
�k
;�k; 1). Now Assumption 2.10 that lim k!1

k2K

�kÆfk = 0 implies that limk!1 �k�k = 0,

so that for large enough k 2 K the minimum above is �k. Hence for large enough k 2 K,
Æfk � �1��2�k.

If sk = sak, then by Assumption 2.6 about the Lipschitz continuity of �k we have �k � j�k+1 �
�kj=L�. On the other hand, if sk = sbk, then from (2.4) we have �k � (�k+1 � �k)=�1. Denote the
subsequence of Kj such that sk = sak by Sa;j , and de�ne Sb;j similarly.

Now from suÆcient decrease condition (2.3), the boundedness of f and the fact that iterations
in Kj are successful X

k2Kj

Æfk � �1��2
X
k2Kj

�k

� �1��2(
X

k2Sa;j

kskk+
X

k2Sb;j

(�bk � �k)

�1
)

� �1��2
max(L�; �1)

X
k2Kj

(�k+1 � �k)

� �1��2(�1 � �2)

2max(L�; �1)
:

But this contradicts Assumption 2.2 about the boundedness of f .
Case 2. When Case 1 does not hold, �pj+1 � (�1 + �2)=2 for in�nitely many j's. We now estab-

lish a lower bound on �pj+1. By the same argument as in Case 1, �pj �
(�pj+1��pj)

max(L�;�1)
� (�1��2)

2max(L�;�1)
:

So �pj+1 � (�1��2)
2
1max(L�;�1)

: But then, if k1 is the �rst successful iteration after the (pj + 1)th one

(k1 � qj) for large enough j we get (from the previous lemma) Æfk1 � �1��2�pj+1 (the �k1 term be-

comes redundant as in Case 1) � �1��2(�1��2)
2
1max(L�;�1)

. This contradicts our assumption that f is bounded

below.

Theorem 2.19. If the set of successful iterations generated by the algorithm is �nite, then all
its iterates xk are equal to some x� for k large enough, and x� is critical.

7

Proof. From the algorithm, a �nite number of successful iterations means that xk is unchanged
for k large enough, and that x� = xj where j � 1 is the index of the last successful iteration. It also
means that limk!1�k = 0, since for each k � j, �k is reduced by at least a fraction
2 < 1. Now
if �j > 0, we can apply the result of Lemma 2.15 to get a contradiction. Hence �(x�) = �j = 0, or
x� is critical.

We now go on to show that if (P) is unconstrained, then standard second order convergence
results for trust region methods hold.

2.2. Second order convergence in the unconstrained case. We begin by stating the
unconstrained problem (P1) about which we prove the results in this subsection:

(P1) min
x2<n

f(x);

where f : <n ! < is a partially separable function.

The earlier de�nitions and assumptions apply, by substituting X = <n. We strengthen our
assumptions about Bk further.

Assumption 2.20. Bk is the exact Hessian r2f(xk).

Thus, by Assumption 2.4, we now have Bk � �: Similarly, �k � � + 1, from its de�nition in
(2.2). But we still need the following assumption.

Assumption 2.21. r2f(xk) is Lipschitz continuous with constant Lc.

The step must satisfy the suÆcient decrease condition below instead of (2.3), since �k = kgkk
for (P1):

Æma
k := Æmk(s

a
k) � �kgkkmin(kgkk

�k
;�k; 1):(2.6)

In addition, the following inequalities must be satis�ed when there is a direction of negative
curvature. Let �k denote the minimum eigenvalue of r2f(xk) as before. Then sak and sbk must
satisfy

Æma
k � ��2�k�2

k;(2.7)

Æmb
k � ��2�kksbkk2;(2.8)

where �2 is a small positive constant. It has been shown in [12] that there exists a step sak simulta-
neously satisfying conditions (2.6) and (2.7). Thus, there exists a step sbk satisfying (2.8).

Finally we state a technical lemma proved in [16].

Lemma 2.22. Let x� be an isolated limit point of a sequence fxkg in <n. If fxkg does not
converge then there is a subsequence fxljg of successful iterations which converges to x� and an
� > 0 such that

kxlj+1 � xljk � �:

Now we can prove the �rst second order convergence result.

Theorem 2.23. Let sk satisfy conditions conditions (2.6), (2.7) and (2.8). If fxkg is the
sequence generated by Algorithm 2.13, then the following are true:

(a) The sequence fgkg converges to zero.
(b) If fxkg is bounded then there is a limit point x� with r2f(x�) positive semide�nite.
(c) If x� is an isolated limit point of fxkg then r2f(x�) is positive semide�nite.
(d) If r2f(x�) is nonsingular for some limit point x� of fxkg, then r2f(x�) is positive de�nite,

fxkg converges to x�, all iterations are eventually successful, and f�kg is bounded away
from zero.

Proof.

(a) This is true from the �rst order convergence theory.
(b) Assume that there is a �1 > 0 such that for all k large enough, say k � k0, ��k � �1. We

will show that this contradicts the assumption that f is bounded. We begin by showing

that �k0 � c2 for all k � k0 (also by contradiction), where c2 :=
(1��1)
1�2�1

Lc
. We choose

8

�1 to be small enough that �k0 � c2: Now suppose �k < c2 for the �rst time (for k > k0)
on the kth iteration. We have �k�1 � �k=
1. From (2.7) and the mean-value theorem,

jÆfak�1 � Æma
k�1j

Æma
k�1

� ksak�1k2max0���1 kr2f(xk�1 + �sak�1)�r2f(xk�1)k
��2�kk�k�1k2

� Lc�k�1

�2�1

� Lc�k

�2�1
1
� 1� �1:

Therefore �k could not have been reduced on the (k � 1)st iteration, or �k � c2 for all k.
There must be an in�nite number of successful iterations where rak � �1, since the contrary
would lead us to conclude that �k converges to zero. Now Æfk � �1Æm

a
k � �1�2�1�

2
k �

�1�2�1c
2
2 for all successful steps, implying that f is unbounded below.

(c) If fxkg converges to x�, the result follows from (b). Otherwise, Lemma 2.22 applies. Let
fxljg be the subsequence of successful iterations guaranteed there with kxlj+1 � xljk � �,
where � is a positive constant. Notice that from (2.7) and (2.8),

Æmk � ��2�kkskk2:

But Æflj � �1Æmlj � ��2�1�̂lj �2, where �̂lj = min(�lj ; 0). Since f is bounded below, f�̂ljg
must converge to zero and so r2f(x�) is positive semide�nite.

(d) If r2f(x�) is nonsingular for a limit point x�, then x� is an isolated limit point by (a).
Hence r2f(x�) is positive de�nite from parts (b) and (c). To prove the rest we go to the
following variant of this theorem.

Theorem 2.24. Let xk be the sequence generated by the algorithm under the same conditions
on the step as in Theorem 2.23. If x� is a limit point of fxkg with r2f(x�) positive de�nite then
fxkg converges to x�, all iterations are eventually successful, and f�kg is bounded away from zero.

Proof. The proof that xk converges to x� is the same as that of the corresponding part of
Theorem 6.7 in [12]. We repeat it here for ease of reference:

Choose � > 0 and h > 0 so that the minimum eigenvalue of r2f(x) is at least � for kx�x�k � h.
Since the change in the value of the model Æmk is nonnegative, we have kgkkkskk � �gTk sk �
1
2s

T
kr2f(xk)sk � 1

2�kkskk2, where �k is the minimum eigenvalue of r2f(xk). Thus kxk � x�k � h
implies that

1

2
�kskk � kgkk:(2.9)

Theorem 2.23 guarantees that fgkg converges to zero, and thus there is an index k1 for which
kgkk � 1

4�h for all k � k1. Hence, (2.9) shows that if kxk�x�k � 1
2h for k � k1, then kxk+1�x�k � h.

Since g� = 0, from the Taylor series expansion of f about x� we have

f(x)� f(x�) = (x � x�)
Tr2f(x� + �x)(x � x�)=2;

where 0 � � � 1. This implies that for 1
2h < kx � x�k � h, r2f(x� + �x) is positive de�nite and

f(x)�f(x�) � 1
2�kx�x�k2 > 1

8�h
2. Thus, there exists an index k2 > k1 such that kxk2 �x�k � h=2

and f(xk2) � f(x�)+
1
8�h

2. Applying (2.9) to xk2 and xk2+1, we get kxk2+1�xk2k � h=2. But then
kxk2+1 � x�k � h. Now f(x�) +

1
2�kxk2+1 � x�k2 � f(xk2+1) � f(xk2) � f(x�) +

1
8�h

2, implying
that kxk2+1 � x�k � h=2.

Hence, kxk � x�k � h=2 for k � k2. But since h can be chosen arbitrarily small, fxkg converges
to x�.

To prove that f�kg is bounded away from zero we need to show that rak converges to 1, for
which we begin by obtaining a lower bound on Æma

k.
From (2.9), for k large enough, there exists an �1 such that �1ksakk � kgkk. Thus ksakk ! 0. We

apply this to (2.6) and get Æma
k � ��1ksakkmin(�1ks

a
kk

�k
; ksakk; 1):We can choose �1 so that �1=�k � 1,

then for large enough k, Æma
k � ��21ksakk2=�k � ��21ksakk2=(� + 1). Now

jÆfak�Æm
a
kj

Æma
k

� Lcksakk3=Æma
k

(by an argument as in part (b) above) � Lc(�+1)ks
a
kk

��2
1

, implying that rak converges to 1. Hence f�kg
is bounded away from zero and all iterations are eventually successful. .

9

3. Computational Results. We test our trust region structuring ideas (the shorter-step algo-
rithm in [12], the gradient-dependent algorithm in [13], the doubly-constrained algorithm in the last
section) against a comparable version of a typical single trust region algorithm for unconstrained,
di�erentiable test problems. Five trust region radii update mechanisms (from [12]) are also com-
pared. The results are encouraging, and the ideas are shown to be viable within the limitations of
the problem set and selected value of unspeci�ed parameters in the algorithms. (The parameter
values chosen are based on some preliminary tests.)

Our testing has been done on a single node of the IBM Scalable Power System 2 (SP2) at the
Cornell Theory Center. Our algorithms are coded in MATLAB [1], and interfaced with problems
from CUTE [2].

The number of iterations, the number of successful iterations, and the time taken to arrive at a
local minimum are compared for the di�erent instances. The number of successful iterations equals
the number of gradient and Hessian calculations. The three most expensive calculations in our
routines are the subproblem solution, updating the structured trust region radii, and gradient and
Hessian computations at each new iterate.

3.1. Programming the algorithms. Here we describe the choices made during coding for
the various algorithms. We begin with a template used for all the algorithms. Then we give the
trust region structure used for the four algorithms. Next is the method of obtaining a solution to
the subproblem, followed by �ne-tuning of the update mechanisms. Finally, we give some coding
details for the structured trust region algorithms.

Exact �rst and second derivatives are computed. The initial starting value for all trust region
radii was chosen to be 1. We (and others, see [10]) found that it takes fewer iterations to reach the
solution when we replaced rk > �1 by rk > 0, as the condition for xk+1 = xk + sk:

The single trust region algorithm. The following version of the single trust region algorithm
was coded, and used as a template for the other algorithms.

3.1. The kth iteration is as follows:

1. Given xk and �k, calculate gk and Bk = r2fk: Stop if kgkk < 10�5.
2. Approximately solve subproblem (SPa) (with the feasible region X = <n) to get sk:

3. Evaluate f(xk + sk), and hence rk :
4. If rk < :25 set �k+1 = min(kskk1;�k)=2;

if rk � :75 and kskk1 > �k=2, set �k+1 = 2�k;
otherwise set �k+1 = �k.

5. If rk > 0 set xk+1 = xk + sk; else xk+1 = xk.

Trust region structure. As in [13], we de�ne our structured trust region as a hypercube with
di�erent bounds for each coordinate. This shape simpli�es the solution of the subproblem. In e�ect,
we make the following assumption:

Assumption 3.2. Each Ri is a coordinate subspace, i.e., the span of some set ej ; j 2 qi, where
qi � f1; : : : ; ng and ej denotes the jth unit vector, j = 1; : : : ; n.

Now, each elemental trust region is given by the following constraint:

kPRi
(sk)k1 � �i;k ;

where PRi
(s) denotes the projection of a vector s onto Ri. Because we use the1-norm, the elemental

trust region constraints intersect to give upper and lower bounds on each coordinate.

Thus, the range spaces Ri are enlarged so that they are the span of elementary vectors. (For
example, an element function (x1+x2)

3 that has a range space spanned by (1; 1)0, is assumed instead
to have a range space spanned by (1; 0)0 and (0; 1)0.)

At �rst we solved subproblem (SPa) (with a ball for its feasible region) for the single trust region
algorithm (and (SPb) (with its feasible region a box) for the structured algorithms). We saw that
because of the greater
exibility allowed for the step in the structured trust region (since steps to
the corners of a hypercube may be longer by a factor of

p
n than steps within a sphere enclosed

by the box), the single trust region algorithm is at a disadvantage. So we tried three alternatives
for both the single and the structured trust regions: the trust region looking like a hypercube, an
ellipsoidal trust region to �t inside the hypercube, and with an expansion factor related to

p
n for

the ellipsoidal trust region. We have found that the best option is to have the hypercube structure
(by a considerable decrease in the number of iterations) and we chose this for our experiments.

Subproblem solution. We used the same subproblem solution routine for all four algorithms.

10

If Bk is positive de�nite and the Newton point lies within the trust region, go to the Newton
point. If the Newton point lies outside the trust region, solve the subproblem within the subspace
spanned by the Newton direction and the negative gradient direction. Else, if Bk is not positive
de�nite, �nd a direction of nonpositive curvature. Now solve the subproblem within the subspace
spanned by this and the negative gradient direction.

Obtaining an approximate solution to the subproblem by minimization over a two-dimensional
subspace spanned by the gradient gk and a second order direction qk, which is either the Newton
step (when Hk is positive de�nite) or a direction of nonpositive curvature, is proposed in [5].

We carry out a Cholesky factorization of the Hessian to �nd qk. If the factorization is terminated
prematurely, we can compute a direction of nonpositive curvature. (This direction might not be a
direction of suÆcient negative curvature as required for the second order convergence results of the
structured methods to hold.) Otherwise, we use the factorization to calculate the Newton direction.
All through we ignored the conditions needed for second order convergence, while trying to conform
to the conditions for �rst order convergence. (Trying to implement the former would have meant
the solution of a time-consuming eigenvalue problem.)

When the Newton point does not lie within the trust region, the solution to the two-dimensional
subproblem must lie within perpendicularity to the negative gradient direction and on the boundary
where the trust region intersects the plane. We search for it in the following manner, chosen for its
simplicity. The two directions and a vector of coordinate-wise trust region radii (de�ning a box) are
passed to the solution routine, which then tries to minimize the model by eÆciently scanning 629
points along the boundary of the two-dimensional subspace intersected by the trust region.

We scan the boundary by dividing up the halfspace within perpendicularity to the negative
gradient direction by angle. At each angle to the negative gradient direction from xk, the distance
d to the boundary of the trust region is then computed. The changes in the model value are found
for each angle as if each vector to the boundary is considered to be the step. Finally, we pick the
vector for which this model value is least, to be the step. The most expensive calculation here is the
calculation of the distance to the boundary for each of 629 points, scanning the range [�1:57; 1:57].

We could speed this up by setting to zero some of the coordinates in the directions being scanned
that would not a�ect the distance calculations. This is done by picking a few coordinates and then
checking which of the other coordinates are `dominated' by these in the calculation. The dominated
ones are then set to zero.

The above solution routine sometimes gives a negative value for the change in the model Æmk.
For example, this may happen where the subspace minimizer is almost orthogonal to the negative
gradient direction. In this case, to try to get a positive Æmk we �rst go to the Cauchy point skc. If
the second order direction (i.e., the Newton or nonpositive curvature direction) further reduces the
model value at the Cauchy point we then take an additional step s1 to the farthest point within the
trust region along this direction. (In the case when the second order direction is not the Newton
direction, sk is set to the step that gives the best decrease in the model Æmk from among skc, s1,
and skc + s1. We include s1 in this set since the additional cost of checking it is minor.)

We also tried an exact solution routine for the ellipsoidal version of the subproblems, [15]. The
time taken by our method is comparable to the time taken by the exact solution routine, and the
number of iterations is far less (due to the shape of the trust region).

Cutting o� unsuccessful steps. The reduction of the trust region radius is made stricter
for iterations where r < :25. To avoid having to take the same step in the next iteration, the trust
region is updated to cut o� the earlier step. We see this kind of change in the LANCELOT update
in [9].

The analog of this step in the structured trust region methods is not as straightforward. The
following update for the elemental radii selected for a decrease, may not eliminate the step from the
trust region.

�i;k+1 = min(kskk1;�i;k)=2:

As expected, the e�ect of implementing this on our initial runs was to have many times more
iterations than we got for the following implementation:

�i;k+1 = min(ksi;kk1;�i;k)=2;

for all elemental radii selected for a decrease, where the projection of sk onto Ri is denoted by si;k:.
But this turned out to be too restrictive in practice, giving rise to very small trust region radii.

Finally we implemented the above not for all the elemental radii selected for a decrease, but
only for the elements for which ksi;kk1 is larger than kŝkk1=2, where ŝk is the projection of sk onto

11

the subspace spanned by the ranges of all the elements whose radii are selected for a decrease. Our
convergence results may not hold for this update.

Limiting the growth of a radius. We limit the growth in the size of the trust region, unless
the step length is likely to grow with it. Implementing this change with the structured methods is
easy. All elemental radii selected for an increase during the update step, for which the 1-norm of
the elemental step is longer than half the trust region radius are set to twice the 1-norm of the
step. This change does not alter our convergence results.

Values of the constants used in update mechanisms. The constants used for the trust
region update mechanisms for the structured algorithms (�1; �2;
1;
2
and
3) have values similar to those used for the single trust region algorithm (given in Algorithm 3.1)
for the parallel and combined criteria. For the sloped criteria (where the iteration was still classi�ed
by �1 = :25 and �2 = :75 as in Algorithm 3.1) we computed �1 and �2 from �1 = :35 and �2 = :85
based on our initial experiments with these parameters.

A change in the parallel criterion. A bene�cial change in the parallel separation criterion
is to calculate �i, a vector containing the number of variables used by each element and then to
change the factor 1=p to �i := �i=

Pp
i=1 �i. Since the factor �i is a positive constant, the convergence

results for all the algorithms still hold. The new form of the criterion is:

3.3 (Changed parallel). Let 0 < �1 � �2 < 1; and let Æfi;k = fi(xk) � fi(xk + sk), and
Æmi;k = �mi;k(sk):

If Æfi;k � Æmi;k � �i(1� �2)Æmk then �1i;k = 2,

if Æfi;k < Æmi;k � �i(1� �1)Æmk then �1i;k = 0,

else �1i;k = 1:

Hybrid trust region. Our initial tests showed that our structured algorithms did slightly
better when a hybrid method idea from [7], was included. We later found that there were large
increases in the number of iterations, for ill-conditioned dense Hessians. To avoid these, we decided
not to look at the hybrid method too carefully, at least for now.

The shorter-step method. We relax the shorter-step condition, requiring only that the step
be bounded away from orthogonality to the gradient. Since the solution routine scans the range
[�1:57; 1:57] instead of scanning the whole solution range [��=2; �=2] , the relaxed condition is
automatically satis�ed. When the solution routine gives a negative value of Æmk, and we follow
the alternative strategy given above (where we describe the method of obtaining an approximate
solution to the subproblem), ignoring the shorter-step condition completely.

The doubly-constrained method. For the doubly-constrained case, we implement the �-
condition with �1 = 10100. A departure from Algorithm 2.13 is that instead of Æmb

k > Æma
k as part

of the condition for testing whether sbk is suitable to be a step, in our algorithm we test Æf bk > Æfak .
The parallel update criterion is used for the (SPb) trust region.

The gradient-dependent method. The gradient-dependent method has no conditions on
the step. We implemented only the gradient expansion (not the Hessian one) in the trust region
radii. If this expansion is done after `cutting o� an unsuccessful step' for iterations where r < :25,
there is a huge increase in the number of unsuccessful iterations. Hence, the gradient-expansion step
is implemented before the unsuccessful step was cut o� (which does not conform to the convergence
theory in [12]).

Finally a note about how the elemental information is extracted for the gradient-dependent
algorithm, and the related conversion of elemental radii into coordinate radii. Making changes in
this, speeds up our algorithms by a factor of three. The �rst method we used for the computations
described above was a `for' loop that calculated the quantity needed element-by-element. This was
slow and was replaced by creating a rank-1 matrix from the given vector, and then multiplying it
entry-wise by the 0-1 matrix described above. The method that we now use is to create a matrix
using MATLAB's `sparse' function directly from the vectors that contain the nonzero elements of
the variable-element matrix (de�ned below). This matrix is also used in converting the elemental
trust region radii �i;k ; i = 1; : : : ; p, to bounds on the coordinates of sk, �

j
k; j = 1; : : : ; n.

3.2. CUTE examples and tools. The Constrained and Unconstrained Testing Environment
1 (CUTE) is a FORTRAN-based test problem set developed by Conn, Gould and Toint [2] in 1993,
whose work on partial separability and trust region methods inspired our algorithms, so we naturally
turned to CUTE for test problems.

1CUTE has a website - http://www.numerical.rl.ac.uk/cute. It is available free, by anonymous ftp from one of
the following sites:
ftp.numerical.rl.ac.uk (internet 130.246.8.22),
thales.math.fundp.ac.be (internet 138.48.20.102).

12

CUTE is the result of an e�ort to test LANCELOT, a popular nonlinear optimization code,
aimed at large problems. Partial separability is rampant among such problems and the CUTE code
re
ects the partially separable structure of a problem to eÆciently compute the overall function,
gradient and Hessian of each test problem. This format is also ideal to get the element-speci�c
information our algorithms use.

Examples. There are some disadvantages to using CUTE. Firstly, the structure of the problem
(partial separability, sparsity of the Hessian, diversity of functional forms) is not easily accessible.
The second disadvantage is that the unconstrained di�erentiable test problems in CUTE are all
`academic' rather than `real', i.e., the test problems are not from actual applications, but from a
mathematician's desk.

CUTE stores a vector of variables group-by-group, with another vector that stores pointers to
the �rst variable of each group. (For our problems, we treated the groups as elements.) We use this
to generate a sparse matrix representation where we have a matrix with each row corresponding to
variable, and each column to an element, obtaining the variable-element matrix V = (vij), de�ned
as follows:

vi;j =

�
1 if variable i belongs to element j, i 2 pj
0 otherwise:

(3.1)

We began selection of problems from CUTE by extracting all the unconstrained, di�erentiable
problems. Several of the above set of problems, involve fewer than six variables and are thus not
useful to us. Some of them are quadratic minimization problems for which the change in the function
and the model in any step is the same, hence all the algorithms take the same number of iterations
to converge. A number of the remaining problems are `well-behaved' in the same sense | the same
number of iterations are taken by all the algorithms for all starting points tried. We also found four
unbounded problems and three that are extremely hard to solve. (The number of iterations for some
of these exceeded many tens of thousands before I stopped these runs.) None of these are dealt with
here.

Among the problems left, eight have a structure that is partially separable (the variable-element
matrix has less than 30% nonzero entries, and, so does the Hessian). In the rest, element functions
link a large number of the variable so as to negate the assumption of a `large invariant subspace'
(more precisely, either the variable-element matrix or Hessian, or both, have more than 70% nonzero
entries). Thus, this set is not partially separable. Although we would like our algorithms to perform
as well as the single trust region algorithm on the problems with a dense partial separability structure,
we expect improvements in only in the sparse instances.

Of the eight partially separable problems, �ve allow a variable number of variables. We code
each of these with 100, 300, 500 and 1000 variables, to see the e�ect of problem size on the eÆciency
of the algorithms. (The same initial letters in the problem name indicate a common original problem
from CUTE.)

Tools. On a system where CUTE is installed, to use a test problem one �rst `decodes' a partic-
ular problem to generate a set of routines that can calculate function and derivative information. At
the time that, say, the gradient at a particular point is needed, the request is directed to a decoded
gradient calculation tool routine.

There are no existing tools in CUTE to access the element-speci�c function, gradient and Hessian
values needed. So we have created the tools `nusetup', `nufn', `nugr' and `nuprd' and incorporated
them into the CUTE source code. To understand the source code we found the LANCELOT
documentation [9] invaluable | the variables used there are similar to the ones used in CUTE.

The program `nusetup' returns n, the number of variables the problem has, p, the number of
elements. It also determines l, the number of nonzeros in the n � p matrix V , de�ned in (3.1),
which tells us which variables used by each group. We need l within `nusetup' to create the required
FORTRAN data structures for the other new tool routines.

The program `nufn' calculates the values of the element functions (within CUTE this is equivalent
to evaluating group function values) and returns a vector of these values. The elemental gradients
are returned as a sparse array by `nugr'. We did not need elemental Hessians but only the products
of the Hessians with any given vector. The routine `nuprd' returns these products as a sparse array.

The FORTRAN tool routines had already been interfaced with MATLAB separately by Ingrid
Bongartz [2] and by Mary Ann Branch [4] and included with the CUTE software [2]. We extended
the interface in [4] so as to connect the new tool routines to MATLAB.

3.3. Results. We begin our discussion of the results from our computations by evaluating the
separation criteria, selecting one of them for our further tests. We then examine the performance

13

Table 3.1

Total number of iterations for partially separable problems, using the standard starting point from CUTE, and
a hybrid trust region. The letters P, S, and C stand for parallel, sloped and combined criteria. The bottom row of
the table gives the total iterations for a similar set of runs without the hybrid trust region.

Shorter- Doubly- Gradient-

Problem Single Step Constrained Dependent

P S C P S C P S C

BROYDN70 63 55 50 65 50 54 58 55 50 65
BROYDN71 158 154 152 164 126 131 132 154 152 164
BROYDN72 218 265 224 276 215 200 208 259 224 276
BROYDN73 445 450 475 486 403 398 410 469 482 472

BRYBND0 18 18 18 18 17 17 17 18 18 18
BRYBND1 29 29 29 29 26 26 27 29 29 29
BRYBND2 22 22 22 22 22 24 24 22 22 22
BRYBND3 31 31 31 31 18 28 28 31 31 31

CHNROSNB 56 56 56 56 54 55 54 56 56 56

ERRINROS 58 62 61 60 51 51 51 63 61 61

EXTROSN0 150 166 154 167 143 116 137 155 147 155
EXTROSN1 151 160 169 160 125 132 155 122 164 134
EXTROSN2 146 125 153 158 164 201 115 125 158 145
EXTROSN3 165 163 151 125 140 165 122 129 125 144

FLETCHC0 191 190 188 188 187 195 187 190 188 188
FLETCHC1 543 536 537 537 536 585 531 536 542 537
FLETCHC2 881 888 888 888 881 1017 885 888 888 888
FLETCHC3 1766 1777 1764 1783 1758 1865 1735 1777 1772 1783

GENROS0 138 128 133 124 98 107 100 129 133 120
GENROS1 366 327 348 329 276 327 266 329 367 330
GENROS2 692 506 593 528 470 597 451 545 577 528
GENROS3 1247 1059 1105 1029 884 1077 853 1056 1131 1059

TOINTPSP 16 16 16 16 14 15 14 16 16 16

Total 7550 7183 7317 7239 6658 7383 6560 7153 7333 7221
No hybrid - 7303 10533 7286 - - - 7288 7492 7369

of the structured algorithms for the partially separable problems. Finally, the algorithms are tested
for other classes of unconstrained and di�erentiable problems in cute: the well-behaved partially
separable problems, small problems, quadratic problems and problems with either a dense Hessian,
or a dense variable-element matrix, or both.

Performance of separation criteria. The two sloped criteria did not show much di�erence in
their performance, giving identical results for most problems. Neither did the two combined criteria.
Table 3.1 contains the results of running the eight partially separable problems for their di�erent
sizes with the �rst sloped and �rst combined criteria. Here we give the number of iterations taken
for the algorithms to converge from the standard starting points of these problems (as available from
CUTE). We see that the structured algorithms perform a little bit better (4-5 % fewer iterations)
than the single trust region algorithm, specially the doubly-constrained method, for these starting
points and problems.

The parallel separation criterion has fewer iterations than the combined criterion, but the dif-
ference is not much. The sloped criterion is worse than the other two kinds. The combined criterion
tests the ratios between the decreases in the elemental functions and the decreases in the elemental
models, and also prevents the radii for elements that have negligible change in the model (com-
pared to the overall change Æmk) from shrinking too much. Thus, we used this criterion in our �nal
comparisons.

The last row of Table 3.1 contains the totals for a similar run where no hybrid trust region is
included. We include such a hybrid trust region only for the shorter-step and gradient-dependent
algorithms. Notice that it has an e�ect of decreasing the total number of iterations for the shorter-
step algorithm, especially for the sloped criterion.

14

Performance on partially separable problems. We ran each of the eight partially separable
problems (de�ned earlier as having both a sparse variable-element matrix and a sparse Hessian), with
10 starting points (other than their standard starting point, for which the results are in Table 3.1).
Tables 3.2, 3.3 and 3.4 contain the results of this run.

For some of the starting points the number of iterations exceed 4000 (which we thought is
a reasonable limit for our set of problems). This happens with starting points that have widely
di�ering values for the di�erent variables. We think this may be due to either the algorithm going
into a region where the problem is ill-conditioned (the negative gradient direction has high positive
curvature and the second order direction has very slight negative curvature), or the trust region
shape becoming skewed so as to limit step length in good directions. (In Table 3.2 the number of
such runs have been mentioned in parentheses after the number of iterations.)

We tried to free the data from the e�ect of these outliers. At �rst we merely zeroed out, for
all the algorithms, all results related to a problem and starting point that `crashed' (in the sense
of hitting 4000 iterations) for any algorithm, so as to completely ignore that particular set of runs.
But this biases the results in favour of the algorithms that `crashed'. So instead we penalise the
results for the algorithm, problem and starting point that crashed in the following way: we set the
results for these `crashes' to three times the maximum values reached by other algorithms that had
not `crashed' for the same problem and starting point, for which this maximum is less than 3000.
For the instances where the above maximum is greater than 3000, we multiplied by a factor of 1.25
(since we felt that to penalise by more than 1000 iterations would also bias our results). For both
of these manipulations, and for various choices of the penalty factors, the results are qualitatively
the same.

In Table 3.2, the doubly-constrained and shorter-step methods have fewer iterations on the aver-
age than the single trust region method, while the gradient-dependent method has more iterations.
In parentheses are the number of starting points for which the run did not converge in 4000 iterations.
This happened most often to the gradient-dependent algorithm, which has �ve such cases, whereas
the other three algorithms have at most three each. Also, among the problems, the BRYBND's and
FLETCHC's reach the 4000-iteration limit most often. Nine out of the thirteen failures are due to
the only starting point with variable values ranging from 1 to 106.

In Table 3.3, the total number of successful iterations (where new gradients and Hessians must
be computed) for the structured algorithms is always fewer than for the single trust region case.

With a few exceptions, the number of iterations taken by the doubly-constrained method has
consistently been found to be less than that taken by the single trust region method. (In the given
set of results, only GENROS0 violates this. There are more frequent instances of this Tables 3.6 and
3.7, especially for problems with a dense variable-element matrix.) We must be doing something
correctly by having a structured trust region in order to get the consistent decreases we see in the
number of iterations.

Of all the problems TOINTPSP has the best results in favour of the structured methods. Its
Hessian and variable-element matrix structures have a scattering of o�-diagonal elements, whereas
all the other problems have a diagonal-heavy structure, with a lot of overlap of variables over any
successive pair of elements. Also note that the shorter-step algorithm is remarkably e�ective for the
FLETCHC problems, but not for the others.

Finally, refer to the last line of Table 3.2 to see the e�ect of a hybrid trust region. (Since
some of the starting points are random, the totals in the last and second-to-last rows are not
meant directly to be compared with one another, but the relationships of the numbers within the
rows are to be compared.) Notice that the relative performance of the shorter-step and gradient-
dependent algorithms has become worse vis-a-vis the performance of the single trust region and
doubly-constrained methods. This result contradicts our preliminary results in Table 3.1 and the
contradiction merits future investigation.

In order to understand our results better we tried to aggregate our numbers in some meaningful
ways. In the top part of Table 3.5 we show the behaviour of all the problems that originated from a
common CUTE code, but with di�ering numbers of variables. (The problems are listed with their
original names from CUTE.) Here TOINTPSP, CHNROSNB, FLETCHCR give fewer iterations
with the structured algorithms than with the single trust region method. We then summed up the
number of iterations over all the problems compiled with 100 variables, 300 variables, 500 variables
and 1000 variables, separately.

We �nd that the smallest problems have the fewest iterations for the structured methods. The
structured results steadily deteriorate as the size of the problem increases, perhaps because our
structured trust region fails to adequately represent nonlinearities when a large number of steps are
taken. Each of the problems has very few variables in each element compared with the total number

15

Table 3.2

Comparing the total number of iterations for 10 runs with di�erent starting points, for partially separable
problems. The last row has the totals for another set of similar runs with a hybrid trust region. (In parentheses after
some of the totals are the number of runs that required 4000 iterations.)

Total Number of Iterations
Shorter- Doubly- Gradient-

Problem n Single Step Constrained Dependent

BROYDN70 100 717 797 667 907
BROYDN71 300 1650 2071 1431 2199
BROYDN72 500 2399 3045 2093 3388
BROYDN73 1000 4243 5585 3756 5942

BRYBND0 100 1801 1554 1176 1547
BRYBND1 300 3176 2583 1995 3067 (1)
BRYBND2 500 4195 2929 2066 5702 (1)
BRYBND3 1000 4260 4436 (2) 2382 6445 (2)

CHNROSNB 50 805 797 706 736

ERRINROS 50 1303 1530 1103 1320

EXTROSN0 100 808 737 745 783
EXTROSN1 300 847 997 796 1056
EXTROSN2 500 945 1134 840 1156
EXTROSN3 1000 949 1482 892 1521

FLETCHC0 100 3001 1296 2503 2189
FLETCHC1 300 8095 (1) 2610 6732 4536
FLETCHC2 500 8783 (1) 5180 8372 (1) 7473
FLETCHC3 1000 7504 (1) 6423 (1) 6970 (1) 8153 (1)

GENROS0 100 888 924 912 952
GENROS1 300 2065 2192 1989 2078
GENROS2 500 3146 3251 3063 3256
GENROS3 1000 5506 5955 5221 6865

TOINTPSP 50 565 452 352 430

Total 67650 57960 56762 71701
With Hybrid 48002 55334 39377 69745

of variables (it varies between 1 and 7), and so a hundred variables may already be a large enough
size to see the e�ects of the algorithm. We need to �nd and test more examples of large partially
separable problems to test this hypothesis.

The last two rows of Table 3.5 are the sums for a few of the starting points. The upper row
is the sum for starting points 1, 2, 3 for which the total number of iterations with the single trust
region method over all problems is the fewest, and the lower one is the sum for starting points 5,
6, 7 for which the above total is the highest (we ignored the starting points where `crashes' took
place). We did this in an attempt to see if the performance of the method has anything to do with
the number of iterations needed to solve the problem. However, the entries in these two rows argue
against such a correlation.

The variability of these results is in part due to the randomness in solution trajectory inherent
in nonlinear problems.

Performance on general problems. Table 3.6 contains results for a few well-behaved par-
tially separable functions, and other general functions selected randomly from among the set of
unconstrained di�erentiable problems from CUTE. The ones with a sparse Hessian are compiled
with up to a thousand variables. We found that the problems with dense Hessians not only took a
very large amount of time per iteration but also took a very large number of iterations to solve. So
we limited ourselves to a hundred variables for these. Results for some quadratic problems and the
small problems (fewer than six variables) are presented in Table 3.7. Notice that the structured and
single trust region methods do about equally well on these problems in general.

In fact, problems which have dense Hessians but sparse variable-element matrices show fewer
iterations for the structured methods over the single trust region method on the average. The

16

Table 3.3

Total number of successful iterations for 10 runs with di�erent starting points for partially separable problems.

Total Number of Successful Iterations
Shorter- Doubly- Gradient-

Problem Single Step Constrained Dependent

BROYDN70 560 560 578 588
BROYDN71 1297 1392 1258 1272
BROYDN72 1878 1987 1912 2051
BROYDN73 3478 3701 3508 3496

BRYBND0 1200 1239 977 1098
BRYBND1 2122 1998 1687 1777
BRYBND2 2730 2111 1780 2715
BRYBND3 2893 3120 2000 4043

CHNROSNB 609 661 604 573

ERRINROS 963 1050 900 788

EXTROSN0 638 625 635 626
EXTROSN1 660 807 647 761
EXTROSN2 713 952 699 915
EXTROSN3 725 1209 744 1189

FLETCHC0 2550 1056 2121 1786
FLETCHC1 6970 2173 5894 3907
FLETCHC2 7866 4180 7670 6578
FLETCHC3 6223 4938 5975 5616

GENROS0 741 800 812 797
GENROS1 1725 1849 1747 1747
GENROS2 2635 2812 2683 2715
GENROS3 4510 4659 4508 4549

TOINTPSP 456 386 320 345

Total 54142 44265 49659 49932

gradient-dependent algorithm which has more iterations for the partially separable problems, com-
petes well with the other methods here, and sometimes even gives startling reductions in the number
of iterations (e.g., FMINSURF in Table 3.6 and BROWNAL in Table 3.7).

4. Conclusions. Out of the four algorithms (the single and three structureds) the one that
has the fewest iterations is the doubly-constrained algorithm, which also took the most time. Its
performance suggests that there is some value in the idea of structuring. The shorter-step algorithm
gives good reductions in the number of iterations on the average. The gradient-dependent algorithm
does well for the number of successful iterations, but the gradient-expansion step there is the probable
cause for the higher total iterations. With standard starting points, the structured trust region
methods give better improvements than with our other ones.

All the separation criteria give convergence in practice although we do not have the theory that
shows it. The parallel and combined criteria consistently do better than the sloped one.

The implementation of these algorithms can be improved. Dealing with all the three algorithms,
and �ve update criteria, at once has diluted the amount of attention we could pay to any one method.
A number of problems should be looked at individually to try to understand the mechanics of each
algorithm. Also, there are a number of simpler strategies whose behaviour can be observed in
practice, such as the one described in [12] with an upper bound on ratio of the maximum and
minimum of the elemental trust region radii.

We have not implemented any second order conditions in the calculation of the step, nor have
we taken advantage of the full
exibility allowed in the trust region radius updating criteria. Many
of the parameters involved in checking �ts between function and model values are arbitrary. Also,
other, faster subproblem solution methods should be considered, such as the dogleg and double
dogleg.

17

Table 3.4

Total time taken 10 runs with di�erent starting points for partially separable problems.

Total Time Taken (in seconds on SP2)
Shorter- Doubly- Gradient-

Problem Single Step Constrained Dependent

BROYDN70 42 67 87 81
BROYDN71 317 447 501 484
BROYDN72 838 1162 1197 1243
BROYDN73 4064 5118 5012 5441

BRYBND0 112 138 158 144
BRYBND1 394 508 562 600
BRYBND2 798 883 893 1668
BRYBND3 1536 2245 1855 3209

CHNROSNB 24 37 47 36

ERRINROS 40 73 78 68

EXTROSN0 34 44 69 50
EXTROSN1 92 145 172 168
EXTROSN2 168 265 286 282
EXTROSN3 317 614 576 672

FLETCHC0 88 71 178 121
FLETCHC1 749 275 854 496
FLETCHC2 1021 780 1513 1222
FLETCHC3 1093 1877 2619 2504

GENROS0 32 53 77 58
GENROS1 115 239 289 248
GENROS2 246 511 634 567
GENROS3 847 1793 2099 2201

TOINTPSP 21 24 29 24

Total 12989 17370 19785 21586

Table 3.5

Comparing various aggregates of the total number of iterations for partially separable problems.

Number of Iterations
Shorter- Doubly- Gradient-

Problem Single Step Constrained Dependent

BROYDN7D 9009 11498 7947 12436
BRYBND 13432 11502 7619 16761
CHNROSNB 805 797 706 736
ERRINROS 1303 1530 1103 1320
EXTROSNB 3549 4350 3273 4516
FLETCHCR 27382 15509 24577 22351
GENROSE 11605 12322 11185 13151
TOINTPSP 565 452 352 430

SIZE(100) 7164 5249 5955 6314
SIZE(300) 11084 10145 9062 11062
SIZE(500) 14391 13585 12256 14722
SIZE(1000) 20842 21560 18711 25682

SUM(1,2,3) 5067 5070 4624 5348
SUM(5,6,7) 27728 26094 23513 29984

18

Table 3.6

Comparing the total number of iterations for general problems.

Total Number of Iterations
Shorter- Doubly- Gradient-

Problem n Single Step Constrained Dependent

Easy problems: Sparse Hessians and Sparse Partial Separability

ARWHEAD 1000 44 44 44 44
BDQRTIC 1000 52 52 52 52
FREUROTH 1000 17 17 17 17
LIARWHD 1000 121 124 90 129
MOREBV 1000 16 16 16 16
NONDIA 1000 33 33 33 33
Total 283 286 252 291

Sparse Hessians and Dense Partial Separability Structure

DIXMAANA 1500 427 434 144 503
DIXMAANB 1500 683 1932 737 1463
DIXMAANC 1500 1302 1325 785 1467
DIXMAAND 1500 2109 1338 2091 1695
DIXMAANE 1050 979 971 288 627
DIXMAANF 1050 1161 1480 1163 1506
DIXMAANG 1050 1515 1377 2158 1394
DIXMAANH 1050 2269 1889 1854 2170
DIXMAANI 1050 1149 1358 696 1091
Total 11594 12104 9916 11916

Dense Hessians and Sparse Partial Separability Structure

EIGENALS 110 818 627 431 560
EIGENBLS 110 569 436 487 562
EIGENCLS 132 546 686 441 537
FMINSURF 121 572 136 148 104
PENALTY1 100 176 183 178 176
Total 2681 2068 1685 1939

The types of problems solved so far are quite similar in structure and are set up by other math-
ematicians. It would useful to tune our algorithms to the solution of two or three `real' problems.
De�ning the element functions suitably (since a number of element functions may be grouped to-
gether to form a single one, this de�nition is not unique), and looking at di�erent `forms' of partial
separability would also be useful.

From our observations it seems that for short ranges of steps from the same starting point, the
structured trust region algorithms do better. But the longer a sequence of steps is, the higher the
probability of the single trust region winning. This can be described in terms of a tortoise and hare
story: going slowly, the tortoise adjusts to the environment and makes better progress in the long
run; whereas going fast, the hare hits hurdles without expecting them (not being adjusted to the
new environment) and is stalled. Perhaps one should look at a method that `restarts' a structured
trust region sequence every few iterations.

Parallelization is an important consideration in the context of large scale nonlinear programming.
The doubly-constrained algorithm would certainly speed-up if we used two processors to solve the
two subproblems. The three most computationally intensive parts of our programs are amenable to
parallelization: (a) the evaluation of elemental functions, gradients and Hessians (b) our subproblem
solution routine (where the 600 points to be compared could be distributed between processors) and
(c) the trust region updates (each elemental radius is updated independent of the other ones).

The theory needs further study too. It is hard in practice to calculate the criticality measure
�k in the constrained case. A practical method is needed, that does away with this calculation.

5. Acknowledgement. This work was done as part of my Ph.D. at the School of Operations
Research and Industrial Engineering at Cornell University, Ithaca, New York. I thank Prof. Michael
J. Todd, who was my Ph.D. advisor there.

REFERENCES

[1] MATLAB User's Guide, The MathWorks, Inc., Cochituate Place, 24 Prime Park Way, Natick, MA 01760,
January 1991, email: info@mathworks.com.

19

Table 3.7

Comparing the total number of iterations for general problems (continued from Table 3.6).

Total Number of Iterations
Shorter- Doubly- Gradient-

Problem n Single Step Constrained Dependent

Dense Hessians and Dense Partial Separability

BROWNAL 10 388 398 416 213
MANCINO 20 50 50 50 50
Total 438 448 466 263

Small Problems

BIGGS6 6 320 331 354 354
BOX3 10 47 47 36 47
BRKMCC 2 9 9 9 9
BROWNBS 2 67 67 65 72
BROWNDEN 4 19 19 19 19
CLIFF 2 15 15 15 15
CUBE 2 135 147 139 152
DENSCHNA 2 36 36 36 36
DENSCHNB 2 17 17 17 17
DENSCHNC 2 29 29 29 29
DENSCHND 3 56 56 54 58
ENGVAL2 3 37 37 37 37
EXPFIT 2 129 130 126 142
GROWTH 3 51 51 51 51
Total 967 991 987 1038

Quadratic Problems

DIXON3DQ 1000 16 16 16 16
DQDRTIC 1000 16 16 16 16
ENGVAL1 1000 45 45 45 45
HILBERTB 1000 32 32 31 29
Total 109 109 108 106

[2] I. Bongartz and A. R. Conn and N. Gould and Ph. L. Toint, CUTE: Constrained and Unconstrained Testing
Environment, Technical Report, March 1995, D�epartement de Math�ematique, Facult�es Universitaires de
Namur, Belgium.

[3] A. Bouaricha, and J. J. Mor�e, Impact of partial separability on large-scale optimization, Comput. Optim.
Appl., 7 (1997), pp. 27{40.

[4] M. A. Branch, Getting CUTE with MATLAB, Technical Report, September 1994, Advanced Computing Re-
search Institute, Cornell University, Ithaca NY 14853, NY, USA.

[5] R. H. Byrd, R. B. Schnabel, and G. A. Shultz, Approximate Solution of the Trust Region Problem by
Minimization over Two-Dimensional Subspaces, Math. Programming, 40 (1988), pp. 247{263.

[6] T. F. Coleman, and Y. Li, An interior trust region approach for nonlinear minimization subject to bounds,
SIAM J. Optim., 6 (1996), pp. 418{445.

[7] A. R. Conn, N. Gould, A. Sartenaer, and Ph. L. Toint, Convergence properties of minimization algorithms
for convex constraints using a structured trust region, SIAM J. Optim., 6 (1996), pp. 1059{1086.

[8] A. R. Conn, N. Gould, A. Sartenaer, and Ph. L. Toint, Global convergence of a class of trust region
algorithms for optimization using inexact projections on convex constraints, SIAM J. Optim., 3 (1993),
pp. 164{221.

[9] A. R. Conn, Nick Gould, and Ph. L. Toint, LANCELOT: A Fortran Package for Large-Scale Nonlinear
Optimization, Springer-Verlag, 1992.

[10] R. Fletcher, Practical Methods of Optimization, Second ed., Practical Methods of Optimization, John Wiley,
New York, 1987.

[11] A. Griewank, and Ph. L. Toint, On the existence of convex decompositions of partially separable functions,
Math. Programming, 28 (1984), pp. 25{49.

[12] J. Shahabuddin, A shorter-step trust region algorithm for minimization of nonlinear partially separable func-
tions, draft paper, 6 Dec 1999, IBM-India Research Lab, Indian Institute of Technology, Hauz Khas, New
Delhi 110 016, India.

[13] J. Shahabuddin, A gradient-dependent trust region algorithm for the minimization of nonlinear partially sep-
arable functions, draft paper, 28 Feb 2000, IBM-India Research Lab, Indian Institute of Technology, Hauz
Khas, New Delhi 110 016, India.

[14] M. Lescrenier, Partially separable optimization and parallel computing, Ann. Oper. Res., 14 (1988), pp. 213{
224.

[15] J. J. Mor�e, Recent developments in algorithms and software for trust region methods, in Mathematical Pro-
gramming: The State of the Art, A. Bachem, M. Gr�otschel and B. Korte, eds., Springer-Verlag, 1982.

[16] J. J. Mor�e, and D. Sorensen, Computing a trust region step, SIAM J. Sci. Statist. Comput., 4 (1983), pp. 553{
572.

[17] M. J. D. Powell, On the global convergence of trust region algorithms for unconstrained minimization, Math.

20

Programming, 29 (1984), pp. 297{303.
[18] Ph. L. Toint, Global convergence of a class of trust region methods for non-convex minimization in Hilbert

space, IMA J. Numer. Anal., 8 (1988), pp. 231{252.
[19] Ph. L. Toint, Global convergence of the partitioned BFGS algorithm for convex partially separable optimization,

Math. Programming, 36 (1986), pp. 290{306.

21

