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Abstract

We study price dynamics in an electronic ser-
vice market environment consisting of buy-
ers and competing service providers. In this
market, each service provider has limited ca-
pacity to serve the buyers. We present price
dynamics in a two-seller market when buy-
ers use comparison shopping agents to know
about price and expected delay at each ser-
vice provider. Each seller uses an automated
pricing agent to reset the price at random
intervals in order to maximize his expected
pro�ts. A Q-learning algorithm for pric-
ing agent is developed and comparative ex-
perimental study on various other adaptive
strategies is presented.

Further, we present a new multi-time scale
actor-critic-type algorithm for multi-agent
learning in the underlying stochastic games.
Preliminary experimental results on conver-
gence of the proposed algorithm in a degener-
ate version of the dynamic pricing game and
also on convergence of the algorithm in it-
erated general-sum bi-matrix games are pre-
sented.

1. Introduction

E-commerce has undoubtedly changed how the busi-
ness is done. On the Internet, competition is just a
click away. This fact has potentially lead to intense
price competition for commodity products. Search en-
gines like ASCES, and Web-based comparison shop-
ping agents (also known as shopbots), like Dealpi-
lot.com allow consumers easy access to all competing
�rms' prices. In order to attract consumers, sellers
use automated pricing agents, (also called pricebots)
for constant resetting of prices. Kephart and Green-
wald [1999] have investigated "economics of shopbots"

and pricebot dynamics. In their models, some con-
sumers have access to shopbots while other consumers
do not. These models generate equilibria: �rms ran-
domize their prices in order to price discriminate be-
tween the searchers and non-searchers.

For studies on such temporal price dispersion model
of "holding" sales in the presence of such a mix of
"informed" and "uninformed" consumers, see for in-
stance, Varian [1980] in a physical retailer market set-
ting and Greenwald and Kephart [1999], Greenwald,
Kephart and Tesauro [1999], Dasgupta and Das [2000],
for its online counterpart. In the same vein, in this pa-
per, we study price dynamics in an electronic service
market with sellers of identical service. This models a
situation where online utility services or digital goods
or videos are o�ered on rent.

Previous studies particularize to a situation in com-
modity markets where it is assumed that "supply"
("or capacity) is in�nite and hence can "hold" sales.
In contrast, seller of a service can process requests of
consumers only at a �nite rate. As a result, a buyer
approaching for service will incur waiting cost before
his request is initiated. In our model, we assume
that shopbots not only will collate posted prices of all
the sellers but also provide information pertaining to
posted expected delay at each such service provider.
Further, each service provider uses automated pricing
agents (or pricebots) to reset prices whenever an ar-
rival or departure happens.

In this paper, we aim to identify those pricebot algo-
rithms that are most likely to be pro�table in a com-
petitive scenario. To this end, we experiment with
various adaptive strategies that di�er in their infor-
mation requirements. Further, we consider the market
with two sellers and we pose the dynamic pricing prob-
lem as multi-agent reinforcement learning problem in
stochastic games. We develop a Q-learner that is obliv-
ious of opponent's prices and delays and present exper-



imental results when such a Q-learner is pitted against
other adaptive strategies. Also, in the Multi-Agent
Reinforcement Learning case, we develop new actor-
critic-type of learners, a variant of the type discussed
in Konda and Borkar [2001]and Borkar [2002]. We
model two players as two actor-critic learners, but the
actors (policies) are updated on di�erent time scales.
Intuition behind such update is as follows: If two ac-
tors run on di�erent time scales, the slower player sees
the other player as "equilibrated" and the faster player
sees the other player as quasi-static.

Reinforcement Learning as a paradigm for multi-agent
learning in stochastic games has been studied by
Littman [1994] in zero-sum games and Patek and Bert-
sekas [1999] in zero-sum stochastic- path games us-
ing minmax-Q learning that is shown to converge.
Nash -Q learning for general-sum games of Hu and
Wellman[1998] imposes many restrictive assumptions
for convergence whereas more general and convergent
Friend or Foe Q-learning of Littman [2001] requires in-
formation with regard to opponent: friend or foe and
uses Nash-Q or minimax-Q accordingly. Even in the
iterated game cases, no algorithms with guaranteed
convergence are known to exist. In the complete in-
formation iterated two-action bi-matrix games , Singh,
Kearns and Mansour (1999), develop a gradient ascent
algorithm with constant steps, and show that either
the agents converge to a Nash equilibrium or their av-
erage pay-o�s will converge to the pay-o�s correspod-
ing to a Nash equilibrium. Bowling and Veloso (2001)
modify the above algorithm to include steps that vary
with time to show convergence.

Our proposed algorithm di�ers from the above works
in the following ways: Firstly, all the above algorithms
follow the philosophy of value iteration scheme of-
Markov decision processes (or more generally, Marko-
vian games). At every step of learning such schemes
involve solving Linear Program (in the case of Zero
sum games or Foe learning) or a quadratic program
(in Nash Q learning) to identify the policy for next
step of learning. Further, in Nash-Q learning one
needs to maintain estimates of Q-values of the oppo-
nent. In this paper we give an actor-critic type of
learner (Barto, Sutton and Anderson [1983], Konda
and Borkar [2000]), a derivative of policy-iteration
scheme, that maintains values as well as policy and
the updates move in a coupled fashion albeit on di�er-
ent time scales. Further, it does not entail maintaining
estimates of opponent's pay-o�s as in Nash-Q learning.
In the iterated bi-matrix game scenario, our algorithm
is general enough to handle multiple action incomplete
information general-sum two-player games. In such it-
erated game cases, the value update procedure (critic

update) degenerates to a simple stochastic gradient
based scalar update.

In our computational experiments, we report results
on performance of Q-learner against other adaptive
agents. Average pro�ts from Q-learning are far above
those from other strategies. In multi-agent reinforce-
ment learning with the proposed actor-critic learners,
we only report preliminary results obtained over a de-
generated case of dynamic pricing problem, wherein it
is assumed that in each state of the pricing game, the
pay-o� matrix is the same. However, the pay-o� ma-
trix considered for experimentation is a fairly complex
six-action general-sum bi-matrix game (an example
from Mangasarian and Stone [1964]) with no apparent
special structure. The algorithm converges exactly to
the unique Nash equilibrium mentioned therein.

In iterated game cases, though our experimentation is
extensive, for space reasons, we report only results on
convergence of the proposed algorithm on a constant-
sum game and iterated bi-matrix game an example
case presented in Bowling and Veloso [2001] (that ex-
poses some diÆculties involved with arbitrary start-
ing strategies in identifying "winning" position in their
WoLF algorithm).

The paper is organized as follows. In the next sec-
tion we introduce the dynamic pricing model in service
markets. Section 3 develops various adaptive strate-
gies including the opponent-oblivious Q-learning algo-
rithm for the underlying semi-Markov decision model.
In Section 4 we give a formal description of a two-
player stochastic game and present the multi-time
scale actor-critic algorithm. Section 5 gives results of
our experimentation.

2. Description of the Model

We consider a simple model of a service market with
two service providers. A Poisson stream of buyers with
rate � approaches the market with i.i.d service time
requirements sampled from a distribution F (:) with
�nite support having mean 1

�
(� < �). Buyers are clas-

si�ed into two categories: A Type 1 buyer randomly
chooses a service provider and requests for a quote on
price per unit service and the expected delay to be in-
curred to initiate processing his request. In contrast,
Type 2 buyers, use a shopbot, to know posted price

quotes of all the sellers and also the posted expected
delay at each such individual service provider. In both
the cases, a seller with n requests queued up, will quote
a delay of n�. Associated with each buyer is a utility
function that combines price and delay in a form to
be described shortly. Each buyer has his own upper-



limits, pb; wb, on price and waiting time respectively.
These are assumed to be i.i.d and uniform and are
sampled respectively from U(0; pmax] and U(0; wmax]
for known pmax and wmax.

A Type 1 buyer joins the queue of the selected seller
only when his utility is positive and leaves the market
otherwise. But a Type 2 buyer joins a queue (seller)
using a greedy policy that maximizes his utility com-
puted from posted-price and posted-delay quotes con-
tingent on the utility being positive or else leaves the
system. We assume that the probability that an arriv-
ing buyer is of Type i is !i, i = 1; 2 and !1 + !2 = 1.
For simplicity, we assume that each seller can pro-
cess only one request at a time and further that bu�er
where the requests queue up has �nite capacity. Each
seller uses his own automated price-setting agent, a
pricebot, to price the requested service dynamically
based on competitive factors, current queuelength and
also, based on relative proportion of the informed buy-
ers (Type 2 above) approaching the market.

A typical buyer's utility is a composite function that
encompasses the buyer's individual preferences for
price and waiting time and is assumed to be of the
following form:

U(p; w) = [�(pb�p)+(1��)(wb�w)]�(pb�p)�(wb�w)
(1)

where �(x) = 1 if x � 0 and �(x) = 0 otherwise. for
any quoted price p and waiting time w.

Further, assume that all sellers have identical service
cost per unit of service.

The pricing strategies are developed for two di�erent
cases depending on the type of market information
available to sellers.

Case 1: Complete Information : This models a
situations where each service provider has complete
information (or perhaps uses a shopbot!) about other
service provider's prices and queue lengths and also,
about buyer population and there preferences.

Case 2: No Information: For this case, we assume
that each service provider is oblivious of other sellers'
prices and queue lengths and is also ignorant about
buyer characteristics.

For reinforcement learning, we develop a Q-learning al-
gorithm for the opponent oblivious case (Case 2 above)
using semi-Markov decision model. Also, taking a cue
from recent works of Kephart et al [1999,2000], we de-
velop various other fairly robust adaptive strategies
that di�er in their informational requirements and an-
alyze dynamics when a Q-learner is pitted against an
opponent that uses such adaptive strategies. These

strategies are described in next section.

For two-agent reinforcement learning, we direct the
reader to Section 4.

3. Adaptive Strategies

3.1 Myopic or Myopically Optimal (MY)
Strategy

This strategy is applicable in Case 1 discussed above.
This strategy performs an exhaustive search over a dis-
crete price space for a price that maximizes its imme-
diate expected pro�t and hence is myopic. An agent
following this strategy is equipped with complete in-
formation about competitor and buyers but assumes
that competitors prices are static until his next deci-
sion , and hence a change in its prices will elicit no
response from the competitor.

This strategy works as follows:

Step 1 Compute the expected pro�t, �1, by setting its
price at a level, say p1, which just exceeds the
utility to the buyers o�ered by the competitor.

Step 2 Compute the price p1s at which maximum ex-
pected pro�t, say, �2, will be achieved serving
only buyers who use the random strategy (Type
1).

If the price found in Step 2 is lesser than the com-
petitor's price, then the current price is set at this
value. This will ensure maximum pro�t from all types
of buyers. If the price found in Step 2 is more than
the competitor's price, set the current price value at
the price that gives maximum expected pro�t as the
current price.

We provide below the computation details involved in
the above procedure.

Let p2 and w2be the competitor's price and waiting
time quote respectively. If the current delay at the
seller in initiating processing of a newly arriving cus-
tomer is w1, then its price quote p1 for the case in Step
1 can be computed as follows:

The utility values of an arriving buyer at the seller and
the competitor are respectively :

U1(p1; w1) = �(pb�p1)+(1��)(wb�w1), U2(p2; w2) =
�(pb � p2) + (1� �)(wb � w2)

if both p1; p2; w1; w2 are less than their respective
upperlimits.

Now if the seller wants to set a price at a value that
o�ers a marginal increase in utility value of the up-



coming buyer over his utility value corresponding to
the competitor, then such a price can be computed as
follows. Let " > 0. We need to �nd a price p for the
seller such that

U1(p) = U2(p2; w2) + " (2)

In other words,

p1 = [
�

1� �
(w2 � w1) + p2]� "

In our experiments we randomize over ". The expected
pro�t corresponding to the above price, �1(p1; w1)
can be computed from our distributional assumptions.
For space reasons we omit the exact expression for
�(p1; w1).

Now we briey give details of the procedure underly-
ing the computation of price p1s mentioned in Step
2. Note that a randomly arriving buyer will join the
queue of the seller only when his computed utility cor-
responding to the seller's price quote and delay is pos-
itive. That is, for a quoted price p when the delay is
w, a type 1 buyer with price limit x and waiting time
limit wb will join the queue only when

U(p; w) > 0; wb > w & pb > p

Note that, U(p; w) > 0 hold true when,

wb > w +
(x� p)�

(1� �)

Noting that pb and wb are uniform random variables on
(0; pmax] and (0; wmax], respectively, it is easy to see
that for a price quote and delay pair (p; w), probability
that the utility of a buyer is positive is given by:

P (U(p; w) > 0) =

pmaxR
0

1
pmaxwmax

(wmax � w + (x�p)�
(1��)wmax

)dx

Let E[�(p; w)] denote the expected pro�t obtained by
the seller for a random strategy buyer at the quoted
price p and when delay at the seller is w. Then,

E�(p,w)=P (U(p; w) > 0)(p� c)(1� w
wmax

)(1� p
pmax

).

First order conditions for optimal p entail solving a
quadratic expression of the following form:

a0p2 + b0p+ c0 = 0 (3)

where, a0 = �3a
pmax

, b0 = 2( ac
pmax

+ a� b
pmax

), c0 = �ac+
bc

pmax
+ b with a and b as given below:

a =
��

(1� �)wmax
; b = (1�

w

wmax
)�

apmax

2

Now using the value of p obtained from (3), one can
derive optimal expected pro�t for a random strategy
buyer �l and also �2 following similar arguments.

Now the Myopic policy is to set the ongoing price at
a new level p0 de�ned by:

p0 = p1s if p1s < p2 or �1 < �2

= p1 if �1 > �2

The Myopical optimal strategy described above re-
quires knowledge of buyers utility functions, competi-
tor's price and delay at the competitor. In the forth-
coming sections, we develop adaptive strategies for no-
information case.

3.2 Adaptive Strategies in No-Information
Case

In the absence of information about competitors'
prices and delays and any means to measure buy-
ers' preferences, past dynamics will help decide fu-
ture course of action. In this section, we devise few
such strategies which di�er in their fore-sightedness
and also in their computational requirements.

3.3 Derivative Follower

This is the simplest practicable dynamic pricing strat-
egy and is least computationally intensive. This exper-
iments with experimental increases/decreases in prices
till observed pro�t falls, after which the direction of
movement is reversed. It requires keeping track of past
average pro�ts for each value of queue length and in-
creases the prices till the pro�tability level falls. Or
more explicitly, the price setting is according to:

pt+1(w) =

pt(w) + Ætsign(�t(w) � �t�1(w))sign(pt(w) �
pt�1(w))

where �t(w)is the pro�t made by the seller during time
t when the expected waiting time was w. Æt is the step
size parameter and is distributed uniformly between
[a; b] for a judicious choice of parameters a,b > 0.

3.4 Model Optimizer with Exploration

This strategy attempts to utilize the statistical data
available e�ectively. Instead of single step history, this
uses a multi-step history to decide right price. This is
implemented using a polynomial regression of average
pro�ts corresponding to each state over a �xed number
of previous prices relationship as in Das et.al[2000].

The model is built to minimize the least square error
and then the constructed model is used to determine



optimal price to quote corresponding to that state.
The model is re�ned periodically when enough new
information arrives. The number of steps to look or
the degree of the polynomial is based on trade-o�s
on increased pro�t and increased computational and
memory requirements.

In brief, the seller uses his price(p), queue length (q)
and the measured pro�ts(�). Later, a (polynomial)
regression of average pro�t �t;q on price pt;q for an
observed queue length q is performed at time t as given
below:

�t;q = c0 + c1pt;q + c2p
2
t;q + :::::crp

r
t;q

The deviation, "t, at any decision epoch is

"t = c0 + c1pt;q + c2p
2
t;q + :::::crp

r
t;q � �t;q

The coeÆcients are chosen so as to minimize the the
least squared error. Historical data corresponding to
the same queue length as the current observed queue-
length is used for regression.

In our experiments we supplement the regression equa-
tion with an exploration phase to �nd optimal price.
Exploration is initiated when the model optimizer fails
to �nd a price in the immediate vicinity of the ongoing
price in any state. Exploration selects a price from a
uniform distribution over (a; b), an interval around the
ongoing price.

3.5 Q-Learning

Observe that a seller's learning problem when his op-
ponent follows a stationary ( perhaps randomized)
strategy is a learning problem in semi-Markovian deci-
sion processes. Since we assume no information about
opponent's strategies and buyers preferences, we de-
velop a Q-learning algorithm on "states" of the seller
only.Opponent's strategies and buyers' behaviour get
reected in the reward obtained and transitions oc-
curred. Let r(i; u) denote the rate at which reward
accumulates when action u is used.

We use queue-length at the seller as state in the follow-
ing and actions refer to price to be set. Probability of
transitions Pij(u) and and time to transition, from i to
j are function of the seller's action u, the latter having
distribution Fij(u). Opponent's strategy has indirect
inuence on these distributions which is not explicitly
accounted in the Q-learning procedure stated below.

For any stationary policy, �, its value, the discounted
expected reward, as:

V�(i) =P
j2S Pij(�(i))

R1
0

R i
0 e

��sr(i; �(i))dsdFij (tj�(i))+

P
j2S Pij(�(i))

R1
0 e��tV�(j)dFij (tj�(i))

If the expected reward associated with an action u

during transition from i to j is denoted by R(i; j; u)
and the expected discounted factor

R1
0 e��tdFij(tju)

is denoted by (i; j; u), then the above expression can
be rewritten as

V�(i) =
X
j2S

Pij(�(i))R(i; j; �(i))+
X
j2S

Pij(�(i))V�(j)(i; j; �(i))

(4)
where R(i; j; u) is the expected reward received on
transition from i to j under action u.

Now de�ne V �(i) = sup� V�(i) and the Bellman's op-
timality condition is

V �(i) =

maxu(
P

j2S Pij(u)
R1
0

R i
0 e

��sr(i; u)dsdFij (tju)+

P
j2S Pij(u)

R1
0 e��tV �(j)dFij (tju))

De�ne term inside the braces as Q�(i; u). Proceed-
ing along the lines of Q-learning for MDPs, Q-value
update procedure can be written as follows:

Qn+1(i; u) =

Qn(i; u) + �n(i; u)
�
1�e���

�
 (i; j; u)+

e��� maxbQ
n(i; b)�Qn(i; u)

�
(5)

where the sampled transition time from state i to

state j is units and the term 1�e���

�
 (i; j; u) is the

sample reward during the time � units and the term
e��� is the sample discount on the value of the next
state given a transition time of � units.

Prices are discretized in multiples of Æ > 0 so that the
number of actions are �nite. The above Q-learning is
implemented using Gibbs functions for exploration.

4. Multi-agent Reinforcement

Learning: An Algorithm

The dynamic pricing problem with two-agent learn-
ing is a learning problem in semi-Markovian game.
In this section, we depart from semi-Markovian treat-
ment and consider only the simple discrete version.

Consider a stochastic game with two players (agents).
Let their control processes be fZi

ng; i = 1; 2 taking



values in A their common action space. Let the �-
nite state space of the game be denoted by S: The
transition probability of the underlying state process
is according to the following conditional law:

P (Xn+1 = jjXm;Zm;m � n) = p(Xn; Zn; j) j 2 S:

where p : S � A2 � S ! [0; 1] such thatP
j

p(i; �u; j) = 1 8 �u 2 A2.

Agent i; i = 1; 2 seeks to minimize his costs or maxi-
mize his pay-o�s:

E[

n=1X
n=0

�nci(Xn; Zn)

for his prescribed pay-o� function ci : S �A2 ! R.

For any �(:; :) = [�1(:; :); �2(:; :)] 2 (P(A))2jSj, de�ne
the transition probabilities and pay-o�s for a policy �
as

�p(x; �; y) =
P
a1;a2

p(x; [a1; a2]; y)�
1(x; a1)�

2(x; a2) x; y 2 S

�cl(x; �) =
P
a1;a2

cl(x; [a1; a2])�
l(x; a1)�

2(x; a2); l = 1; 2

Correspondingly, de�ne the policy value function for
player l is :

V l
�(x) = E[

m=1X
m=0

�m�cl(Xm; �)jX0 = x]; x 2 S:

where Zn are being chosen according to the stationary
randomized policy �: Then V l

�(:) is the unique solution
to the �xed point equation:

V l
�(x) = c(x; �) +

X
y

�p(x; �; y)V l
�(y)8x 2 S

Following Federgruen (1978), we call the policy pro�le
�(:; :) a Nash equilibrium of for every i;

V l
�(x) � V l

��(x) 8x

whenever, ��k(:; :) = �k(:; :); for all k 6= l.

Such a Nash equilibrium is known to exist. See Fed-
ergruen (1978). Moreover, if we freeze policies for one
agent, it becomes a Markov Decision Process for the
other agent whence it follows that V 1

� (x) satis�es the
following dynamic programming equation: 8x 2 S,

V 1
� (x) =

min
a

X
a2

�2(x; a2)[c
1(x; [a; a2])+�

X
y2S

p(x; [a1; a2]; y)V
l
�(y)

(6)
Similar relation holds for V 2

� (:).

Since, existence of a Nash equilibrium is ensured in
the mixed strategy domain perhaps not in the pure
strategy space, and also since if a player plays a Nash
equilibrium strategy, the other player needs to solve an
MDP, actor-critic type of learning paradigm is a natu-
ral choice for stochastic games to learn such strategies.

Now in the case where both the agents try to learn
their Nash equilibrium strategies in a similar fashion,
that is, follow the same learning behavior, one can
hope that both will converge to the Nash equilibrium
(provided it is is unique) if Player 1 sees Player 2 as
quasi-static and Player 2 sees Payer 1 as playing equi-
librium strategy in their pursuit for mutual best re-
sponses. With this intuition, we devise two similar
actor-critic learners where one learner updates its ac-
tor on a slower time scale than the other. Further,
the critics, that perform their respective actor's pol-
icy evaluation run at the same time scale but faster
than their respective actors. Formally, we de�ne the
actor-critic learners as follows:

Consider the simplex of probability vectors over the
action space A; P(A). Any stationary randomized
policy is a map � : S ! P(A). For i 2 S; �(i) is
an jAj- vector whose components may be denoted by
�(i; a)a 2 A:. We search for optimal [�(i; a)]i2s;a2A in
(P(A))jSj. These being probability vectors it suÆces

for us to search for optimal �̂ = [�(i; a)]i2S;a2A;a6=a0
for a �xed a0:

V l
n+1(x) = V l

n(x) + al(�(x; n)IfXn = xg

(V l
n(x)� cl(x; Zn)� �V l

n(Xn+1))

�̂ln+1(x; :) =

�(�̂1n(x; :) +
P
a 6=a0

bl(�(x; a; n))IfXn = i; Zl
n = a)

(V l
n(x)� cl(x; a) � �V l

n+1(Xn+1)))ea)

where ea is the unit vector with value 1 in the a� th

position,fal(n)g&fbl(n)g are the step size parameter
sequences satisfying the standard stochastic approx-
imation conditions and �(x; a; n) is the number of
times (x; a) is encountered in the chain f(Xn; Zn)gand
�(:) is the projection on to the sub-probability sim-
plex P0(A) := fx :

P
i

xi � 1; xi � 0;8ig. Finally, let

" 2 (0; 1) be a small positive number. Then, pick Zl
n



according to the distribution �ln
"
(Xn; :) de�ned for any

�l 2 (P(A))jSj; by �"(x; :) = "&+(1�")�(x; :) where
& is the uniform distribution over A to ensure suÆcient
exploration.

In addition to all the above, we require that the se-
quences fai(n)g &fbi(n)g satisfy:

ai(n) = o(bi(n); i = 1; 2

b1(n) = o(b2(n)) (7)

If one interprets fai(n)g &fbi(n)g as time scales, then
(7) de�nes three time scales for operation of the two
actor-critics; while the two actors operate on di�erent
time scales, their respective critics operate on the same
time scale faster than their respective actors.

In the next section, we present our simulation studies
over a set of general-sum games that includes a degen-
erate version of the dynamic pricing problem in which
both the players encounter the same pay-o� matrix in
each state.

5. Simulation Study

The market was simulated for 2 sellers. Buyers arrive
in Poisson fashion with rate .5. Service times are deter-
ministic with value equal to 0.9. The production cost
of each seller was set at 10 and Upperlimits on price
and waiting time for a buyer are uniformly distributed
over (0,50]. The fraction of buyers that use random
selection of seller is 0.2 In the case of all other adap-
tive strategies di�erent from Q-learners, the prices are
revised after �xed time interval that equals twice the
mean inter-arrival time. In the case of Q-learner, the
prices are revised whenever state changes: whenever
an arrival or departure occurs.

All the developed strategies were pitted against each
other to analyze price dynamics. However, we report
only the experiments with Q-learner against an op-
ponent with all other strategies. Figure 1 shows the
average pro�t curves. It can be seen from the prof-
its obtained that Q >> MY MOE >DF. That is,
Q-learners always yield higher pro�ts as one would ex-
pect. The Q-learning based pricing agent will require
high memory compared to other strategies. But the
computational requirements are minimal compared to
other strategies. Further, the pro�t margins observed
may as well substantiate use of such algorithms for
pricing.

5.1 Actor-Critic Learner

As mentioned earlier we experimented with the three
time scale algorithm on a degenerate dynamic pricing

game where in each state (the vector of queulengths),
the pay-o�s corresponding to di�erent price actions
are set equal to corresponding components of the ma-
trix given below, which is taken from Mangasarian and
Stone (1964). The price interval [0; 50] is divided into
six equally spaced price actions and the pay-o� for each
price pro�le is set equal to corresponding value in the
matrix. The learning rates are a1(n) = 1

n
; a2(n) = 1

n

whereas b1(n) = 1
n0:6

and b2(n) = 1
n0:85

in all the ex-
periments and the discount parameter is set at a value
of 0:9 in all our learning experiments.

The learners converge to the unique equilibrium which
for the �rst player is to play action 1 and action 6 with
probability 0.5 and for Player 2, to play action 3 and
action 4 with probability 0.5. The state transitions
depend on the buyers' arrival pattern. The strategies
converge to the equilibrium of the stage game as ex-
pected in such unique equilibrium games. See Figure
2.

We also experimented with a iterated constant sum
game shown in the matrix below which has again
unique equilibrium [0.33, 0.67] for both the players.
Figure 3 shows convergence behaviour.

In another experiment of general-sum bi-matrix game
described in Bowling and Veloso that exposes some
diÆculties in determining winning position of (their
WoLF algorithm, a feature needed for convergence)
with arbitrary start states. Here again, the actor-critic
shows convergence to the Nash equilibrium. See Figure
4.

We still need to conduct experiments on a truly dy-
namic game and games with multiple equlibria.

A =

0
BBBBBB@

0 0:2 0:4 0:6 0:8 1:0
0:2 0 0:2 0:4 0:6 0:8
0:4 0:2 0 0:2 0:4 0:6
0:6 0:4 0:2 0 0:2 0:4
0:8 0:6 0:4 0:2 0 0:2
1:0 0:8 0:6 0:4 0:2 0

1
CCCCCCA

B =

0
BBBBBB@

0 �0:02 �0:08 �0:18 �0:32 �0:50
0 0:02 0 �0:06 �0:16 �0:30
0 0:06 0:08 0:06 0 �0:10
0 0:10 0:16 0:18 0:16 1:0
0 0:14 0:24 0:30 0:32 0:30
0 0:16 0:32 0:42 0:48 0:50

1
CCCCCCA

General-Sum Bi-Matrix Game (Mangasarian and Stone

(1964))



�
3; 2 1; 4
1; 4 2; 3

�

Constant Sum Bi-Matrix Game

�
0; 3 3; 2
1; 0 2; 1

�

General-Sum Game (Bowling and Veloso(2001))

6. Conclusions and Future Research

In this paper, we have developed a model for dynamic
pricing in service markets and analysed performance of
various adaptive strategies. An opponent-oblivious Q-
learning strategy has been observed to yield very high
pro�ts compared to other adaptive strategies consid-
ered in literature. High pro�t margins obtained will
substantiate use of Q-learning based pricing agents in
agent-mediated electronic service market domains in
future.

For two-agent reinforcement learning, we proposed
a multi-time scale actor-critic algorithm. Computa-
tional results on convergence in iterated games frame-
work have been very encouraging. Even in the iterated
game cases, no general convergence algorithm is known
to exist. Multi-time scale actor-critic algorithms of the
type presented seem to o�er some promise in this di-
rection. Currently, we are experimenting on multiple-
equilibria cases. We are yet to develop similar actor-
critics that can address semi-Markovian games of our
dynamic pricing problem. Reinforcement learning in
dynamic games is of great help in e-commerce domain,
particularly in dynamic auction/negotiation games.
We address these topics in our future work.
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MY DF MOE QL

MY 0.742 2.519 2.258 0.742
DF 0.201 2.050 0.078 0.074
MOE 0.501 1.776 0.493 0.727
QL 3.181 7.585 2.536 4.780

Table 1. Average pro�ts obtained by seller 1 for di�erent
strategies

Figure 1. Actor Convergence for the Repeated General
Sum Bi-Matrix Game

Figure 2. Actor Convergence for the Repeated Constant
Sum Bi-Matrix Game

Figure 3. Actor-Critic in Repeated General-Sum Game(of
WoLF)

Figure 4. Average Pro�ts from Q-learner


