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Abstract

Renewed focus on virtualization technologies and increased awareness about management
and power costs of running under-utilized servers has spurred interest in consolidating existing
applications on fewer number of servers in the data center. The ability to migrate virtual
machines dynamically between physical servers in real-time has also added a dynamic aspect
to consolidation. However, there is a lack of planning tools that can analyze historical data
collected from an existing environment and compute the potential benefits of server consolidation
especially in the dynamic setting. In this paper we describe such a consolidation recommendation
tool, called ReCon. Recon takes static and dynamic costs of given servers, the costs of VM
migration, the historical resource consumption data from the existing environment and provides
an optimal dynamic plan of VM to physical server mapping over time. We also present the
results of applying the tool on historical data obtained from a large production environment.

1 Introduction

Virtualization technologies first appeared in the 1960s to enable timesharing of expensive hardware
between multiple users. As hardware became cheaper, virtualization gradually lost its charm. How-
ever, since the late 1990s there has been a resurgence of these technologies. In server environments
it has gained such a huge momentum that in a couple of years almost every machine shipped is
expected to support virtualization in one or more layers of the hardware, firmware, and software
stack.

Server virtualization has regained popularity for various reasons. Virtual machines support more
flexible and finer grain resource allocation and configuration than physical machines. Even though
the hardware cost of servers has dropped, the cost of management and TCO of these servers has
gone up drastically. It has been shown that the cumulative running management cost of a server
over its lifetime is significant when compared to its hardware cost. Virtualization enables consol-
idation of a number of smaller servers as virtual machines on a larger server. The assumption is
that the management cost does not scale up with the number of virtual machines. Also a single
set of management controls can now be used to manage the virtual machines on a server instead of
individual controls for every server. Data center studies show that the lower end servers, perhaps
because of the lower cost, are often run at lower utilization compared to higher end servers. Thus
consolidation using virtualization leads to more efficient utilization of hardware resources. Fewer
number of heavily utilized servers also leads to savings in expensive floor space and facilities man-
agement costs. Finally, complex virtualization software tends to hide the heterogeneity in server
hardware and make applications more portable or resilient to hardware changes.

A key issue in virtualization is thus to map an existing or fresh workload to virtual machines on
physical servers. In a completely new setup, average benchmarked numbers from servers can be
used to plan the virtualized environment. However, for an existing data center such a consolidation
exercise is easier said than done. In our experience, often customers are very reluctant to move to a
virtualized environment from their existing system as they are not convinced about the consolidation
related benefits of virtualization. Even though server handbooks and static planning spreadsheets
may promise that the existing servers can be clubbed into a fewer number, it needs a more detailed
workload study in the actual environment and demonstratable evidence of the benefits based on
historical data collected from the same environment.

We have developed a tool called ReCon that uses historical resource usage monitoring data from
the servers in an environment and recommends a dynamic consolidation plan on the existing set of
servers or a different target set. As opposed to existing tools, ReCon does not stop at providing
a static consolidation plan based on the average resource utilization numbers. It actually assumes
live virtual machine migration capabilities in the virtualization platform to recommend a dynamic
consolidation pattern where virtual machine to physical machine mappings can be simulated over
time to demonstrate the real benefits of embracing virtualization with migration.

Figure 1(a)-(b) shows the CPU utilization patterns for two clusters in a large data center averaged
over the entire month. Colors towards ”red” represent high utilization and colors closer to ”blue”
represent low utilization. It is clear that in Cluster A, some of the machines are grossly under-utilized
throughout the day. Therefore, the workloads on these machines can be consolidated statically and
the number of machines can be reduced permanently in the setup. Cluster B and some of the
machines in Cluster A show that there are long low utilization periods during the day (not for entire
day). This indicates that even though the number of machines cannot be reduced permanently, it
is possible to consolidate the workloads on fewer machines and switch off the remaining servers or
put them in some low power state during those periods. Of course, it entails using virtual machine
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Figure 1: Heatmaps showing average intra-day variation in CPU utilization of two clusters in a
single month. Each column corresponds to a physical server. Th y-axis is divided into 48 30min
intervals in a day. Each 30 min sample for a server is averaged for the same time interval over the
whole month.

Figure 2: Heatmaps showing average intra-day variation in CPU utilization of two clusters in a
single month. Each column corresponds to a physical server. Th y-axis is divided into 48 30min
intervals in a day. Each 30 min sample for a server is averaged for the same time interval over the
whole month.

migration technologies to migrate the applications at runtime. Figure2(c) shows the utilization
pattern of cluster B for the next month. It is evident from the figures that the utilization changes
over time. For example B7 and B8 are used moderately in first month however, heavy usage is
seen in second month. On the other hand B9 shows opposite behavior. To handle such cases the
reconsolidation tool should be able to capture dynamism exhibited by clusters.

Even if the average machine utilizations are not very low, the utilizations on different machines
are sometimes complementary in nature, i.e., when one machine in a cluster is at high utilization,
another machine in the same or different cluster may be at a low utilization. This is illustrated in the
set of CPU utilization plots on a pair of machines shown in Figure 3. The dotted lines are the CPU
utilizations captured in a time window for two servers and the solid line is the summation of the two
dotted lines. Dynamic consolidation can happen either due to periods of low resource utilization
of the packed applications (Figure 3(b)) or when applications demonstrate complementary resource
behavior during a period (Figure 3(a)). In the course of this discussion we have often simplified
resource utilization to be captured only by CPU utilization. In practice, multiple parameters, such
as memory, disk and network I/O bandwidth consumption etc., need to be considered to create a
volume that represents resource utilization of an application workload.

In this paper, we describe the architecture and algorithms of ReCon and its validation using his-
torical traces collected from a large data center. Unlike other tools that perform static consolidation
based on benchmarked results, ReCon operates on historical data and investigates the scope of per-
forming dynamic consolidation utilizing virtual machine migration technologies. By varying several
parameters, ReCon allows a user to process historical resource consumption traces in various ways
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Figure 3: (a) Example showing peak-trough pattern (b) Example showing low utilization VMs

Figure 4: ReCon tool architecture

and generate results to investigate the entire solution space in performing server consolidation, static
or dynamic, in the actual environment. For example, the user is able to find out under a given set of
input parameters what is the typical number of machines to be used in a cluster, what is the scope
of dynamic consolidation with complementary behavior or due to low utilization, how much of inter
or intra cluster dynamic consolidation is possible etc. Armed with these experimental results on
various what-if scenarios the user is now able to take a more informed decision on whether to move
to a virtualized environment and what kind of dynamic consolidation behavior to expect with the
real workload.

The rest of the paper is organized as follows. In Section 2 we describe the ReCon architecture.
Section 3 presents the formal problem definition and describes the algorithms implemented in ReCon
and Section 4 discusses the experimental validation of ReCon on actual traces. We describe some
of our ongoing and future initiative in Section 6 Section 7 concludes the paper with a discussion of
future work.

2 ReCon Overview

In this section we describe ReCon architecture and the problem statement. The detail algorithms
in ReCon and a use case based validation is covered in the later sections.

A high level view of the ReCon tool is shown in Figure 4. The trace database is a set of measure-
ments taken from the actual system under consideration. These measurements are typically in a
timeseries format containing timestamped records of a CPU, memory, network, disk I/O bandwidth
consumptions of physical servers in an existing system. The general approach of ReCon is to treat
each of the servers in the existing setup (also called ”source” servers) as virtual machines in a new
setup. Thus the resource consumptions of the source servers are treated as the resource requirements
of the corresponding VMs in the ”target” servers, i.e. physical machines in the new setup. Addi-
tional information is captured from the user regarding the source and target server configurations.
This is required to scale the resource requirements of the VMs when mapped to different target
servers as well as ascertain the capacity of the target servers to satisfy the VM requirements. It
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is possible to have the same set of source and target servers if the user wants to investigate static
or dynamic consolidation using virtualization in the existing setup. The information regarding the
cluster memberships of the servers is also captured so that different costs and constraints can be
associated with intra and inter cluster consolidation.

The costs for servers are simply broken into two broad components, static and dynamic. The static
component is used to capture the base cost of running a physical server with workload allocated
to it. This cost is accounted for every target server that is powered on. In a static consolidation
scenario it must have at least one virtual machine allocated to it. In the dynamic consolidation case
there may be periods when the server is ”on” in anticipation of future workload because there may
not be ample window of opportunity to turn the server off in between allocations. Static server cost
may be used to capture management, running costs etc. The dynamic cost of a server is assumed
to vary with the utilization of the server. Power cost is a predominant component of this cost.
Besides server costs, the user can also specify virtualization costs, such as inter and intra cluster
VM migration costs.

Constraints specified in ReCon are essentially to restrict the space of possible mappings between
VMs and physical servers. These may be system constraints, such as the CPU utilization of a target
server should not exceed 90% or the network traffic due to VM migration should not be more than
10% of the LAN bandwidth, or the power cost of the data center at any point should not exceed
a threshold. There may be various application level constraints, such as two applications running
in two VMs cannot be mapped to the same target server in a defined time interval. There may be
also legal constraints to prevent certain application VMs to be mapped to the same target server to
enforce hardware isolation.

The server and cluster specifications, costs, constraints, and evaluation results can be stored in
an internal repository and reused later. ReCon can be used as a ”what-if” analysis tool. The input
parameters for the analysis can be fed to the tool to process the historical trace data and generate
a report. Based on the report output the user can change the parameters and review the impact on
the report. Various ”what-if” input parameters, costs, and constraints can be tweaked to generate
consolidation reports. Input parameters include the window of dynamic consolidation, the period
that a server should have no workload to consider turning it off etc. Besides the static or dynamic
consolidation plan the reports essentially capture all the micro-measurements of a consolidation
result. Details of these micro-measurements and the parameters to tweak can be found in the
experimental evaluation section where we validate the tool in a production environment.

The core optimal mapping algorithm in ReCon can be used to take all the parameters, costs,
constraints, configurations and process the input traces to generate static or dynamic server consoli-
dation. For dynamic consolidation the historical data is divided into non-overlapping time windows
called ”consolidation windows”. In each window an optimal mapping from source to target servers,
i.e. VMs to virtualized physical servers is created as an incremental update from the mapping in
the previous window. Runtime VM migration technologies are assumed to move from one mapping
to the next. In the static consolidation case, the time window is assumed to be the entire trace and
a single mapping is generated. Next, the algorithm details are discussed in detail.

3 Algorithm

Informally, the problem of recommending server consolidations can be stated as: Given N application
VMs, find n physical machines where n < N such that each VM is assigned to one physical machine
while satisfying domain specified constraints. Next, we present the notations used in this section.

3.1 Basic Notations

Let V M = {V M1, V M2, . . . , V MN} be the set of virtual machines in the current architecture.
Each V Mi observes and stores K variables denoted by O = {O(1,i), O(2,i), . . . , O(K,i)}. Each VM is

monitored for T time steps. The time series generated by jth sensor of ith VM is denoted by O(j,i)

= {O1
(j,i), O

2
(j,i), . . . , O

T
(j,i)}. Also assume, that N VMs are partitioned into H groups such that each

group is primarily responsible for handling one application. In an industrial environment each of
these partition can be thought of as a cluster of machines. The membership of N VMs to H clusters
is specified by a N × H matrix Mem, s.t. ∀i1toN , j1toH Mem(i, j) = 1 if ith VM belongs of jth

partition (application), 0 otherwise.
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B =
N∑

i=1

(Costi + F(CPUi)) −
N∑

j=1

(Costj × Yj +
N∑

k=1

MCostk,j × Ak,j + F(
N∑

k=1

CPUk × Ak,j)) (1)

3.2 Data Preprocessing

The monitoring tool stores the resource utilization as percentage of total resource, for e.g. 50%
CPU utilization. Such percentages, however, cannot be used to establish (in)equality between two
machines, e.g., 50% of 1 Ghz and 25% of 2 Ghz. Since the hardware specification of machines are
readily available, we use this information to normalize/standardize the resource consumption. For
example the CPU utilization can be converted to cycles/second and n/w utilization can be converted
to actual bits/sec. These converted values can now be compared in a meaningful fashion.

3.3 Constraints

The constraints to be satisfied are divided into 2 groups i) virtual machine specific and ii) physical ma-
chine specific. With each V Mi is associated a list of Mi constraints VC = {V C(1,i), V C(2,i), . . . , V C(Mi,i)}.
Similarly, Li constraints are associated with physical machine PC = {PC(1,i), PC(2,i), . . . , PC(Li,i)}.
As mentioned in Section 2, these constraints can originate at system, SLA, legal and application level.
Typically application, SLA and legal constraints are associated with VMs while system constraints
are associated with physical machines. For example, if due to legal policies or client commitments,
two applications cannot reside on the same machine, then such exclusivity constraints are forced on
the VMs for both the applications. However, if a physical machine has available bandwidth of 100
Mbps then such constraints are enforced at physical machine level to check if it can cater to the
network need of VMs which can be potentially hosted onto the machine. Whenever unambiguous,
we denote a constraint by C ignoring the prefix P or V .

We also extend the traditional definition of a constraint to include time component, C
[t1,t2]
(j,i) specifies

the jth constraint of ith VM which should hold in the interval [t1, t2]. The constraint C
[t1,t2]
(j,i) is said to

be satisfied if eval(C
[t1,t2]
(j,i) |P) is 1, where P denotes the properties of the environment/architecture in

the time interval [t1, t2]. and eval evaluates the inequality specified in the constraint. For example,
in the above mentioned network bandwidth example, the constraint is of the form ∀10

t=1

∑
i∈[1,S] O

t
l,i

< 100 Mbps, where Ol is the sensor monitoring network usage, time period is [1,10] and S is set of
potential VMs which can be consolidated and N/Wi is network usage of V Mi. If for a given set of
VMs and time period, the inequality is satisfied eval returns 1 else 0.

3.4 Optimization Problem Formulation

The problem of selecting n physical machines which can host N VMs VM is posed as an optimization
problem. Such a formulation can also account for fixed and dynamic costs. Initially, each VM
(application) is hosted by one physical machine and each physical machine hosts exactly one VM.
Therefore, |V M | = |P | = N . n is not known apriori and N serves as an upper bound on n. Let
A be a N × N matrix such that Ai,j =1 specifies that V Mi is assigned to Pj . Y denotes a N bit
vector, such that Yi = 1 implies that Pi is current being used and one or more V Mj ’s are assigned
to it. At start of the analysis A is a diagonal matrix. Similarly, P is a vector of all 1’s. Costi
specifies the fixed cost incurred in if Pi is active. MCosti,j is the cost for migrating V Mi to Pj .
Typically, migration cost within the same cluster is cheaper than inter cluster ones. We use the VMs
to application mapping specified in H to analyze this aspect in detail in Section 4. F calculate the
dynamic cost of a physical machine if one or more VMs are assigned to it. Currently, the function
uses the CPU utilization for power computation. Finally [t1, t2] is the consolidation window. The
total benefit attained by packing the VMs can be calculated by the function in Equation 1.

The valid assignment can be obtained by maximizing the objective function. The first term, i.e.,
P

N
i=1

(Costi + F(CPUi)) accounts for the initial fixed as well as the power cost. However, this term is
fixed and does not change while maximizing the function. Therefore, for computational efficiency
we can ignore the first term. Now the objective function is:

B =

N∑

j=1

(Costj × Yj +

N∑

k=1

MCostk,j × Ak,j + F(

N∑

k=1

CPUk × Ak,j)) (2)

The function now calculates the cost of re-consolidation and a valid assignment will result when
the objective function is minimized subject to the following constraints.
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Constraint 1: Each V Mi is assigned to exactly one Pk, i.e., each column in A should add upto 1

∀i ∈ [1, N ],
n∑

j=1

Ai,j = 1 (3)

Constraint 2: Every V Mi should be assigned to some Pk, i.e., A should have exactly N non-zero
entries.

N∑

i=1

n∑

j=1

Ai,j = N (4)

Constraint 3: All VM specific constraints are satisfied.

∀N
i=1∀

Mi

j=1eval(V C
[t1,t2]
i,j ) = 1 (5)

Constraint 4: All physical machine specific constraints are satisfied.

∀N
i=1∀

j=Li

j=1 eval(PC
[t1,t2]
i,j ) = 1 (6)

Constraint 5: Finally, if some V Mi is assigned to Pj then Yj should be 1

Ai,j ≤ Yj (7)

3.5 Dynamic Reconsolidation

Assume the consolidation window size is Ts. First we minimize the optimization function in interval
[1, Ts] and generate assignment matrix A[1,Ts]. While consolidating for next time span [Ts +1, 2∗Ts],
we use the set of new constraints (valid in the time interval) and use A[1,Ts] as the starting point for
the optimization routine. This intelligent initial value assignment provides computational efficiency
to our framework because for the VMs in which there is no significant change in behavior (resource
consumption, constraints etc), we already have a valid assignment. Only minor modifications are
needed for such VMs and the algorithms converges very quickly.

3.6 Static Reconsolidation

Generating static reconsolidation recommendations is simply a special case in our framework. All
the migration costs are set to zero,i.e., ∀N

i=1 ∀N
j=1 MCost(i,j)= 0. The consolidation window is set

to cover the whole time period, i.e., t1 =1 and t2 =T. With these settings the algorithm reduces to
static case.

4 Experimental Validation

We applied ReCon on trace data collected from an actual production environment. The trace data
was collected using a monitoring system we built called MDMS (Model Driven Monitoring System)
[8]. MDMS is deployed in two production environments and provides a rich source of data from
hundreds of servers to explore the applicability of server consolidation using virtualization in these
environments. In a particular environment where MDMS monitors over 1500 non-virtualized servers
divided into various clusters, we took a sample set of clusters to apply the ReCon tool and generate
consolidation recommendations. In this section we present various experiments performed using the
tool highlighting its effectiveness and usefulness. But first we describe the dataset used and the
associated setup.

4.1 Dataset

We used the monitored data collected from 186 physical servers located in a large data center. The
identity and the industry sector of the organization that is supported by the data center has been kept
anonymous for privacy reasons. The servers are divided into 35 clusters with each cluster supporting
one application, for e.g. Billing, CRM etc. A server does not run more that one application and
thus does not belong to more than cluster. Currently approximately 15 parameters are monitored
for every server on the average. These parameters include CPU utilization, wait I/O, network
utilization and more. In this paper we assume independence among the monitored parameters and
only use the CPU utilization parameter to capture the resource requirement of the virtual machine.
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Cost Total Recommendations Inter-cluster Intra-cluster

40% 2543 150 (5.8%) 2393(94.1%)
50% 2352 181 (7.7%) 2171 (92.30%)
60% 1921 219 (11.4%) 1702 (88.6%)
70% 1556 329 (21.14%) 1227 (78.86%)

Table 1: Results to show how the change in migration cost affects the number of recommendations.

In Section 6, we briefly point to the modifications which can enable the proposed algorithm handle
multiple resource utilization parameters. The parameters are sampled at 5 minutes interval and
sample dataset for 186 servers is taken for a period of one month resulting in 8, 928 samples per
server and 1, 660, 608 data samples over all servers. The optimization model is specified in AMPL [2]
and CPLEX [7] is used as solver. ReCon is run on on a machine with 2.13 Ghz Intel processor and
1 GB main memory.

4.2 Evaluation Metrics

The evaluation of ReCon is captured in it’s time efficiency or how fast it works given the size of
the data. This is important from a tooling perspective because it is difficult to perform any what-if
analysis if the tool takes a long time to generate reports. The efficiency is measured by comparing
the consolidation window size (TS) to the time taken by ReCon (TR) given the number of source
and target servers. The efficiency E is given by TR

TS
. For an highly efficient algorithm E ∼ 0. For

example, if ReCon recommendations are generated in 2 minutes with a 1 hour trace input for 100
source and target servers, then E = 2

60 =.03. The value of E ≥ 1 renders the algorithm useless
for all practical purposes the analysis takes more time than the time span of the collected data.
Essentially, E measures the rate at which data can be analyzed and (new) recommendations can be
generated.

The effectiveness of ReCon applied on a trace is measured by savings in terms of percentage of
physical machines that can be turned off by packing N VMs onto ni (N ≥ ni) physical machines while
satisfying all the constraints in the ith consolidation window. Please recall, S is size of consolidation
window, T represents the entire trace period and T

S
is total number of windows and therefore the

number of times recommendations are obtained in a dynamic setting. The savings within a ith

window is S is given by N−ni

N
. The total saving over all windows is given by

∑T
S

j=1
N−nj

N
. The

higher the value of S the higher the savings. S ∼ 1 implies most of the physical machines can be
turned off resulting in huge savings. This measure is heavily dependent on the trace. The intent of
our experiments on the trace is to illustrate what kind of micro-measurements are generated in a
report rather than the results themselves. The merging of two VMs onto the same physical server is
called a ”recommendation” in this section. We also assume that the dynamic cost of a server varies
linearly with utilization in all experiments. We can experiment with higher degree models in the
tool to stress the optimization backend.

4.3 Change in recommendations vs migration cost

In this section, we study how the recommendations vary as the migration cost is varied. Migration
cost is the key element of dynamic consolidation. The inter cluster migration cost is normalized to
be 100 whereas the cost of intra-cluster migration is varied (as percentage of inter cluster migration
cost). Table 1 enumerates the number of recommendations generated and partitions it into inter
and intra cluster recommendations. There are two key observations to be noted from these results.
Observation 1: It is evident that the number of recommendations decreases as the intra-cluster
cost increases. High migrations costs will not allow VMs to be packed together unless the CPU
utilization of each VM is very small. In such cases the fixed cost might exceed migration cost and
new dynamic server cost, thereby allowing the reconsolidation. However, if the CPU utilization is
very high, then the resultant dynamic server cost will also be very high, which in turn will result in
negative profit (loss). Therefore such recommendations will not be generated.
Observation 2: The gap between percentages of inter-cluster and the intra-cluster recommendation
decreases as the intra cluster migration cost approaches inter-cluster migration cost. This is expected
because the cost of an inter-cluster reconsolidation matches with intra-cluster reconsolidation.
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Cost Total Recommendations Peak-Trough Low Utilization

40% 2543 190 (7.4%) 2353(92.5%)
50% 2352 174 (7.3%) 2178 (92.6%)
60% 1921 139 (7.2%) 1782 (92.8%)
70% 1556 121 (7.7%) 1435 (92.2%)

Table 2: Results showing the change in distribution of recommendations with varying migration cost
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Figure 5: Surface plot showing the timing results as consolidation window and number of VM are
varied.

4.4 Cause of recommendations

As mentioned in Section 1 our tool framework can naturally discover pairs of servers which either
have low utilization or display a peak-trough kind of pattern. These pairs are then recommended
for consolidation. In this micro-measurement we aim to find the number of recommendations in
each category. Assume A and B are two VMs recommended to be consolidated with MA and MB

as monitored values and |MA| = |MB| = N . The series MA is transformed into a digital series
DA: ∀i ∈ [1, N ], DA(i) =1 if MA(i) ≥ µ(MA), 0 otherwise. The recommendation is considered
to be arising from peak-trough(PT) pattern if PT (A, B) ≥ N ∗ ǫ, where ǫ ∈ [0, 1] and PT (A, B)
is given as: PT (A, B) = |XOR(DA, DB)|. Essentially PT calculates how many times the signals
show complimentary behavior. An example case in shown in figure 3(a) whereas Figure 3(b) shows
an example where VMs are consolidated because of low CPU utilization. Table 2 documents the
recommendations with the cause. It is evident that the number of recommendations due to peak-
trough pattern is much smaller than the low utilization ones. However, this measurement shows
that our approach can capture these without checking explicitly for peak-trough patterns.

4.5 Efficiency results

Figure 5 shows the effect of changing number of VMs and consolidation window on the time taken
by the optimization method. The number of VMs to be analyzed are varied from 1 to 175 (in
interval of 25). The consolidation window is varied between 10 minutes to 240 minutes (in interval
of 10 minutes). While varying both the parameters, timing results were obtained for 168 runs. To
decrease the effect of the actual trace values, we ran the experiment 4 times with different parts of
the trace. Finally, timing results from different runs were averaged to produce the surface plot.

As the number of VMs increases, the time taken increases in a linear fashion. This increase
is expected because with increase in VMs, the number of constraints also increase and therefore,
the optimization model takes more time. Increase in the time as the consolidation window size is
increased is due to more data points and is self-explanatory. Finally, when 240 minutes is used
as consolidation window size and 175 VMs are used, the time taken by our algorithm is only 15
minutes. Presence of such a property facilitates performing the analysis at run time (c.f. Section 7).
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Figure 6: Experiments capturing different aspects in a dynamic setting. The y-axis in all plots
the % of machines which can be turned off (a) shows change in savings over a month at different
consolidation window sizes. (b) shows the savings over a month for each cluster. The consolidation
window size is 300 minutes.

4.6 Change in recommendations over time period

In this experiment, we study how the recommendations vary with change in the consolidation win-
dow size. Figure 6(a) documents these change for 24 different window sizes over a period of one
month. The x-axis in each subplot shows number of consolidation windows, i.e., (total minutes in
month)/(window size). The y axis enumerates the total savings. The first subplot shows shows
savings when consolidation is perform at an hourly basis whereas the last subplot shows the saving
at an daily basis. The number in parenthesis on each plot shows total percentage of servers which
can be turned off. The key points which can be inferred from the figure are:
Observation 1: As the time window is increased the number of recommendations (and thereby the
savings) decreases. For example at window size of 60 minutes, the 37% of servers can be switched
off whereas at 1440 minutes this saving gets reduced to 27%. This is expected because increase in
window size imply more samples which in turn makes it difficult to satisfy the constraints. Essentially
at smaller window size, we have to satisfy local constraints however at larger window constraints
become global. For example, consider a toy example where A and B are two VMs. Acpu = { 10,
10, 30, 80, 70, 60} and Bcpu ={30, 40, 80, 30, 20, 30} are 6 consecutive CPU utilization samples
synchronized in time for the two VMs. Assume the constraint that the summation of the two CPU
utilization sequences can go over 100% only once in the chosen time span Ts (equal to 6 samples). If
A and B are hosted on same machine, the resulting machined CPU utilization will be {40, 50, 110,
110, 90, 70}. Now it is clear than constraint is not violated if Ts ≤ 3, the combined CPU goes over
100% exactly once, however at Ts > 3, the constraint is not satisfied and hence the packing is not a
valid one.
Observation 2: This experiment can be used to find the time span which is small enough to capture
the dynamic behavior and at the same time it should be large enough that the optimization engine
is not used repeatedly without any gain. In this example T = 300 minutes seems like a good choice
for the time period.

4.7 Change in clusters over time

In this experiment, we study the effect of recommendations on the individual clusters. The plots for
all 35 clusters are shown in Figure 6(b). The y-axis shows the percentage of machines which can be
turned off, if recommendations are taken into account. The time span Ts is chosen as 300 minutes.
The x-axis range from 1 to 144, total 300 minute periods in a month (43200 minutes). The mean
and standard deviation of savings for each cluster are shown in the parenthesis. Based on the mean
savings and the variation in savings, the clusters can be divided into four groups:
Low Variation - Low Saving: This set represents clusters which consistently provide low savings.

10



Figure 7: Experiments capturing different aspects in a dynamic setting. The y-axis in all sub-plots
the % of machines which can be turned off shows savings for each cluster as consolidation size is
varied from 1 hour to 24 hours (x-axis).

These clusters offer no savings throughout the month. Based on this analysis and other domain
specific knowledge, the admin may choose to ignore these clusters next time ReCon is used. Clusters
in this set are shown in top-left quadrant in Figure 6(b).
Low Variation - High Saving: This group represents most profitable clusters with very low
overhead (in terms of migration and switching machines on/off). The profile of such clusters do not
change considerably over time. Bottom left quadrant shows these clusters.
High Variation - Low Saving: These clusters typically offer very little savings. Please note that
in some time interval, the savings are very high. However, in other all the machines in these clusters
are used. Clusters in top right quadrant highlight this behavior.
High Variation - High Saving: Clusters in these groups have very dynamic profile. Bottom right
quadrant shows the clusters in this group. ReCon exploits the dynamic profiles of such clusters to
maximize the profit.

Figure 7(c) shows the savings for each cluster as the consolidation window size is varied. Such
a plot can be used to further analyze each cluster in more detail. For example, clusters 1 and 28
show small savings at very low window size. Similarly, clusters 13 and 20 show decreasing trend
whereas clusters 8, 14 and 15 show constant trends. This allows one to select the right consolidation
window size for the whole setup. It is also possible to partition the clusters into groups and use a
consolidation window suitable for specific groups of clusters. Thus inter-cluster migrations can only
happen across clusters with the same consolidation window.

5 Related Work

In this section we describe some of the related work in dynamic VM sizing and consolidation planning.
There is significant work in capacity planning [10, 6] and runtime resource management domain
without bringing in the aspect of virtualization. Recently there have been products and research
papers in this area in the context of virtualized platforms. VMWare’s Distributed Resource Scheduler
(DRS) is a runtime component that monitors the utilization of physical servers and virtual machines
and allocates resources to the virtual machines based on various policies [15]. When resources are
constrained for a VM on a physical server then they may be also migrated to a different server using
VMotion [14] migration technology.

Bobroff et al. [3] describe algorithms for reconsolidation in a dynamic setting while managing SLA
violations. They have developed an analytical formula to discover VMs which will benefit the most
from dynamic migration. A bin-packing heuristic is then used to pack multiple VMs onto a physical
server. ReCon has different goals as it is architected as a trace-driven planning tool with reporting
capabilities.

In the static consolidation area, several bin-packing heuristics [12, 9] have been used to map
VMs to physical machines. Typically consolidation tools tackle the problem using static benchmark
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numbers for servers to consolidate larger number of physical servers as VMs onto a large server.
Even if actual measurement data is used from an existing environment, the algorithms are fed with
aggregate resource utilization numbers to find out a static VM to physical server mapping.

ReCon uses measurement data and allows the user to divide the trace into consolidation windows
and create a dynamic mapping between VMs and physical servers. It allows the user to play
with different parameters on the same trace and generates micro-measurement reports on dynamic
consolidation plans. The target is keep the core tool platform independent with specific models
plugged in for different target environments. The IBM Server Planning Tool (SPT) [13] specific to
the Power architecture is the closest match to ReCon. It however takes a static consolidation planning
approach. Some of the algorithms and what-if analysis capabilities in ReCon can be incorporated in
SPT. VMWare also has a tool and a professional service offering to plan the long term virtualization
strategy of a data center [11].

6 Discussion and Future Work

Currently, we are investigating the extensions to the proposed framework in the following directions.
Handling Multiple Attributes: Even though we used only CPU utilization as the resource
attribute, the framework is capable of handling multiple attributes and associated constraints. The
constraints on all attributes should be expressed in the form of (in)equalities and there should be
associated eval functions. No change in required to the core optimization engine. However, in
the current implementation our algorithm still cannot exploit relationships or correlation among
the attributes. For example, there may be a time lag between high CPU utilization and high I/O
utilization. Without considering the time lags, the obtained savings will be less than the optimal
savings. Accounting for the interdependence among the attributes forms major part of our future
initiatives.
Run Time Reconfiguration Tool: In order to convert the planning tool into a real time decision
module, we need a highly efficient implementation and forecasting logic. It is clear from the results in
Section 4 that the alorithm is very time efficient. We plan to employ machine learning methods to fit a
model (or mixture of models) to the historical data [5, 1, 4] and predict future resource consumption
based on the model. This forecasted data will then be used to generate recommendations in a real
time proactive fashion.
Extending What-if Analysis: Currently, our tool allows the system administrator to change
various parameters used in the optimization procedure and study the effect on time taken and
savings. However, we believe that much more useful and interesting scenarios can be handled.
Please recall, the physical machine level constraints taken into account on the specification of the
machine. The system administrator can change these constraints to hypothetically change the
available resources and evaluate the savings. For example, it can be discovered that by increasing
the n/w bandwidth of one specific physical machine one can migrate more VMs to this machine and
obtain increased savings. Similar scenarios can be explored by varying processor speeds etc.

7 Conclusion

In this paper, we presented a planning tool called ReCon to recommend application consolidations
in a large multi-cluster data center. The tool analyzes the resource consumption data of various
applications, discovers applications which can be consolidated and subsequently generates the static
or dynamic consolidation recommendations. We formulate the problem in an optimization framework
wherein valid recommendations are generated while minimizing the total number of physical servers
and satisfying the constraints. The optimization framework provides the flexibility to specify and
impose system, application and legal level constraints. Moreover, time varying constraints are easily
incorporated to account for temporal change in workload characteristics. Finally, different migration
cost functions, virtualization models and server cost models can be plugged into the tool. Overall,
we believe that our methods provide the flexibility to the system administrator to specify most of
the real life considerations while deriving the recommendations.

We performed experiments on a dataset collected from a large production environment. On an
average, ReCon was able reduce the number of servers by 40% based on the specific trace. It was
also evident from the timing results that the core algorithms are efficient enough to be adapted for
a run time module.
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