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Abstract

In this paper we present an automated technique for localizing faults in data centric programs. Data-centric
programs typically interact with databases to get collections of content, process each entry in the collection and
output another collection or write entries back to database. Many of the production faults in data centric programs
are manifested because of presence of certain data values or data patterns in the database that were not checked for
or handled correctly during development of the initial code. Our technique collects the execution trace of the faulty
program, uses a novel precise slicing algorithm to break the trace into slices mapping to each entry in the output
collection and finally does a semantic difference between the slices corresponding to correct output entries versus
incorrect ones to suggest potentially faulty statements. We implemented our approach for ABAP programs. ABAP is
the language used to code in SAP systems and interacts heavily with databases. It also contains embedded SQL like
commands to work on collections of data. We applied our technique to a suite of 13 ABAP programs with faults from
the field and it was able to identify the precise cause in 12 cases.

1 Introduction

Bug resolution is an important activity in any maintenance oriented project. Bug resolution for
problems reported on applications already in use (in production) has two main implications—first,
a client has discovered a bug in the field and so it needs to be fixed as fast as possible. Second, the
bug has arisen despite the fact that the code has been well-tested and probably been running in the
field for some time. That means it is probably a corner case in otherwise correct code and hence is
very often a one-line fix. Since speed is of the essence, it is important to have good tooling support
that can help the programmer debug the program as fast as possible. This is especially true when
the person who is debugging the code is not the programmer who has written the code—and hence
is not familiar with the code.

The techniques presented in this paper, were developed to aid in faster resolution of code bugs
reported for ABAP programs. ABAP is a propriety language used by SAP and is heavily data
centric. Data-centric programs process large collections of data that typically are coming from a
database. ABAP contains both imperative and declarative syntax. The declarative syntax is similar
to SQL and allows developer to do complex operations on collections of data. Henceforth, we refer
to this declarative SQL like commands in ABAP as database statements.

Figure 1 shows a sample program written in ABAP and Figure 2 explains the syntax of each of

1 SELECT CustId ItemId Price Year from OrderTab INTO itab
2 SELECT CustId Discount Year from DiscountTab INTO stab
3
4 SORT itab CustId ItemId
5 DEL from itab where Year <= CurrentY ear−2.
6 LOOP AT itab INTO wa
7 AT NEW CustId
8 amount=0 .
9 ENDAT

10 amount = amount + wa .Price
11 READ stab INTO fa WHERE CustId = wa .CustId
12 IF subrc = 0
13 amount = amount − fa .Discount
14 ENDIF
15 AT END CustId
16 WRITE CustId amount
17 ENDAT
18 ENDLOOP

Figure 1: Sample ABAP program
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command description
SELECT project selected columns from a persistent database table

to internal to the program
SORT sorts the specified internal table on specified key(s)
DEL deletes rows from a table that satisfies the condition
LOOP iterates over an internal table, reading one row at a time

into the local record
AT NEW / a predicate that is true for a given row and field name(s)
(AT END) when the row is the first (last) one in the table or when

the field’s value in the current row is different from the
previous (next) row

READ selects a a row from table stab based on the key value.
If more than one row matches, the last row is returned

WRITE prints the specified data

Figure 2: Basic ABAP syntax

(a) OrderTab
CustId ItemId Price Year

1 I1 10.0 2010
1 I2 10.0 2011
2 I3 10.0 2011

DiscountTab
CustId Discount Year

1 2.0 2010
2 3.0 2011

Output
CustId Amount

1 16.0 × [16.0 = 10.0 + 10.0 - 2.0 - 2.0]
[18.0X= 10.0 + 10.0 - 2.0]

2 7.0 X[7.0= 10.0-3.0]

(b)

1 2 4 5 7 8 15 16

Line 16,<2,7.0>

Line 16, <1,16.0>

10 11 12 13

1615131110875421

10 11 12 13

12

Figure 3: (a) Input and output for the ABAP program illustrated in Figure 1. (b) Dynamic slices for each output row.

the commands. This program represents a business application that creates a report of orders placed
by different customers. Figure 3(a) shows a sample input and output data combinations from the
program. Each correct output row is followed by a

√
, and the output rows that are considered

incorrect are followed by a × mark and the expected correct output. The OrderTab table contains the
order details such as customer who placed the order CustId, item ordered ItemId, it’s price and year
when order was placed Year. The DiscountTab table contains the discount applicable per customer per
year. The output shows for each customer the total order amount. At the code level, the program
first reads the input data from OrderTab and DiscountTab into internal tables itab, stab (lines 1,2), sorts
table itab (line 4) and deletes records older than year 2010 (line 5). The CurrentYear variable is a
parameter to the program and has value 2011. It then loops over the contents of itab (line 6), sums
up the price (Price at line 10), subtracts any relevant discount (Discount at line 13) and prints out the
total (line 16). One output entry is generated for each unique CustId present in the input OrderTab.

There are multiple challenges involved in developing fault localization techniques for these
type of programs. The first challenge is that the analysis needs to handle both the imperative and
declarative parts of the language. What should be the correct representative semantics for different
SQL like commands in an ABAP program. The other one is that the analysis needs to be data
driven, as the behavior of a command is very often dependent on the underlying data. Thus the
same command at the same program point may run without any problems for most of the data

3



(a) OrderTab
CustId ItemId Price Year

1 I1 10.0 2009
1 I2 10.0 2011
2 I3 10.0 2011

DiscountTab
CustId Discount Year

1 2.0 2011
2 3.0 2011

Output
CustId Amount

1 8.0 × [= 10.0-2.0]
16.0X [= 10.0+10.0-2.0-2.0]

2 7.0 X

(b)

1 2 4 5 7 8 10 11 12 13

1 2 54 7 8 10 11 12 13

Line 16, <1,8.0>

Line 16,<2,7.0>

Slice

(c)

1 2 4 7 8 10 11 12 13

1 2 4 7 8 10 11 12 13

KeySlice

Line 16, <1,8.0>

Line 16,<2,7.0>

15

15

16

16

5
Key:<CustId,1>

Key:<CustId,2>

Figure 4: (a) Input and output for the ABAP program illustrated in Figure 1. (b) Dynamic slices for each output entry.
(c) Key based slices for each output row.

(a) OrderTab
CustId ItemId Price Year

1 I1 10.0 2009
2 I3 10.0 2011

DiscountTab
CustId Discount Year

1 2.0 2009
1 3.0 2010
2 3.0 2011

Output
CustId Amount

1 7.0 × [= 10.0 - 3.0]
[8.0 X= 10.0 - 2.0]

2 7.0 X

(b)
1 2 54 7 8 10 1611 12 13 15

1 2 4 7 8 10 11 12 13
KeySlice

Line 16, <1,7.0>15 165
key:<CustId,1>

key:<CustId,2>
Line 16,<2,7.0>

Figure 5: (a) Input and output for ABAP program illustrated in Figure 1. (b) Key based slice for each output row.

and yet may throw an exception or generate incorrect output for some other data. That said, we
nevertheless, assume that the data in the input source on which the failing run executed is itself
consistent. That is, it does not violate its own integrity constraints. This assumption is reasonable,
because the same data-source typically feeds into several other applications that do work properly.
Hence the assumption is that the bug is always in the code—not in the data. As we’ll see further in
the paper, for the example code in Figure 1, depending on the combinations of data available in the
OrderTab and DiscountTab tables, three different code bugs are revealed based on the output. However,
in each of the three cases, the amount reported for CustId = 1 is incorrect.

Problem resolution methodology A large body of past work on fault localization relies on the usage
of program slicing [1]. The basic idea in these techniques is that, when a program computes a
correct value for a variable x and an incorrect value for variable y, the fault is likely to be in
statements that are in the slice w.r.t. y but not in the slice w.r.t x ([13]). Similarly, if a program
computes correct value for a variable x in a particular test case and computes incorrect value in
another test case, then the potentially faulty statements would be the difference between the slices
of these two program executions ([21]). Our problem resolution methodology is motivated by these
prior works and attempts to apply the same in the domain of data-centric programs.

One of the key challenges in applying any of the slicing based fault localization techniques in
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real bug debugging scenarios is the lack of significant number of test cases that show the correct
behavior of the program. These test cases are needed to collect the execution traces of correct
examples that can be differentiated with the trace for the incorrect execution as reported in the bug.
However, in the context of data-centric programs, we can leverage the fact that a single run of the
program yields an execution trace that can in turn be shredded into multiple independent slices,
each of which is responsible for a single record in the output. This is because these programs
typically loop over the input data records, aggregate the input depending on certain key fields and
generate an output record per key value. In the case of example discussed above, the key value was
CustId. A defective program writes incorrect values for one or more key values. Further, if a user
specifies that certain output rows are incorrect (and we assume that the rest of the output is correct)
then, we are able to associate a “faulty” or a “correct” tag with each slice. We can then compute
the difference between the correct and incorrect slices to discover the statements that are potential
sources of bugs.

To identify the bug reported in Figure 3(a), denoted by the output row postfixed with × mark,
we first collect the dynamic trace by running it on the input that reveals the problem. We split the
trace into multiple slices by applying dynamic slicing starting at each instance of line 16 (WRITE) in
the execution trace. Figure 3(b) shows the slices. We then do differencing between the slices to
identify that line 10 through 13 are executed twice in the first slice versus once in the second slice.
The lines are highlighted as fault inducing statements. This finding relates to the problem that the
discount should have been given only once per customer. In the corrected code, lines 10 through
14 were moved inside the AT END block (after line 15). The c

Key Based Slicing It may appear that we can always generate faulty and good slices and potentially,
apply a differencing technique to this setting. However, this is not always the case as the dynamic
slice based on simple data and control dependence may not differentiate between a correct and an
incorrect execution slice. Consider the bug reported for same sample program in Figure 4(a). In
this case the end-user was expecting to see the amount value as 16.0 for CustId = 1 [considering that
we have the example as it is in Figure 1]. However, the code is deleting all order records that are
older than 2 years (line 5). This means the conditional in delete statement in Line 5 is incorrect
or incomplete (as we assume end-user expectation and data in the input source is correct). The
slices for both the output rows are same as shown in Figure 4(b) and hence differencing will not
be able to identify any faulty lines. We resolve this by enhancing the existing dynamic slicing with
the introduction of a key in the slicing predicate. The intuition for this is as follows. Usually in a
data centric program, as part of the output record, you do write out an input field that acts as the
identifier (or key) for the data and is unchanged from the input to output. For our example, this
field is the CustId. So, besides using an execution of a particular statement as the predicate for our
slice, we also use the value of this key field as our slicing criterion. Figure 4(c) shows the key
based slices. Line 5 is only showing a side-effect for records in OrderTab with CustId = 1. The values
in the table itab before (Pre) and after statement #5 (Post) are given below

itab(Pre) itab(Post)
CustId ItemId Price Year CustId ItemId Price Year

1 I1 10.0 2009 1 I2 10.0 2011
1 I2 10.0 2011 2 I3 10.0 2011
2 I3 10.0 2011

Once we do a differencing on these key based slices, our technique highlights line 5 as the
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potential fault inducing code, as it effects the faulty slice, and not the correct slice.

Semantic Differencing However, in some cases even key based slicing is not enough. Consider the
data example in Figure 5(a) for the same program. Here the key slices for both the output records
are the same. The actual difference is in the behavior of line 11 in its two different executions. The
READ statement in ABAP returns only a single matching record. If there exist multiple records that
match the selection criterion (WHERE clause), then it returns the last one. For CustId = 1, line 11 would
need to select from two records, while for CustId = 2, there is only one matching record. Hence, the
behaviors of the READ statement for these two keys are different. Our differencing algorithm iden-
tifies such statements in the execution trace where different behavior of the command/statement
have been exercised in the correct and incorrect key slices and highlights them as potential faults.
For the example application, the correct fix is to join with the Year attribute in the read statement so
that for item bought in a specific year we get the correct discount for that year.

Novelty and Contributions Key-based slicing and semantic differencing are novel generalizations
of previous work on fault localization by comparing program executions. Prior work in this area
mostly takes into account just whether a statement appears in one slice but not in another one;
but it does not take into account the manner in which it appears in a slice. Key-based slicing
also takes into account the relevance of execution of statements to specific keys that were used
in creating those slices; this is of tremendous importance in the context of data-centric programs.
Semantic differencing contributes yet another attribute of statement execution, where the behavior
of statement execution on specific input data is taken into account. We believe that our work
is among the first to successfully adapt and extend fault localization techniques to data-centric
programs that occur in an industrial setting.

We have built a tool that takes an execution trace of an ABAP program and an indication of the
buggy part of output. The tool then offers diagnosis of faults based on the techniques presented
in this paper. In most cases, the diagnosis, if found, was given down to a single statement (for
semantic differencing, we were looking for only a single statement difference.)

Our experiments with the tool show that generalized differencing was able to accurately localize
fault in 12 out of 13 ABAP programs provided to us by our colleagues in IBM Global Business
Services. For These ABAP programs were either old versions of some programs where there was
a known defect that has since been fixes, or were programs in which a realistic defect was seeded
by them. A baseline version of the tool that did not incorporate the generalizations of differencing
mentioned above was effective only in 4 out of the 13 programs.

Organization In the next section we give the details of our slicing algorithm. In Section 3, we
elaborate the differencing algorithm. In Section 4 we give the results of running our analysis
on field bugs. Section 5 gives related work and we conclude in Section 6 with some additional
discussion.
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2 Dynamic Slicing

In this section we present an algorithm that performs precise dynamic slicing on execution trace
containing database commands. Each slice is computed starting from a statement occurrence
(Lineseq) that produces a row in the output, and on a set of variables (V ), occurring in the statement.
This constitutes the slicing criteria 〈Lineseq, V 〉. All the slices that produce incorrect output are
marked as called bad (faulty/incorrect) slice, whereas the slices that produce correct output data
are called good (or correct) slice. The slices, obtained this way, are analyzed with a differencing
algorithm to reason about the possible fault present in bad slice. Efficacy of our differencing
algorithm (cf. Section 3) depends on the precision of the slicing algorithm.

Traditional slicing algorithms are oblivious to the rows and fields of the underlying table data,
resulting in overly conservative slices, and is not suitable for an effective differencing in data-
centric programs. Based on the existing techniques of handling non-scalar data ([31, 30, 18]), a
row and field sensitive algorithm is obtained first. The algorithm is built on top of the precise
(to the field-row level) dependency information which can be obtained from the semantics of the
statement and the data present in the execution trace. For example, the effect of a delete statement
on a table is modeled such that it is possible to know the shift of indices of all the rows. The
data effect of the delete statement will contain all those variables whose table index is changed
by delete statement. The control effect of the delete statement will be all the statements whose
number of executions in the trace is dependent on the number of rows in the table. In general, for
each compound statement, its final effect is represented by a set of assignment statements, and a
set def-use pairs are identified from the assignment statements.

11, 22, 43, 54, 65, 76, 87, 98, 109, 1110, 1211, 1312, 1413, 1514, 1615, 1716, 1817

618, 719, 820, 921, 1022, 1123, 1224, 1325, 1426, 1527, 1628,1729,1830

(a) Execution Trace: List of LineSequenceId

Iq Statement φ

1628 write amount
1325 amount= amount- amount, fa.discount

fa.discount
1123 read stab into fa amount, stab[1].discount,

where custId=wa.CustId wa.CustId
1022 amount=amount+wa.price amount, wa.price,

stab[1].discount,
wa.CustId

820 amount=0. wa.price, stab[2].discount,
wa.CustId

618 loop at itab into wa. itab[1].price, stab[1].discount,
itab[1].CustId

54 DEL from itab where .. itab[2].price, stab[1].discount,
itab[2].CustId

22 Select .. from DiscountTab into stab itab[2].price,
DiscountTab[1].discount,
itab[2].CustId

11 Select .. from OrderTab into itab OrderTab[2].price,
DiscountTab[1].discount,
OrderTab[2].CustId

(b) Update of Data Dependency Set

Figure 6: Example: Slice Computation

The execution trace of the example in Figure 1 for input data specified in Figure 4, is presented
in Figure 6(a). Figure 6(b) we show the update of the data dependency information after including
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each of the statement in the slice that is computed for the amount variable in the second row of
the output, generated at statement occurrence 1628.

Note that, due to shift of indices, the statement 54 is included in the slice. The delete statement
actually does not affect the computation that is done for the second row of the output, as the addi-
tion is not performed on elements which has Year value ≤ 2009. Thus inclusion of delete state-
ment in this slice makes it imprecise. Whereas, the slice computed with criteria 〈1615, {amount}〉
should include the delete statement as deleted rows affect the computation performed to compute
the sum at 1615. The affect in computation is captured both by control and data dependency. The
data dependency is captured using the intersection of def set, and control dependency includes the
statement as number of iteration of loop for CustId=1 is dependent on the delete statement.

2.1 Key-based slicing

As discussed in the previous section, the row and field sensitive slicing algorithm discussed be-
fore can result in imprecise slices. An important question to answer is, when does a statement
occurrence is part of the slice? In our application, as dynamic slices are representative of the com-
putation that affects the rows in the output, then a statement is not part of the slice if absence of it
does not have any effect in the computation of the variable values in the output row associated to
the slice. It is easy to see that, in the above example the delete statement does not have any effect
in computing the amount value in the second row.

Here, we note one important assumption. If a statement occurrence only affects the position
of a row in the output, and not the variable values specified in slicing criteria in the row, the
statement is not part of the slice. For example, if a variation of the delete statement deleted all
the rows related to CustId=1, which would have shifted the second output row to first, even
then the delete statement is considered to be not part of the slice corresponding to the second row.
Many a times the respective order of rows in the output is not important; as we have found in our
experience it is rare to find bugs related to the order of rows in the output, instead the bug is found
in the content of the row.

To determine whether a statement occurrence is affecting the variables values in the slicing
criteria, we need to check two conditions: (C1) if the statement occurrence is performing any
operation which defines a variable in the dependency set, (C2) if the statement can effect the
dependency set itself in terms of addition or deletion of elements. If any one of the condition C1
and C2 is true the statement is added to the slice. For example, the delete statement in our running
example do not satisfy the condition C1 for the slices corresponding to both the rows of the output,
but satisfies C2 for the first row, and not for the second row. Checking condition C1 is relatively
easier than checking C2 for statements that operates on tables.

In this paper, we present a sufficient criteria to check the condition C2. The main aim of the
criteria is to try to remove a statement from the slice which otherwise be included by the basic row-
sensitive algorithm. The main idea of our algorithm is to associate a set of key-value pairs with the
slicing criteria, such that, the selection of the elements to compute the variable values specified in
slicing criteria can be identified by the key-value pairs. In our example, it is evident that the slice
with respect to the criteria 〈1628, {amount}〉 and 〈1615, {amount}〉 have association with key-value
pair 〈CustId, 2〉, 〈CustId, 1〉 respectively. With this association, whether to include the statement
occurrence 54 can be easily checked by determining whether the deleted rows match the key-value
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pairs. We say, a row r matches a key-value pair (k, v), if the value of key k in row r is equal to v.
In general, a statement is included in the slice if any change performed by the statement (such as
added, deleted, or updated rows) matches the key-value pairs.

Along with the key-value pair conditions, we associate sequence condition which states that
elements that are used to compute the variables in slicing criteria are in adjacent rows in an internal
table. This is particularly useful to express group-by constraint in database operation. Consider
the example pre-state of the delete statement 54.

itab(Pre) itab(Post)
CustId ItemId Price Year CustId ItemId Price Year

1 I1 10.0 2009 1 I2 10.0 2011
2 I1 5.0 2009 2 I3 10.0 2011
1 I2 10.0 2011
2 I3 10.0 2011

Here the delete statement does not affect the slicing criteria
〈1628, {amount}〉 given our assumption of unimportance of position of output row. In this case, the
delete statement performs a change that is satisfied by key-value constraint as one of the deleted
row has CustId=2, but the change does not satisfy the key-value condition and the sequence
condition together, as the deleted row is not adjacent to the rows in the dependency set and therefore
will not be in the sequence for further selection.

There are multiple ways to identify key-fields for association.

• The key-fields can be specified by the user. This is not an unrealistic assumption in the context
of fault localization, as we have observed many of the bug reports contained this information.
• Fields in the internal table that are not modified before being written out into the output.
• Fields in the internal table that are used to operate on the rows (select, delete, modify, and so

on).

However, we can only use the key-value and sequence based conditions to filter out a statement
from slice, only under the condition that both key condition and sequence condition hold in the
existing element in the dependency set. We call them the key-value assumption and sequencing
assumption. Thus checking of these assumptions is required and if the assumption is violated then
appropriate approximation is chosen based on the chain provided in Figure 7. As we go up in the
chain the slice gets more precise with increase overhead of computation.

precise
key-value, sequence

key-value
field and row sensitive

non field and row sensitive
imprecise

Figure 7: Slicing Algorithms Chain

Our key-based slicing algorithm is presented in Figure 8. Statements 1-6, 8-11, 16-17, 20-22
represent a basic field and row sensitive dynamic data slicing algorithm. The function get def use(s)
returns a set of def-use pairs representing def-use relationship between each pair. We assume that
function
field row sensitive inclusion check performs the necessary checks like nonempty
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1 Function KeySlice (Iq, V, S )
2 Input : int Iq /∗sequenceid∗ / , Set V /∗set of vars ∗ /
3 Output : List S /∗ List of statements ∗ /
4

5 Set φ = V ;
6 int i = Iq ;
7 key−value−pairs kvp = kvpairs ; / / computed or user provided
8 while i>0
9 s = stmt .get ( i ) ;

10 duSet = get def use (s ) ; / / statement specific
11 if (field row sensitive inclusion check (s ,duSet ,φ ) )
12 && ( !key assumption valid | |
13 (key assumption valid && check kv constraint (kvp ,s ) )
14 && ( !sequence valid | | (sequence valid &&
15 check sequence constraint (kvp ,s ,φ ) ) )
16 slice .add (s ) ;
17 φ=update dep set (φ ,duSet ) ;
18 key assumption valid=check key assumption (φ ,kvp ) ;
19 sequence valid=check sequence assumption (φ ) ;
20 endif
21 endwhile
22 return slice ;
23

24 check kv constraint kvp , s
25 if s is not operating on table
26 return true
27

28 if any change by s satisfies kvp
29 return true ;
30 else
31 return false ;
32 endif
33

34 check sequence constraint kvp , s , φ
35 if s is not operating on table
36 return true
37

38

39 c = changes by s that satisfies kvp
40 if check sequence assumption (c ∪ φ )
41 return true ;
42 else
43 return false ;
44

45

46 check key assumption φ , kvp
47 for each structure variable v.f
48 if f ∈ kvp.keySet
49 if value of v .f != kvp .getValue (f )
50 return false
51 return true
52

53 check sequence assumption φ
54 for all itab
55 for any f
56 I = set of all i s .t . itab[i].f ∈ φ
57 if I is not in sequence
58 return false
59 return false

Figure 8: Key based Slicing

intersection of dependence set and defs in duSet to check data dependency and control depen-
dency to include a statement occurrence in the slice. Once a statement is identified to include in
the slice, the dependency set is updated by removing the def and including use of each def-use
pair in duSet [Line 17]. Above the check done by field-row sensitive check, we add the key-value
and sequence checking to determine whether a statement occurrence chosen by the basic field-row
sensitive algorithm will be part of the slice. These checks are only done for statements that work
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on tables. The function check key assumption checks that the all non-scalar elements in
the dependency set satisfied the key-value pairs, and function check sequence assumption
checks that all the elements in the dependency set are in sequence, so that any statement occurrence
which has a change outside this sequence will not have any effect for a particular key value.

Note that, to highlight the interesting part of the algorithm we do not present the slicing algo-
rithm in terms of dynamic dependence graph ([1]), used to express the data and control dependen-
cies in execution trace.

Note that, it is possible to give a necessary and sufficient condition to check the condition C2.
However, evaluation of such condition is not scalable, and thus not ideal for practical purpose. In
this paper, we therefore restrict the presentation to the practical and scalable technique of key-based
slicing.

3 Slice Differencing

In this section we present the fault localization algorithms. Our fault localization method is par-
ticularly effective when we observe that in an execution some parts of the output are produced
correct and some parts parts of the output are incorrect. We take an existing approach to find fault
- to find the difference in behavior between slices that produce correct and incorrect output ([13]),
and localize the fault at difference points. The novelty of our technique lies in the algorithm to
compute the differences between slices.

In context of difference based fault localization, existing literature have used different type of
program information to apply differencing - counter-example and positive example (that do not
lead to property violation) ([10]), execution trace of passing and failing test runs ([21]). In this
paper, we consider dynamic slices (for correct and incorrect output) generated out of a single exe-
cution trace as sequences to compare and find differences for localizing fault. In the context where
single execution is generating a output with multiple entries, such slices are representative of the
computations that are producing specific entry (row) of the output and as such difference between
such computation will lead to the error. We omit the pure control statements (If/Case/Loop/While)
from the slice, but include the compound statement (statements that can have both data and control
effect) that can affect the control behavior of the execution. For example, Loop statement in ABAP
can take both the form, one in which it loop till the loop condition gets false. In another form, it
loops for all rows in a table. We consider the second form of statement in our slice, but do not
consider the first type of loop statement. We use a control differencing algorithm to find out any
difference in control behaviors of the slices. Based on whether the output produced is correct or
incorrect, we classify slices into correct/good slices and incorrect/bad slices.

We apply two main techniques in differencing. The first technique is relatively simple, where
any control difference between two slices is determined. Such difference analysis typically de-
termines the difference in statement occurrences in correct and incorrect slices. This difference
signifies that certain statements have some effect in computing the incorrect output, but have no
contribution in computing the correct output. These statements are presented as potential fault
points. However, it is possible that control based differencing may not produce any difference as
same sequences of statements can present in slices. The second technique is particularly novel
as it tries to find out the behavioral difference between two slices - finding statements that are
present in both correct and incorrect slices but shows difference in their semantic behaviors (cf.
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Sub-section 3.1). Note that, these differencing techniques are useful to localize faults when certain
rows (but not all) in the generated output have incorrect results.

Control-based Differencing The main aim of control-based differencing is to identify statements
that have contribution towards computation of the incorrect result and have no contribution in
computation of at-least one correct result. To perform this we perform a two step process: 1)
grouping correct and incorrect slices into equivalence classes and 2) perform pair-wise differencing
between a representative elements of the correct and incorrect equivalence classes.

In data-centric programs it is very common that slices containing same set of statements, typi-
cally differ in number of iterations of the same loops. Thus, while creating equivalence classes in
correct threads or in incorrect threads, we combine two slices into the same class if they are exactly
same or if they have different number (> 0) of iterations of the same statements in loop. Gener-
ating equivalence classes in correct slices and in incorrect slices reduces the number of pair-wise
comparisons require to find differences between slices.

While control differencing two elements, one from a correct equivalence class, and another from
an incorrect equivalence class, any difference in sequence of statements is noted. However, due
to common nature of loop-iteration differences, these differences are given lower priority among
all-sets of pair wise differences. The actual algorithm of control-differencing in presented below.

We represent the slice by slice summary based on the following definition.

Definition 1 (slice Summary) Given a slice T = 〈s0 = Iq0

0 , . . . , sn = Iqn
n 〉, its slice summary

Ts(T ) = 〈S0, . . . , Sm〉 is defined as a sequence of summary nodes (Si) where each summary node
is either a node in the slice i.e. for sk = Iqk

k , Sk = Ik where line Ik is not in a loop, otherwise a
loop summary node Lk,l which represents a sequence of slice nodes sk, . . . , sl all of them belong
to a loop and S0 is I0 or L0,j and Si−1 is Ik−1 or Lh,k−1.

Each slice can be viewed as an alternative loop part and non-loop part. Each loop part is
summarized by a loop-summary node. A loop summary node summarizes the slice nodes in a
loop, based on the following definition.

Definition 2 (Loop Summary) A loop summary node corresponding to sequence in a slice si, . . . , sj

is a 4-tuple 〈I, α, β, γ〉 where I is the loop id, the line number of the loop statement. α is the se-
quence of slice summary nodes corresponding to its first iteration in the loop. Say the loop iteration
number for the first iteration be l. γ is the sequence of slice summary node corresponding to the last
iteration of the loop when number of loop iterations is more than one. β is [(Ts1, I1), . . . , (Tsn , In)]
where each (Tsi, Ii) is a pair of slice summary of a slice corresponding to a loop iteration and the
set of loop iterations numbers greater than l of the slices that are represented by Tsi.

Before the difference between various slices is computed, we classify the slices into equivalence
class based on the equality relation which states that two slices are equal if their corresponding
slices summaries are exactly equal. If the slices are equal then they have the same length and exact
sequence of line numbers, but the converse is not true, as iteration number is included in slice
summary.

Once the grouping is done, pair-wise differencing between correct and incorrect slices sum-
maries are performed. In this comparison two slice summaries are compared for equality based on
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the notion of order-obliviousness. If the two slices summaries are not equal then the difference is
noted.

Definition 3 (Equality of slice Summary) Two slice summaries T 1 = 〈S1
0 , . . . , S

1
n〉 and T2 =

〈S2
0 , . . . , S

2
m〉 are said to be order-oblivious equal (denoted as T 1 =o T

2) if ∀i, S1
i = S2

i and m =
n. Two summary nodes S1 and S2 to be equal if S1 = 〈I〉 and S2 = 〈I〉, or S1 = 〈I1, α1, β1, γ1〉
and S2 = 〈I2, α2, β2, γ2〉, and I1 = I2, and prefix(α1, α2) ∨ prefix(α2, α1), and if γ1 ∧ γ2 is not
null then prefix(γ1, γ2) ∨ prefix(γ2, γ1), and ∀(Ts, ) ∈ β1,∃(Ts, ) ∈ β2 if β2 is not empty and
∀(Ts, ) ∈ β2,∃(Ts, ) ∈ β1 if β1 is not empty.

3.1 Semantic Differencing

A bad slice may not show any important difference with good slices in control-based differencing.
This is possible if a statement exhibits different “behaviors” in two slices due to nature of input
data to the statement. We call such difference in behavior as semantic difference. In this section,
we illustrate such differences, and present algorithms to detect semantic differences. To the best of
our knowledge, this is the first attempt to perform fault localization based on semantic differences
of a statement.

Consider the example program presented in Figure 1 and the corresponding test case shown
in Figure 5(a). In this example corresponding to the CustId=1 there are two rows in stab. In read
statement at Line 11 when the selection condition is satisfied with multiple rows, then last matching
row is selected for indexed table based on ABAP semantics. Considering stab to be an indexed
table here, the last row is selected with Discount=3.0, which results in output 7.0 instead of the correct
output 8.0 corresponding to CustId=1. In this example, same slices exist for the two output rows as
shown in Figure 5(b). So control differencing would not be able to find any difference in slices.

In semantic differencing, we assume that there must exist a faulty statement in the program
that appears both in the good and bad slices, such that it fortuitously exhibits the correct, intended,
semantics in the good slices, but deviates from the intended semantics (based on programmer
intent) in the bad slice. Remember that the fortuitous correct behavior in the good slices is specific
to the particular input data.

The important question is, how do we tell if a statement has deviated from its intended seman-
tics? After all, programmers do not provide assertions after each statement to verify if the effect of
the statement just executed is as they expected. We only know that the final effect, i.e. the output,
in the good slices is correct, and is incorrect in the bad slice.

In this paper, we use two kinds of heuristics to find the first statement in the bad slice which
shows such a deviation.

Corner Case Differencing The first method of semantic differencing is called corner-case differenc-
ing. The semantics of each compound statement is classified into a different categories: a normal
case, and one or more corner cases. For example, in a read statement, the where condition could
match multiple rows, or just one row. Since the last (for indexed table) matching row is returned
by the read, the matching of just one row is a corner case. A table of corner and non-corner cases
for several statements is given in Figure 9. Given a trace, we can tell if a statement executed in a
corner-case manner, or in a normal case manner.
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Statement Target Corner Case Difference
read from itab into wa
where C

Multiple/Unique rows are
satisfied with C

append/insert lines of jtab
from idx1 to idx2 to itab.

The number of rows ap-
pended/inserted is different
from idx2-idx1+1

insert The inserted row makes
certain set of rows with
same keys non-contiguous.

insert/append The inserted/appended row
makes sorted data unsorted

Assignment
move
move-corresponding
transporting clause

overflow
overwriting same value

LOOP at itab. ... END-
LOOP.

the statement within loop
contains delete from itab.

AT NEW/END. Whether at new and at end
both is true for a single
row.

DEL ADJ from itab com-
paring f1..fn.

the table is not sorted with
f1..fn

delete from itab where C Multiple/Single row
selected by C.

selection condition a <= b a = b
selection condition a >= b a = b
a = b + c a = b ∨ a = c

Figure 9: Corner Case Differences

Intuitively, this technique exploits the fact that most errors (typically shown in a already tested
code) occurs due to non-handling of corner cases that are revealed in the bad slices, and not re-
vealed in the good slice. Key based slicing determines whether there is any effect of a statement on
a slice or not. Corner-case differencing tries to find out semantic difference with respect to good
and bad slices where the statement has some effect in both the slices.

In the example given in Figure 1 and data in Figure 5(a), we determine a corner-case difference
in the read statement, that in the case of good slice only single row satisfies the selection condition,
but in case of bad slice, the selection condition is satisfied with two rows. This difference is
produced by looking at the semantics of read statement and particularly evaluating the corner-case
aspect in two slices. Note that, in this case, the difference in behavior of read statement exists
is indeed this particular behavior found using behavioral differencing. Note that, presence of this
behavior (multiple satisfied selection) in read is always a problem, as programmer may intend to
get the first matching row always, and may not agree to specify an extra field in selection condition
which increases the overhead of the operation. The fact that this difference in behavior showed in
good and bad slices is the key observation. Several other checks are presented in Figure 9.

Mutability Differencing Our second method is called mutability differencing. Mutability differenc-
ing tries to make an intelligent guess on the correct form of the statement such that it produces
different behavior than the observed behavior in bad slice, expecting that the produced behavior
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Statement Mutation
key constraint C in
read/select/delete/
insert/append/modify

addition of key constraint
deletion of key constraint

non-key con-
straint C in
read/select/delete/loop
insert/append/modify

modify C with post-
condition imposed by a
good and all bad slices.

List of fields in sort addition and deletion of fields
based on key constraint and
field names in delete adjacent
statement on the same table

at-new f.
at-end f.
on-change f1..fn.

addition and deletion of fields
to f based on key constraint
and based on fields used in sort
statement on the same table

move-corresponding delete or insert move of other
fields by breaking move-
corresponding to a set of move
statements

Figure 10: Mutation Operators

after mutation is potentially same as the correct behavior. The important aspect of our technique is
that we only consider mutation of the statements that do not change the behavior of the statement
in the good slice.

To diagnose the fault reported for Figure 5(a), we can also use mutability differencing. Consider
the read statement on line 11 in Figure 1. We apply a mutation to the READ statement at line 11 in
Figure 1. Year=wa.Year is added to the selection condition in the where clause. This is based on the
observation that read statement with key option is typically used as joining condition between
two tables. There exist two common fields CustId and Year in the input tables OrderTab, DiscountTab.
Any of them or their combination could be used as the joining fields. However, in the buggy
program only CustId is being used. After adding the common field Year in the joining condition,
the analysis finds that the behavior in the correct slices remained same as same row is selected as
before, but instead of selecting the record with values <1, 3.0, 2010> , the statement has now selected
<1, 2.0, 2009> in the faulty slice. Indeed, the fix for this problem is the above change. A customer
should only be given the discount applicable to the year in which the order was placed. Note that,
in general it is possible to get such a mutation after trying several number of mutations, and the
applied mutation might not be the final fix, but could help indicate the kind of fix to be made. We
implemented the semantics of each database statements of ABAP in Java, and hence could execute
each database statement on the use/def data captured against each statement in the execution trace
to evaluate the effect of each mutation.

In general, the mutations we consider is based on identification of the key-fields. We iden-
tify the key-fields looking at similarity of field names in two joining tables (as above), matching
fields names in sort and delete adjacent, and at new statement, matching field names sort and bi-
nary search specification in read statement. A complete list of patterns for ABAP language is not
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presented here for brevity. A list of mutation operators for different ABAP specific statements is
presented in Figure 10.

1 delete itab where f2<=0.
2 loop into itab into wa .
3 at new f 1 .
4 min = MAXINT .
5 endat .
6 if (wa−f2<min )
7 min = wa−f 2 .
8 at end of f 1 .
9 write wa−f1 , min .

10 endat .
11 endloop .

itab (Line 0) Output
f1 f2
1 -1
1 1
1 2
2 0
2 3
2 2

1 1 X
2 2 ×

Expected 2 0
Fix: where f2 < 0.

Case (A)

f1 f2
1 -1
1 1
1 2
2 -2
2 3
2 2

1 1 ×
2 2 X

Expected 1 -1
Fix: where f2 < −1.

Case (B)

Figure 11: Example: Mutation vs. Corner Case Differencing

Mutability differencing can be effective in cases where corner case differencing is not. In
Figure 11, minimum f2 value is computed for each distinct f1 value. Before this computation,
deletion occurred with a condition on f2 values (f2 <= 0). In case (A), 1st and 4th rows are deleted
by delete statement. In case (A) say we want the second output to be <2, 0> instead of <2, 2>, and
fix we need is f2 < 0 in delete condition. Corner-case difference can find this error as for f1=2 the
deletion of the row was done on the corner case of the condition f2 <= 0, but for f1=1 the deletion
was done on a non-corner case. Consider Case(B) where the first row reported is wrong as the
expected output is <1, -1>. However, here both the conditional evaluation for deletion went through
a non-corner cases. Thus behavioral difference will not be able to perform any difference here.
Mutability difference, on the other hand, can intelligently mutate looking at the post-conditions
that is required (f2! = −2 ∧ f2 == −1 ∧ f2 <= 0).

However, mutability differencing is not strictly more powerful that corner case differencing, as
will be shown later in ZROTC experimental subject in Figure 15.

Extensions The other kinds of bugs seen in data-centric programs are unwanted rows, all incorrect
rows, and missing rows. We briefly describe the approach we take for such description of bugs.
Unwanted Rows. In this case some (but not all) unwanted rows are found in the output. The
fault localization problem is posed as an application of differencing where bad slices are computed
based on key fields in the unwanted rows and good slices are computed based on key fields in the
rest of the rows. The key-based slicing, followed by control differencing, and, if required, semantic
differencing is carried out to localize the fault.

Incorrect Fields in all Rows. In this case incorrect values in one of more fields for all rows in the
output is reported as a bug. Bad slices are computed for each of the rows, and instead of computing
control difference of them, the common statements in all the bad slices are computed. Furthermore,
the mutation technique is applied to find a mutation of a statement (in the common statements set),
such that the mutated behavior is different from all the existing behaviors of the statement in all
bad slices. For each statement in the common set, behavioral differencing method is applied to
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1

2 Input : KV = A set of <field ,value> pairs which
3 are missing from the output .
4

5

6 / / Step 1
7 Slices = all output generating slices with
8 slice criteria = fields in KV
9

10 / / Step 2
11 For each slice Slice ∈ Slices ,
12 S += from end , find the first statement in Slice
13 where KV occurs in use but not in def .
14

15 / / Step 3
16 For each stmt s ∈ S
17 if s in loop
18 start point += find other instance of p
19 that has KV in def & use
20 suspects = control execution trace
21 execution traces (in the loop )
22 starting from p (good ) and start points (bad )
23 differ
24 else
25 suspects += s
26

27 return suspects

Figure 12: Algorithm of Missing Row

determine a corner behavior of the statement which is present in all its occurrences in bad slices.

Missing Rows. The algorithm for missing row handling is presented at Figure 12. In this case the
bug report contains the description of missing rows in terms of their key-value pairs. Note that, it
is not possible to determine the slices corresponding to the missing rows as we cannot form slicing
criteria for missing values. However, the intuition that we follow here is that, if there is any row to
be produced corresponding to the missing key-value pairs, their slices will be similar to the good
slices computed for some existing rows. Thus, we analyze (by stepping backward) each good slice,
to find the first statement occurrence (s) from end of slice which has the missing key-value pairs
in its use set, but not in its def set. If s does not occur in a loop, it is reported as a suspect as the
selection operation in the statement has filtered out the missing key-value pairs. If s is in loop, all
peer occurrences (say S) of s is determined in other loop iterations which has missing key-value
pairs in its use and def set. The execution paths starting from the statement occurrences in S have
the potential to produce the missing rows. Control difference of the execution paths starting from
the statement occurrence in S and the execution path starting from s is presented as fault suspects.

To explain the case in loop we present the following example in Figure 13 with input data given
below.

The two slices corresponding to the generated rows which go thru write statement instances
118, 1116 of line 11, with slice criteria wa itr-matnr are {11, 22} and {11, 210}. Step 2 finds
S = {22, 210}. For each element in S, startpoint = {218}, Suspect = {1322}. The line 13 is
pointed as the suspect here, and the information is presented to the user to check the block starting
from 1322. Note that, in the case of finding faults regarding missing row, differencing between
the executation traces may need to be done. This is in contrast with the previous presented cases,
where difference between slices are determined.
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1 select ∗ from zitr into table it itr .
2 LOOP AT it itr INTO wa itr .
3 CLEAR : v exrate .
4 vexrate = ’READ EXCHANGE RATE ’ (wa itr−waers )
5 IF sy−subrc EQ 0 .
6 IF v exrate GT wa itr−exrate .
7 wa itr−dispamt = wa itr−amount ∗ v exrate .
8 ELSE .
9 wa itr−dispamt = wa itr−amount ∗ wa itr−exrate .

10 ENDIF .
11 WRITE : / wa itr−matnr , 30 wa itr−dispamt .
12 ELSE .
13 wa itr−dispamt = wa itr−amount ∗ wa itr−exrate .
14 ’ Missing write here
15 ENDIF .
16

17 endloop .

Figure 13: Example: Missing Row

ZITR
MATNR Amount WAERS EXRATE

1 50 USD 47
2 100 EUR 66
3 100 UK 75

Output
MATNR DispAmt

1 2400
2 6600

Trace: 11,22,33,44,55,66,77,118,179,
210,311,412,513, 614,915,1116, 1717,

218,319,420,521,1322,1723

Missing KeyValue: 〈MATNR, 3〉

Figure 14: Input and output for the ABAP program illustrated in Figure 13

4 Empirical Evaluation

We implemented our analysis algorithms for the ABAP language as a part of an analysis plat-
form towards a joint program with IBM Global Business Services. We conducted experiments to
evaluate the effectiveness of our core contributions - key-based slicing, semantic differencing and
the analysis for missing rows in output. After describing the experimental setup, we present and
discuss the results.

4.1 Experimental Setup

We used a set of real ABAP report programs from the field as our experimental subjects. Trouble-
ticket history of a Maintenance Project was filtered to locate the tickets with ABAP report program
faults, and the faulty versions along with the dependencies were chosen as subjects. The set size
was kept small since the analysis results needed to be manually verified. The fault relevant source
snippets for all the subjects have been provided in Figure 17. The codesnipptes for SUTAX,
ZQFPR, ZFR052 cannot be provided due to confidentiality. To indicate the complexity of the
subjects, lines of code and the size of execution (LOC/EXE) are provided in Figure 15.

To conduct the experiments following method was followed for each subject -

• Execution trace was collected via an automated script, written using the SAP GUI Client
scripting facility. The script simulates a step-thru debugging execution of an ABAP program,
collecting use and def variable values.
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Subject LOC EXE Slice Size Control Diff. Semantic Diff. Missing Output Size Timing
Field-row Key Field-row Key Corner Mutability [Space] in Secs

RLS 2013 569 4 4 × × X X [1] 1 1
ZROTC 1066 2397 4 4 × × X × 1 46
RO13 1202 2948 8 8 X X - - 3 23
IMAT 2661 3864 4 4 X X - - 1 20
MMAT 1019 7251 5 4 X X* - - 1 27
ORDER 1975 7386 13 12 × X - - 1 28
IINV 3154 5299 8 8 X X - - 1 135
ZBMR 827 257 5 5 × × X X [1] 1 4
SUTAX 1662 4028 12 12 - - - - 12 2
ZQFPR 1136 275 8 8 - - - - X 1 1
ZFR052 944 520 4 4 - - - - X 1 1
BABL 2795 367 6 6 - - - - X 1 1
RV54 3492 1088 5 5 - - - - X 1 1

• LOC: Lines of Code (Excluding the library)
• EXE: Execution Trace Size
• Slice Size: Average Incorrect Slice Size removing pure control statements in case of non-missing bugs, for missing bugs this is the slice size for

output producing trace. The good slice size are not given here.
• Field-row: Slicing based on Field-Row Sensitive Algorithm
• key: Slicing based on key-based slicing on top of field-row sensitive algorithm
• Control Diff: Xif there is any difference is slices,× otherwise. Note that this does not say whether the difference is the exact bug or not.
• If there is any control difference found between two field-row slices, it is possible that after doing key-based slice that difference is no more. This

is attributed to the overapproximation of slice computation. But control diff of key-based slice can show another difference in slice. This is the
case for MMAT.

• Space in Mutability differencing denotes that, based on the heuristics for the statement, this is total number of mutation that needs to be tried. In
both the cases, this number is 1, signifying the effectiveness of the approach in practice.

• Missing: These programs showed missing row bug
• Output Size: This is potential fault points that are found based on the analysis.
• Time: Time for the analysis to complete

Figure 15: Fault Localization Result

• Fault observation was specified as a pair of precise slicing criteria and associated category
(i.e. incorrect, missing)
• Analysis Algorithms were executed with the above two inputs. Both, Field-Row sensitive

control differencing, and key-base differencing algorithms were executed for each of the
cases. In the cases where neither of these located a differenced results, both the semantic
differencing algorithms were executed, and finally if semantic differencing didn’t succeed
either and the slicing criteria was associated to a case of missing, the missing analysis was
performed.
• The results were presented, as a navigable dynamic slice, mapped to the source, for the IBM

GBS team to verify. The suspected faulty statement as identified by our algorithms was
highlighted.

4.2 Results

In 12 cases out of 13, our analysis was able to localize to a single statement that was verified to
be the fault. For the subject named SUTAX, we were not able to point out a single statement.
Verification revealed that the input itself was wrong. Our key-based slice of size 12 was the best
that we could present, and the input statement in the slice was related to the fault. Such a high
percentage of bugs being detected by differencing or missing analysis may be attributed to the fact
that the subjects are from production ERP systems.
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4.2.1 Key-based slicing

In 2 cases (MMAT and ORDER), the key-based slice was smaller than the field and row sensitive
slice. The slice sizes are mentioned in the field-row, and key columns of Figure 15. A look at the
relevant code snippets reveals that field and row sensitive slices had over-approximately included
the delete statements. In case of ORDER difference was vital in identifying the fault, as delete
statement was key to the bug. In case of MMAT (* marked in Figure 15 ), field-row sensitive slice
found a difference in the good and bad slices, but that was not the exact faulty line. The difference
of key-based slices showed the faulty line.

4.2.2 Semantic Differencing

In 6 cases Control differencing (either just on field-row sensitive slices or key-based slices) was
sufficient in identifying the fault. In 3 cases, where the control differencing failed, semantic differ-
encing was able to identify the fault. We now discuss in detail these 3 interesting cases -

RLS In the example code snippet shown in Figure 17(a), the move-corresponding X to Y state-
ment moves the values from structure X to Y for the common fields. The correct assignment that
needs to be done here is c.f1=a.f1, c.f2=a.f2, c.f3=a.f3, c.f4=a.f4, c.f5=b.f5, c.f6=b.f6, c.f7=b.f7.
Missing assignment was a.f4 to c.f4 in the move statement. The error is only noticed when a.f4 is
different from b.f4. In an iteration which produced correct values both a.f4 and b.f4 were same,
in an incorrect iteration b.f4 has a non-zero value. Both good and bad threads had same sequence
of statements having second move-corresponding and not the first. So, control differencing failed
to discover any difference. The corner-case differencing tried two corner (overflow and overwrit-
ing, cf. Figure 9) cases for the move-corresponding statement. And the overwriting corner case
evaluation showed the following difference - move-corresponding at Line 7 overwrites c.f4 with
the same value in good thread and different value in the bad thread. This is also located using a
mutation where move-corresponding statement is mutated to a sequence of move statements and
deleting the move corresponding to c.f4 = b.f4 as f4 as the only related field in the slice.

ZROTC In Figure 17(b) in Line 5 the overflow occurs in the assignment statement. w jtab.a
has smaller size than w itab.a. The overflow is visible in bad threads as non-zero digits were
truncated due to overflow, whereas in good threads only zeros were truncated which did not pro-
duce any ill effect to the computed result. This statement will be there in both good and bad
slices, and therefore control-flow differencing will not able to catch this behavioral difference. The
corner-case differencing will be able to catch this behavior as this is one of the corner-case that is
determined in assignment statement (Figure 9). Note that, the fix to this bug is not the change the
assignment statement, but requires a change in type in the declaration of the variables. As mutation
only considers mutating a statement, this bug cannot be found using mutation.

ZBMR The example shown in Figure 17(g) has the same flavor as our running example in Figure 1
with data in Figure 5. In this case the bug was the under-specification of the key constraint in the
read statement. This resulted in the wrong row selection by the read statement in the incorrect
slice. As explained in Section 3 Corner case differencing and mutability differencing both find
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1 PERFORM batch heading babl .
2 . . .
3 DELETE gt output WHERE f new IS INITIAL .
4

5 PERFORM aendbelege lesen .
6 . .
7 output gt output .

8 SELECT vfkk ˜fknum vfkp ˜fkpos INTO CORRESPONDING
9 FIELDS OF TABLE c object key FROM . .

10 l header key = c object key [ ] .
11 DELETE ADJACENT DUPLICATES FROM l header key
12 COMPARING fknum .
13 c object key [ ] = l header key .
14 SELECT ∗ FROM vfkp INTO CORRESPONDING FIELDS
15 OF TABLE c vfkp FOR ALL ENTRIES IN c object key
16 WHERE fknum = c object key−fknum AND . .
17 it vfkp [ ] = l it vfkp .
18

19 table output it vfkp [ ] .

(a) (b)

Figure 16: Code Snippet for Missing Row in (a) RV54 (b) BABL

the error. Note that, in this case there was only one more common field (ebelp) between table
it ekbe and it ekpo which was not present in the selection condition in the read statement.
Thus mutability differencing considered only one mutation of the current statement.

The mutation space observed in our experiments were small as we perform heuristic to restrict
the mutation space.

4.2.3 Missing Rows in Output.

We explain a case for missing output with the code snippet of program RV54 shown in Fig-
ure 16(a). The bug reported that, for some keys, rows were missing from the output. In the
program, there was a delete statement (Line 3) which was deleting the rows where the f new field
is null. Some computations were performed on the rows to produce output. We first obtained a
key-based data slice which was of length 5 for an existing row in the output. Then by performing a
backward traversal in the slice we found the DELETE statement that was deleting with respect to
the keys related to the missing rows. As this statement was not in the loop, this was highlighted in
the slice as the reason for the missing rows in the output. It was verified by the ABAP practitioners
that, it was indeed the faulty line. The deletion should not have been to the gt output table.
Similar effect of delete statement is seen for the BABL program where we show the slice that is
producing an output row in Figure 16(b). In this case, the delete adjacent statement is deleting the
row corresponding to the missing key. This table is later joined together with another table which
in turn did not get the row corresponding to the missing keys. The code for other two programs
(ZQFPR,SFR052), showing missing behavior, are not provided here due to confidentiality.

5 Related Work

Static Program Slicing Dor et.al. [8] looked at ERP systems from a program analysis perspective to
study the impact due to a customization change. They use static program analysis based techniques
as a solution. In the context of their problem the static slice sizes do not matter much. However for
the problem of fault localization it will lead to over-approximate slices. In their recent work Litvak
et.al. [18] recognized the importance of field sensitive analysis in the ERP systems domain, and
present an algorithm for efficient and precise computation of program dependences in the presence
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RLS
1 a : f1 f2 f3 f4 f5
2 b : f3 f4 f5 f6 f7
3 c : f1 f2 f3 f4 f5 f6 f7
4 loop into a .
5 loop into b .
6 move−corresponding a to c .
7 move−corresponding b to c .
8 move a .f3 to c .f 3 .
9 write c .

10 endloop .
11 endloop .

ZROTC
1 select from tab into table itab
2 loop at ktab .
3 read itab INTO w itab
4 WITH KEY a = ktab .a .
5 w jtab .a = w itab .a . %o v e r f l o w
6 append w jtab to jtab .
7 endloop .
8 . . .
9 write alv jtab .

RO13
1 append fs final to it final temp .
2 clear fs final−kbetr .
3 fs final−netpr = . . .
4 fs final−effpr = . . .
5 MODIFY it final tmp FROM fs final
6 TRANSPORTING netpr effpr kbetr
7 where infer = fs final−infer .
8 APPEND LINES OF it final tmp
9 TO it final .

10 write itab it final .

(a) (b) (c)
IMAT

1 clear yiseg1 .
2 loop at yiseg 2 .
3 append yiseg 1 .
4 move−corresponding yiseg2
5 to yiseg 1 .
6 move : zw farbe to yiseg1−farbe .
7 endloop .
8 write itab yiseg 1 .

MMAT
1 SORT belege BY matnr bwkey
2 cpudt cputm buzei .
3 LOOP AT belege .
4 ON CHANGE OF belege−matnr
5 or belege−bwkey .
6 CLEAR mengt .
7 ENDON .
8 mengt = mengt + belege−menge .
9 MOVE mengt TO belege−mengt .

10 MODIFY belege .
11 endloop
12 write itab belege .

ORDER
1 SORT db tab BY kunnr matnr vbeln .
2 delete ADJACENT DUPLICATES
3 FROM db tab
4 COMPARING kunnr matnr vbeln .
5 LOOP AT db tab .
6 satz tab−netwr = db tab−netwr .
7 . . .
8 append satz tab .ENDLOOP .
9 LOOP AT satz tab .

10 rueck tab−netwr = satz tab−netwr .
11 . . .
12 append rueck tab . ENDLOOP .
13 LOOP AT satz tab .
14 write rueck tab−netwr .ENDLOOP .

(d) (e) (f)
ZBMR

1 SORT it ekpo BY ebeln ebelp
2 matnr werks .
3 . . .
4 LOOP AT it ekbe INTO wa ekbe .
5 READ TABLE it ekpo INTO wa ekpo
6 WITH KEY
7 ebeln = wa ekbe .ebeln
8 matnr = wa ekbe .matnr
9 werks = wa ekbe .werks

10 BINARY SEARCH .
11 . . .

IINV
1 type T2 : werks matnr . . .
2 SORT T2 BY MATNR WERKS .
3 LOOP AT T 2 .
4 AT NEW MATNR .
5

6 ENDAT .
7 AT NEW WERKS .
8 move t2−matnr to t header .
9 append t header .

10 ENDAT .
11 ENDLOOP .

(g) (h)

Figure 17: Code Snippets

of large structure variables. However, their work is focused on static analysis and also the absence
of row sensitive analysis can pose as severe limitation to the precision of the slicing information.

Dynamic Program Slicing Korel and Laski [17] introduced the notion of a dynamic slice. Agrawal
and Horgan [1] significantly optimized the notion by dropping the executability constraints. Venkatesh [26]
worked on separating the semantics based definition of a program slice from the semantic justi-
fication of an algorithm. Kamkar et.al. [16] worked on inter-procedural dynamic slices. Zhang
and Gupta [31, 30] improvised the algorithms for dynamic slice computation in the presence of
arrays, structures and pointers for complex real world programs. Our presented dynamic slicing
techniques go few steps further; in the context of database operations, we present row and field
sensitive slicing, and extend it with key-based slicing.
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Program Analysis in data-intensive systems Sivagurunathan et.al. [24] recognized the challenge posed
to the slicing techniques by programs with I/O. They introduced pseudo variables into the program
to make the hidden I/O state accessible to the slicer. Tan and Ling [25] recognized the same
challenge when the programs access data stored externally. They followed a similar solution and
introduced a set of implicit variables to capture the influence among I/O statements and validated
their approach on flat file based storage. Willmor et.al. [28] extended the same approach to cover
relational databases, and addressed field-sensitivity to make the influence more precise. In his Ph.D
thesis Cleve [5] formulates the space of program analysis and transformation for data-intensive
systems. Proposing that the complexity of database-aware program slicing task lies in the nature of
the data manipulation language (DML), he categorizes DMLs into native, built-in, embedded, and
call-based. For DMLs he generalizes the interaction with the host program via input-host variables,
and output host variables. As in previous approaches he extracts the data-dependencies between
the host language and DML into direct and indirect mappings, and inserts psuedo instructions
for them in the SDG for enabling static dependency analysis. Hainaut et.al. [11] and Cleve [5]
looked at dynamic analysis for embedded and dynamic SQL (such as in JDBC) in the context
of data intensive systems. However their work focuses on resolving the dynamic queries and
collecting its execution trace at the runtime. The continuity of dependence between the host, the
data manipulation language (DML), and the datastore is a necessary aspect of slicing data-centric
programs. However, for the objective of fault-localization in data-centric programs (in languages
like ABAP), it is not sufficient. In this paper, we show that naive handling of data base operations
(on physical or internal) would lead to imprecise slices, and present novel slicing techniques to
compute precise slices.

Differencing based Fault Localization Most differencing based fault localization techniques can be
placed in the general framework defined by Renieris and Reiss [21]. The notion of spectrum (ab-
stract trace) was introduced by Reps et al. [22] for acyclic, and intraprocedural path spectra. Har-
rold et al. [12] generalized the notion of spectrum and proposed spectra based on several program
features - branch, complete-path, data-dependence, output, and execution trace. Tarantula [15]
explored the role of visualizing the hit or count statistical metrics for passing and failing spectra,
with the idea of translating the passing and failing causes to a colored spectra. Zeller [29] applied
systematic delta changes to program input to generate guided passing and failing execution, that
could be differenced to detect cause-effect chains more precisely. Renieris and Reiss [21] intro-
duced distance spectrum. In a distance spectrum, a distance measure between the passing and
failing spectra gives a measure of dissimilarity.

In the context of software verification, a number of techniques have been proposed to provide
users with minimal information required to explain counter-examples resulting from model check-
ing. In [23], the authors introduce the notion of neighborhood of counter-examples which can be
used to understand the cause of counter-examples. A different approach based on game-theoretic
techniques is put forth in [14] where counter-examples are augmented into free segments (choices)
and fated segments (unavoidable). Errors are most likely to be removed by careful selection of
free segments. In [3], errors in programs are localized by identifying the diverging point between
a counter-example and a positive example; a positive example is a sequence of statements in pro-
grams that does not lead to a violation of the property of interest. A similar approach is presented
in [10] where errors are localized to program statements absent in all positive examples and present
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in all counter-examples leading to the same error condition. Based on the idea of detecting the di-
vergence as the cause of the counter-example, [9] developed a technique that uses a distance matrix
and constraint manipulations to pin-point the variable operations that led to the divergence. The
technique is applied to one counter-example in the program. In [4, 27], the divergence between
one counter-example and positive example is used to localize the error.

Without dealing explicitly with the database statements (such as sort, delete, delete adjacent,
and read etc.) the precision of the above techniques will suffer significantly. The granular blowup
of such statements via the corresponding internal behavior model, and the differences in it corre-
sponding to the passing and failing cases, allows us to overcome this limitation.

Another major applicability constraint for spectra techniques is imposed by ERP system main-
tenance environments relating to the restriction on automated executions to collect passing and
failing spectra. For the domain of data-centric programs, we overcome this constraint by retriev-
ing passing and failing threads of execution from a single execution. Mani et.al. [20] applied this
technique to retrieve passing and failing traces from a single execution to compute repair recom-
mendations. However, the forward propagating dynamic taint analysis they use does not consider
precision of propagation through array / table like structures. Further, unlike our work, they treat
all loop-iterations as peers, where data-centric programs have an abundance of aggregating com-
putations that group the iterations based on some fields, thus leading to imprecision.

Mutation Analysis In the area of testing, mutation technique is used to generate faulty programs
from the correct program ( [7, 2, 19]) to study the path divergence of faulty programs from the
correct programs. The large number of mutants generated there is irrespective of the nature of the
fault, also the technique there is not to use mutation to fix or identify faults. The closest to our work
is the recent work by Debroy et. al. ([6]), where mutation based approach is taken for repairing
the faults that are localized by the fault localization tool to suggest a fix. Unlike our technique
the mutant are not used for localizing faults. The two classes of mutant operators used there are
replacement of expression, replacement of assignment operator by another operator from the same
class, and decision negation. Our mutation operators are specialized for database statements.

6 Conclusion

Fault localization using slicing and differencing have been identified as important techniques for
performing fault localization in procedural programming languages. In this paper, we extend these
techniques to data-centric programming languages which use embedded database specific state-
ments to perform operations on in-memory and persistent data.

We present a new key-based dynamic slicing algorithm and two differencing techniques that
use the underlying program semantics to localize faults in the data-centric programs. We applied
our techniques on 13 real industrial programs and identified the underlying faults accurately in 12
of them.

We notice that, in data-centric programming paradigm the processing of data is separated out
across different systems and languages. For example, many applications use the Java - JDBC -
Stored Procedure framework to create a data-centric application. In future, we aim to check the
applicability of our techniques in such paradigms.

24



References

[1] H. Agrawal and J. Horgan. Dynamic program slicing. ACM SIGPLAN Notices, 25(6):246–
256, 1990.

[2] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin. Using mutation analysis for
assessing and comparing testing coverage criteria. IEEE Trans. Softw. Eng., 32:608–624,
August 2006.

[3] T. Ball, M. Naik, and S. Rajamani. From symptom to cause: localizing errors in counterex-
ample traces. In Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 97–105. ACM, 2003.

[4] S. Basu, D. Saha, and S. A. Smolka. Localizing programs errors for cimple debugging.
In International Conference on Formal Techniques for Networked and Distributed Systems
(FORTE), volume 3235, pages 79–96, Madrid, Spain, September 2004. Springer-Verlag.

[5] A. Cleve. Program Analysis and Transformation for Data-Intensive System Evolution. 2009.

[6] V. Debroy and W. E. Wong. Using Mutation to Automatically Suggest Fixes for Faulty Pro-
grams. In Proceedings of the Third International Conference on Software Testing, Verification
and Validation (ICST), pages 65–74. IEEE, Apr. 2010.

[7] H. Do and G. Rothermel. On the use of mutation faults in empirical assessments of test case
prioritization techniques. IEEE Trans. Softw. Eng., 32:733–752, September 2006.

[8] N. Dor, T. Lev-Ami, S. Litvak, M. Sagiv, and D. Weiss. Customization change impact anal-
ysis for ERP professionals via program slicing. In Proceedings of the 2008 international
symposium on Software testing and analysis, pages 97–108. ACM, 2008.

[9] A. Groce. Error explanation with distance metrics. In Proceedings of TACAS, 2004.

[10] A. Groce and W. Visser. What went wrong: Explaining counterexamples. Model Checking
Software, pages 121–136, 2003.

[11] J. Hainaut and A. Cleve. Dynamic analysis of SQL statements in data-intensive programs.
2008.

[12] M. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi. An empirical investigation of the
relationship between spectra differences and regression faults. Software Testing, Verification
and Reliability, 10(3):171–194, 2000.

[13] M. W. James R. Lyle. Automatic program bug location by program slicing. In 2nd Interna-
tional Conference on Computers And Applications, pages 877–882, 1987.

[14] H. Jin, K. Ravi, and F. Somenzi. Fate and free will in error traces. In Proceedings of TACAS,
2002.

[15] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula automatic fault-
localization technique. In Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering, ASE ’05, pages 273–282, New York, NY, USA, 2005.
ACM.

25



[16] M. Kamkar, N. Shahmehri, and P. Fritzson. Interprocedural dynamic slicing. In Programming
Language Implementation and Logic Programming, pages 370–384. Springer, 1992.

[17] B. Korel and J. Laski. Dynamic program slicing. Information Processing Letters, 29(3):155–
163, 1988.

[18] S. Litvak, N. Dor, R. Bodik, N. Rinetzky, and M. Sagiv. Field-Sensitive Program Dependence
Analysis. 2010.

[19] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff. Statistical debugging: A hypothesis testing-
based approach. IEEE Trans. Softw. Eng., 32:831–848, October 2006.

[20] S. Mani, V. Sinha, P. Dhoolia, and S. Sinha. Automated support for repairing input-model
faults. In Proceedings of the IEEE/ACM international conference on Automated software
engineering, pages 195–204. ACM, 2010.

[21] M. Renieres and S. Reiss. Fault localization with nearest neighbor queries. In 18th IEEE
International Conference on Automated Software Engineering, 2003. Proceedings, pages 30–
39, 2003.

[22] T. Reps, T. Ball, M. Das, and J. Larus. The use of program profiling for software maintenance
with applications to the year 2000 problem. Software Engineering—ESEC/FSE’97, pages
432–449, 1997.

[23] N. Sharygina and D. Peled. A combined testing and verification approach for software relia-
bility. In Proceedings of FME, 2001.

[24] Y. Sivagurunathan, M. Harman, and D. S. Slicing, i/o and the implicit state. Proceedings of
3rd International Workshop on Automatic Debugging (AADEBUG’97), Volume 2 (009-06),
1997.

[25] H. Tan and T. Ling. Correct program slicing of database operations. IEEE software,
15(2):105–112, 1998.

[26] G. Venkatesh. The semantic approach to program slicing. In Proceedings of the ACM SIG-
PLAN 1991 conference on Programming language design and implementation, page 119.
ACM, 1991.
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