RJ 10214 (A0108-001) August 1, 2001
Computer Science

IBM Research Report

Multidimensional Rational Approximations with an
Application to Image Compression

Jennifer Q. Trelewicz
IBM Research Division
Almaden Research Center
650 Harry Road
San Jose, CA 95120

— = Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

—
-—
-
v

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific requests.

After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g payment of royalties). Copies may be requested from IBM T. J. Watson Research Center, P. O. Box 218,

Yorktown Heights, NY 10598 USA (email reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

Multidimensional Rational Approximations with an Application to
Image Compression

J. Q. Trelewicz
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 USA

trelewic@us.ibm.com

July 30, 2001

Abstract

I present two methods for the calculation of simultaneous rational approximations with specific charac-
teristics related to computation. The methods are intended for computationally efficient calculation of linear
transforms for image compression; e.g., the Discrete Cosine Transform (DCT) or certain wavelet transforms.
The rational approximations must have controlled precision (i.e., bits required for representation), and the
numerators must use a minimum number of powers of two over the coefficient vector (i.e., the representation
must have minimum “length”), to facilitate efficient multiplierless implementation.

The first method uses successive approximation of the coefficients in a suboptimal algorithm with low
computational complexity to achieve low-length representations. The convergence of this method is ana-
lyzed, along with the closeness of the approximations. The suitability of this method for computational
implementation, along with the quality of its representations, are evaluated in the context of Jacobi-Perron
and Furtwéngler type algorithms, which are shown to have shortcomings for this application. While the
method is shown to provide low-length representations, it is not guaranteed to produce the lowest-length
representation. However, the method is shown to be suitable for real-time computation environments.

The second method, which finds the lowest-length representation, requires significantly more computa-
tion, but is suitable for offline computation of representations. This method employs search tree pruning
and, at each branch in the search tree, provides a lower bound for the representation length.

1 Introduction

Consider the d-tuple = € [0,1]%. We are interested in simultaneous rational approximations for x; i.e., rational
representations of the form p/q = (p1/q,...,pa/q), with p1,...,p4,q € N. Let € > 0 be given. Put R, = {p/q :
lz — p/qll < €}, and R.,, C R. such that ¢ < 2™. We are interested in finding the smallest such m € N
such that R # 0, since m determines the number of bits required for implementing p in a microprocessor or
hardware device. B

These simultaneous rational representations have applications in numerical signal processing algorithms. For
example, in image processing, the Discrete Cosine Transform (DCT) may be implemented in a conventional
embedded microprocessor or in hardware (FPGA or ASIC). Integer DCT (IDCT) takes less power or fewer cycles
than fixed-point or floating-point DCT in a number of microprocessors. Additionally, an integer arithmetic
logic unit often takes fewer gates in an FPGA or ASIC than a floating-point unit. The importance of IDCTs
is discussed in [1] and [2]. Furthermore, in a number of popular, cost-effective embedded microprocessors (for
example, the Intel 80186), the multiply operation takes significantly longer than addition, subtraction, and shift
operations. In these processors, if real-time execution of the DCT is required, performance improvements can
be realized by eliminating multiplies from the operation, and replacing these with addition/subtraction and
shifts. Furthermore, hardware implementations in FPGAs or ASICs benefit from multiplierless implementation
to save hardware real estate. A method for generating multiplierless implementations of linear transforms is
discussed in [3], while performance improvements utilizing multiplierless operations in software are discussed in

[4]. In these types of implementation ¢ is absorbed into the quantization operation, and p becomes the integer
transform coefficients that lend themselves to multiplierless implementation.
Multiplierless implementation furthermore benefits from minimizing L(p), where L is defined as follows. Put

m—1
P = {Z njauzu “ NG, € {ilvo}am S N} .
n=0

An equivalence class (p) in P contains the set of all polynomials with integer value equal to that of p. Consider
j € 1..d, and p; € P (where the notation n..ns is used to represent [ny,ns| N Z):

m—1
b; = Z Mju2"-
pn=0

Lp)=#{pec0.m—1|3j € 1.d : n;, # 0}. L is a metric on the collection of p, as shown in Lemma 7.2 in
the Appendix. a

Note that the polynomial for p; is not unique; e.g., 7 =23 — 20 =22 42! + 20, A “run” occurs in p; from
{1 to po when Juq, o € 0..m — 2 such that 7, # 0 Vu € p1..pue. Thus, L(p) may be reduced by replacing runs
in p with alternate polynomials. a

Lemma 1.1 Consider a run p; = Zim 2¢. Two polynomials which can replace this run to potentially reduce
L(p) are ZZZ:M 2¢ (called form Fy) and 2M2T1 — 21 (called form Fy). Furthermore, no other polynomial can

reduce L(p) more than forms Fy and F}.

Proof: Since ZZZ:M 2H = gr2F1 _2m it suffices to show that no other equivalent polynomial can reduce L(p).

Consider such a polynomial p; = Zim nu2*. By Lemma 7.1, all p; € (p;) \ {p;} are in the form
pa—1 p3—1
p;:2u4, Z 2#72#34,22/1«.
p=p2+1 M=

Since Mu,+1 7# 0 regardless of 4, and 7,, 7# 0 regardless of p3, 114 is taken as po 4+ 1 and pg is taken as u; to
minimize the terms in p;-. The only other equivalent polynomial is the original form p;, the only form in which
2¢2+1 has zero coefficient.

2 Known algorithms

Algorithms for multidimensional continued fractions are well known. However, many of these algorithms dis-
play exponential growth in the denominator; e.g., the Furtwéngler algorithm [5], and the Ordered Jacobi-Perron
algorithm (OJPA) [6]. Exponential growth of the denominator is unsuitable for the multiplierless transform
implementations described in this manuscript, where computational complexity and/or integer precision must
be controlled. Furthermore, these algorithms do not directly address the structure of the simultaneous repre-
sentations for the numerators, as are needed for computational purposes. Specifically, these algorithms do not
create simultaneous representations with minimum length L(p). The result of the OJPA algorithm is compared
to the other algorithms in Table 2, Section 5. a

Alternatively, exhaustive search trees can be employed, where for each value of ¢ within the desired precision,
all possible representations for each p within the e bound may be explored, and the resulting L(p) tracked.
However, the inefficiency and computational complexity of this approach is clear. For example, on a Pentium
IIT computer, the brute force algorithm took days to find 10-bit solutions, and required unreasonable amounts
of memory for construction of its search trees.

3 Single-pass Fast Approximation

It is known that given a continued fraction with the terms [x1; X2, X3, ---s Xn], the numerator p; and denominator
q; of the ith convergent are defined for all 4 > 1 by the recursive definition

Pi = XiDi—1 T Di—2
¢ = XiGi-1 7+ qi—2

where we define p_y =0, pp = 1, and ¢_1 = qo = 1. The algorithm described in this section uses as its basis a
modification of this form in creating a fast algorithm that provides reasonable sub-optimal simultaneous rational
representations for a vector z € [0, 1]¢.

The algorithm is designed with the following restrictions:

e Since a simultaneous rational representation is desired, g; must be the same for each element in the ith
approximation to x;

e To keep L(p) small, the term added to g; to obtain ¢;;1 must be chosen so that the resulting p;11 — p;
has few or no runs.

To minimize the number of runs, y; is taken to be a power of 2 at each iteration. Thus, if p; is found with
few or no runs, p;41 will retain that property. The ith estimate (convergent) of element x; is p;;/q;, and the
remainder is defined as 7;; = x; — p;/¢;- Where [-] is the nearest integer operation,

a“{o, ‘Tj,i|<(5
“ (L/|rjall s |yl > 6

In a practical implementation, § may be taken, for example, as 1075, since the data are not rescaled at each
pass. This is appropriate for an image processing application, where the processor on which the algorithm will
be executed has a finite number of bits available in a register. If max; |r;;| < J, then no more iterations are
used.

Otherwise, the smallest a;; is used in subsequent processing so that the update to g; may be chosen to
reduce the error on the convergent resulting in the largest remainder. The result of this approach is rapid
reduction of approximation error with each iteration ¢. Furthermore, as shown in Lemma 7.3, the result is

that p;11 — p; contains runs aligned to increase L(p) very little at each iteration. Take J; = argmin;a;,. Put
b;—1

b; = [logy ay, ;], the number of bits required for representing aj, ;. We put go = aj, 0 and g1 = ¢;2% + 2
since [(¢2" + r)/2"] = ¢ iff |r| < 2"~!. This condition would ensure that g;1; rounds to g; when the bits of
representation are reduced, for consistency between iterations; however, the required term 2% ~1—1 would destroy
the runs structure of p;. For this reason, 2%~ is used instead. The adjusted remainder r;z =z — pj,i2b7‘/qi+1
is used to avoid roundoff error. Put A;; = (1} ;qi+1), where ¥(y) is defined as follows:

e If y =0, then ¢(y) = 0.
e If y # 0 and Ah € Z such that |y| = 2" + 2"~ 4 (y) = signum/(y)22r8 ™inn llyl=2"1,
e Otherwise, |y| = 2" + 2"~ and ¥ (y) = signum(y)2", where h’ € {h,h + 1} is chosen to minimize L(p).

Put Pjo = Aﬁo, and Pji+1 = pj,i2bi + Aj,i.

In practical implementations, there may be a limit on the amount of precision actually needed, and this
algorithm may generate more precision in the simultaneous estimates than is needed. The precision can be
backed off trivially. If the maximum estimate error was underrun, it is possible that the solution can be
implemented with less precision within the same error bound. This check needs to be done starting with the
smallest powers of 2 in the numerator representations.

Convergence in ¢ is considered for D, (where p. is compactly supported in £1), because of the structure of the
linear transforms in which such multiplierless implementations may be used. Specifically, with image samples
y; € —255..255 and error e; on each coefficient, the worst-case error on a DCT coefficient is 255 Zj lejl.

Theorem 3.1 If§ =0, Bi/qi —x in ly.

Proof: Consider ¢ > 1. Note that
Giv1 = (2¢; +1)2" 71 > ¢;2".

Put ¢t = log,(3/2) € (0,1). Then

¥(y)signum(y) € {2L10g2 [yl 9o y1] } ,

so that
[(y) =yl < max {|y|(2" = 1),]y|(2'~* = 1)} = [y](2" = 1).
Therefore,
Dji+1 1 b, ,
i |qi125 — (95,027 + () 1qi41)) |
di+1 qi+1
1 .
= ’(»’Ujfh‘ﬂ - pj,inl) — (ijiJ,_] — pNth)
qi+1
2t —1 2t _q
< . M. ,2bi < .2bi . '2177;] 21,1.,1
= i 25001 = p;i2"] < 2ig; (|22 @ — pji2%| + ;])
.. 2t —1 .
< (20-1) oy - B2 L @ =Dl
g 2¢

Since ¢; is an increasing sequence and (2¢ — 1) € (0,1), for ¢ > 0 and large enough 4,

_ Dyt
di+1

_ Pio

) Pj,0
j _ 259
do

ZL’j ’+6

ol = - i+
g (@ -T2 1) ”

pn=0

<(2'-1

:)

It follows that ¢ (z — Bi/qi+1> — 0.

4 Optimal Approximation

The optimal approximation is defined as that which gives the smallest possible L(p) within the error bound e.
To avoid the computational difficulties of exhaustive search, the problem is mapped into efficient searching of a
set of decision trees, {T'(p;) : j € 1..d}, for each p/q, where ¢ takes each value from 1 to 2" — 1, the maximum
desired denominator, determined by the application precision. Since each value of ¢ must be searched, this
method is best-suited for offline calculation, rather than real-time calculation. However, with the search tree
pruning methods described in this section, the algorithm can find optimal representations in tractable periods
of time; e.g., the 10-bit approximation mentioned in Section 2 takes only ten minutes on the same computer.

Given j € 1..d and p, the construction of T'(p;) proceeds as follows: the canonical representation p; =
Z::L:_Ol n; 2" with n; , € {0,1} is mapped into {a, A4, 3, B,v,T'}"" according to mapping S(p;) = {s, .}, where
S(p;) is described in Table 1, defining s; _1 = . A secondary run is defined as a run that exists only if a run
immediately to its right is converted to form F}.

Finally, s;, = (3 is changed to /' and s;, = is changed to 7 if 5,41 =T.

Put A={p€0.m—-1]3j € 1.d: s, = A}. Each search tree T'(p;) is pruned by operation K described
here, with adjacent symbols updated for consistency with S(p;):

e By Lemma 7.4, if 3p1, o such that ps € A, s, € {3,0'}, and s;,, = BVu € p11..2 — 1, then the tree
T(p;) is pruned by converting the run to form Fj.

e By Lemma 7.5, if Juq, po such that s; ,, = 8 and s;, = B Vi € pi..10 — 1 C A, then the tree T'(p;) is
pruned by converting the run to form Fy. This is called a “masked run” at s; ,. If the run is not masked,
it is called “unmasked”.

Table 1: S(p;).

sju—1 | Interpretation of symbol || s;, whenn;, =0 | s;, whenn;, =1
0 regardless of runs «
+1 regardless of runs

0 “left” of run

41 inside run

0 “left” of secondary run
+1 inside secondary run

H2 W@ e

SvliawRlos Bas Rlov =

=2 Q2 LR R

e By Lemma 7.6, if 34 € A with s, =T and s; ,4+1 = 7, then the tree T'(p;) is pruned by setting s; , = A.

Put
B = {M cl.m—1 \ A‘El] e€l.d: (Sj7# = ﬁ, Sju—1 = B) V (Sj,,u =7 Sj,u—-1= F)}

A lower bound estimate for L(p) given the current tree or tree branch may be obtained from #.4 U B, so that
{T(p;)} or the current tree branch is not searched if L(p) cannot be improved by this representation.

Since a decision branch in T'(p;) at pq can only affects symbols sjp for p > pi, T(p;) is searched for
increasing p1. Suppose 3u such that s;, € {3,4}. Consider the smallest such p. Then the trees T'(p;) are
pruned by converting all unmasked runs at s, to form Fi, by Lemma 7.7. Each remaining symbol 3’ (which
has masked run, because of K) thus marks a decision point in the tree, since the run may be converted to
form Fy or form F;. By Lemma 1.1, each 8’ symbol marks a twofold split in the tree, between the two run
representations. At the decision point, the run is replaced with {a, A} according to the decision, subsequent
symbols are updated according to S(p;), and the procedure is recursed. By Lemma 7.8, this search procedure
results in a path through the tree containing only {a, A} symbols, which may be converted back to {£1,0}
through Lemma 7.9.

Theorem 4.1 The algorithm described in this section delivers the optimum solution within R..

Proof: It is simple to verify that S is invertible on the canonical representation. Lemmas 7.4-7.6 show that K
only prunes branches from the decision tree that cannot provide lower L(p). Lemmas 7.7,7.8, and 7.9 show that
further pruning is only performed on the tree when those branches cannot lower L(p).

5 Computational Results

The exhaustive search algorithm without search tree pruning was unable to exceed 6 bits of ¢ in some tested cases
because of the memory requirements for storing the search trees and the intractable computational complexity
associated with the computation. Therefore, the timing for exhaustive search is not discussed further in this
section.

Table 2 shows the values returned by the algorithms of Section 4 (“Opt”) and Section 3 (“Fast”), for the
specified number of bits of ¢ for the odd coefficients of the DCT:

z={C1,Cs,C5,C7} = {0.980785,0.831470, 0.555571,0.195091 }.

(The DCT notation is the same as that used in [7].) Error in the table is given as a fraction of ||z| (¢1 norm).
All representations in the table were obtained with e = 0.01]|z||. Where runtime shows as 0 seconds in the table,
the algorithm ran in finer resolution than the “clock()” subroutine could measure.

Table 2 also shows the simultaneous representation for the same z, using the OJPA. It should be noted that
the OJPA only returns binary values, which are shown in the table converted to the lowest possible L(p) using
the optimal algorithm from Section 4. a

It is illustrative to note that Opt for n = 6 requires 4 bits, since the 3-bit solution of the form similar to
Opt for n = 8 has an error larger than e. It should also be noted that Opt for n = 4 has an error larger than e.

Table 2: p/q for OJPA, Opt, Fast algorithm

’ ‘ n ‘ P/q L(p) error sec
OJPA (23 427 + 2023 12023 2T 2Ty /11 3 218x 1072
Opt | 4 (23 421 420,23 420 23 21 21)/11 3 218x1072 0
Fast (23 +22 42023 4 21 4 20 23 _ 21 4 20 21)/13 4 954x1073 0.01
OJPA (25 4+ 2% — 2125 123 —20 21 1 93 1 21 93 1 90) /47 5 379x1073
Opt | 6 (25 423,25 421 25 — 23 20 93)/41 4 499x1073% 0
Fast (25 +2% 422 25 4+ 23 4 22 25 — 23 4 22 23) /52 4 954x1073 0.01
OJPA (27T +2°+23 +21 42027 4+ 21 12027 2512095 1 21) /174 6 2.36 x 1073
Opt | 8 (27 425,27 423 27 4+ 25 — 23 2%) /163 3 804x107% 0.661
Fast (27 426 + 2427 4 25 4+ 2427 — 25 4 24 25) /208 5 9.54x107% 0.01
29425423 422421 99 25 _93 190 _
OJPA (28+26_22726+25+23+22+21+20)/569 8 2.06x107*
Opt | 10 (29 427,29 4-25 29 4+ 27 — 25 27) /653 3 7.69x107% 600
Fast (27 426 + 2427 4 25 4+ 2427 — 25 4+ 2425) /208 5 9.54x1073 0.01

It is also illustrative that Fast can only increase L(p) as n increases because of its algorithm structure, but its
resulting error terms tend to be lower as a result — note the first estimate of Fast.

The complexity of Opt does increase rapidly with an increased number of bits of precision, although the
increase is not exponential. Specifically, the example given in Table 2, after n exceeds 9 or 10, slows its rate of
increase because so much of the search trees may be pruned prior to decision branching.

6 Conclusions

Two algorithms have been described for finding simultaneous rational representations with small L(p). The
representations resulting from these algorithms are appropriate for multiplierless implementations of linear
transforms, such as the DCT. One has been shown to be implementable in real-time, while the other runs in
tractable computational complexity for offline computation of optimal solutions. Because the fast algorithm
tends to generate higher L(p) and lower error as a result, it is better suited for applications where required n
is smaller (such as the application in [4]) or where more terms can be tolerated for lower error and controlled
precision. In contrast to known algorithms for finding simultaneous rational representations, these algorithms
provide for specific control of the precision of the solution, as well as the polynomial representations of the
numerators.

Acknowledgements: The author would like to thank Dr. Andrew J. Siefker of Murray State University
and Dr. Timothy Trenary of IBM for helpful discussions related to this manuscript.

7 Appendix: Supporting Proofs

Lemma 7.1 Ifp=>'"2 2" and p € (p) with p # p, then

H=H1
pa—1 p3—1
p=2M — Z QK _ 93 4 22M7 (1)
p=p2+1 H=p1

for pg € N+ po and ps € py..puo, where Z;;ll 2 is defined to have the value 0.

Zi o 2. Without loss of generality, it suffices to consider u; = 0,

since multiplying each form by 27#* must result in an integer.

Proof: It may be verified quickly that p =

First consider p = 1 so that g = g1 = 0 and (1) simplifies to 24 — Zﬁ“:gl 24, Let p € (p) \ {p} with

p= Ziul n,2Y be given. It is clear that 7,, = 1, since the sum is non-negative and er‘;i 2¥ < 272, Thus,
define g4 = 5. Also, v1 = 0 with 1y # 0, since the sum must be odd. Consider some ¢ € N, which must be

subtracted from 22 to get p:

va—1
27 —c=p=1=c=22-1=) 2"
pn=0
Therefore, (1) holds for p = 1.
Now consider arbitrary run p and p € (p) \ {p} with p = 3772 7,2”. As above, 7,, = 1, so again define
g = vo. Also, 11 = 0 with g # 0, since the sum must be odd. As above, consider some ¢, which must be
subtracted from 22 to get p:

1] va—1
22 —c=p=> W<t s s gt N oon
pn=0 p=p2+1

Since p = Eﬁio 21 < 2021 5 must also have the second term of (1). Finally,

pa—1 K2
(2#4 _ Z 2#) _p:2uz+1_2:2/i:17

p=po+1 pn=0
so the remainder of the terms of p must sum to -1. But from the discussion above, the remainder of the terms
must have exactly the form of the last two terms in (1).

Lemma 7.2 L is a metric.

Proof: Tt is clear that L(0) = 0 and that L(p) > 0 Vp. Consider p, = {11,02°,0,...,0} and p, = {1,02%,0,...,0}.
Put p=p +p,={m 21 +192%,0,...,0}. The following list of possibilities is exhaustive:

e 1o = = 0, which only occurs if 71,0 = —n2,0 = £1, in which case 0 = L(p) < L(p,) + L(p,) =1 + L.

e 7o € {£1}, which only occursif 1,9 # 0 and 72,9 = 0 or vice versa, so that 1 = L(p) = L(p,)+L(p,) = 1+0.
In this case, m; = 0.

e m € {£1}, which only occurs if 11,9 = 12,0 = £1, so that 1 = L(p) < L(p,) + L(p,) =1+ 1 and no = 0.

Note that L(2#p) = L(p). Since any p may be written as a finite sum of vectors of this form with power-of-2
multipliers, it follows from induction that the triangle inequality holds, and thus L is a metric.

Lemma 7.3 The resulting representations for p, in the fast algorithm of Section 8 increase L(BZ_) by the smallest
possible amount at each iteration to minimize the error in |Aj; — 15 :qit1].

Proof: It suffices to consider those A;; # 0, since these are the only terms that can increase L(p,). Since
Aj,; = 2" for some h;,; € N, each (j, i) contributes at most one to L(p.). Because of the way in which A;;
are chosen (see step 3 of the definition for () in Section 3), L(p,) is increased by the minimum count required
to minimize the error in A;;. o

Lemma 7.4 Suppose 3p1, o such that po € A, s, € {3,0'}, and s;,, = BV € pi..uo — 1. Then the tree
T(pj) may be pruned by setting s;j ., = A and sj, = a Vi € py..pup — 1; i.e., by converting the run to form F.

Proof: The tree T'(p;) may be pruned if the replacement does not increase L(p) above its minimal value. Since
p2 € A, setting s; ,, = A cannot increase L(p). If s; ,, had been (3, the run has no secondary run, so converting
to form F affects no other symbols in the string. If s; ,, had been (', converting to form F} allows the secondary
run to be converted to form Fy or Fi, depending on the resulting L(p).

Lemma 7.5 Suppose 3p1, o such that sj,, = 0 and sj, = BVp € py..uo —1 C A. Then the tree T(p;) may
be pruned by setting s; ., = o and s, = AV € p..pu2 — 1; i.e., by converting the run to form Fy.

Proof: Since s; ,,, = 3, the run has no secondary run, so conversion to form Fy affects no other symbols in the
string. Since s;, = BV € py..u2 — 1 C A, converting to Fy cannot increase L(p).

Lemma 7.6 Suppose 3 € A with s;,, =T and sj, 11 = . Then the tree T'(p;) may be pruned by setting
Sju = A.

Proof: Since s; 41 =, the run has no secondary run, so changing s; , affects no other symbols in the string.
Since p € A, setting s;, = A cannot increase L(p).

Lemma 7.7 Suppose 3 such that s;,, € {B,8'}. Consider the smallest such pi1. Then the tree T(p;) may
be pruned by converting all unmasked runs at s. ,, to form Fi.

Proof: First suppose that 3j;, jo such that the run at s;, ,,, is masked and the run at sj, ,, is not masked. Put
po such that s; , = BVu € po..pg — 1. Then sj, , = BV € po — 1.y — 1l and pp — 1 ¢ A By K, 11 ¢ A.
Thus, converting all unmasked runs at s. ,, to Fi cannot increase L(p) above the L(p) resulting from converting
these unmasked runs to form Fy. B B

Lemma 7.8 For those paths not pruned because of error bounds or L(p), the algorithm described in Section 4
gives a path through a search tree containing only o and A.

Proof: s;, € {v,7',T'} only if 5,1 € {8,6'}. Thus, if p is the smallest p such that s;, ¢ {a, A}, s;,, €
{B8,8',B}. The operation K, and subsequent tree searching for increasing p, ensures that all s;, = [are
changed to a or A, and that the only symbols remaining for decisions are 3’ with masked runs. At the decision
point p1, these runs (including corresponding B) are replaced with o or A, and Vi > p1, s;,, € {v,7,I'} are
converted per S(p;). Thus, as p increases, s;, € {o, A, 3,3, B} for p < py decision points, and if s; ,, = B,
Jp1 > pg such that s, = BV € po..py and s;,, € {6,6'}. O

Lemma 7.9 For z € 0..2™ — 1, put P, = {ZT;OI N2t =z:m, € {O,il}}. Put o : P, — {«a, A}™ such that
with y = o (Zzzol 77#2“) ,
Uy = a, n,=0
H A, me{£l}
Then o s invertible.

Proof: Let z = Zzl:_ol nu2" € P, be given, and put ¢ = {¢,} = o(z). It suffices to show that o~ ({(}) contains
at most one element, since the inverse image contains z by definition. Suppose that 3z, 72 € o=1({¢}). Put
T = Zr:_ol m, 2" and zo = Z,T:_ol n2,,2". By definition of o,

{N’ : (nl,u =0, N2, # O) \ (nl,u 7é 07772,“ = 0)} = ®7

which implies that Y, n1, — 12, € {0,£2}. Also, 1 — 29 = ZZ:ol n,2" = 0. Without loss of generality,
suppose that 3p such that 1y, —n2,, = 2. Since 77;‘ =0, 1,41 —N2,u+1 € {£1}, a contradiction. Thus, z; = z».

O

References

[1] T.-C. J. Pang, C.-S. O. Choy, C.-F. Chan, and W.-K. Cham, “A self-timed ICT chip for image coding,”
IEEFE trans. circuits and systems for video technology, vol. 9, no. 6, pp. 856-860, 1999.

[2] T.D. Tran, “A fast multiplierless block transform for image and video compression,” in ICIP, (Kobe, Japan),
pp. 822-826, 1999.

[3] J. Q. Trelewicz, M. T. Brady, and J. L. Mitchell, “Efficient integer implementations for faster linear trans-
forms,” Tech. Rep. RC 21877 (98443), IBM, Nov. 2000.

4] M. T. Brady, J. Q. Trelewicz, and J. L. Mitchell, “Vector processing in scalar processors for signal processin
p g
algorithms,” in Proceedings of IEEFE International Conference on Acoustics, Speech, and Signal Processing,
(Salt Lake City, UT), May 2001.

[5] K. M. Briggs, “On the Furtwéngler algorithm for simultaneous rational approximation.” Unpublished report,
Complexity Res. Group, BT Res. Labs, May 2000.

[6] D. M. Hardcastle and K. Khanin, “On almost everywhere strong convergence of multidimensional continued
fraction algorithms,” Tech. Rep. HPL-BRIMS-2000-12, Hewlett Packard, May 2000.

[7] W.B. Pennebaker and J. L. Mitchell, JPEG still image data compression standard. New York: Van Nostrand
Reinhold, 1993.

