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Abstract

I present two methods for the calculation of simultaneous rational approximations with specific charac-
teristics related to computation. The methods are intended for computationally efficient calculation of linear
transforms for image compression; e.g., the Discrete Cosine Transform (DCT) or certain wavelet transforms.
The rational approximations must have controlled precision (i.e., bits required for representation), and the
numerators must use a minimum number of powers of two over the coefficient vector (i.e., the representation
must have minimum “length”), to facilitate efficient multiplierless implementation.

The first method uses successive approximation of the coefficients in a suboptimal algorithm with low
computational complexity to achieve low-length representations. The convergence of this method is ana-
lyzed, along with the closeness of the approximations. The suitability of this method for computational
implementation, along with the quality of its representations, are evaluated in the context of Jacobi-Perron
and Furtwängler type algorithms, which are shown to have shortcomings for this application. While the
method is shown to provide low-length representations, it is not guaranteed to produce the lowest-length
representation. However, the method is shown to be suitable for real-time computation environments.

The second method, which finds the lowest-length representation, requires significantly more computa-
tion, but is suitable for offline computation of representations. This method employs search tree pruning
and, at each branch in the search tree, provides a lower bound for the representation length.

1 Introduction

Consider the d-tuple x ∈ [0, 1]d. We are interested in simultaneous rational approximations for x; i.e., rational
representations of the form p/q ≡ (p1/q, . . . , pd/q), with p1, . . . , pd, q ∈ N. Let ε > 0 be given. Put Rε = {p/q :
‖x − p/q‖ < ε}, and Rε,m ⊂ Rε such that q < 2m. We are interested in finding the smallest such m ∈ N
such that Rε,m 6= ∅, since m determines the number of bits required for implementing p in a microprocessor or
hardware device.

These simultaneous rational representations have applications in numerical signal processing algorithms. For
example, in image processing, the Discrete Cosine Transform (DCT) may be implemented in a conventional
embedded microprocessor or in hardware (FPGA or ASIC). Integer DCT (IDCT) takes less power or fewer cycles
than fixed-point or floating-point DCT in a number of microprocessors. Additionally, an integer arithmetic
logic unit often takes fewer gates in an FPGA or ASIC than a floating-point unit. The importance of IDCTs
is discussed in [1] and [2]. Furthermore, in a number of popular, cost-effective embedded microprocessors (for
example, the Intel 80186), the multiply operation takes significantly longer than addition, subtraction, and shift
operations. In these processors, if real-time execution of the DCT is required, performance improvements can
be realized by eliminating multiplies from the operation, and replacing these with addition/subtraction and
shifts. Furthermore, hardware implementations in FPGAs or ASICs benefit from multiplierless implementation
to save hardware real estate. A method for generating multiplierless implementations of linear transforms is
discussed in [3], while performance improvements utilizing multiplierless operations in software are discussed in
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[4]. In these types of implementation q is absorbed into the quantization operation, and p becomes the integer
transform coefficients that lend themselves to multiplierless implementation.

Multiplierless implementation furthermore benefits from minimizing L(p), where L is defined as follows. Put

P =

{
m−1∑
µ=0

ηj,µ2µ : ηj,µ ∈ {±1, 0},m ∈ N

}
.

An equivalence class 〈p〉 in P contains the set of all polynomials with integer value equal to that of p. Consider
j ∈ 1..d, and pj ∈ P (where the notation n1..n2 is used to represent [n1, n2] ∩ Z):

pj =
m−1∑
µ=0

ηj,µ2µ.

L(p) = # {µ ∈ 0..m− 1| ∃j ∈ 1..d : ηj,µ 6= 0}. L is a metric on the collection of p, as shown in Lemma 7.2 in
the Appendix.

Note that the polynomial for pj is not unique; e.g., 7 = 23 − 20 = 22 + 21 + 20. A “run” occurs in pj from
µ1 to µ2 when ∃µ1, µ2 ∈ 0..m− 2 such that ηµ 6= 0 ∀µ ∈ µ1..µ2. Thus, L(p) may be reduced by replacing runs
in p with alternate polynomials.

Lemma 1.1 Consider a run pj =
∑µ2
µ=µ1

2µ. Two polynomials which can replace this run to potentially reduce
L(p) are

∑µ2
µ=µ1

2µ (called form F0) and 2µ2+1 − 2µ1 (called form F1). Furthermore, no other polynomial can
reduce L(p) more than forms F0 and F1.

Proof: Since
∑µ2
µ=µ1

2µ = 2µ2+1 − 2µ1 , it suffices to show that no other equivalent polynomial can reduce L(p).
Consider such a polynomial p′j =

∑µ2
µ=µ1

ηµ2µ. By Lemma 7.1, all p′j ∈ 〈pj〉 \ {pj} are in the form

p′j = 2µ4 −
µ4−1∑

µ=µ2+1

2µ − 2µ3 +
µ3−1∑
µ=µ1

2µ.

Since ηµ2+1 6= 0 regardless of µ4, and ηµ1 6= 0 regardless of µ3, µ4 is taken as µ2 + 1 and µ3 is taken as µ1 to
minimize the terms in p′j . The only other equivalent polynomial is the original form pj , the only form in which
2µ2+1 has zero coefficient.

2 Known algorithms

Algorithms for multidimensional continued fractions are well known. However, many of these algorithms dis-
play exponential growth in the denominator; e.g., the Furtwängler algorithm [5], and the Ordered Jacobi-Perron
algorithm (OJPA) [6]. Exponential growth of the denominator is unsuitable for the multiplierless transform
implementations described in this manuscript, where computational complexity and/or integer precision must
be controlled. Furthermore, these algorithms do not directly address the structure of the simultaneous repre-
sentations for the numerators, as are needed for computational purposes. Specifically, these algorithms do not
create simultaneous representations with minimum length L(p). The result of the OJPA algorithm is compared
to the other algorithms in Table 2, Section 5.

Alternatively, exhaustive search trees can be employed, where for each value of q within the desired precision,
all possible representations for each p within the ε bound may be explored, and the resulting L(p) tracked.
However, the inefficiency and computational complexity of this approach is clear. For example, on a Pentium
III computer, the brute force algorithm took days to find 10-bit solutions, and required unreasonable amounts
of memory for construction of its search trees.
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3 Single-pass Fast Approximation

It is known that given a continued fraction with the terms [χ1;χ2, χ3, ..., χn], the numerator pi and denominator
qi of the ith convergent are defined for all i ≥ 1 by the recursive definition

pi = χipi−1 + pi−2

qi = χiqi−1 + qi−2

where we define p−1 = 0, p0 = 1, and q−1 = q0 = 1. The algorithm described in this section uses as its basis a
modification of this form in creating a fast algorithm that provides reasonable sub-optimal simultaneous rational
representations for a vector x ∈ [0, 1]d.

The algorithm is designed with the following restrictions:

• Since a simultaneous rational representation is desired, qi must be the same for each element in the ith
approximation to x;

• To keep L(p) small, the term added to qi to obtain qi+1 must be chosen so that the resulting pi+1 − pi
has few or no runs.

To minimize the number of runs, χi is taken to be a power of 2 at each iteration. Thus, if pi is found with
few or no runs, pi+1 will retain that property. The ith estimate (convergent) of element xj is pj,i/qi, and the
remainder is defined as rj,i = xj − pj,i/qi. Where [·] is the nearest integer operation,

aj,i =
{

0, |rj,i| < δ
[1/|rj,i|] , |rj,i| ≥ δ .

In a practical implementation, δ may be taken, for example, as 10−5, since the data are not rescaled at each
pass. This is appropriate for an image processing application, where the processor on which the algorithm will
be executed has a finite number of bits available in a register. If maxj |rj,i| ≤ δ, then no more iterations are
used.

Otherwise, the smallest aj,i is used in subsequent processing so that the update to qi may be chosen to
reduce the error on the convergent resulting in the largest remainder. The result of this approach is rapid
reduction of approximation error with each iteration i. Furthermore, as shown in Lemma 7.3, the result is
that pi+1 − pi contains runs aligned to increase L(p) very little at each iteration. Take Ji = arg minj aj,i. Put
bi = dlog2 aJi,ie, the number of bits required for representing aJi,i. We put q0 = aJ0,0 and qi+1 = qi2bi + 2bi−1,
since [(q2n + r)/2n] = q iff |r| < 2n−1. This condition would ensure that qi+1 rounds to qi when the bits of
representation are reduced, for consistency between iterations; however, the required term 2bi−1−1 would destroy
the runs structure of pi. For this reason, 2bi−1 is used instead. The adjusted remainder r′j,i = xj − pj,i2bi/qi+1

is used to avoid roundoff error. Put ∆j,i = ψ(r′j,iqi+1), where ψ(y) is defined as follows:

• If y = 0, then ψ(y) = 0.

• If y 6= 0 and 6 ∃h ∈ Z such that |y| = 2h + 2h−1, ψ(y) = signum(y)2arg minh ||y|−2h|.

• Otherwise, |y| = 2h + 2h−1, and ψ(y) = signum(y)2h
′
, where h′ ∈ {h, h+ 1} is chosen to minimize L(p).

Put pj,0 = ∆j,0, and pj,i+1 = pj,i2bi + ∆j,i.
In practical implementations, there may be a limit on the amount of precision actually needed, and this

algorithm may generate more precision in the simultaneous estimates than is needed. The precision can be
backed off trivially. If the maximum estimate error was underrun, it is possible that the solution can be
implemented with less precision within the same error bound. This check needs to be done starting with the
smallest powers of 2 in the numerator representations.

Convergence in `1 is considered for p
i

(where p
i

is compactly supported in `1), because of the structure of the
linear transforms in which such multiplierless implementations may be used. Specifically, with image samples
yj ∈ −255..255 and error ej on each coefficient, the worst-case error on a DCT coefficient is 255

∑
j |ej |.
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Theorem 3.1 If δ = 0, p
i
/qi → x in `1.

Proof: Consider i ≥ 1. Note that
qi+1 = (2qi + 1)2bi−1 ≥ qi2bi .

Put t = log2(3/2) ∈ (0, 1). Then

ψ(y)signum(y) ∈
{

2blog2 |y|c, 2dlog2 |y|e
}
,

so that
|ψ(y)− y| ≤ max

{|y|(2t − 1), |y|(21−t − 1)
}

= |y|(2t − 1).

Therefore,
∣∣∣∣xj −

pj,i+1

qi+1

∣∣∣∣ =
1
qi+1

∣∣qi+1xj −
(
pj,i2bi + ψ(r′j,iqi+1)

)∣∣

=
1
qi+1

∣∣(xjqi+1 − pj,i2bi
)− ψ (xjqi+1 − pj,i2bi

)∣∣

≤ 2t − 1
qi+1

∣∣xjqi+1 − pj,i2bi
∣∣ ≤ 2t − 1

2biqi

(∣∣xj2biqi − pj,i2bi
∣∣+ |xj |2bi−1

)

≤ (
2t − 1

) ∣∣∣∣xj −
pj,i
qi

∣∣∣∣+
(2t − 1)|xj |

2qi
.

Since qi is an increasing sequence and (2t − 1) ∈ (0, 1), for ε′ > 0 and large enough i,

∣∣∣∣xj −
pj,i+1

qi+1

∣∣∣∣ ≤
(
2t − 1

)i+1
∣∣∣∣xj −

pj,0
q0

∣∣∣∣+
|xj |
2

i−1∑
µ=0

q−1
µ (2t − 1)i−µ ≤ (2t − 1

)i+1
∣∣∣∣xj −

pj,0
q0

∣∣∣∣+ ε′.

It follows that `1(x− p
i
/qi+1)→ 0.

4 Optimal Approximation

The optimal approximation is defined as that which gives the smallest possible L(p) within the error bound ε.
To avoid the computational difficulties of exhaustive search, the problem is mapped into efficient searching of a
set of decision trees, {T (pj) : j ∈ 1..d}, for each p/q, where q takes each value from 1 to 2n − 1, the maximum
desired denominator, determined by the application precision. Since each value of q must be searched, this
method is best-suited for offline calculation, rather than real-time calculation. However, with the search tree
pruning methods described in this section, the algorithm can find optimal representations in tractable periods
of time; e.g., the 10-bit approximation mentioned in Section 2 takes only ten minutes on the same computer.

Given j ∈ 1..d and p, the construction of T (pj) proceeds as follows: the canonical representation pj =∑m−1
µ=0 ηj,µ2µ with ηj,µ ∈ {0, 1} is mapped into {α,A, β,B, γ,Γ}m according to mapping S(pj) = {sj,µ}, where

S(pj) is described in Table 1, defining sj,−1 = α. A secondary run is defined as a run that exists only if a run
immediately to its right is converted to form F1.

Finally, sj,µ = β is changed to β′ and sj,µ = γ is changed to γ′ if sj,µ+1 = Γ.
Put A = {µ ∈ 0..m − 1|∃j ∈ 1..d : sj,µ = A}. Each search tree T (pj) is pruned by operation K described

here, with adjacent symbols updated for consistency with S(pj):

• By Lemma 7.4, if ∃µ1, µ2 such that µ2 ∈ A, sj,µ2 ∈ {β, β′}, and sj,µ = B ∀µ ∈ µ1..µ2 − 1, then the tree
T (pj) is pruned by converting the run to form F1.

• By Lemma 7.5, if ∃µ1, µ2 such that sj,µ2 = β and sj,µ = B ∀µ ∈ µ1..µ2 − 1 ⊂ A, then the tree T (pj) is
pruned by converting the run to form F0. This is called a “masked run” at sj,µ. If the run is not masked,
it is called “unmasked”.
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Table 1: S(pj).
sj,µ−1 Interpretation of symbol sj,µ when ηj,µ = 0 sj,µ when ηj,µ = 1
α 0 regardless of runs α A
A ±1 regardless of runs α B
β 0 “left” of run α Γ
B ±1 inside run β B
γ 0 “left” of secondary run α Γ
Γ ±1 inside secondary run γ B

• By Lemma 7.6, if ∃µ ∈ A with sj,µ = Γ and sj,µ+1 = γ, then the tree T (pj) is pruned by setting sj,µ = A.

Put
B = {µ ∈ 1..m− 1 \ A|∃j ∈ 1..d : (sj,µ = β, sj,µ−1 = B) ∨ (sj,µ = γ, sj,µ−1 = Γ)}.

A lower bound estimate for L(p) given the current tree or tree branch may be obtained from #A ∪ B, so that
{T (pj)} or the current tree branch is not searched if L(p) cannot be improved by this representation.

Since a decision branch in T (pj) at µ1 can only affects symbols sj,µ for µ > µ1, T (pj) is searched for
increasing µ. Suppose ∃µ such that sj,µ ∈ {β, β′}. Consider the smallest such µ. Then the trees T (pj) are
pruned by converting all unmasked runs at sj,µ to form F1, by Lemma 7.7. Each remaining symbol β′ (which
has masked run, because of K) thus marks a decision point in the tree, since the run may be converted to
form F0 or form F1. By Lemma 1.1, each β′ symbol marks a twofold split in the tree, between the two run
representations. At the decision point, the run is replaced with {α,A} according to the decision, subsequent
symbols are updated according to S(pj), and the procedure is recursed. By Lemma 7.8, this search procedure
results in a path through the tree containing only {α,A} symbols, which may be converted back to {±1, 0}
through Lemma 7.9.

Theorem 4.1 The algorithm described in this section delivers the optimum solution within Rε.

Proof: It is simple to verify that S is invertible on the canonical representation. Lemmas 7.4-7.6 show that K
only prunes branches from the decision tree that cannot provide lower L(p). Lemmas 7.7,7.8, and 7.9 show that
further pruning is only performed on the tree when those branches cannot lower L(p).

5 Computational Results

The exhaustive search algorithm without search tree pruning was unable to exceed 6 bits of q in some tested cases
because of the memory requirements for storing the search trees and the intractable computational complexity
associated with the computation. Therefore, the timing for exhaustive search is not discussed further in this
section.

Table 2 shows the values returned by the algorithms of Section 4 (“Opt”) and Section 3 (“Fast”), for the
specified number of bits of q for the odd coefficients of the DCT:

x = {C1, C3, C5, C7} = {0.980785, 0.831470, 0.555571, 0.195091}.

(The DCT notation is the same as that used in [7].) Error in the table is given as a fraction of ‖x‖ (`1 norm).
All representations in the table were obtained with ε = 0.01‖x‖. Where runtime shows as 0 seconds in the table,
the algorithm ran in finer resolution than the “clock()” subroutine could measure.

Table 2 also shows the simultaneous representation for the same x, using the OJPA. It should be noted that
the OJPA only returns binary values, which are shown in the table converted to the lowest possible L(p) using
the optimal algorithm from Section 4.

It is illustrative to note that Opt for n = 6 requires 4 bits, since the 3-bit solution of the form similar to
Opt for n = 8 has an error larger than ε. It should also be noted that Opt for n = 4 has an error larger than ε.
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Table 2: p/q for OJPA, Opt, Fast algorithm
n p/q L(p) error sec

OJPA (23 + 21 + 20, 23 + 20, 23 − 21, 21)/11 3 2.18× 10−2

Opt 4 (23 + 21 + 20, 23 + 20, 23 − 21, 21)/11 3 2.18× 10−2 0
Fast (23 + 22 + 20, 23 + 21 + 20, 23 − 21 + 20, 21)/13 4 9.54× 10−3 0.01

OJPA (25 + 24 − 21, 25 + 23 − 20, 24 + 23 + 21, 23 + 20)/47 5 3.79× 10−3

Opt 6 (25 + 23, 25 + 21, 25 − 23 − 20, 23)/41 4 4.99× 10−3 0
Fast (25 + 24 + 22, 25 + 23 + 22, 25 − 23 + 22, 23)/52 4 9.54× 10−3 0.01

OJPA (27 + 25 + 23 + 21 + 20, 27 + 24 + 20, 27 − 25 + 20, 25 + 21)/174 6 2.36× 10−3

Opt 8 (27 + 25, 27 + 23, 27 + 25 − 23, 25)/163 3 8.04× 10−3 0.661
Fast (27 + 26 + 24, 27 + 25 + 24, 27 − 25 + 24, 25)/208 5 9.54× 10−3 0.01

OJPA
(29 + 25 + 23 + 22 + 21, 29 − 25 − 23 + 20,

28 + 26 − 22, 26 + 25 + 23 + 22 + 21 + 20)/569 8 2.06× 10−4

Opt 10 (29 + 27, 29 + 25, 29 + 27 − 25, 27)/653 3 7.69× 10−3 600
Fast (27 + 26 + 24, 27 + 25 + 24, 27 − 25 + 24, 25)/208 5 9.54× 10−3 0.01

It is also illustrative that Fast can only increase L(p) as n increases because of its algorithm structure, but its
resulting error terms tend to be lower as a result – note the first estimate of Fast.

The complexity of Opt does increase rapidly with an increased number of bits of precision, although the
increase is not exponential. Specifically, the example given in Table 2, after n exceeds 9 or 10, slows its rate of
increase because so much of the search trees may be pruned prior to decision branching.

6 Conclusions

Two algorithms have been described for finding simultaneous rational representations with small L(p). The
representations resulting from these algorithms are appropriate for multiplierless implementations of linear
transforms, such as the DCT. One has been shown to be implementable in real-time, while the other runs in
tractable computational complexity for offline computation of optimal solutions. Because the fast algorithm
tends to generate higher L(p) and lower error as a result, it is better suited for applications where required n
is smaller (such as the application in [4]) or where more terms can be tolerated for lower error and controlled
precision. In contrast to known algorithms for finding simultaneous rational representations, these algorithms
provide for specific control of the precision of the solution, as well as the polynomial representations of the
numerators.

Acknowledgements: The author would like to thank Dr. Andrew J. Siefker of Murray State University
and Dr. Timothy Trenary of IBM for helpful discussions related to this manuscript.

7 Appendix: Supporting Proofs

Lemma 7.1 If p =
∑µ2
µ=µ1

2µ and ρ ∈ 〈p〉 with ρ 6= p, then

ρ = 2µ4 −
µ4−1∑

µ=µ2+1

2µ − 2µ3 +
µ3−1∑
µ=µ1

2µ, (1)

for µ4 ∈ N + µ2 and µ3 ∈ µ1..µ2, where
∑ν−1
µ=ν 2µ is defined to have the value 0.

Proof: It may be verified quickly that ρ =
∑µ2
µ=µ1

2µ. Without loss of generality, it suffices to consider µ1 = 0,
since multiplying each form by 2−µ1 must result in an integer.

6



First consider p = 1 so that µ2 = µ1 = 0 and (1) simplifies to 2µ4 −∑µ4−1
µ=0 2µ. Let ρ ∈ 〈p〉 \ {p} with

ρ =
∑ν2
ν=ν1

ην2ν be given. It is clear that ην2 = 1, since the sum is non-negative and
∑ν2−1
ν=ν1

2ν < 2ν2 . Thus,
define µ4 = ν2. Also, ν1 = 0 with η0 6= 0, since the sum must be odd. Consider some c ∈ N, which must be
subtracted from 2ν2 to get p:

2ν2 − c = p = 1⇒ c = 2ν2 − 1 =
ν2−1∑
µ=0

2µ.

Therefore, (1) holds for p = 1.
Now consider arbitrary run p and ρ ∈ 〈p〉 \ {p} with ρ =

∑ν2
ν=ν1

ην2ν . As above, ην2 = 1, so again define
µ4 = ν2. Also, ν1 = 0 with η0 6= 0, since the sum must be odd. As above, consider some c, which must be
subtracted from 2ν2 to get p:

2ν2 − c = p =
µ2∑
µ=0

2µ < 2µ2+1 ⇒ c > 2ν2 − 2µ2+1 =
ν2−1∑

µ=µ2+1

2µ.

Since p =
∑µ2
µ=0 2µ < 2µ2+1, ρ must also have the second term of (1). Finally,

(
2µ4 −

µ4−1∑
µ=µ2+1

2µ
)
− p = 2µ2+1 −

µ2∑
µ=0

2µ = 1,

so the remainder of the terms of ρ must sum to -1. But from the discussion above, the remainder of the terms
must have exactly the form of the last two terms in (1).

Lemma 7.2 L is a metric.

Proof: It is clear that L(0) = 0 and that L(p) ≥ 0 ∀p. Consider p
1

= {η1,020, 0, . . . , 0} and p
2

= {η2,020, 0, . . . , 0}.
Put p = p

1
+ p

2
= {η121 + η020, 0, . . . , 0}. The following list of possibilities is exhaustive:

• η0 = η1 = 0, which only occurs if η1,0 = −η2,0 = ±1, in which case 0 = L(p) < L(p
1
) + L(p

2
) = 1 + 1.

• η0 ∈ {±1}, which only occurs if η1,0 6= 0 and η2,0 = 0 or vice versa, so that 1 = L(p) = L(p
1
)+L(p

2
) = 1+0.

In this case, η1 = 0.

• η1 ∈ {±1}, which only occurs if η1,0 = η2,0 = ±1, so that 1 = L(p) < L(p
1
) + L(p

2
) = 1 + 1 and η0 = 0.

Note that L(2µp) = L(p). Since any p may be written as a finite sum of vectors of this form with power-of-2
multipliers, it follows from induction that the triangle inequality holds, and thus L is a metric.

Lemma 7.3 The resulting representations for p
i

in the fast algorithm of Section 3 increase L(p
i
) by the smallest

possible amount at each iteration to minimize the error in |∆j,i − r′j,iqi+1|.

Proof: It suffices to consider those ∆j,i 6= 0, since these are the only terms that can increase L(p
i
). Since

∆j,i = 2hj,i for some hj,i ∈ N, each (j, i) contributes at most one to L(p
i
). Because of the way in which ∆j,i

are chosen (see step 3 of the definition for ψ() in Section 3), L(p
i
) is increased by the minimum count required

to minimize the error in ∆j,i.

Lemma 7.4 Suppose ∃µ1, µ2 such that µ2 ∈ A, sj,µ2 ∈ {β, β′}, and sj,µ = B ∀µ ∈ µ1..µ2 − 1. Then the tree
T (pj) may be pruned by setting sj,µ2 = A and sj,µ = α ∀µ ∈ µ1..µ2 − 1; i.e., by converting the run to form F1.

Proof: The tree T (pj) may be pruned if the replacement does not increase L(p) above its minimal value. Since
µ2 ∈ A, setting sj,µ2 = A cannot increase L(p). If sj,µ2 had been β, the run has no secondary run, so converting
to form F1 affects no other symbols in the string. If sj,µ2 had been β′, converting to form F1 allows the secondary
run to be converted to form F0 or F1, depending on the resulting L(p).
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Lemma 7.5 Suppose ∃µ1, µ2 such that sj,µ2 = β and sj,µ = B ∀µ ∈ µ1..µ2 − 1 ⊂ A. Then the tree T (pj) may
be pruned by setting sj,µ2 = α and sj,µ = A ∀µ ∈ µ1..µ2 − 1; i.e., by converting the run to form F0.

Proof: Since sj,µ2 = β, the run has no secondary run, so conversion to form F0 affects no other symbols in the
string. Since sj,µ = B ∀µ ∈ µ1..µ2 − 1 ⊂ A, converting to F0 cannot increase L(p).

Lemma 7.6 Suppose ∃µ ∈ A with sj,µ = Γ and sj,µ+1 = γ. Then the tree T (pj) may be pruned by setting
sj,µ = A.

Proof: Since sj,µ+1 = γ, the run has no secondary run, so changing sj,µ affects no other symbols in the string.
Since µ ∈ A, setting sj,µ = A cannot increase L(p).

Lemma 7.7 Suppose ∃µ1 such that sj,µ1 ∈ {β, β′}. Consider the smallest such µ1. Then the tree T (pj) may
be pruned by converting all unmasked runs at s·,µ1 to form F1.

Proof: First suppose that ∃j1, j2 such that the run at sj1,µ1 is masked and the run at sj2,µ1 is not masked. Put
µ2 such that sj1,µ = B ∀µ ∈ µ2..µ1 − 1. Then sj2,µ = B ∀µ ∈ µ2 − 1..µ1 − 1 and µ2 − 1 /∈ A. By K, µ1 /∈ A.
Thus, converting all unmasked runs at s·,µ1 to F1 cannot increase L(p) above the L(p) resulting from converting
these unmasked runs to form F0.

Lemma 7.8 For those paths not pruned because of error bounds or L(p), the algorithm described in Section 4
gives a path through a search tree containing only α and A.

Proof: sj,µ ∈ {γ, γ′,Γ} only if sj,µ−1 ∈ {β, β′}. Thus, if µ1 is the smallest µ such that sj,µ /∈ {α,A}, sj,µ1 ∈
{β, β′, B}. The operation K, and subsequent tree searching for increasing µ, ensures that all sj,µ = β are
changed to α or A, and that the only symbols remaining for decisions are β′ with masked runs. At the decision
point µ1, these runs (including corresponding B) are replaced with α or A, and ∀µ > µ1, sj,µ ∈ {γ, γ′,Γ} are
converted per S(pj). Thus, as µ increases, sj,µ ∈ {α,A, β, β′, B} for µ ≤ µ1 decision points, and if sj,µ2 = B,
∃µ1 > µ2 such that sj,µ = B ∀µ ∈ µ2..µ1 and sj,µ1 ∈ {β, β′}.

Lemma 7.9 For z ∈ 0..2m − 1, put Pz =
{∑m−1

µ=0 ηµ2µ = z : ηµ ∈ {0,±1}
}

. Put σ : Pz → {α,A}m such that

with y = σ
(∑m−1

µ=0 ηµ2µ
)

,

yµ =
{
α, ηµ = 0
A, ηµ ∈ {±1} .

Then σ is invertible.

Proof: Let x =
∑m−1
µ=0 ηµ2µ ∈ Pz be given, and put ζ = {ζµ} = σ(x). It suffices to show that σ−1({ζ}) contains

at most one element, since the inverse image contains x by definition. Suppose that ∃x1, x2 ∈ σ−1({ζ}). Put
x1 =

∑m−1
µ=0 η1,µ2µ and x2 =

∑m−1
µ=0 η2,µ2µ. By definition of σ,

{µ : (η1,µ = 0, η2,µ 6= 0) ∨ (η1,µ 6= 0, η2,µ = 0)} = ∅,

which implies that ∀µ, η1,µ − η2,µ ∈ {0,±2}. Also, x1 − x2 =
∑m−1
µ=0 η

′
µ2µ = 0. Without loss of generality,

suppose that ∃µ such that η1,µ−η2,µ = 2. Since η′µ = 0, η1,µ+1−η2,µ+1 ∈ {±1}, a contradiction. Thus, x1 = x2.
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