RJ 10221 (A0110-027) October 17, 2001
Computer Science

IBM Research Report

Virtual Jukebox: Reviving a Classic

Clemens Drews, Florian Pestoni
IBM Research Division
Almaden Research Center
650 Harry Road
San Jose, CA 95120

=== == Research Division
S S=ESTE Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g payment of royalties). Copies may be requested from IBM T. J. Watson Research Center, P. O. Box 218,

Yorktown Heights, NY 10598 USA (email reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

Virtual Jukebox
Reviving a classic

Clemens Drews
IBM Almaden Research Center
San Jose, CA 95120
+1 408 927 1208
cdrews@almaden.ibm.com

Abstract

Recent advances in compression technology, combined
with lower cost of storage and bandwidth, have made
digital distribution of rich content including music not only
technically feasible but also popular with a broad
audience. However, limited progress has been made in the
way this content is enjoyed by end users. In this paper, we
focus on the problem of playing music in a shared space —
e.g. office, home, car — such that all listeners who are
present share a positive music experience.

Our scheme enables collaborative selection of content
and pooling of content files. Users can express their
preferences by contributing songs to be played and
through a simple voting scheme. The system builds profiles
and automatically selects content for playback, maximizing
the match with the group’s taste. As users vote, the system
learns more about their collective preferences and can
adjust the playlist accordingly, thus providing an incentive
mechanism.

1. Background and Motivation

For as long as music has existed, it has been a
collective experience. Until audio recording made it
possible to separate the performance from the listening,
music was enjoyed in concerts, large or small; even today,
live musical performances continue to attract large
audiences to venues ranging from smoky bars to stadiums,
from Opera houses to private residences. Although some
technologies — most notably the Walkman personal
cassette player introduced by Sony in the 1980’s — have

Florian Pestoni
IBM Almaden Research Center
San Jose, CA 95120
+1 408 927 2626
fpestoni@almaden.ibm.com

indeed made possible and encouraged individual listening,
music continues to be enjoyed mainly as a shared
experience.

Over time, models for selection of recorded content
have changed little and slowly. The introduction of audio
broadcasting revolutionized the music industry, but since
then few developments have significantly affected the way
people choose what music to listen to. At one end of the
spectrum, an individual may be in full control over what
content to play for personal enjoyment or to be shared with
others in the same location. At the other extreme, content
selection is delegated to disc jockeys, programming
managers, and advertisers; individuals are limited to
selecting a particular radio station.

An icon of popular music tradition in some parts of the
world, the jukebox was introduced in the late 1920’s. It
offered a simple and affordable model for content
selection, a rare and early case of combining interactivity
with a group selection process. The history of the jukebox
is linked to the diffusion of popular styles of music that
were under-represented in the established broadcasting
networks. In 1927, The Automatic Music Instrument
Company created the world's first electrically amplified
multi selection phonograph. Underground tavern owners
during Prohibition, who could not afford a live band, could
instead attract customers by installing a jukebox, which
was provided by an operator at no charge. [1]

As new technologies were introduced and social
conditions changed, the importance of the jukebox faded
but did not disappear completely. Today, jukeboxes
containing hundreds of CDs can still be found in the back
of some bars or providing a retro touch to the lofts of
wealthy individuals.

However, many of the same problems that the jukebox
model addressed remain. In a shared physical environment,

be it an office, car or home, how can the various individual
preferences be satisfied? Given that audio can be quite
intrusive due to the inability of humans to block sound
(unlike images), what model can be used to minimize the
negative effect that this intrusion may have on a group of
listeners? We revisit the jukebox model of collective
selection, eliminating many of the constraints and adding
new levels of interactivity made possible by computer
technology: inexpensive storage, simple and affordable
local area networks, advanced audio compression
algorithms and developments in user interface design.

2. The Virtual Jukebox Model

The technology we propose, which we have dubbed a
virtual jukebox, is a networked music player that
downloads music files on demand from distributed storage.
It can be implemented on a custom or off-the-shelf
embedded computing platform with compressed music
decoding in hardware or software, and is connected to
speakers or to a stereo system for audio output.

The virtual jukebox runs an embedded http server and
supports a multi-modal user interface. Users may make
selections from their web browsers, through speech
commands or using a PDA. Each selection (essentially, a
URL) is added to a FIFO queue that controls playback.
Since files are stored on the network, the virtual jukebox
needs only a limited amount of storage, enough to cache a
few titles. Songs can be pre-fetched during playback of the
current selection, to assure smooth transitions.

In addition to these capabilities, which bring the
concept of the jukebox up to date with current
technologies, we propose a voting scheme that adds a
whole new level of interactivity. As a song is playing,
users can vote for or against this title. If enough negative
votes are received, the song is skipped and the next song in
the queue is played. The system collects votes and builds a
profile representing the collective preferences of the
community of users.

When no selections are pending, the system can
automatically make selections on behalf of its users. On a
traditional jukebox, this was typically implemented by
playing random songs from the list of titles locally
available. On the virtual jukebox, we use the history of
votes to select not just any song that has been played, but
those that are popular within the specific group of users
that usually connect to this player. A time limit can be set
to make sure that the same song is not played too often and
avoid repetition.

The system we propose addresses the problem of
selecting music in a shared space. For example, in an
office environment, audio can help set the mood and may
improve productivity. However, musical preferences are

quite idiosyncratic, and the wide variety of styles available
can lead to significant disagreement within a group as to
what particular content is collectively acceptable.

By enabling users to contribute their own music
collections, we can guarantee that the distributed content
database will include a representative sample of the union
of all titles that are of interest to the community that
develops around it. Voting, on the other hand, can be used
to exclude those titles that are not in the intersection of
individual preferences. This rule can be relaxed to allow
some flexibility, for example playing songs that several
members of the community feel strongly in favor of but for
which other members have a slight negative bias.

Our proposed scheme can help build consensus and a
stronger sense of community. The voting scheme can
highlight commonalities among users and the method of
pooling resources can help expose listeners to content they
may not have experienced before. Because the system
learns from its users, it encourages a more interactive
experience. However, when selection of music takes a low
priority for listeners, the system can automatically take
over this role on behalf of its community of listeners and
taking into consideration their collective preferences.

2.1. Content Selection and Playback

The virtual jukebox is not limited to a small collection
of titles that can fit in it, like its physical predecessors
were. Instead, it can use any compatible content available
on the (local) network. In the simplest selection model, a
user specifies the URL for a compressed music file, which
is downloaded to the jukebox as needed for playback.

By adopting this distributed content approach, not only
can the selection be unlimited, but also new content can be
easily introduced. A user’s personal collection may be
incorporated instantly to the repertoire of songs the
jukebox can play by just providing the URL in which it
can be found. This greatly simplifies pooling of content
among members of the listening community.

To ease the navigation of possibly large collections of
titles, we propose a simple crawling mechanism. If content
is organized hierarchically (as would be the case for
content stored in the familiar directory structure used by
modern computer systems) or in other linked list fashion
(e.g. hyperlinks in HTML) then a crawler simple enough to
run in a embedded system can follow the links and build a
list of music files from a base URL. Moreover, the crawler
can read the metadata contained in each file and maintain a
small database of titles that can be be browsed and sorted
by different criteria, such as author, album or year. Note
that this requires very limited persistent storage, as the title
themselves are not copied over to the embedded system.

The implementation of metadata may vary with the
encoding of the content; for example, in the MP3 format,
ID3 tags are stored in the last 128 bytes of a file. Thus, a
crawler using a protocol that supports downloading byte
ranges such as HTTP could read just the appropriate
portion of the file to make building this index of titles
more efficient. Additionally, every time an individual title
is selected, it can be checked against the database and, if it
happens to be a new URL, it can be automatically added to
the list of crawled titles.

The virtual jukebox implements a multi-modal user
interface for content selection, including Web browsing,
speech and handheld computers. No single Ul is absolutely
superior to the others, since each one has relative
advantages depending on the access mode and the users’
preferences and abilities.

The metadata collected by the crawler can be used
as the foundation for a speech-based user interface. We
combine speech input (recognition) and output (synthesis)
to enable sophisticated navigation of data. By restricting
the vocabulary to only those words contained in the
metadata, the performance of speech recognition can be
improved. This may require multiple input/output
interactions, for example listing first a list of authors and
then, once the user makes a selection, listing albums or
titles by the chosen author.

Speech input is especially well suited for direct access.
For example, a user may say “Play My Way by Frank
Sinatra”. The system would then try to find a phonetic
match within its vocabulary. The match may not be
unique, i.e. there may be several possibilities (e.g. there
may be both a live and a studio version, the recognition of
the spoken command may be uncertain or the request may
be an incomplete specification); in such a case, the system
may present a reduced set of options to the user for
selection, or play one at random.

The current state of the art in speech technology does
not guarantee flawless interactions. For example, proper
names or creative spellings (Lynyrd Skynyrd comes to
mind) may be incorrectly rendered by the speech synthesis
system. In addition, speech recognition engines are usually
sensitive to ambient noise, and therefore the playback of
music during speech-based selection may introduce further
errors. While we have considered possible solutions to
some of these problems (see Conclusion and Future
Work), this is outside the scope of this paper. Note that
from an implementation point of view, the speech
processing need not be performed on the jukebox itself:
network protocols such as VoiceXML [2] allow for
interaction via speech with remote systems.

Another alternative for navigation of content is through
a Web browser. The jukebox is addressable via HTTP (i.e.
runs an embedded HTTP server) and serves HTML pages.
Using transcoding techniques, any HTML page on the

network that contains links to music files or to other pages
can be processed by the jukebox (acting as a proxy) such
that relative references are made absolute and are included
as a parameter to a URL that points to the jukebox. Thus,
users can seamlessly access any page,' such as the web
pages served by Apache to represent the local filesystem
available via HTTP or FTP. Based on the content type,
music files can be identified as such and treated
differently: when the user clicks on a link pointing to a
music file, this is interpreted as a selection.

With more advanced transcoding, the jukebox can
support navigation from PDA’s. Naturally, PDA’s would
have to be connected to the network, either directly (e.g.
wireless card) or through a proxy (e.g. USB to a PC on the
network.) Due to the more limited graphics capabilities of
most current PDA’s, it may not be possible to access any
Web page, as was the case for a full-fledged Web browser.
However, the database of crawled content can be presented
for selection, possibly with multiple levels of interactivity.

A user-initiated selection is not always played
instantaneously. The virtual jukebox, just as its more
traditional cousins, is in essence a FIFO queue of musical
selections. Unlike in a traditional jukebox, however, the
content is not locally available. Files could be streamed
from their source, i.e. they could be fetched in real time as
they are being played. However, due to latency problems
on some networks and the uncertain delivery time for
packages on TCP/IP, this may lead to interruptions and
reduce sound quality.

An alternative mechanism, that requires some (non-
persistent) storage is to use a cache. The queue and the
cache can work together to pre-fetch files that are coming
up for playback. The cache needs only be large enough to
contain a few (2-5) songs. With reasonable bandwidth and
compression schemes, playback of a song should, on
average, take longer than the actual download, thereby
guaranteeing that as long as there are enough selections on
the queue, transition from one song to the next will be
smooth and without interruptions. Of course, if the queue
is empty and a new selection is made, there will be a delay
before actual playback begins, as this first song is being
downloaded.

Figure 1 shows these components as well as the user
interface modules.

The queue manager, the cache and the audio player
must be synchronized to guarantee smooth transitions.
Each URL on the queue represents a selection. When the
current selection is finished playing, the audio player
notifies the cache and the queue manager of this event. The
recently played file, which was stored on the cache, is

! Pages with JavaScript, applets or some CGI scripts may not be

transcoded correctly.

marked as wunlocked, indicating that it is eligible for
deletion. All entries in the queue are bumped up one
position, as the top one is removed. The next URL (now
the top element on the queue) should already be available
in the local cache, and the audio player is pointed at it so
that playback can commence. The file is marked as locked,
to indicate that it is in use.

Architecture
Audio
Queue
Manager

<«— |VoiceXML browser

Voting

Multi-Modal
Front End

> PDA

Figure 1- Architecture

The URL corresponding to the next song in the queue
which has not yet been downloaded is passed to the cache.
Depending on the capacity of the cache and the number
and size of the music files are actually stored in it, the next
song may be second in the queue or deeper. The cache first
checks the size of the file to be downloaded and makes
room if necessary by deleting the oldest eligible file and
continuing as needed with the next eligible file until all
have been deleted.

Queue Cache

download

Figure 2- Finite state machine

It is never optimal to delete a file that is newer than the
file that is currently playing. Each file in the cache has an
age associated with it. In the case in which no files older
than the current selection can be removed from the cache,
and the next file to be downloaded still will not fit, the
cache must wait until the current files are processed.
Should a file that is still in the cache be selected for
playback, no download will be necessary, but its age and
state must be adjusted accordingly.

Once there is enough room in the cache, the next file is
downloaded. As soon as it is fully downloaded, it is
marked as ready. A conservative policy for the audio
player is to never start playing a file that is not yet ready; a
more aggressive policy may start playing the song back
right away, hoping that data will be ready when needed.
Figure 2 summarizes the discussion above.

2.2. Voting and Autoplay

Since musical taste can vary widely among the
members of the audience of the jukebox, it is necessary to
give listeners a way of controlling the playback in case
they find it too annoying. Certain selections may offend
some parts of the audience, or may not be suitable for the
current situation. We chose a democratic approach of
resolving these different interests: whenever a majority of
listeners dislikes the current playback, it is stopped
immediately, and the queue proceeds to the next song.

The audience can give feedback about the song that is
being played. This feedback is used in two ways: to
influence the playback of a song and to gain knowledge
about the taste of the audience.

During playback of a song, negative, positive or no
feedback about this particular song is given by each
listener. Negative feedback is used to stop a song from
being played if a majority of listeners express negative
feedback. Positive feedback cancels out negative feedback.
This feedback is also used to learn about the preferences of
the listening community; the use of these preferences is
described in the following section.

To stop a song and skip to the next one, the net
negative votes must exceed a threshold, e.g. 50% of the
total audience. For the proposed scheme it is not
particularly important to know the exact number of
listeners. This value can be set as a parameter, which can
be updated as members join or leave the community. (See
also discussion of user tracking in the Conclusion and
Future Work section.)

In settings where it is inconvenient for the audience to
actively select content, there needs to be a mechanism for
the jukebox to select and play content automatically. The
first approach that comes to mind is to just randomly select
songs over the entire list of songs the jukebox knows

about. A shortcoming of this approach is that, since the
content is made up by contribution of its audience, a
random selection will be biased towards the taste of the
person that contributes the most content. Furthermore, the
audience may only like a small subset of the content
available.

This problem has traditionally been tackled in different
ways. Radio stations work in an autoplay-like mode,
although they cater to an audience that is several orders of
magnitude larger than a typical jukebox audience. They try
to play “hits” most frequently, while playing new content
at longer intervals. The feedback to radio stations, though,
has a long latency and is usually (at least for popular
music) determined by the sales figures published by the
record labels.

An alternative is the model used in dance clubs, where
a disc jockey selects content on behalf of the audience.
Here, there is a more immediate feedback mechanism: the
DJ can gauge the audience’s reaction based on their
behavior. Are they dancing? Do they look bored? Should
the tempo be more upbeat?

However, for very small audiences such as in the case
of the virtual jukebox, neither of these models is ideal. In
such a small setting, an individual would expect to have a
greater influence on the content selection.

Our goal was to come up with a system that learns
about the taste of its audience by observing its users’
feedback. When not filled with user requests, the system
would play songs that are popular among its listeners. We
wanted the system to mix less popular content with more
popular content, so it would introduce content to the
audience that is new or different than the mainstream the
audience is normally exposed to.

In our proposed algorithm, the popularity of all content
known to the jukebox gives a measure of the current taste
of the audience. The jukebox will statistically select
popular songs more often than less popular ones. It will
still play the least popular songs, although less frequently.

A virtual jukebox that does not have any pending
requests from users will select a song that is most likely to
appeal to a majority of the audience. This is determined
solely based on the history of positive and negative votes
that songs have received. We chose not to overload the
user interface with more controls to let users determine the
popularity level of a song. Also having the audience go
through a questionaire, as in [5], to determine what the
audience does or does not like seemed too unflexible for
an audience whose taste changes over time.

Our approach makes it possible for the jukebox to
adapt to the changing taste of its audience. It closes the
feedback loop between the users and the system with very
little time lag. While giving preference to popular songs,
the autoplay mechanism does not lock out less popular

songs, and thus avoids repeating “hits” over and over
again.

An integer is used as the measure of a song’s
popularity. Each song that is new to the jukebox is
assigned a default popularity, e.g. 2 of the maximum
priority. The popularity of a song can change if the song
receives:

1. A majority of negative votes during a playback cycle;
2. A majority of positive votes during a playback cycle;

3. No votes during playback over an extended period of
time.

In the first case, the popularity value is decreased; in
the second case, it is increased; and in the last case, the
popularity will converge towards the default popularity
over time.

The proposed scheme relies on the fact that users will
express their preference. If this is not the case, the jukebox
will basically do a random selection over the content
known to it. The proposed scheme accounts for taste that
varies over time, by converging towards neutral the
popularity of a song that is neither voted for nor against.

2.3. Copyright Protection

The increased availability of compressed digital
formats for audio files has had a positive effect, exposing
consumers to this new technology and creating a critical
mass for its widespread adoption. However, owners of
copyrights on recordings have expressed their concerns, in
the press, in Congress and in the courts of law, that their
rights are being violated. While unprotected content will
continue to be available for a long time — after all, CDs are
unprotected and ripping the tracks has become an easy task
— it is to be expected that more content will be made
available in encrypted form over the next few years.

Several copy protection or digital rights management
schemes have been introduced, which aim to restrict how
content can be (re-)distributed. These schemes can be
described as binding the content to an entity; different
models exist, including binding content to media or to a
PC. Some schemes allow for protected content to be
passed from one device to another, in some cases requiring
an additional license. (This is sometimes referred to as
superdistribution.) In general, only compliant players can
play copy-protected content.

As far as the use of copy protection in the context of
virtual jukebox is concerned, barring circumvention of
these legal and technological restrictions,” the jukebox

2 The Digital Millenium Copyright Act and similar legislation in other
countries have made it illegal to manufacture, sell or use circumvention
devices.

would need to be compliant with the requirements of a
certain scheme in order to play content encrypted under it.
In some cases, this may be incompatible with the proposed
use: for instance, if content is bound to the PC used to
download it, and superdistribution rights are not granted,
then the jukebox would not be able to legally obtain a
decryption key to unlock the content.

New models for copy protection are emerging that
attempt to find a better balance between the needs of
copyright owners and the desire of consumers to have
compelling applications for the content they have legally
acquired. We hope that this paper will help influence
decision-makers in these matters to include enough
flexibility in the systems they adopt to allow for the
advantages we have described.

3. Prototype

We built a prototype that demonstrates the feasibility
of the proposed ideas above. Our virtual jukebox is based
on an off-the-shelf single-board system [3] that includes a
x86 CPU, a sound chip and an Ethernet network interface.
We added external RAM for runtime and transient storage,
and flash memory for the system image, applications and
persistent storage.

The system has a minimal amount of memory to pre-
cache digital audio content and store data about the
content. The amount of storage needed is determined only
by the maximum number of songs that are desirable to pre-
cache and by the maximum length of a song. An average
MP3 song has about 1 MB per minute play time. The
average song is 3.5 minutes long, and it is safe to assume
that among popular music not many songs are longer than
45 minutes (the length of one side of an old fashioned
record), so a 45MB cache would be suitable for most if not
all cases of popular music songs.

For packaging, we chose a scaled-down version of a
Waurlitzer jukebox. The company, which is still in
business, sells merchandise; we found a “piggy bank” that,
at 9” tall and 5” wide, almost perfectly matched the size of
our system board. A little mechanical abuse allowed us to
insert the hardware in this encasing. This familiar look
immediately gives the audience a visual cue that suggests
the device’s functionality. In addition, most people think
“it’s cute.”

Our prototype runs a custom image of the Linux
operating system. The application is implemented in Java,
including a bare bones http server; the synchronized queue,
cache manager and audio player; and support for remote
front ends (HTML, VoiceXML, etc.) Audio decoding is
performed in software using the xaudio library. [3]

Speech input (recognition) and output (synthesis) was
actually performed on a remote system running IBM’s

Viavoice and VoiceXML browser. The virtual jukebox
generates VoiceXML documents on the fly and serves
them over HTTP to support navigation of the content
database by artist and genre. Because each “page”
implicitly ~defines a limited grammar, reasonable
recognition performance can be achieved without training.

Figure 3 - Virtual Jukebox Prototype

Voting from a web browser was implemented with an
applet that displays the current selection and has buttons
for positive (“rocks”) and negative (“sucks”) votes.
Buttons are disabled after a vote and until the next song
starts playing to prevent duplicate votes. For access
devices with limited display capabilities such as PDA’s, a
stripped-down HTML interface displays the state of the
queue, including the current selection, and allows
navigation by artist through a hierarchical representation
and pagination (a limited number of songs can be
displayed at any time.)

Three prototypes have been built. One is used at the
Almaden Research Center for demos, usability studies and
further research. The two other units are installed at IBM’s
Industry Solution Labs in Hawthorne, NY and Zurich,
Switzerland, where they are used to showcase non-
traditional computing platforms, embedded systems and
novel user interfaces.

Our experience with this prototype indicates that the
use of the device as a music player, with content
distributed throughout the network, is easy to understand
for users who have had prior experience with MP3s.
Indeed, for less technically-inclined users, this device had
the appeal of simplifying the use of compressed music
files, although several had reservations about the use of
speech as an interface.

The use of voting was less intuitive to most users.
However, we have developed a small community of users
of this and other systems derived from it, that makes heavy
use of voting and autoplay. One interesting use that we had

not envisioned beforehand was using voting to cull out
poorly encoded files: whenever such a title was played, a
collective and instantaneous response guaranteed enough
votes to skip the song and exclude it from the high
popularity lists.

4. Conclusion and Future Work

We have shown a way to share what is possibly the
most intrusive multimedia content: audio. Users can share
very large amounts of audio content with a relatively
inexpensive embedded device that has very limited storage
and processing capabilitiecs. We have introduced a
selection process that is convenient for users and allows
them to specify the content they want to listen to. As an
alternative, such as when casual background music is
desired, users can let the system choose the content, which
will be customized to their collective preferences.

In our prototype, we implemented a simple voting
algorithm. However, with the knowledge available to the
system, more complex algorithms as described in [6] could
potentially make the automatic selection of content an
even more positive experience for its audience.

Further work will have to address a way to share
control over the volume of the jukebox. For places like
office environments, where frequent interruptions grasp
the attention of parts of the audience, there needs to be a
way to adjust the volume based on ambient noise and
external events. In addition, it may be possible to improve
the recognition of spoken commands even while the
system is playing music by applying noise-canceling
techniques in which the output signal is “subtracted” from
the input signal.

In its current form, the virtual jukebox assumes users
are not abusing the system by e.g. flooding the system with
their requests, and therefore dominating the music. As long
as an audience shares the same space, there will be
sufficient social interaction among the audience to prevent

this from happening. Based on our work on the virtual
jukebox, we have extended the concept to allow an
audience to share a virtual space by streaming the content
instead of playing it back at a central location. In this case,
normal social interaction may be insufficient for self-
regulation, and the virtual jukebox will need to introduce
play quotas.

To make the music selection even more appealing, it is
important to have means for detecting who is part of the
audience. The jukebox could be extended to track who is
physically present through several mechanisms, partly
determined by the interface used to interact with the
jukebox. If the HTTP interface is used, simply using
cookies will let the system identify active listeners. With
voice commands, one could use an RF-ID/Active RF type
approach to identify users of the jukebox. The selection of
content can then be targeted by only considering the
preferences of users who are present.

5. References

[11 “History of the Jukebox,”
http://www.history-of-

rock.com/history of the jukebox.htm

[2] VoiceXML Forum, http://www.voicexml.org

[3] "PCM-5823 NS Geode with Dual Ethernet, Audio, and
VGA/LCD,"
http://www.advantech.com/products/PCM-5823.asp

[4] "MP3 and Digital Audio Solutions for All Platforms
and CPUs, " http://www.xaudio.com

[5]1 “MusicFX: An Arbiter of Group Preferences,” J.
McCarthy and T. Anagnost, ACM 2000 Conference
on Computer Supported Cooperative Work, 2000.

[6] “Social Information Filtering or Music
Recommendation,” Upendra Shardanand, Final
Thesis, MIT, September 1994

