RJ 10222 (A0110-037) October 23, 2001
Computer Science

IBM Research Report

Simulations of the Age-Threshold and Fitness Free Space
Collection Algorithms on a Long Trace

Larry J. Stockmeyer
IBM Research Division
Almaden Research Center
650 Harry Road
San Jose, CA 95120

— = Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

—
-—
-
v

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific requests.

After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g payment of royalties). Copies may be requested from IBM T. J. Watson Research Center, P. O. Box 218,

Yorktown Heights, NY 10598 USA (email reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

Simulations of the Age-Threshold and Fitness
Free Space Collection Algorithms on a Long Trace

Larry Stockmeyer

IBM Research Division
Almaden Research Center
650 Harry Road
San Jose, CA 95120

Abstract. The purpose of this paper is to report results of simulations of two algorithms for free
space collection in log-structured storage systems. The algorithms considered are the age-threshold
algorithm of Menon and Stockmeyer and the fitness algorithm of Butterworth. The simulations
were done using a trace collected by Ruemmler and Wilkes from a file system over a period of
two months. The performance of an algorithm is measured by the amount of disk I/O done as a
result of free space collection. The performance of the algorithms and several variations of them
are compared.

1 Introduction

A critical part of a Log Structured Array (LSA) is the procedure for Free Space Collection (FSC).
The purpose of this paper is to report results of simulations of two FSC algorithms on a long
trace. The algorithms considered are the age-threshold algorithm of Menon and Stockmeyer [3],
specifically, the bucket-sort version described in [3, §13], and the more recently invented fitness
algorithm of Butterworth [1]. The principal concepts used in these algorithms will be described
briefly. An introduction to the log-structured architecture can be found, for example, in [4] in the
context of file systems and in [2, 3] in the context of disk arrays. In a typical log-structured array
(LSA), newly-written (virtual) tracks enter a stream of tracks called the destage stream. When the
destage stream has enough tracks to fill a segment, an empty segment is filled with these tracks and
closed (written to disk). Whenever one of these tracks is rewritten, the physical track where this
track was stored becomes “dead” or “garbage”, so it is potential free space. Free space collection is
the process of selecting certain segments and extracting the live tracks from them, thus producing
new empty segments. The live tracks so produced enter another stream called the FSC stream.
As with the destage stream, when the FSC stream has enough tracks to fill a segment, an empty
segment is filled with these tracks and closed.

The age-threshold algorithm takes a numerical parameter called the age-threshold (for short,
AT). When a segment is closed, it must wait until its age exceeds AT before it becomes a candidate
for free space collection. The age of a segment is measured with respect to a clock that is incre-
mented by one every time a segment is closed from the destage stream. (There is another version
where only segments closed from the destage stream must wait. See Note 1. Notes are collected in
Section 10.) Among the segments whose age is larger than AT, the algorithm uses a greedy method
to select segments. The greedy method selects the segment whose utilization is smallest, where the
utilization of a segment is the fraction of the segment containing live tracks. Thus, when a segment
of utilization u is collected, a fraction u of the tracks in the segment enter the FSC stream, and the
remaining 1 — u fraction is free space. An issue in using the age-threshold algorithm is that a value
for AT must be chosen. It is shown in [3] that the optimal value depends on the workload and the
amount of free space in the LSA system, and two methods for choosing an AT are suggested. One
of these methods is a heuristic that chooses the AT based only on the total amount of free space in
the system, a quantity that is easy to measure. It is also shown in [3] that a natural way to express
AT is as a fraction of the number of segments in the system; this fraction is called the normalized
age-threshold, or NAT for short.

The fitness algorithm does not have any workload-dependent parameters to be chosen. There
are two innovations in the fitness algorithm [1]. The first is a new criterion for selecting segments for
FSC. This criterion uses the age of a segment as well as its utilization. (The cost-benefit criterion
of [4] also depends on both age and utilization, but cost-benefit and fitness use different algebraic
combinations of age and utilization.) The fitness of a segment having age A and utilization u is

(1—u)’

Fitness = A x

(1)

The second innovation is the use of multiple destage and FSC streams. When a track, say a destage
track, is to be placed in a destage stream, it first goes through a binary decision tree to route it to

one of the destage streams. The routing is based on the age of the track, with the goals of placing
tracks of similar age into the same stream, and closing segments from the streams at about the same
rate. The age of a track is meant to approximate the time before the track is likely to be written in
the future; the calculation of track age is described in Section 2.3, following the description in [1].
Another issue that is relevant to our study is the collection of segments whose utilization is
high, although not 1 (think, say, utilization 0.9), and whose utilization is not decreasing with time
because the tracks in the segment are not being written; call these “frozen segments”. Because the
age-threshold algorithm uses the greedy selection criterion, it might never collect frozen segments of
sufficiently high utilization no matter how old they become; thus, the free space in these segments
is lost. For this reason, it is suggested in [3] to augment the age-threshold algorithm with another
process (that might run during relatively idle periods) to collect frozen segments. For the fitness
algorithm, however, the fitness function increases with increasing age, so a frozen segment will
eventually become old enough to be collected, obviating the need for a separate process for this.
This study has five main goals:

1. For the fitness algorithm, study how performance depends on the number of destage streams
and FSC streams;

2. For the age-threshold algorithm, study how the addition of multiple destage streams and FSC
streams affects the performance;

3. Compare the FSC performance of the fitness and age-threshold algorithms;

4. Investigate how well the algorithms handle scenarios where there are a significant number
tracks that are never written, having the potential to create frozen segments;

5. See how the addition of an age-threshold to the fitness algorithm affects its performance.

In the next section we describe in more detail the trace, the performance measures used, the
simulation program and its parameters, and how the parameters were chosen.

2 Preliminaries

2.1 The trace

We used the “snake” trace collected by Ruemmler and Wilkes [5]. The trace was collected on a 3GB
file server over a period of two months. It contains about 6.76 million writes. Further information
about the trace can be found in [5]. The trace was preprocessed to ignore the reads and convert
the writes into a sequence of track writes. The storage in the traced system was first divided into
tracks of length 32KB. This yielded a total of about 98000 tracks in the system. Each write event
is described in the original trace by a disk ID, starting address, and length of the write. Each such
write event was converted to a sequence of one or more track writes; a track was included if any
part of the track was written. Of the total 98000 tracks, 36607 tracks were written (at least once)
in the trace. Another preprocessing step was done to rename the written tracks with ID’s from 0
to 36606. In the case of many small writes in sequence to the same track, these conversions can

cause the same track ID to appear several times consecutively in the converted trace. To filter out
these “redundant” writes, a write cache of size at least one track was used in the simulations. For
simulations that went through the trace once, the preprocessed trace was split into two parts: the
first part containing the first one million writes, which was used as a warm-up; and the second part
called the working trace containing the rest, about 5.76 million writes.

2.2 Performance measures

The performance measure used in [3] is Garbage Collection Utilization (GCU). This is the average
utilization of segments collected by the FSC algorithm. The GCU also includes segments that
become empty “naturally” because all the tracks in the segment are written before the segment
is collected. Such segments do not go through the FSC process; they are placed immediately in
the pool of empty segments. However, in the computation of GCU, each such event is treated as
though a segment of utilization zero was collected, thus giving the FSC algorithm “credit” for this.

Preliminary simulations uncovered situations where GCU was not a good measure of perfor-
mance, due to caching effects in the destage streams. (These situations do not arise in the simulation
model of [3], and GCU does provide a good measure of performance in that paper; see Note 2.)
When the amount of caching increases, one would expect GCU to increase, but the number of
collected segments to decrease. Therefore, we also consider two measure of the FSC “work” done,
which depend on both GCU and the number of collected segments. These two measures model two
extremes of the amount of reading work that is done when collecting a segment: for the WorkRdLive
measure, only the live tracks are read out of the segment; for the WorkRdAll measure, all tracks
(the number of tracks the segment can hold) are read.

For each simulation run, the program reports GCU, the number of segments collected including
naturally emptied segments (call this number CltdCount), and the number of naturally emptied
segments (call this number EmptyCount). Let SegTrkCount be the number of tracks per segment.
The first definition of work measures the number of times a track is read or written during FSC,
assuming that only the live tracks are read from a collected segment. Thus, when a segment of
utilization u is collected, SegTrkCount x v tracks are both read and written. So the first work
measure, which we call WorkRdLive, is

WorkRdLive = 2 x SegTrkCount x GCU x CltdCount.

The second definition is similar, except that the assumption is that the collection of a non-empty
segment causes reading of SegTrkCount tracks to extract the live tracks from the segment. (This
assumption was used by Rosenblum and Ousterhout [4] in their definition of “write cost”.) Under
this assumption, the total number of tracks read is SegTrkCountx(CltdCount — EmptyCount), and
the total number of (live) tracks that are eventually written back is SegTrkCountxGCUxCltdCount.
The second work measure, WorkRdAll, is thus

WorkRdAll = SegTrkCount x GCU x CltdCount 4 SegTrkCount x (CltdCount — EmptyCount).

By definition, for a particular run of a particular algorithm, WorkRdLive < WorkRdAIll. Another
way to view the difference between the two measures is to note that WorkRdAll gives “extra credit”

to the FSC algorithm whenever a segment becomes empty naturally, whereas WorkRdLive does not.
For example, when comparing the difference in work between a segment emptying naturally and a
segment with one live track being collected, the difference is 2 for WorkRdLive, and SegTrkCount+1
for WorkRdAIll. When a statement is made about “Work”, the implication is that the statement
holds for both WorkRdLive and WorkRdAll.

When comparing two different algorithms (e.g., the fitness and age-threshold algorithms), we
give the comparison for GCU and both work measures. However, for simplicity, when giving
performance results for a single algorithm, we report only GCU and WorkRdLive.

2.3 The simulation program and its parameters

The simulation program was written by Harry E. Butterworth, then at IBM Hursley. Both the
age-threshold and the fitness selection criteria use the age of a segment. The age of a segment is
computed, as in [3], as follows. The age is based on the destage sequence number of the segment.
There is a destage sequence counter, initially zero. Whenever a segment is closed from a destage
stream, its destage sequence number is set to the current value of this counter, and the counter is
incremented by one. Whenever a segment S is closed from an FSC stream, its destage sequence
number is set to the maximum of the destage sequence numbers of the segments that contributed
tracks to S. The age of a segment is the difference between its destage sequence number and the
current value of the destage sequence counter. The sorting of tracks into streams is based on the
“age” of tracks. Whenever a track 7' is removed from a segment S (either because the track is
rewritten or because .S is chosen for free space collection), the age of T' is the difference between
the destage sequence number of S and the current value of the destage sequence counter. The age
of a track is intended to approximate the time since the track was last written. (The elapsed time
could be obtained exactly by storing with each track the time when it was last written, and this is
a direction for further research.) All segment and track ages defined in this way can be determined
using a small amount of information stored in controller memory, namely, one number per segment.

For the following description, it is useful to note a detail of how the simulation is done. When
there is a write to a track in any of the destage or FSC streams, the track is removed from the
stream and put through the binary decision tree for destage streams to route it to a new stream.
Thus, the streams act as a cache (although not an LRU cache), and we would expect the hits to
this cache to occur more often to the destage streams than to the FSC streams. This simulation
choice was made to model a particular LSA system under development. The simulations of [3] do
this differently (see Note 2).

Next are listed the parameters given to the program and how they were chosen in our experi-
ments.

o LsalrkCount: the number of tracks containing data. For the simulations of Sections 4 and 5,
where there are no unwritten tracks, LsaTrkCount was set to the number of written tracks
in the trace, that is, 36607. In Sections 7 and 8, we consider cases where the system initially
contains data tracks that are never written during the simulation on the trace. In these cases,
LsaTrkCount was set to three times the number of written tracks, that is, 109821. In the

sequel a “track” means a virtual track containing data, as opposed to an empty virtual track
or a physical track.

SegTrkCount: the number of tracks per segment. Because actual LSA systems typically have
a large number of segments, and because the number of (written) tracks was fixed by the
trace, it was desired to keep SegTrkCount fairly small. In all simulations, SegTrkCount was
fixed at 20.

LsaSegCount: the number of segments. This parameter was chosen to give a desired Average
Segment Utilization (ASU), where

B LsaTrkCount
~ LsaSegCount x SegTrkCount’

ASU

With the exception of one case in Section 8, ASU was held fixed at 0.8.

CdmBucketCount: the number of buckets. For the purpose of selecting segments based on
utilization or fitness, the range [0, 1] of utilization values is split into CdmBucketCount sub-
ranges of equal size, and all segments having utilization in the same subrange are kept in the
same bucket. CdmBucketCount was held fixed at 10.

Sorting: either Fifo or Tree. If Sorting = Fifo, each bucket is maintained as a FIFO queue. If
Sorting = Tree, the segments in each bucket are kept sorted by age, with the oldest segment
at the “head” of its bucket. For the fitness algorithm, both values of Sorting were explored.
For the age-threshold algorithm, only Sorting = Fifo was done, because Sorting = Fifo is
used in the reference version of the age-threshold algorithm [3], and it was not a goal of this
paper to investigate how Sorting = Tree affects the age-threshold algorithm.

Selection: either Greedy or Fitness. If Selection = Greedy, the next segment selected is the
segment at the head of the lowest-utilization non-empty bucket. If Selection = Fitness, the
fitness function (1) is computed for each segment at the head of each bucket, and the one
having largest fitness is selected. Note that these methods perform only approximations to
greedy and fitness selection, and for the fitness algorithm the method is more accurate if
Sorting = Tree.

Threshold: the age-threshold, AT, used in simulations of the age-threshold algorithm. A
segment is not allowed to be collected until its age exceeds AT, where age is measured by
the number of segments closed from a destage stream. Threshold was set to 0 for simulations
of the fitness algorithm, with the exception of simulations of Section 9 where the fitness
algorithm was tried with a positive AT.

DtgStreamFEzp and FscStreamFExp: logs of the number of destage and FSC streams, respec-
tively. During preliminary simulations, the exponents were varied from 0 to 4. Butterworth
observed that the results were being skewed because increasing DtgStreamExp had the side
effect of increasing the size of the “destage stream cache” described at the beginning of this
section. Butterworth suggested keeping DtgStreamExp and FscStreamExp fixed at 4, thus

keeping the size of the stream caches fixed, and using two other parameters (described next)
to vary the amount of age sorting done by the decision trees.

o DtgSortExp and FscSortExp. The nodes at the highest DtgSortExp levels of the destage
decision tree route tracks based on their age, while the remaining lower levels route incoming
tracks randomly; and similarly for FscSortExp. These two parameters were varied from 0 to
4. In particular, the value O indicates the extreme case where no sorting was done, and 4
indicates the extreme case where sorting was done at all nodes of the tree. We sometimes
specify a particular choice of these parameters by an ordered pair (DtgSortExp, FscSortExp).
The program varies the sort boundaries dynamically, with the goal that all streams receive
tracks at about the same rate: when sorting is done at a node of the tree, the node maintains
a relatively long-term average value of the ages of the tracks that pass through the node;
tracks are sent left or right depending on whether their age is above or below the average for
that node.

o CachelrkCount. The program can simulate an LRU cache placed in front of the LSA, and
CacheTrkCount is the number of tracks the cache can hold. Two cases were considered:
Cache = 1 where CacheTrkCount = 1 and Cache = 320 where CacheTrkCount = 320. The
case Cache = 1 is essentially no cache; as described in Section 2.1 the value 1 was chosen
to filter out consecutive writes to the same track. The size 320 of the “large cache” was
chosen so that the maximum number of tracks in the intended cache is at least as large as the
maximum number of tracks in the “destage streams cache” comprised of 16 destage streams,
each of which can hold hold up to SegTrkCount = 20 tracks before a segment is closed from
the stream. For the case Cache = 1, the cache hit ratio over the working trace was 0.223; for
Cache = 320, the hit ratio was 0.950.

o MaxEmpty: This parameter is the number of empty segments produced by FSC in the sim-
ulation before FSC is stopped and track writing is done to fill these empty segments; then
the cycle repeats. MaxEmpty was fixed at 1. This models the situation where track writing
and FSC are operating in parallel and in equilibrium. (Results of [3] on the hot-and-cold
synthetic trace seem to indicate that choosing MaxEmpty somewhat greater than 1 improves
the performance of the age-threshold algorithm. This was found not to be true for the simu-
lation program and trace used here. So we are not putting the age-threshold algorithm at a
disadvantage by fixing MaxEmpty = 1. See Note 3 for more information.)

e DtgDecay and FscDecay. These parameters affect how the sort boundary (the long-term aver-
age) is computed at each sorting node of a binary decision tree. As suggested by Butterworth,
both were fixed at 10.

In addition, the inputs to the program include a sequence of one or more trace files. At the
start of the simulation, all LsaTrkCount tracks are placed into segments in sequential order. Then
10xLsaTrkCount uniformly random writes are made to the tracks, including any extra “unwritten”
tracks that are introduced as described in item LsalrkCount above. The program then reads
indices of written tracks from the trace files in sequence. Statistics such as GCU and CltdCount

are computed separately for each trace file. To summarize, for all of our simulation runs, with the
exception of certain runs in Section 8: first there is a warm-up of 10x LsaTrkCount uniform writes
to place the LSA in a random state; then there is a warm-up using the first one million writes from
the trace; and then the simulation is run on the working trace and performance values are obtained
for this part of the trace. The first million writes are used to provide a transition from the random
state to a typical trace state.

3 Summary of Results

The GCU and Work values for various cases are shown in Figure 1, at the optimal DtgSortExp and
FscStreamExp for each case. For each case shown in the table, the optimal GCU, WorkRdLive,
and WorkRdAIl values occur in the case (DtgSortExp, FscSortExp) = (4,4). Because 4 was the
value used for DtgStreamExp and FscStreamExp in the experiments, we could only consider 0 <
DtgSortExp, FscSortExp < 4. It is possible that performance would continue to improve for
values of the stream and sort exponents greater than 4. However, as explained above, there are
complications in comparing the same algorithm with different values of DtgStreamExp, because
the size of the “destage streams cache” varies with DtgStreamBExp.

The AT of the age-threshold algorithm was varied to find approximately the lowest GCU,
WorkRdLive, and WorkRdAIl with respect to the choice of AT. (Sometimes GCU, WorkRdLive,
and WorkRdAll are minimized at different AT values. As described in Section 5, the discrepancy
is not significant.) While it is useful to compare other algorithms against the best case of the
age-threshold algorithm at the optimal AT, it is not clear how the optimal AT can be found in
practice for a changing workload. Therefore, the table also contains performance numbers for the
age-threshold algorithm at NAT = 0.10. This is the value given by the simpler heuristic in [3,
§18], which is NAT = 0.5x (1 — ASU). In the table, this algorithm is called “age-thr-nat.10”. We
also considered the effect of adding a positive age-threshold to the fitness algorithm. For both
Sorting = Tree and Sorting = Fifo, three values of AT were considered, corresponding to NAT’s of
0.01, 0.05, and 0.10. In each case, the best performance was found at NAT = 0.10, so we report
results only for this case. This algorithm is called “fit-age-nat.10”. This algorithm can be compared
to the fitness algorithm to see the effect of the age-threshold on the fitness algorithm, and it can
be compared with the age-thr-nat.10 algorithm to see the difference between fitness selection and
greedy selection with a fixed NAT = 0.10.

For comparison, performance numbers for the greedy algorithm are also shown. The greedy
algorithm was simulated by choosing Selection = Greedy, Threshold = 0, and DtgSortExp =
FscSortExp = 0. However, the greedy algorithm is ignored in the discussion to follow.

Some observations about the values in Table 1 can be made. The data in the table divides
naturally into eight cases depending on: Unwritten Tracks = No or Yes; Cache = 1 or 320; and
performance measure = WorkRdLive or WorkRdAll. In each case, there are six algorithms (not
counting greedy).

1. The range of differences. Comparing the six algorithms in each case, the percentage by which
the Work of the worst exceeds that of the best is maximized at 24% in the case (Y, 1, Live).
The percentages in the other seven cases vary from roughly 9% to 16%.

Unwritten Algorithm Cache | Bucket | GCU | WorkRdLive | WorkRdAll | EmptyCount
Tracks? Size | Sorting (K) (K) (K)
N fitness 1 fifo 0.183 480 1094 22.7
N fitness 1 tree 0.193 513 1016 28.4
N age-threshold 1 fifo 0.194 517 946 32.1
N age-thr-nat.10 1 fifo 0.200 536 1020 29.3
N fit-age-nat.10 1 fifo 0.179 467 946 29.7
N fit-age-nat.10 1 tree 0.194 517 991 30.0
N greedy 1 fifo 0.581 1528 2079 0.0
Y fitness 1 fifo 0.134 336 793 31.4
Y fitness 1 tree 0.135 339 739 34.2
Y age-threshold 1 fifo 0.144 366 694 37.9
Y age-thr-nat.10 1 fifo 0.157 404 787 35.0
Y fit-age-nat.10 1 fifo 0.131 326 698 35.6
Y fit-age-nat.10 1 tree 0.131 329 698 35.9
Y greedy 1 fifo 0.576 1493 2043 0.0
(a) Cache =1
Unwritten Algorithm Cache | Bucket | GCU | WorkRdLive | WorkRdAll | EmptyCount
Tracks? Size | Sorting (K) (K) (K)
N fitness 320 fifo 0.359 313 564 1.4
N fitness 320 tree 0.378 340 579 2.0
N age-threshold 320 fifo 0.370 328 534 3.9
N age-thr-nat.10 | 320 fifo 0.370 328 549 2.9
N fit-age-nat.10 320 fifo 0.355 308 528 3.0
N fit-age-nat.10 320 tree 0.377 339 556 3.1
N greedy 320 fifo 0.583 754 1023 0.0
Y fitness 320 fifo 0.309 251 480 2.6
Y fitness 320 tree 0.302 243 458 3.2
Y age-threshold 320 fifo 0.310 253 411 6.1
Y age-thr-nat.10 | 320 fifo 0.324 270 451 5.0
Y fit-age-nat.10 320 fifo 0.307 249 429 5.1
Y fit-age-nat.10 320 tree 0.299 240 418 5.1
Y greedy 320 fifo 0.576 733 1003 0.0

(b) Cache = 320

Figure 1: Summary of performance results at the optimal DtgSortExp and FscSortExp.

2. Fitness-fifo versus fitness-tree. Fitness-fifo has smaller WorkRdLive than fitness-tree with the
exception of case (Y, 320, Live). Fitness-tree has smaller WorkRdAll than fitness-fifo with
the exception of case (N, 320, All). As shown by the more detailed results in Section 4, if
DtgSortExp > 2 and FscSortExp > 2: fitness-fifo does less WorkRdLive than fitness-tree;
fitness-fifo does less WorkRdAll than fitness-tree for Cache = 320; and fitness-tree does less
WorkRdAIl than fitness-fifo for Cache = 1. If DtgSortExp > 1 and FscSortExp > 1, there
are only three exceptions. (See Figure 6.)

3. Fitness (with AT = 0) versus age-threshold. In the four cases where the measure is WorkRdLive,
a fitness algorithm finishes first, and fitness-fifo finishes ahead of fitness-tree in all except
(Y, 320, Live). In the four cases where the measure is WorkRdAll, the age-threshold algo-
rithm (with optimal AT) finishes first. The likely explanation for this difference between
the two measures is that the age-threshold algorithm gives segments a longer time to empty
naturally before they are collected, and, as noted above, WorkRdAIl gives “extra credit” to
segments that empty naturally. The first point is supported by the EmptyCount results in
the table: the age-threshold algorithm has noticeably larger EmptyCount than fitness-fifo and
fitness-tree in all four cases. This is consistent with the explanation that a large enough AT is
more effective at letting segments become completely empty when compared with the fitness
selection method with AT = 0. (There is a rough correlation in the table between increasing
EmptyCount and decreasing WorkRdAll, but not a perfect one because GCU and CltdCount
also enter into the computation of WorkRdAll.) As can be seen from the more detailed results
given in Section 6 comparing the fitness-fifo and age-threshold algorithms for all 25 values
of (DtgSortExp, FscSortExp), the general trend is that the fitness-fifo algorithm performs
better than the age-threshold (optimal AT) algorithm under GCU and WorkRdLive, and the
age-threshold (both optimal AT and NAT = 0.10) algorithm performs better than the fitness-
fifo algorithm under WorkRdAIll. Most of the exceptions occur when either DtgSortExp = 0
or FscSortExp = 0. (See Figure 13.)

4. Fitness (NAT = 0) versus fitness (NAT = 0.10). In each of the eight cases we can compare
the performance of the fitness algorithm with that of the fit-age-nat.10 algorithm. In each
case, there are two subcases of this, Sorting = Tree or Fifo. In all sixteen cases except one,
the introduction of the positive age-threshold causes a decrease in Work; the exception is the
case (N, 1, Live, Tree) where there is a < 1% increase in WorkRdLive. Under WorkRdLive,
the improvement is at most 3% in each case. Under WorkRdAll, the improvement is larger (as
high as 13.5% in the case (N, 1, All, Fifo)). As in the previous item, the larger improvement
in WorkRdAll is probably due to an increase in EmptyCount when the age-threshold is used.

A few experiments were done to compare the fitness selection method with the age-threshold
method independently of the issue of multiple streams. This was done by setting DtgStreambxp
= FscStreamExp = DtgSortExp = FscSortExp = 0. (This is not completely fair to the fitness
method because it was designed to be used in conjunction with multiple streams.) The results are
shown in Figure 2. They are similar to those in Figure 1; in particular, the fitness-fifo algorithm
has smallest WorkRdLive, and the age-threshold (optimal AT) algorithm has smallest WorkRdAll,
for both Cache = 1 and 320. These results are not mentioned further in the paper.

Unwritten Algorithm Cache | Bucket || GCU | WorkRdLive | WorkRdAll | EmptyCount
Tracks? Size | Sorting (K) (K) (K)
N fitness 1 fifo 0.129 682 1825 57.7
N fitness 1 tree 0.138 738 1759 63.8
N age-threshold 1 fifo 0.136 725 1574 72.4
N age-thr-nat.10 1 fifo 0.143 769 1746 66.0
N fitness 320 fifo 0.351 313 564 1.9
N fitness 320 tree 0.373 344 595 1.9
N age-threshold 320 fifo 0.369 334 549 4.0
N age-thr-nat.10 | 320 fifo 0.373 343 570 3.1

Figure 2: Results for the case of one destage stream and one FSC stream.

The following additional observations can be made about the results given later.

5. In almost all cases, GCU, WorkRdLive, and WorkRdAll decrease as the SortExp’s increase.
That is, if 0 < ¢ <7 <4, 0< j <7 <4, and (3,5) # (¢,5'), then GCU (resp., Work)
at the point (DtgSortExp, FscSortExp) = (¢/,7’) is smaller than GCU (resp., Work) at the
point (4, 7). There are a few sporadic instances where an increase of 1 in one of the exponents
causes GCU or Work to increase by at most 1%. There was a significant increase only in a
very few case where WorkRdAll at (1,7) is larger than WorkRdAll at (0,7). In particular,
the smallest GCU, WorkRdLive, and WorkRdAll are always found in the case (4,4).

. When the algorithms are run many times on the trace and there are unwritten tracks, the
fitness algorithm shows a more significant decrease in GCU, WorkRdLive, and WorkRdAll
than either the age-threshold algorithm with unwritten tracks or the fitness algorithm with
no unwritten tracks. This suggests that the fitness algorithm with unwritten tracks is reorga-
nizing the unwritten tracks better than the age-threshold algorithm. (The simulation of the
age-threshold algorithm does not have a process for collecting frozen segments.)

The rest of the paper contains the following. For the case where every track is written at least
once (see item LsaTrkCount above), Sections 4 and 5 contains results on the fitness algorithm and
the age-threshold algorithm, respectively. In Section 6, the results obtained from the two algorithms
are compared. In Section 7 we turn to the case where there are twice as many unwritten tracks
as written tracks. In Section 8, again in the case of unwritten tracks, we describe results obtained
by running the algorithms on the trace ten times in sequence, in an attempt to see how well
the algorithms reorganize the unwritten tracks. Section 9 contains results for the fit-age-nat.10

algorithm.

10

4 The Fitness Algorithm

Results for the fitness algorithm, with no unwritten tracks, are shown in Figure 5. (Figures showing
detailed results and plots are collected in the Appendix.) Each table entry contains three numbers:
GCU, CltdCount (in thousands), and WorkRdLive (in thousands). Some observations can be made
about this data.

1. As mentioned earlier, in all cases GCU and WorkRdLive generally decrease as the SortExp’s
increase (there is only one exception in Figure 5). The only significant increase is an increase
by 2.3% to 6.5% in WorkRdAIl (not shown in the tables) when going from point (0,7) to
(1,7), for j = 0,1,2,3,4 in the case Sorting = Fifo, and j = 0 in the case Sorting = Tree,
both in the case Cache = 1.

2. CltdCount (the number of segments collected, including naturally emptied ones) remains
fairly constant across each row of the table. When Cache = 1, CltdCount increases down
each column. Increasing CltdCount together with decreasing GCU is an indication that
caching in the destage streams is less effective as DtgSortExp increases. An explanation
for this behavior, due to Harry Butterworth, is that as DtgSortExp increases, young (and
presumably hotter) tracks are concentrated in fewer destage streams, with the consequence
that they spend on average less time in the streams before they are put in a closed segment.
However, the increase in CltdCount is accompanied by a decrease in GCU, which is enough
to make WorkRdLive decrease. In the case Cache = 320, CltdCount decreases slowly with
increasing DtgSortExp. This is consistent with the explanation: if there is an LRU cache in
front of the LSA, “hits” in the destage streams are less likely to occur.

3. To compare Sorting = Tree with Sorting = Fifo, Figure 6 gives the percentage by which
the GCU (first number in entry), WorkRdLive (second number in entry), and WorkRdAll
(third number in entry) in the case Sorting = Tree is larger (positive percentage) or smaller
(negative percentage) than that in the case Sorting = Fifo. So + (resp., —) means that fitness-
fifo (resp., fitness-tree) performs better. With four insignificant exceptions: Fifo has better
WorkRdLive than Tree when FscSortExp > 0; Tree has better WorkRdAll than Fifo when
Cache = 1 and DtgSortExp > 0; Fifo has better WorkRdAll than Tree when Cache = 320
and DtgSortExp > 0.

Figures 7, 8, and 9 show plots of GCU of fitness-fifo, WorkRdLive of fitness-fifo, and WorkRdLive
of fitness-tree, respectively, as a function of (DtgSortExp, FscSortExp).

5 The Age-Threshold Algorithm

The age-threshold algorithm was simulated at NAT’s from 0.025 to 0.175 in steps of 0.025. We
did not consider larger NAT’s because the fraction of free space in the system is 1 — ASU = 0.2.
Most of the optimal NAT’s were 0.1 or larger. Recall that the age-threshold algorithm was always
simulated with Sorting = Fifo. Figure 10 shows the results. For each entry, GCU, CltdCount,
and WorkRdLive are shown. In the left-hand tables, GCU and WorkRdLive are given at the

11

optimal NAT among those tested. Sometimes, the smallest GCU and the smallest WorkRdLive or
WorkRdAIl occurred at two different NAT’s. However, GCU at the WorkRdLive-optimal NAT was
within 0.5% of the optimal GCU, and WorkRdLive at the GCU-optimal NAT was within 0.4% of
the optimal Work. For WorkRdAll, these percentages were at most 1% with a few exceptions. The
CltdCount values at the optimal NAT’s differed by at most 1K. In the right-hand tables, NAT is
fixed at 0.10. Regarding the percentage increase in WorkRdLive at the fixed NAT = 0.10 compared
to that at the WorkRdLive-optimal NAT: for Cache = 1 this percentage is at most 5.01% and is
3.76% at the point (4,4); for Cache = 320 it is at most 3.65% and is 0% at the point (4,4). The
changes in CltdCount for changing DtgSortExp and FscSortkExp are similar to those for the fitness
algorithm. Plots of GCU and WorkRdLive using optimal AT’s are shown in Figures 11 and 12.

6 Comparison of the Fitness and Age-Threshold Algorithms

To compare the age-threshold algorithm with the fitness algorithm, the tables in Figure 13 show
the percentage by which GCU, WorkRdLive, and WorkRdAIl of the age-threshold algorithm is
larger (positive percentage) or smaller (negative percentage) of that of the fitness-fifo algorithm,
both at the optimal AT and at NAT = 0.10. One fact that can be seen clearly in these tables
is that, with a few exceptions occurring mostly when DtgSortExp = 0 or FscSortExp = 0, the
fitness-fifo algorithm has smaller GCU and WorkRdLive, while the age-threshold algorithm (both
optimal AT and NAT = 0.10) has smaller WorkRdAll. To see the effect of increasing SortExp’s, we
can look at the main diagonal of each table, i.e., the points (7,7) for 0 < ¢ < 4. The general trend is
that whichever algorithm has the advantage (fitness for GCU and WorkRdLive, age-threshold for
WorkRdAll) increases its advantage as ¢ increases. However, there is often a decrease in advantage
when going from (3, 3) to (4,4), and there are a few cases where a decrease in advantage occurs for
smaller 1.

7 Unwritten Tracks

The algorithms were simulated in a scenario where, in addition to the 36607 tracks that are written
in the trace, the tracks include twice as many (73214) tracks that are never written during the
simulation on the trace. This gives a total of LsaTrkCount = 109821. Recall that the unwritten
tracks are written during the initial warm-up consisting of 10 x LsaTrkCount uniformly random
writes. Keeping SegTrkCount fixed at 20, LsaSegCount was tripled to maintain ASU = 0.8. De-
tailed results for the fitness algorithm are shown in Figure 14, and plots are shown in Figures 15
(GCU) and 16 (WorkRdLive). Results for the age-threshold algorithm are shown in Figure 17,
and plots (using optimal AT’s) are shown in Figures 18 (GCU) and 19 (WorkRdLive). Comparing
these results with those in the case of no unwritten tracks, the absolute GCU and Work values
are smaller in the case of unwritten tracks. However, the relationships between the numbers in
the case of unwritten tracks are similar to those in the case of no unwritten tracks. For example,
performance still tends to increase as the SortExp’s increase.

The table in Figure 20 compares the performance of the fitness-fifo algorithm with that of the
age-threshold algorithm in the case of unwritten tracks; this is the analogue for unwritten tracks of

12

Percentage Improvement || Percentage Above Goal

Algorithm | Unwritten? | Cache | SortExp’s || GCU | WRL WRA GCU | WRL | WRA

fitness Y 1 0 346 | 43.6 25.3 19.9 | 249 11.2

age-thr Y 1 0 17.9 | 25.0 15.0 55.6 | 77.3 29.9

fitness N 1 0 2.4 3.7 2.2

fitness Y 1 4 69.6 | 72.0 52.1 10.7 | 10.6 6.9

age-thr Y 1 4 36.9 | 39.3 22.7 134.2 | 147.7 42.2

fitness N 1 4 25.1 | 26.4 16.7

fitness Y 320 0 377 | 51.4 32.3 20.0 | 12.2 12.2

age-thr Y 320 0 13.9 | 228 15.2 65.5 | 50.0 45.0

fitness N 320 0 3.1 6.0 4.0

fitness Y 320 4 78.8 | 84.7 66.4 23.3 | 25.0 10.3

age-thr Y 320 4 56.5 | 66.5 47.1 180.0 | 211.4 55.5

fitness N 320 4 34.7 | 46.0 30.7

Figure 3: Results from running through the trace ten times.

Figure 13. As in the case of no unwritten tracks, the fitness-fifo algorithm has better performance
according to GCU and WorkRdLive, while the age-threshold algorithm does better according to
WorkRdALIL

8 Reorganization of Unwritten Tracks

In this section we report results of running the algorithms for ten times in sequence on the full
trace, starting with unwritten tracks just as in the previous section. The goal was to see how much
improvement in GCU and Work is obtained from the first run on the trace to the tenth run. In
summary, the fitness algorithm shows more improvement than the age-threshold algorithm. It is
reasonable to conjecture that the fitness achieves better improvement because it does a better job
of collecting “frozen” segments and congregating the unwritten tracks into fewer segments. To test
this conjecture, we also ran the fitness algorithm ten times over the trace where there were no
unwritten tracks. Here the fitness algorithm shows some improvement but it is not as large as that
obtained with unwritten tracks. This supports the conjecture. In the case of no unwritten tracks,
the improvement could be due to a better congregation of the tracks that are written relatively
rarely. Adding a large number of unwritten tracks makes the improvement larger.

We also compare the GCU and Work of an algorithm at the tenth iteration with the GCU and
Work that would occur if the algorithm was completely successful in congregating all the unwritten
tracks into segments by themselves. Although we would not expect an algorithm to reach this
perfect state, it is interesting to see how close it comes to this “goal”. To find the GCU and
Work goals, we compute the ASU of the system when all the unwritten tracks are in segments by
themselves. In the scenario with unwritten tracks and ASU = 0.8, all the tracks fill a fraction 8/10

13

Fitness Algorithm Age-Threshold Algorithm

500 500
450 1 450 | 1
400 R 1 400 1
350 1 350 1
3 3
o 300 - 1 o 300 - -
2 2
3 250 t 1 = 250 |]
o o
x x
S 200 1 S 200 1
= =
150 1 150 1
100 F 9 100 1
50 1 50 - 1
0 0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
number of passes through trace number of passes through trace
(a) Cache =1
Fitness Algorithm Age-Threshold Algorithm
350
3 3
Qo Qo
2 2
- -
° °
o o
< <
o o
= =
50 1
0 0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
number of passes through trace number of passes through trace

(b) Cache = 320

Figure 4: Plots of WorkRdLive of the fitness-fifo (left) and age-threshold (right) algorithms by
number of passes through the trace, in the case DtgSortExp = FscSortkExp = 4. The straight
horizontal lines are at the goal values.

14

of the segments. Of these tracks, 2/3 are unwritten. If all the unwritten tracks were in segments
by themselves, the unwritten tracks would fill (8/10)(2/3) = 8/15 of the segments, and the written
tracks would fill (8/10)(1/3) = 4/15 of the segments. Thus, the effective ASU is (4/15)/(1 — 8/15)
= 4/7. To compute the GCU and Work goals for a given case, the case was simulated ten times on
the trace with no unwritten tracks and ASU = 4/7; that is, LsaTrkCount = 36607, LsaSegCount
= 3203, and SegTrkCount = 20.

The cases considered were Cache = 1 and 320, Sorting = Fifo and Tree for the fitness algorithm,
and DtgSortExp = FscSortExp = ¢ for 0 < ¢ < 4. For simplicity we only report results at the
extreme points ¢ = 0 and ¢ = 4, and only for Sorting = Fifo. With other parameters fixed, Sorting
= Fifo consistently showed larger improvement than Sorting = Tree. A fixed AT = 1121 was used
for the age-threshold algorithm. This value is close to the optimal value for both scenarios: ASU
= 0.8 and unwritten tracks; ASU = 4/7 and no unwritten tracks. The NAT’s in the two scenarios
are 0.163 and 0.35. The heuristic of [3] described above would give 0.10 and 0.21, respectively.

Results are shown in Figure 3 (where WorkRdLive and WorkRdAll are abbreviated WRL and
WRA). For each case are given the percentage improvement in GCU and Work from the first
iteration to the last, and the percentage that the tenth-iteration value is larger than the goal value
for the case.

Most of the improvement in GCU and Work occurred during the earlier iterations. This can be
seen in Figure 4 for the fitness-fifo and age-threshold algorithms with unwritten tracks in the cases
Cache = 1,320 and SortExp = 4.

It is also reasonable to wonder what is happening during the early runs on the trace. To check
this, the trace was divided in four parts of equal size. The WorkRdLive (K) values during the first
eight quarters (twice through the whole trace) are

141 81 113 90
78 50 57 45

This suggests that certain quarters of the trace need more work than others.

9 The Fitness Algorithm with an Age-Threshold

Detailed results for the fit-age-nat.10 algorithm without and with unwritten tracks are shown in
Figures 21 and 22, respectively.

10 Notes

1. The FSC simulation program used in this study simulates the all-age version of the age-
threshold algorithm, where all closed segments must wait to pass the AT before being col-
lected. In another version, the T'W-age version, only segments closed from the destage stream
must wait. Results of Sections 16 and 17 of [3] show that on a realistic synthetic trace and
on the trace used here, the GCU’s of the all-age and TW-age versions are virtually identical
for all reasonably small values of the AT, in particular, for all values of AT smaller than or
in the vicinity of the “optimal” AT where GCU is minimized. Because we consider only such

15

values of AT in this study, one would expect the results to have been virtually identical if the
TW-age version had been simulated.

2. The simulation program used in this study allows multiple destage and FSC streams, and a
write to track in a stream causes the track to be removed from the stream and placed in a new
destage stream. This means that a closed segment is always full. For the simulation program
used in [3], there is only one destage stream and one FSC stream, and a write to a track in
the destage stream causes the track to be removed from the stream, but a “hole” remains
in the stream where the track was. This means that a destage segment can contain holes,
i.e., free space, when closed. In particular, this means that if a sequence of N track writes
enters the LSA, the FSC process must create very close to N tracks of free space. (This is
not true if the streams act as a cache.) Thus, smaller GCU implies that a smaller number of
segments are collected. So in [3], decreasing GCU always means increasing performance, and
vice versa.

3. Experiments were done to determine the effect on the performance of the age-threshold algo-
rithm caused by increasing MaxEmpty. Both Cache = 1 and Cache = 320 were considered.
In one type of experiment, MaxEmpty was increased slowly from 1 to 0.05 x LsaSegCount,
while Threshold was decreased from its optimal (at MaxEmpty = 1) value at each step by
the same amount that MaxEmpty increased. (The reason why it is reasonable to decrease
AT by the same amount that MaxEmpty increases is explained in [3, §10].) The second type
of experiment was the same except that Threshold was held fixed at its optimal value. In all
cases, both GCU and work generally increased as MaxEmpty increased, with the exception
of a few cases with MaxEmpty < 0.01 x LsaSegCount where the measure decreased by less
than 0.6%.

Acknowledgements. I am grateful to Harry Butterworth, not only for supplying the simulation
program, but also for many helpful suggestions about the details of the simulations. In particular,
he noticed early on that varying the number of streams was producing skewed results, and he
suggested the solution of varying the amount of stream sorting instead. I also thank Jody Glider
for helpful discussions about work measures for FSC algorithms.

References

[1] H. E. Butterworth, The design of segment filling and selection algorithms for efficient free-space
collection in a log structured array, unpublished manuscript, IBM Hursley, 1999.

[2] J. Menon, A performance comparison of RAID-5 and log-structured arrays, Fourth IEEE
Symposium on High-Performance Distributed Computing, Aug. 1995, Charlottesville, Virginia,
pp. 167-178.

[3] J. Menon and L. Stockmeyer, An age-threshold algorithm for garbage collection in log-
structured arrays and file systems, IBM Research Report RJ 10120, May 1998; a shorter

16

version appears in High Performance Computing Systems and Applications, J. Schaeffer, ed.,
Kluwer Academic Publishers, 1998, pp. 119-132.

[4] M. Rosenblum and J. K. Ousterhout, The design and implementation of a log-structured file
system, ACM Trans. Computer Systems 10 (1992), pp. 26-52.

[5] C. Ruemmler and J. Wilkes, UNIX disk access patterns, Proc. USENIX 1993 Winter Confer-
ence, Jan. 1993, pp. 405-420.

17

Appendix: Tables and Plots

FSC Sort Exponent

FSC Sort Exponent
o | 1 | 2 | 3 | 4
0.397 | 0.377 | 0.365 | 0.358 | 0.353
0 49 48 47 47 46
784 721 687 667 653
0.338 | 0.304 | 0.290 | 0.280 | 0.277
1 57 55 55 54 54
768 674 636 606 598
Destage 0.299 | 0.262 | 0.246 | 0.238 | 0.232
Sort 2 61 60 60 60 60
Exponent 731 634 593 574 555
0.272 | 0.236 | 0.219 | 0.211 | 0.207
3 63 63 63 62 63
687 590 549 528 517
0.245 | 0.209 | 0.194 | 0.187 | 0.183
4 66 65 65 65 65
649 548 509 489 480
Sorting = Fifo
(a) Cache =1
FSC Sort Exponent
o | 1 | 2 | 3 | 4
0.499 | 0.484 | 0.475 | 0.468 | 0.464
0 28 27 27 26 26
553 522 504 490 482
0.474 | 0.455 | 0.441 | 0.433 | 0.430
1 26 26 25 25 25
502 467 441 428 422
Destage 0.456 | 0.434 | 0.417 | 0.410 | 0.404
Sort 2 26 25 24 24 23
Exponent 465 | 427 | 400 | 387 | 379
0.438 | 0.415 | 0.391 | 0.388 | 0.382
3 25 24 23 23 23
434 395 358 353 345
0.416 | 0.394 | 0.367 | 0.365 | 0.359
4 24 23 22 22 22
396 362 324 321 313

0o | 1 | 2 3 | 4
0.403 | 0.384 | 0.386 | 0.384 | 0.381
50 48 49 49 48
801 743 751 747 738
0.337 | 0.308 | 0.304 | 0.302 | 0.298
56 55 56 56 56
760 683 679 674 664
0.300 | 0.262 | 0.256 | 0.254 | 0.250
61 61 61 62 62
727 636 627 627 616
0.273 | 0.236 | 0.228 | 0.224 | 0.221
63 63 64 64 64
682 594 581 576 566
0.237 | 0.206 | 0.198 | 0.197 | 0.193
65 66 66 66 66
621 542 523 523 513

Sorting = Tree
FSC Sort Exponent

0 | 1 | 2 3 | 4
0.504 | 0.493 | 0.493 | 0.489 | 0.489

28 27 27 27 27
563 539 540 532 532
0.479 | 0.465 | 0.455 | 0.452 | 0.451

27 26 26 25 25
510 483 466 461 459
0.463 | 0.447 | 0.436 | 0.430 | 0.428

26 25 25 24 24
476 448 428 419 416
0.443 | 0.424 | 0.412 | 0.407 | 0.405

25 24 24 23 23
438 408 389 382 379
0.414 | 0.396 | 0.386 | 0.382 | 0.378

24 23 23 23 22
392 365 351 345 340

Figure 5: [GCU, CltdCount (K), WorkRdLive (K)] of the fitness algorithm.

Sorting = Fifo

(b) Cache = 320

18

Sorting = Tree

FSC Sort Exponent
0 1 | 2 | 3 4
+1.46 | £1.79 | +5.70 | +7.34 | +8.07
0| +2.27 | +3.02 | +9.28 | +11.94 | +13.03
+0.66 | +0.63 | +3.65 | +4.89 | +5.21
—0.32 | +1.21 | +4.65 | +7.71 | +7.55

1| —1.01 | +1.34 | +6.76 | +11.26 | +11.03
Destage —3.25 | —3.88 | —1.92 | 40.19 | —0.34
Sort +0.56 | —0.00 | +3.99 | +6.46 | +7.72
Exponent 2 || —0.43 | 40.28 | +5.72 | 49.27 | +10.84
—4.76 | —6.86 | —5.58 | —4.45 | —3.38
+0.16 | +0.29 | +4.40 | +6.13 | +7.11
3| —0.74 | +0.60 | +5.95 | +8.93 | +9.48
—5.53 | —7.31 | —5.62 | —4.77 | —4.85
—3.12 | —1.56 | +1.90 | +5.27 | +5.36
4 || —4.33 | —1.04 | 42.77 | +6.92 | +6.85
—7.94 | —8.76 | —8.33 | —6.46 | —7.15

(a) Cache =1

FSC Sort Exponent
o | 1 | 2 | 3 4

+1.05 | +1.97 | +3.79 | +4.56 | +5.48
0| +1.69 | +3.42 | +6.99 | +8.56 | +10.35
+1.02 | +2.01 | +4.24 | +5.21 +6.36
+1.07 | +2.12 | +3.30 | +4.46 | +4.89

1] +1.55 | +3.41 | +5.57 | +7.70 | +8.64
Destage +0.77 | +1.73 | 4+2.89 | +4.11 | +4.73
Sort +1.50 | +3.02 | +4.36 | +4.92 | +5.77
Exponent 2 || +2.22 | +5.04 | +7.21 | +8.16 | +9.71
+1.16 | +2.53 | +3.46 | +3.79 | +4.61
+0.93 | +2.07 | +5.23 | +5.05 | +6.10
3 || +1.08 | +3.21 | +8.55 | +8.20 | +9.95
+0.41 | +1.11 | +3.72 | +3.45 | +4.37
—0.46 | +0.57 | +5.22 | +4.65 | +5.30
4 —1.02 | +0.84 | +8.52 | +7.36 | +8.41
—1.00 | —0.72 | +3.16 | +2.23 | +2.72

(b) Cache = 320

Figure 6: Percentage by which [GCU, WorkRdLive, WorkRdAll] in the case Sorting = Tree is larger
(positive percentage) or smaller (negative percentage) than that in the case Sorting = Fifo.

19

/ /7 -
; / -
% / e
A / / -
N / -,
VRN s 7 T
Y - / / / -
, < / / /
/ ’
/

0.4 - i e
e L s P -
034 - P -~ s g
0254~ D e
0.2 e i
0.15 - ~ 0

3 DtgSortExp
FscSortExp

(a) Cache = 1, Sorting = Fifo

/f:
GCU p .
0.5 -~ 2
0451 T 7 TS ST
044 . S
0.35 - /
-~ 0

3 3 DtgSortExp
FscSortExp 4

(b) Cache = 320, Sorting = Fifo
Figure 7: Plot of GCU for the fitness-fifo algorithm with Cache = 1, 320.

20

WorkRdLive (K) .~~~ T
800 - g
7504 < S

7004
650
6001
550 - e

200]

450 -

3 3 DtgSortExp
FscSortExp 4

(a) Cache = 1, Sorting = Fifo

WorkRdLive (K) T
600 - TS

550 - A A)

so04 e PNy y
as04 e T TS
400 4 ’
350 - (<

300 -

2
DtgSortExp

FscSortExp

(b) Cache = 320, Sorting = Fifo

Figure 8: Plot of WorkRdLive for the fitness-fifo algorithm with Cache = 1, 320.

21

WorkRdLive (K)

850 -
800 -

7004 .
650
600 -
550 -
500 -

WorkRdLive (K)
600 -
550 -
500 -
450
400~
350
300 -

Figure 9: Plot of WorkRdLive for the fitness-tree algorithm with Cache = 1, 320.

7504

3
FscSortExp

(a) Cache = 1, Sorting = Tree

3
3
FscSortExp 4

(b) Cache = 320, Sorting = Tree

22

DtgSortExp

DtgSortExp

FSC Sort Exponent

FSC Sort Exponent
o | 1 | 2 | 3 | 4
0.397 | 0.378 | 0.368 | 0.360 | 0.357
0 50 48 48 47 a7
790 730 699 674 664
0.334 | 0.313 | 0.302 | 0.296 | 0.291
1 57 56 56 56 55
758 705 674 659 646
Destage 0.292 | 0.270 | 0.258 | 0.250 | 0.247
Sort 2 61 62 62 61 61
Exponent 714 664 639 616 606
0.265 | 0.244 | 0.231 | 0.224 | 0.219
3 63 64 64 64 64
671 626 591 575 561
0.236 | 0.216 | 0.205 | 0.198 | 0.194
4 66 67 67 67 66
622 575 545 527 517
At optimal AT
(a) Cache =1
FSC Sort Exponent
o | 1 | 2 | 3 | 4
0.501 | 0.488 | 0.479 | 0.473 | 0.469
0 28 27 27 27 26
559 532 513 502 494
0.477 | 0.462 | 0.452 | 0.445 | 0.441
1 27 26 26 25 25
510 481 462 452 444
Destage 0.457 | 0.442 | 0.432 | 0.424 | 0.420
Sort 2 26 25 25 24 24
Exponent 470 442 425 412 406
0.435 | 0.418 | 0.407 | 0.401 | 0.397
3 25 24 24 23 23
428 402 383 374 369
0.407 | 0.393 | 0.380 | 0.373 | 0.370
4 24 23 23 22 22
383 362 343 333 328

At optimal AT

(b) Cache = 320

0o | 1 | 2 | 3 | 4
0.397 [0.378 [0.368 [0.360 | 0.357
50 48 48 47 47
790 | 730 | 699 | 674 | 664
0.335 | 0.315 | 0.302 | 0.296 | 0.292
57 56 56 56 55
761 | 709 | 674 | 659 | 647
0.298 | 0.273 | 0.262 | 0.255 | 0.252
61 62 62 62 62
732 | 674 | 647 | 630 | 623
0.273 | 0.248 | 0.237 | 0.231 | 0.227
64 64 64 65 65
693 | 636 | 610 | 595 | 585
0.243 | 0.220 | 0.210 | 0.207 | 0.200
67 67 67 67 67
649 | 591 | 565 | 553 | 536

At NAT = 0.10
FSC Sort Exponent
o | 1 | 2 | 3 | 4
0.501 [0.489 [0.482 [0.476 | 0.472
28 27 27 27 26
559 | 534 | 518 | 507 | 499
0.479 | 0.462 | 0.454 | 0.446 | 0.445
27 26 26 25 25
514 | 481 | 467 | 452 | 450
0.462 | 0.443 | 0.432 | 0.426 | 0.423
26 25 25 24 24
478 | 444 | 426 | 414 | 409
0.441 | 0.422 | 0.407 | 0.404 | 0.398
25 24 24 23 23
438 | 407 | 383 | 377 | 369
0.416 | 0.397 | 0.383 | 0.375 | 0.370
24 23 23 22 22
397 | 367 | 347 | 335 | 328
At NAT = 0.10

Figure 10: [GCU, CltdCount (K), WorkRdLive (K)] of the age-threshold algorithm.

23

0.4 - < ’ b
03 ’ ’
0.25 - ,5:’/ / - .
0.2 < T
0.15 1 e g

3 DtgSortExp

GCU
0.55 -

,
- . T e
0.5 P s
; - s /\/:/ - ; e £
% % S S
0.45 4 A
4 T -
0.4 P
Y ,
0.35 A L
0

2
DtgSortExp

FscSortExp

(b) Cache = 320

Figure 11: Plot of GCU for the age-threshold algorithm (at optimal AT).

24

WorkRdLive (K) .~ T T
750 i i \\\\\ // Te—s -~ -
700{
650 1
600 { -
550
500

DtgSortExp

WorkRdLive (K)
600 -
550 i
5004
AL L S~~~ ~>// L 7
4504 s

400 - :// /\/ \\\\\\\\\ /// /// \\\‘\\7///
3501 / Tl :
300 A

3 3 DtgSortExp
FscSortExp 4

(b) Cache = 320

Figure 12: Plot of WorkRdLive for the age-threshold algorithm (at optimal AT).

25

FSC Sort Exponent FSC Sort Exponent
o | v | 2 | 3 4 0 1] 2 | 3 4
+0.08 +0.37 +0.68 +0.50 +1.16 +0.08 +0.37 +0.68 +0.50 +1.16
0 +0.82 +1.16 +1.67 +0.98 +1.69 +0.82 +1.16 +1.67 +0.98 +1.69
—3.96 -3.97 —3.69 —4.12 -3.95 -3.96 -3.97 —3.69 —4.12 -3.95
—1.24 +3.08 +4.15 +5.89 +5.19 —0.82 +3.55 +4.15 +5.89 +5.59
1 —1.31 +4.61 +5.92 +8.80 +8.06 —0.92 +5.23 +5.92 +8.80 +8.29
—14.99 | —11.36 | —10.15 | —9.44 —9.52 —12.38 | —9.27 —8.78 —6.95 -7.18
Destage —2.12 +2.85 +5.07 +5.03 +6.22 —0.17 +4.12 +6.39 +6.91 +8.40
Sort 2 —2.32 +4.71 +7.71 +7.34 +9.00 +0.15 +6.39 +9.13 +9.90 | +12.08
Exponent —17.96 | —14.90 | —14.11 | —13.65 | —12.95 —14.31 | —10.93 | —9.23 -9.19 —7.05
—2.84 +3.68 +5.48 +6.12 +6.25 +0.08 +5.14 +8.31 +9.03 +9.79
3 -2.39 +6.04 +7.79 +8.92 +8.50 +0.92 +7.86 | +11.29 | +12.70 | 4+13.30
—18.58 | —14.98 | —13.87 | —13.41 | —13.48 —14.16 | —9.90 —7.93 —7.04 —6.44
—3.88 +3.18 +5.23 +5.55 +5.97 —0.70 +5.20 +8.05 | 4+10.40 | +9.17
4 —4.15 +4.98 +7.08 +7.71 +7.63 —0.01 +7.84 | +10.98 | +13.11 | +11.67
—19.80 | —15.27 | —13.81 | —13.38 | —13.52 —13.34 | —9.16 —7.30 —6.27 —6.83
At optimal AT At NAT = 0.10
(a) Cache =1
FSC Sort Exponent FSC Sort Exponent
o | 1t | 2 | 3 4 0 1] 2 | 3 | 4

+0.39 | 4+0.86 | +0.79 | +1.21 | +1.26 +0.42 | +1.11 | +1.36 | +1.80 | +1.76

0| +1.10 | +1.96 | +1.68 | +2.42 | +2.42 +1.11 | 42.36 | +2.71 | +3.57 | +3.42

—-0.75 | —0.20 | —0.67 | —0.55 | —0.32 —0.27 | 40.36 | +0.45 | +1.02 | 4+0.90

+0.65 | +1.55 | +2.54 | +2.82 | +2.60 +1.10 | +1.55 | +3.10 | +2.96 | +3.49

1] +1.64 | +2.96 | +4.77 | +5.47 | +5.00 +2.43 | +2.96 | +5.81 | +5.51 | +6.52

—-198 | —1.62 | —0.69 | —0.69 | —0.35 —-0.74 | —-0.52 | 4+1.05 | +0.74 | +1.33

Destage 4+0.26 | +1.90 | +3.40 | +3.49 | +3.98 +1.28 | +2.14 | +3.63 | +3.98 | +4.54

Sort 2| +0.94 | +3.62 | +6.24 | +6.43 | +7.28 +2.68 | +4.06 | +6.49 | +6.97 | 48.00

Exponent —4.77 | —3.68 | —2.52 | —2.14 | —1.66 —-1.99 | —1.48 | —0.11 | +0.02 | 4+0.68

—0.88 | +0.79 | +4.07 | +3.43 | +4.12 +0.55 | +1.67 | +4.07 | +4.07 | +4.32

3| -1.29 | +1.73 | +6.86 | +5.92 | 46.97 +1.00 | +3.04 | +6.86 | +6.88 | +7.15

—-7.64 | —5.71 | —3.32 | —=3.92 | —3.81 —3.84 | —2.80 | —0.86 | —0.87 | —0.77

—2.11 | —0.20 | +3.52 | +2.22 | +2.90 +0.04 | 40.70 | +4.31 | +2.74 | +2.90

4 || —-3.34 | —0.11 | +6.00 | +3.66 | +4.68 +0.19 | +1.32 | +7.10 | +4.51 | 4+4.68

—9.19 | —8.16 | —4.60 | —5.58 | —5.32 —4.55 | —4.40 | —1.03 | —2.73 | —2.68

At optimal AT

(b) Cache = 320

At NAT = 0.10

Figure 13: Percentage by which [GCU, WorkRdLive, WorkRdAll] of the age-threshold algorithm
exceeds that of the fitness-fifo algorithm.

26

FSC Sort Exponent FSC Sort Exponent

o | 1 | 2 | 3 | 4 0o | 1 | 2 | 3 | 4
0.312 | 0.286 | 0.282 | 0.281 | 0.276 0.322 | 0.287 | 0.281 | 0.278 | 0.276

0 44 42 42 42 42 0 44 42 42 42 41

545 481 474 469 459 569 484 468 463 458
0.246 | 0.217 | 0.210 | 0.209 | 0.206 0.252 | 0.219 | 0.212 | 0.210 | 0.207

1 52 50 50 50 50 1 52 50 50 50 50

508 433 417 414 409 523 438 421 417 411
Destage 0.205 | 0.180 | 0.173 | 0.171 | 0.170 0.215 | 0.181 | 0.177 | 0.174 | 0.172

Sort 2 58 56 56 56 56 2 58 57 56 56 56
Exponent 472 407 391 384 382 497 409 400 392 389
0.185 | 0.160 | 0.155 | 0.153 | 0.150 0.192 | 0.161 | 0.157 | 0.155 | 0.154

3 61 59 60 60 59 3 61 59 59 59 60

448 380 369 363 356 468 382 372 369 367
0.166 | 0.142 | 0.137 | 0.136 | 0.134 0.170 | 0.143 | 0.138 | 0.136 | 0.135

4 64 63 62 62 63 4 64 63 62 63 63

425 355 342 339 336 433 357 345 341 339

Sorting = Fifo Sorting = Tree
(a) Cache =1
FSC Sort Exponent FSC Sort Exponent

o | 1 | 2 | 3 | 4 o | 1 | 2 | 3 | 4
0.422 | 0.403 | 0.395 | 0.390 | 0.388 0.430 | 0.400 | 0.393 | 0.391 | 0.389

0 24 23 23 23 23 0 24 23 23 23 23

408 377 366 358 354 420 371 360 358 355
0.403 | 0.377 | 0.365 | 0.366 | 0.364 0.411 | 0.374 | 0.368 | 0.364 | 0.361

1 24 23 22 22 22 1 24 22 22 22 22

379 341 324 326 323 390 335 327 322 318
Destage 0.386 | 0.358 | 0.345 | 0.346 | 0.341 0.395 | 0.356 | 0.348 | 0.345 | 0.341

Sort 2 23 22 21 21 21 2 23 22 21 21 21
Exponent 353 314 297 208 290 364 309 208 294 290
0.368 | 0.339 | 0.328 | 0.326 | 0.325 0.379 | 0.335 | 0.328 | 0.324 | 0.321

3 22 21 21 21 21 3 22 21 21 21 21

326 288 274 271 270 341 282 272 268 264
0.352 | 0.326 | 0.316 | 0.313 | 0.309 0.359 | 0.315 | 0.307 | 0.304 | 0.302

4 22 21 21 20 20 4 22 20 20 20 20

305 271 259 256 251 313 258 248 245 243

Sorting = Fifo Sorting = Tree

(b) Cache = 320

Figure 14: [GCU, CltdCount (K), WorkRdLive (K)] of the fitness algorithm with unwritten tracks.

27

GoU
0.35 -

0.3) / h / o / /
015 4 i\\\\ //,/:‘\\\\:;/::,:\\\ . -

0.1- -) - o

DtgSortExp
FscSortExp

(a) Cache = 1, Sorting = Fifo

GCU
0.45 - o ’

035 1. T

0.3 1

3 DtgSortExp
FscSortExp 4

(b) Cache = 320, Sorting = Fifo
Figure 15: Plot of GCU for the fitness-fifo algorithm with unwritten tracks.

28

WorkRdLive (K)

, N / -l
/ AN e , \\‘n\‘
550 -
7 S S // %
Ve SN e T~ 7 /
500 - L T
v - . \\\\{/ /'/\;\ A
450

400 G T
3504 g) g
300 -

2

3 3 DtgSortExp
FscSortExp 4

(a) Cache = 1, Sorting = Fifo

WorkRdLive (K)

450 - a)
400 ’ -)
3501
300 - T)
\\\‘\ // T \fﬁ:\ ,// pd
250
Ry - L)

3 DtgSortExp
FscSortExp

(b) Cache = 320, Sorting = Fifo

Figure 16: Plot of WorkRdLive for the fitness-fifo algorithm with unwritten tracks.

29

FSC Sort Exponent FSC Sort Exponent

o | 1 | 2 | 3 | 4 o | 1 | 2 | 3 | 4
0.320 | 0.299 | 0.294 | 0.289 | 0.286 0.322 | 0.302 | 0.294 | 0.291 | 0.289

0 44 43 43 42 42 0 44 43 43 42 42

564 514 501 489 483 570 519 502 495 488
0.244 | 0.229 | 0.225 | 0.222 | 0.218 0.258 | 0.241 | 0.235 | 0.231 | 0.229

1 52 51 51 51 50 1 52 52 51 51 51

504 466 457 448 440 540 498 482 473 467
Destage 0.203 | 0.189 | 0.184 | 0.181 | 0.180 0.223 | 0.206 | 0.198 | 0.196 | 0.194

Sort 2 58 57 57 57 57 2 59 58 58 58 58
Exponent 468 433 420 414 409 526 480 460 453 451
0.183 | 0.171 | 0.166 | 0.164 | 0.161 0.202 | 0.186 | 0.180 | 0.177 | 0.177

3 61 60 60 60 60 3 62 61 61 61 61

444 411 400 396 387 501 456 442 435 433
0.165 | 0.152 | 0.150 | 0.146 | 0.144 0.185 | 0.167 | 0.161 | 0.158 | 0.157

4 64 63 63 63 63 4 65 64 64 64 64

421 384 380 370 366 483 431 412 405 404

At optimal AT At NAT = 0.10
(a) Cache =1
FSC Sort Exponent FSC Sort Exponent

o | 1 | 2 | 3 | 4 0o | 1 | 2 | 3 | 4
0.421 | 0.403 | 0.399 | 0.393 | 0.392 0.429 | 0.410 | 0.404 | 0.400 | 0.398

0 24 23 23 23 23 0 24 24 23 23 23

408 379 373 363 363 420 389 379 374 371
0.396 | 0.382 | 0.374 | 0.371 | 0.369 0.408 | 0.390 | 0.383 | 0.380 | 0.378

1 23 23 23 22 22 1 24 23 23 23 23

370 348 337 334 331 388 360 351 345 343
Destage 0.372 | 0.358 | 0.351 | 0.351 | 0.350 0.389 | 0.373 | 0.366 | 0.364 | 0.362

Sort 2 22 22 22 22 22 2 23 22 22 22 22
Exponent 333 314 305 304 303 357 334 325 323 319
0.353 | 0.340 | 0.333 | 0.330 | 0.330 0.372 | 0.355 | 0.348 | 0.345 | 0.343

3 22 21 21 21 21 3 22 22 22 21 21

306 290 281 278 277 332 309 300 296 293
0.333 | 0.323 | 0.317 | 0.315 | 0.310 0.354 | 0.335 | 0.330 | 0.326 | 0.324

4 21 21 21 21 20 4 22 21 21 21 21

281 268 262 258 253 307 284 277 272 270

At optimal AT At NAT = 0.10

(b) Cache = 320

Figure 17: [GCU, CltdCount (K), WorkRdLive (K)] of the age-threshold algorithm with unwritten
tracks.

30

/
/
/ -
/ / -
GCU ' ’
/ / pa
/ / STl
/ / / -
/
/ /

// P
0.35 - . :
i B 7
. .
0.3 S /
~A
/ S e /
Al J J T /
. - , e /
0.25 A e I
. S , ,
// L Tl // 7 //
0.2- » R
L L S / e _
e L el 7 -
0.15 A R .

0.1 4

3 DtgSortExp
FscSortExp

(a) Cache =1

GCU

< ~>
0.45 - g
~< e -
/
0.4
" s . L // ~ 7/
Ve ~ 4
’ S~ e \/“; - 2 ’
N e Tl
0354 -
g L RN L % %
- . S S /
~<
0.3 A

3 DtgSortExp
FscSortExp 4

(b) Cache = 320
Figure 18: Plot of GCU for the age-threshold algorithm with unwritten tracks.

31

WorkRdLive (K)
600 -

550
500 A
4504
400 {
350 -

WorkRdLive (K)
450 -

400 -
350 -
3004

250 ~

Figure 19: Plot of WorkRdLive for the age-threshold algorithm with unwritten tracks.

2
3
FscSortExp 4

(a) Cache =1

3
FscSortExp 4

(b) Cache = 320

32

3

3

DtgSortExp

DtgSortExp

FSC Sort Exponent FSC Sort Exponent

0 1 | 2 | 3 | 4 0 1] 2 | 3 4
+2.30 +4.74 +4.03 +2.94 +3.67 +3.00 +5.53 +4.19 +3.77 +4.61
0 +3.63 +6.98 +5.71 +4.27 | +5.22 0 +4.59 +7.96 +5.92 +5.55 +6.31
—8.04 —6.48 —6.99 —7.58 -7.11 —6.06 —-4.10 —5.12 —5.02 —4.65
-0.97 +5.85 +7.29 +6.09 +5.87 +4.72 | +11.39 | +12.21 | +10.72 | +10.94
1 —0.84 +7.57 +9.54 +8.21 +7.74 1 +6.32 | +14.87 | +15.73 | +14.23 | +14.38
—20.02 | —15.67 | —14.69 | —15.14 | —15.35 —11.29 | —6.68 —5.96 —6.56 —6.57
Destage -1.01 +4.73 +6.18 +5.95 +5.90 +8.69 | +13.95 | +14.40 | +14.42 | 4+14.46
Sort 2 —0.88 +6.24 +7.45 +7.70 +7.07 2 || +11.43 | +17.97 | +17.74 | +17.93 | +18.02
Exponent —18.91 | —14.97 | —14.67 | —14.32 | —14.10 —7.62 —4.11 —4.19 —3.86 —2.90
—-1.18 +6.68 +6.93 +7.75 +6.89 +9.37 | +16.35 | +16.32 | +16.16 | +17.59
3 —0.81 +8.06 +8.29 +9.09 +8.46 3 || +11.80 | +19.94 | +19.83 | +19.60 | +21.58
—18.68 | —14.01 | —13.27 | —13.03 | —13.74 —6.99 —2.58 -1.92 —2.24 —1.49
—0.74 +6.96 +9.28 +7.63 +7.45 +11.36 | +17.82 | +17.31 | +16.56 | +17.22
4 —0.88 +8.15 | +11.02 | +9.30 +8.71 4 || +13.65 | +21.32 | +20.42 | +19.57 | +20.22
—17.59 | —12.97 | —11.39 | —11.78 | —12.52 —5.10 —0.55 —0.84 —0.83 -0.75

At optimal AT At NAT = 0.10
(a) Cache =1
FSC Sort Exponent FSC Sort Exponent
o | 1 | 2 | 3 | 4 0 | 1 | 2 | 3 4

—0.16 +0.14 +1.07 +0.66 +1.25 +1.65 | +1.83 | +2.14 | +2.61 | +2.73

0 +0.09 +0.39 +1.88 +1.27 | +2.34 0| +3.06 | +3.21 | +3.68 | +4.49 | +4.69

—5.77 —5.70 —4.79 —5.54 —4.72 —-2.12 | —2.16 | —=1.91 | —1.82 | —1.47

—1.66 +1.25 +2.27 +1.55 +1.31 +1.38 | +3.42 | +4.98 | +3.76 | 4+3.67

1 —2.44 +2.23 +3.89 +2.67 | +2.37 1| +2.46 | +5.68 | +8.21 | +6.01 | +6.11

—11.58 | —9.13 —8.49 —-9.41 —8.73 —5.48 | —3.82 | —2.30 | —3.92 | —3.86

Destage —3.55 —0.10 +1.77 +1.27 | +2.66 +0.85 | +3.97 | +6.12 | +5.12 | +6.23

Sort 2 —5.56 +0.00 +2.79 +2.25 +4.37 2 || +1.38 | +6.41 | +9.45 | +8.36 | +9.85

Exponent —15.86 | —13.11 | —11.89 | —11.92 | —10.21 —8.18 | —5.35 | —3.81 | —4.46 | —3.60

—4.15 +0.20 +1.44 +1.35 +1.64 +1.09 | +4.75 | +6.09 | +5.91 | +5.48

3 —6.16 +0.53 +2.60 +2.27 | +2.65 3 || +1.77 | +7.45 | +9.53 | 49.09 | +8.47

—-17.13 | —13.62 | —12.91 | —13.10 | —12.78 —8.61 | —5.39 | —4.57 | —4.84 | —5.12

—5.36 -0.97 +0.54 +0.58 +0.27 +0.36 | +2.91 | +4.61 | +4.25 | +4.94

4 —7.81 —1.16 +1.08 +1.07 | +0.58 4 || +0.56 | +4.49 | +7.02 | +6.40 | +7.43

—18.43 | —14.82 | —13.74 | —14.06 | —14.25 —9.42 | —-7.27 | —5.93 | —6.30 | —6.00

At optimal AT At NAT = 0.10

(b) Cache = 320

Figure 20: Percentage by which [GCU, WorkRdLive, WorkRdAll] of the age-threshold algorithm

exceeds that of the fitness-fifo algorithm in the case of unwritten tracks.

33

FSC Sort Exponent

FSC Sort Exponent
o | 1 | 2 | 3 | 4
0.393 | 0.375 | 0.361 | 0.353 | 0.348
0 49 48 47 46 46
778 721 680 656 640
0.324 | 0.302 | 0.287 | 0.281 | 0.276
1 56 55 55 54 54
725 667 629 613 598
Destage 0.286 | 0.257 | 0.242 | 0.235 | 0.230
Sort 2 60 60 60 60 60
Exponent 688 620 585 566 554
0.259 | 0.231 | 0.216 | 0.208 | 0.203
3 62 63 63 63 63
646 580 543 523 510
0.230 | 0.204 | 0.191 | 0.184 | 0.179
4 65 66 66 65 65
600 536 503 479 467
Sorting = Fifo
(a) Cache =1
FSC Sort Exponent
o | 1 | 2 | 3 | 4
0.493 | 0.480 | 0.472 | 0.462 | 0.457
0 28 27 26 26 26
543 517 499 479 470
0.467 | 0.450 | 0.438 | 0.431 | 0.426
1 26 26 25 25 25
492 460 437 426 418
Destage 0.448 | 0.428 | 0.416 | 0.409 | 0.401
Sort 2 25 24 24 24 23
Exponent 453 419 400 388 375
0.427 | 0.408 | 0.391 | 0.384 | 0.380
3 24 24 23 23 23
415 385 359 349 343
0.403 | 0.383 | 0.366 | 0.362 | 0.355
4 23 23 22 22 22
378 348 323 317 308

Sorting = Fifo

(b) Cache = 320

0 | 1 | 2 3 | 4
0.400 | 0.389 | 0.389 | 0.385 | 0.378
50 49 49 49 48
798 761 765 748 730
0.330 | 0.312 | 0.311 | 0.306 | 0.300
56 56 56 56 56
741 698 701 690 673
0.290 | 0.267 | 0.259 | 0.256 | 0.252
60 61 62 62 62
699 652 640 633 623
0.267 | 0.237 | 0.230 | 0.228 | 0.224
62 63 64 64 64
663 598 587 584 573
0.232 | 0.208 | 0.202 | 0.198 | 0.194
65 65 66 67 67
602 545 536 528 517

Sorting = Tree
FSC Sort Exponent

o | 1 | 2 3 | 4
0.500 | 0.495 | 0.493 | 0.488 | 0.488

28 27 27 27 27
556 544 541 531 532
0.475 | 0.463 | 0.457 | 0.454 | 0.449

27 26 26 26 25
504 483 471 467 457
0.456 | 0.443 | 0.433 | 0.429 | 0.425

26 25 25 24 24
466 443 426 419 413
0.435 | 0.421 | 0.410 | 0.406 | 0.402

25 24 24 23 23
427 404 387 381 375
0.408 | 0.393 | 0.385 | 0.380 | 0.377

24 23 23 23 22
384 362 351 342 339

Sorting = Tree

Figure 21: [GCU, CltdCount (K), WorkRdLive (K)] of the fit-age-nat.10 algorithm.

34

FSC Sort Exponent FSC Sort Exponent

o | 1 | 2 | 3 | 4 o | 1 | 2 | 3 | 4
0.314 | 0.289 | 0.280 | 0.279 | 0.273 0.315 | 0.285 | 0.277 | 0.274 | 0.272

0 44 42 42 42 41 0 44 42 42 41 41

552 488 470 466 452 553 478 461 455 450
0.241 | 0.216 | 0.210 | 0.208 | 0.206 0.239 | 0.214 | 0.208 | 0.206 | 0.203

1 51 50 50 50 50 1 51 50 50 49 50

493 430 418 413 409 489 427 413 407 403
Destage 0.200 | 0.177 | 0.172 | 0.169 | 0.167 0.202 | 0.178 | 0.173 | 0.170 | 0.168

Sort 2 57 56 56 56 56 2 57 56 56 56 56
Exponent 458 399 385 378 375 463 402 388 383 378
0.181 | 0.156 | 0.153 | 0.150 | 0.151 0.181 | 0.160 | 0.154 | 0.152 | 0.150

3 60 59 59 59 59 3 60 59 59 59 60

437 370 363 356 357 435 379 365 361 358
0.162 | 0.139 | 0.136 | 0.133 | 0.131 0.160 | 0.141 | 0.136 | 0.133 | 0.131

4 64 62 62 62 62 4 63 62 63 62 63

411 348 339 332 326 403 351 341 332 329

Sorting = Fifo Sorting = Tree
(a) Cache =1
FSC Sort Exponent FSC Sort Exponent

o | 1 | 2 | 3 | 4 0o | 1 | 2 | 3 | 4
0.416 | 0.397 | 0.390 | 0.386 | 0.383 0.416 | 0.394 | 0.388 | 0.385 | 0.383

0 24 23 23 23 23 0 24 23 23 23 23

400 368 358 352 348 398 363 355 351 348
0.393 | 0.369 | 0.365 | 0.362 | 0.358 0.392 | 0.369 | 0.365 | 0.361 | 0.358

1 23 22 22 22 22 1 23 22 22 22 22

366 331 324 321 315 363 330 325 319 314
Destage 0.375 | 0.350 | 0.346 | 0.343 | 0.339 0.376 | 0.349 | 0.344 | 0.340 | 0.338

Sort 2 22 22 22 21 21 2 22 22 21 21 21
Exponent 337 303 297 293 289 338 301 294 290 287
0.357 | 0.335 | 0.327 | 0.323 | 0.324 0.355 | 0.332 | 0.324 | 0.320 | 0.320

3 22 21 21 21 21 3 22 21 21 21 21

312 284 273 269 270 309 279 269 264 265
0.339 | 0.316 | 0.313 | 0.308 | 0.307 0.337 | 0.310 | 0.305 | 0.301 | 0.299

4 21 21 20 20 20 4 21 20 20 20 20

288 260 256 250 249 285 252 247 242 240

Sorting = Fifo Sorting = Tree

(b) Cache = 320

Figure 22: [GCU, CltdCount (K), WorkRdLive (K)] of the fit-age-nat.10 algorithm with unwritten
tracks.

35

