
RJ 10222 (A0110-037) October 23, 2001
Computer Science

IBM Research Report

Simulations of the Age-Threshold and Fitness Free Space
Collection Algorithms on a Long Trace

Larry J. Stockmeyer
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120
 

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research Report
for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



Simulations of the Age�Threshold and Fitness

Free Space Collection Algorithms on a Long Trace

Larry Stockmeyer

IBM Research Division

Almaden Research Center

��� Harry Road

San Jose� CA �����

Abstract� The purpose of this paper is to report results of simulations of two algorithms for free
space collection in log�structured storage systems� The algorithms considered are the age�threshold
algorithm of Menon and Stockmeyer and the �tness algorithm of Butterworth� The simulations
were done using a trace collected by Ruemmler and Wilkes from a �le system over a period of
two months� The performance of an algorithm is measured by the amount of disk I�O done as a
result of free space collection� The performance of the algorithms and several variations of them
are compared�



� Introduction

A critical part of a Log Structured Array �LSA� is the procedure for Free Space Collection �FSC��
The purpose of this paper is to report results of simulations of two FSC algorithms on a long
trace� The algorithms considered are the age�threshold algorithm of Menon and Stockmeyer ���	
speci�cally	 the bucket�sort version described in ��	 x
��	 and the more recently invented �tness
algorithm of Butterworth �
�� The principal concepts used in these algorithms will be described
brie�y� An introduction to the log�structured architecture can be found	 for example	 in ��� in the
context of �le systems and in �	 �� in the context of disk arrays� In a typical log�structured array
�LSA�	 newly�written �virtual� tracks enter a stream of tracks called the destage stream� When the
destage stream has enough tracks to �ll a segment	 an empty segment is �lled with these tracks and
closed �written to disk�� Whenever one of these tracks is rewritten	 the physical track where this
track was stored becomes �dead� or �garbage�	 so it is potential free space� Free space collection is
the process of selecting certain segments and extracting the live tracks from them	 thus producing
new empty segments� The live tracks so produced enter another stream called the FSC stream�
As with the destage stream	 when the FSC stream has enough tracks to �ll a segment	 an empty
segment is �lled with these tracks and closed�

The age�threshold algorithm takes a numerical parameter called the age�threshold �for short	
AT�� When a segment is closed	 it must wait until its age exceeds AT before it becomes a candidate
for free space collection� The age of a segment is measured with respect to a clock that is incre�
mented by one every time a segment is closed from the destage stream� �There is another version
where only segments closed from the destage stream must wait� See Note 
� Notes are collected in
Section 
��� Among the segments whose age is larger than AT	 the algorithm uses a greedy method
to select segments� The greedy method selects the segment whose utilization is smallest	 where the
utilization of a segment is the fraction of the segment containing live tracks� Thus	 when a segment
of utilization u is collected	 a fraction u of the tracks in the segment enter the FSC stream	 and the
remaining 
�u fraction is free space� An issue in using the age�threshold algorithm is that a value
for AT must be chosen� It is shown in ��� that the optimal value depends on the workload and the
amount of free space in the LSA system	 and two methods for choosing an AT are suggested� One
of these methods is a heuristic that chooses the AT based only on the total amount of free space in
the system	 a quantity that is easy to measure� It is also shown in ��� that a natural way to express
AT is as a fraction of the number of segments in the system� this fraction is called the normalized
age�threshold 	 or NAT for short�

The �tness algorithm does not have any workload�dependent parameters to be chosen� There
are two innovations in the �tness algorithm �
�� The �rst is a new criterion for selecting segments for
FSC� This criterion uses the age of a segment as well as its utilization� �The cost�bene�t criterion
of ��� also depends on both age and utilization	 but cost�bene�t and �tness use di�erent algebraic
combinations of age and utilization�� The �tness of a segment having age A and utilization u is

Fitness � A�
�
� u��

u
� �
�

The second innovation is the use of multiple destage and FSC streams� When a track	 say a destage
track	 is to be placed in a destage stream	 it �rst goes through a binary decision tree to route it to






one of the destage streams� The routing is based on the age of the track	 with the goals of placing
tracks of similar age into the same stream	 and closing segments from the streams at about the same
rate� The age of a track is meant to approximate the time before the track is likely to be written in
the future� the calculation of track age is described in Section ��	 following the description in �
��

Another issue that is relevant to our study is the collection of segments whose utilization is
high	 although not 
 �think	 say	 utilization ����	 and whose utilization is not decreasing with time
because the tracks in the segment are not being written� call these �frozen segments�� Because the
age�threshold algorithm uses the greedy selection criterion	 it might never collect frozen segments of
su�ciently high utilization no matter how old they become� thus	 the free space in these segments
is lost� For this reason	 it is suggested in ��� to augment the age�threshold algorithm with another
process �that might run during relatively idle periods� to collect frozen segments� For the �tness
algorithm	 however	 the �tness function increases with increasing age	 so a frozen segment will
eventually become old enough to be collected	 obviating the need for a separate process for this�

This study has �ve main goals�


� For the �tness algorithm	 study how performance depends on the number of destage streams
and FSC streams�

� For the age�threshold algorithm	 study how the addition of multiple destage streams and FSC
streams a�ects the performance�

�� Compare the FSC performance of the �tness and age�threshold algorithms�

�� Investigate how well the algorithms handle scenarios where there are a signi�cant number
tracks that are never written	 having the potential to create frozen segments�

�� See how the addition of an age�threshold to the �tness algorithm a�ects its performance�

In the next section we describe in more detail the trace	 the performance measures used	 the
simulation program and its parameters	 and how the parameters were chosen�

� Preliminaries

��� The trace

We used the �snake� trace collected by Ruemmler and Wilkes ���� The trace was collected on a �GB
�le server over a period of two months� It contains about ���� million writes� Further information
about the trace can be found in ���� The trace was preprocessed to ignore the reads and convert
the writes into a sequence of track writes� The storage in the traced system was �rst divided into
tracks of length �KB� This yielded a total of about ����� tracks in the system� Each write event
is described in the original trace by a disk ID	 starting address	 and length of the write� Each such
write event was converted to a sequence of one or more track writes� a track was included if any
part of the track was written� Of the total ����� tracks	 ����� tracks were written �at least once�
in the trace� Another preprocessing step was done to rename the written tracks with ID�s from �
to ������ In the case of many small writes in sequence to the same track	 these conversions can





cause the same track ID to appear several times consecutively in the converted trace� To �lter out
these �redundant� writes	 a write cache of size at least one track was used in the simulations� For
simulations that went through the trace once	 the preprocessed trace was split into two parts� the
�rst part containing the �rst one million writes	 which was used as a warm�up� and the second part
called the working trace containing the rest	 about ���� million writes�

��� Performance measures

The performance measure used in ��� is Garbage Collection Utilization �GCU�� This is the average
utilization of segments collected by the FSC algorithm� The GCU also includes segments that
become empty �naturally� because all the tracks in the segment are written before the segment
is collected� Such segments do not go through the FSC process� they are placed immediately in
the pool of empty segments� However	 in the computation of GCU	 each such event is treated as
though a segment of utilization zero was collected	 thus giving the FSC algorithm �credit� for this�

Preliminary simulations uncovered situations where GCU was not a good measure of perfor�
mance	 due to caching e�ects in the destage streams� �These situations do not arise in the simulation
model of ���	 and GCU does provide a good measure of performance in that paper� see Note ��
When the amount of caching increases	 one would expect GCU to increase	 but the number of
collected segments to decrease� Therefore	 we also consider two measure of the FSC �work� done	
which depend on both GCU and the number of collected segments� These two measures model two
extremes of the amount of reading work that is done when collecting a segment� for theWorkRdLive
measure	 only the live tracks are read out of the segment� for the WorkRdAll measure	 all tracks
�the number of tracks the segment can hold� are read�

For each simulation run	 the program reports GCU	 the number of segments collected including
naturally emptied segments �call this number CltdCount�	 and the number of naturally emptied
segments �call this number EmptyCount�� Let SegTrkCount be the number of tracks per segment�
The �rst de�nition of work measures the number of times a track is read or written during FSC	
assuming that only the live tracks are read from a collected segment� Thus	 when a segment of
utilization u is collected	 SegTrkCount�u tracks are both read and written� So the �rst work
measure	 which we call WorkRdLive	 is

WorkRdLive � �SegTrkCount�GCU�CltdCount�

The second de�nition is similar	 except that the assumption is that the collection of a non�empty
segment causes reading of SegTrkCount tracks to extract the live tracks from the segment� �This
assumption was used by Rosenblum and Ousterhout ��� in their de�nition of �write cost��� Under
this assumption	 the total number of tracks read is SegTrkCount��CltdCount�EmptyCount�	 and
the total number of �live� tracks that are eventually written back is SegTrkCount�GCU�CltdCount�
The second work measure	 WorkRdAll	 is thus

WorkRdAll � SegTrkCount�GCU�CltdCount � SegTrkCount��CltdCount � EmptyCount��

By de�nition	 for a particular run of a particular algorithm	 WorkRdLive � WorkRdAll� Another
way to view the di�erence between the two measures is to note that WorkRdAll gives �extra credit�

�



to the FSC algorithm whenever a segment becomes empty naturally	 whereas WorkRdLive does not�
For example	 when comparing the di�erence in work between a segment emptying naturally and a
segment with one live track being collected	 the di�erence is  for WorkRdLive	 and SegTrkCount�

for WorkRdAll� When a statement is made about �Work�	 the implication is that the statement
holds for both WorkRdLive and WorkRdAll�

When comparing two di�erent algorithms �e�g�	 the �tness and age�threshold algorithms�	 we
give the comparison for GCU and both work measures� However	 for simplicity	 when giving
performance results for a single algorithm	 we report only GCU and WorkRdLive�

��� The simulation program and its parameters

The simulation program was written by Harry E� Butterworth	 then at IBM Hursley� Both the
age�threshold and the �tness selection criteria use the age of a segment� The age of a segment is
computed	 as in ���	 as follows� The age is based on the destage sequence number of the segment�
There is a destage sequence counter	 initially zero� Whenever a segment is closed from a destage
stream	 its destage sequence number is set to the current value of this counter	 and the counter is
incremented by one� Whenever a segment S is closed from an FSC stream	 its destage sequence
number is set to the maximum of the destage sequence numbers of the segments that contributed
tracks to S� The age of a segment is the di�erence between its destage sequence number and the
current value of the destage sequence counter� The sorting of tracks into streams is based on the
�age� of tracks� Whenever a track T is removed from a segment S �either because the track is
rewritten or because S is chosen for free space collection�	 the age of T is the di�erence between
the destage sequence number of S and the current value of the destage sequence counter� The age
of a track is intended to approximate the time since the track was last written� �The elapsed time
could be obtained exactly by storing with each track the time when it was last written	 and this is
a direction for further research�� All segment and track ages de�ned in this way can be determined
using a small amount of information stored in controller memory	 namely	 one number per segment�

For the following description	 it is useful to note a detail of how the simulation is done� When
there is a write to a track in any of the destage or FSC streams	 the track is removed from the
stream and put through the binary decision tree for destage streams to route it to a new stream�
Thus	 the streams act as a cache �although not an LRU cache�	 and we would expect the hits to
this cache to occur more often to the destage streams than to the FSC streams� This simulation
choice was made to model a particular LSA system under development� The simulations of ��� do
this di�erently �see Note ��

Next are listed the parameters given to the program and how they were chosen in our experi�
ments�

� LsaTrkCount� the number of tracks containing data� For the simulations of Sections � and �	
where there are no unwritten tracks	 LsaTrkCount was set to the number of written tracks
in the trace	 that is	 ������ In Sections � and �	 we consider cases where the system initially
contains data tracks that are never written during the simulation on the trace� In these cases	
LsaTrkCount was set to three times the number of written tracks	 that is	 
���
� In the

�



sequel a �track� means a virtual track containing data	 as opposed to an empty virtual track
or a physical track�

� SegTrkCount� the number of tracks per segment� Because actual LSA systems typically have
a large number of segments	 and because the number of �written� tracks was �xed by the
trace	 it was desired to keep SegTrkCount fairly small� In all simulations	 SegTrkCount was
�xed at ��

� LsaSegCount� the number of segments� This parameter was chosen to give a desired Average
Segment Utilization �ASU�	 where

ASU �
LsaTrkCount

LsaSegCount � SegTrkCount
�

With the exception of one case in Section �	 ASU was held �xed at ����

� CdmBucketCount� the number of buckets� For the purpose of selecting segments based on
utilization or �tness	 the range ��� 
� of utilization values is split into CdmBucketCount sub�
ranges of equal size	 and all segments having utilization in the same subrange are kept in the
same bucket� CdmBucketCount was held �xed at 
��

� Sorting� either Fifo or Tree� If Sorting � Fifo	 each bucket is maintained as a FIFO queue� If
Sorting � Tree	 the segments in each bucket are kept sorted by age	 with the oldest segment
at the �head� of its bucket� For the �tness algorithm	 both values of Sorting were explored�
For the age�threshold algorithm	 only Sorting � Fifo was done	 because Sorting � Fifo is
used in the reference version of the age�threshold algorithm ���	 and it was not a goal of this
paper to investigate how Sorting � Tree a�ects the age�threshold algorithm�

� Selection� either Greedy or Fitness� If Selection � Greedy	 the next segment selected is the
segment at the head of the lowest�utilization non�empty bucket� If Selection � Fitness	 the
�tness function �
� is computed for each segment at the head of each bucket	 and the one
having largest �tness is selected� Note that these methods perform only approximations to
greedy and �tness selection	 and for the �tness algorithm the method is more accurate if
Sorting � Tree�

� Threshold� the age�threshold	 AT	 used in simulations of the age�threshold algorithm� A
segment is not allowed to be collected until its age exceeds AT	 where age is measured by
the number of segments closed from a destage stream� Threshold was set to � for simulations
of the �tness algorithm	 with the exception of simulations of Section � where the �tness
algorithm was tried with a positive AT�

� DtgStreamExp and FscStreamExp� log� of the number of destage and FSC streams	 respec�
tively� During preliminary simulations	 the exponents were varied from � to �� Butterworth
observed that the results were being skewed because increasing DtgStreamExp had the side
e�ect of increasing the size of the �destage stream cache� described at the beginning of this
section� Butterworth suggested keeping DtgStreamExp and FscStreamExp �xed at �	 thus

�



keeping the size of the stream caches �xed	 and using two other parameters �described next�
to vary the amount of age sorting done by the decision trees�

� DtgSortExp and FscSortExp� The nodes at the highest DtgSortExp levels of the destage
decision tree route tracks based on their age	 while the remaining lower levels route incoming
tracks randomly� and similarly for FscSortExp� These two parameters were varied from � to
�� In particular	 the value � indicates the extreme case where no sorting was done	 and �
indicates the extreme case where sorting was done at all nodes of the tree� We sometimes
specify a particular choice of these parameters by an ordered pair �DtgSortExp	 FscSortExp��
The program varies the sort boundaries dynamically	 with the goal that all streams receive
tracks at about the same rate� when sorting is done at a node of the tree	 the node maintains
a relatively long�term average value of the ages of the tracks that pass through the node�
tracks are sent left or right depending on whether their age is above or below the average for
that node�

� CacheTrkCount� The program can simulate an LRU cache placed in front of the LSA	 and
CacheTrkCount is the number of tracks the cache can hold� Two cases were considered�
Cache � � where CacheTrkCount � 
 and Cache � ��� where CacheTrkCount � ��� The
case Cache � 
 is essentially no cache� as described in Section �
 the value 
 was chosen
to �lter out consecutive writes to the same track� The size �� of the �large cache� was
chosen so that the maximum number of tracks in the intended cache is at least as large as the
maximum number of tracks in the �destage streams cache� comprised of 
� destage streams	
each of which can hold hold up to SegTrkCount � � tracks before a segment is closed from
the stream� For the case Cache � 
	 the cache hit ratio over the working trace was ���� for
Cache � ��	 the hit ratio was ������

� MaxEmpty� This parameter is the number of empty segments produced by FSC in the sim�
ulation before FSC is stopped and track writing is done to �ll these empty segments� then
the cycle repeats� MaxEmpty was �xed at 
� This models the situation where track writing
and FSC are operating in parallel and in equilibrium� �Results of ��� on the hot�and�cold
synthetic trace seem to indicate that choosing MaxEmpty somewhat greater than 
 improves
the performance of the age�threshold algorithm� This was found not to be true for the simu�
lation program and trace used here� So we are not putting the age�threshold algorithm at a
disadvantage by �xing MaxEmpty � 
� See Note � for more information��

� DtgDecay and FscDecay� These parameters a�ect how the sort boundary �the long�term aver�
age� is computed at each sorting node of a binary decision tree� As suggested by Butterworth	
both were �xed at 
��

In addition	 the inputs to the program include a sequence of one or more trace �les� At the
start of the simulation	 all LsaTrkCount tracks are placed into segments in sequential order� Then

��LsaTrkCount uniformly random writes are made to the tracks	 including any extra �unwritten�
tracks that are introduced as described in item LsaTrkCount above� The program then reads
indices of written tracks from the trace �les in sequence� Statistics such as GCU and CltdCount

�



are computed separately for each trace �le� To summarize	 for all of our simulation runs	 with the
exception of certain runs in Section �� �rst there is a warm�up of 
��LsaTrkCount uniform writes
to place the LSA in a random state� then there is a warm�up using the �rst one million writes from
the trace� and then the simulation is run on the working trace and performance values are obtained
for this part of the trace� The �rst million writes are used to provide a transition from the random
state to a typical trace state�

� Summary of Results

The GCU and Work values for various cases are shown in Figure 
	 at the optimal DtgSortExp and
FscStreamExp for each case� For each case shown in the table	 the optimal GCU	 WorkRdLive	
and WorkRdAll values occur in the case �DtgSortExp	 FscSortExp� � ��� ��� Because � was the
value used for DtgStreamExp and FscStreamExp in the experiments	 we could only consider � �
DtgSortExp	 FscSortExp � �� It is possible that performance would continue to improve for
values of the stream and sort exponents greater than �� However	 as explained above	 there are
complications in comparing the same algorithm with di�erent values of DtgStreamExp	 because
the size of the �destage streams cache� varies with DtgStreamExp�

The AT of the age�threshold algorithm was varied to �nd approximately the lowest GCU	
WorkRdLive	 and WorkRdAll with respect to the choice of AT� �Sometimes GCU	 WorkRdLive	
and WorkRdAll are minimized at di�erent AT values� As described in Section �	 the discrepancy
is not signi�cant�� While it is useful to compare other algorithms against the best case of the
age�threshold algorithm at the optimal AT	 it is not clear how the optimal AT can be found in
practice for a changing workload� Therefore	 the table also contains performance numbers for the
age�threshold algorithm at NAT � ��
�� This is the value given by the simpler heuristic in ��	
x
��	 which is NAT � �����
� ASU�� In the table	 this algorithm is called �age�thr�nat�
��� We
also considered the e�ect of adding a positive age�threshold to the �tness algorithm� For both
Sorting � Tree and Sorting � Fifo	 three values of AT were considered	 corresponding to NAT�s of
���
	 ����	 and ��
�� In each case	 the best performance was found at NAT � ��
�	 so we report
results only for this case� This algorithm is called ��t�age�nat�
��� This algorithm can be compared
to the �tness algorithm to see the e�ect of the age�threshold on the �tness algorithm	 and it can
be compared with the age�thr�nat�
� algorithm to see the di�erence between �tness selection and
greedy selection with a �xed NAT � ��
��

For comparison	 performance numbers for the greedy algorithm are also shown� The greedy
algorithm was simulated by choosing Selection � Greedy	 Threshold � �	 and DtgSortExp �
FscSortExp � �� However	 the greedy algorithm is ignored in the discussion to follow�

Some observations about the values in Table 
 can be made� The data in the table divides
naturally into eight cases depending on� Unwritten Tracks � No or Yes� Cache � 
 or ��� and
performance measure � WorkRdLive or WorkRdAll� In each case	 there are six algorithms �not
counting greedy��


� The range of di�erences� Comparing the six algorithms in each case	 the percentage by which
the Work of the worst exceeds that of the best is maximized at �� in the case �Y	 
	 Live��
The percentages in the other seven cases vary from roughly �� to 
���

�



Unwritten Algorithm Cache Bucket GCU WorkRdLive WorkRdAll EmptyCount
Tracks� Size Sorting �K� �K� �K�

N �tness 
 �fo ��
�� ��� 
��� ��

N �tness 
 tree ��
�� �
� 
�
� ���

N age�threshold 
 �fo ��
�� �
� ��� ��


N age�thr�nat�
� 
 �fo ���� ��� 
�� ���

N �t�age�nat�
� 
 �fo ��
�� ��� ��� ���

N �t�age�nat�
� 
 tree ��
�� �
� ��
 ����

N greedy 
 �fo ����
 
�� ��� ���

Y �tness 
 �fo ��
�� ��� ��� �
��

Y �tness 
 tree ��
�� ��� ��� ���

Y age�threshold 
 �fo ��
�� ��� ��� ����

Y age�thr�nat�
� 
 �fo ��
�� ��� ��� ����

Y �t�age�nat�
� 
 �fo ��
�
 �� ��� ����

Y �t�age�nat�
� 
 tree ��
�
 �� ��� ����

Y greedy 
 �fo ����� 
��� ��� ���

�a� Cache � �

Unwritten Algorithm Cache Bucket GCU WorkRdLive WorkRdAll EmptyCount
Tracks� Size Sorting �K� �K� �K�

N �tness �� �fo ����� �
� ��� 
��

N �tness �� tree ����� ��� ��� ��

N age�threshold �� �fo ����� �� ��� ���

N age�thr�nat�
� �� �fo ����� �� ��� ��

N �t�age�nat�
� �� �fo ����� ��� �� ���

N �t�age�nat�
� �� tree ����� ��� ��� ��


N greedy �� �fo ����� ��� 
�� ���

Y �tness �� �fo ����� �
 ��� ��

Y �tness �� tree ���� �� ��� ��

Y age�threshold �� �fo ���
� �� �

 ��


Y age�thr�nat�
� �� �fo ���� �� ��
 ���

Y �t�age�nat�
� �� �fo ����� �� �� ��


Y �t�age�nat�
� �� tree ���� �� �
� ��


Y greedy �� �fo ����� ��� 
��� ���

�b� Cache � ���

Figure 
� Summary of performance results at the optimal DtgSortExp and FscSortExp�

�



� Fitness��fo versus �tness�tree� Fitness��fo has smaller WorkRdLive than �tness�tree with the
exception of case �Y	 ��	 Live�� Fitness�tree has smaller WorkRdAll than �tness��fo with
the exception of case �N	 ��	 All�� As shown by the more detailed results in Section �	 if
DtgSortExp �  and FscSortExp � � �tness��fo does less WorkRdLive than �tness�tree�
�tness��fo does less WorkRdAll than �tness�tree for Cache � ��� and �tness�tree does less
WorkRdAll than �tness��fo for Cache � 
� If DtgSortExp � 
 and FscSortExp � 
	 there
are only three exceptions� �See Figure ���

�� Fitness �with AT � �	 versus age�threshold� In the four cases where the measure isWorkRdLive	
a �tness algorithm �nishes �rst	 and �tness��fo �nishes ahead of �tness�tree in all except
�Y	 ��	 Live�� In the four cases where the measure is WorkRdAll	 the age�threshold algo�
rithm �with optimal AT� �nishes �rst� The likely explanation for this di�erence between
the two measures is that the age�threshold algorithm gives segments a longer time to empty
naturally before they are collected	 and	 as noted above	 WorkRdAll gives �extra credit� to
segments that empty naturally� The �rst point is supported by the EmptyCount results in
the table� the age�threshold algorithm has noticeably larger EmptyCount than �tness��fo and
�tness�tree in all four cases� This is consistent with the explanation that a large enough AT is
more e�ective at letting segments become completely empty when compared with the �tness
selection method with AT � �� �There is a rough correlation in the table between increasing
EmptyCount and decreasing WorkRdAll	 but not a perfect one because GCU and CltdCount
also enter into the computation of WorkRdAll�� As can be seen from the more detailed results
given in Section � comparing the �tness��fo and age�threshold algorithms for all � values
of �DtgSortExp	 FscSortExp�	 the general trend is that the �tness��fo algorithm performs
better than the age�threshold �optimal AT� algorithm under GCU and WorkRdLive	 and the
age�threshold �both optimal AT and NAT � ��
�� algorithm performs better than the �tness�
�fo algorithm under WorkRdAll� Most of the exceptions occur when either DtgSortExp � �
or FscSortExp � �� �See Figure 
���

�� Fitness �NAT � �	 versus �tness �NAT � �
��	� In each of the eight cases we can compare
the performance of the �tness algorithm with that of the �t�age�nat�
� algorithm� In each
case	 there are two subcases of this	 Sorting � Tree or Fifo� In all sixteen cases except one	
the introduction of the positive age�threshold causes a decrease in Work� the exception is the
case �N	 
	 Live	 Tree� where there is a � 
� increase in WorkRdLive� Under WorkRdLive	
the improvement is at most �� in each case� Under WorkRdAll	 the improvement is larger �as
high as 
���� in the case �N	 
	 All	 Fifo��� As in the previous item	 the larger improvement
in WorkRdAll is probably due to an increase in EmptyCount when the age�threshold is used�

A few experiments were done to compare the �tness selection method with the age�threshold
method independently of the issue of multiple streams� This was done by setting DtgStreamExp
� FscStreamExp � DtgSortExp � FscSortExp � �� �This is not completely fair to the �tness
method because it was designed to be used in conjunction with multiple streams�� The results are
shown in Figure � They are similar to those in Figure 
� in particular	 the �tness��fo algorithm
has smallest WorkRdLive	 and the age�threshold �optimal AT� algorithm has smallest WorkRdAll	
for both Cache � 
 and ��� These results are not mentioned further in the paper�

�



Unwritten Algorithm Cache Bucket GCU WorkRdLive WorkRdAll EmptyCount
Tracks� Size Sorting �K� �K� �K�

N �tness 
 �fo ��
� �� 
�� ����

N �tness 
 tree ��
�� ��� 
��� ����

N age�threshold 
 �fo ��
�� �� 
��� ���

N age�thr�nat�
� 
 �fo ��
�� ��� 
��� ����

N �tness �� �fo ����
 �
� ��� 
��

N �tness �� tree ����� ��� ��� 
��

N age�threshold �� �fo ����� ��� ��� ���

N age�thr�nat�
� �� �fo ����� ��� ��� ��


Figure � Results for the case of one destage stream and one FSC stream�

The following additional observations can be made about the results given later�

�� In almost all cases	 GCU	 WorkRdLive	 and WorkRdAll decrease as the SortExp�s increase�
That is	 if � � i � i� � �	 � � j � j� � �	 and �i� j� �� �i�� j��	 then GCU �resp�	 Work�
at the point �DtgSortExp	 FscSortExp� � �i�� j�� is smaller than GCU �resp�	 Work� at the
point �i� j�� There are a few sporadic instances where an increase of 
 in one of the exponents
causes GCU or Work to increase by at most 
�� There was a signi�cant increase only in a
very few case where WorkRdAll at �
� j� is larger than WorkRdAll at ��� j�� In particular	
the smallest GCU	 WorkRdLive	 and WorkRdAll are always found in the case ��� ���

�� When the algorithms are run many times on the trace and there are unwritten tracks	 the
�tness algorithm shows a more signi�cant decrease in GCU	 WorkRdLive	 and WorkRdAll
than either the age�threshold algorithm with unwritten tracks or the �tness algorithm with
no unwritten tracks� This suggests that the �tness algorithm with unwritten tracks is reorga�
nizing the unwritten tracks better than the age�threshold algorithm� �The simulation of the
age�threshold algorithm does not have a process for collecting frozen segments��

The rest of the paper contains the following� For the case where every track is written at least
once �see item LsaTrkCount above�	 Sections � and � contains results on the �tness algorithm and
the age�threshold algorithm	 respectively� In Section �	 the results obtained from the two algorithms
are compared� In Section � we turn to the case where there are twice as many unwritten tracks
as written tracks� In Section �	 again in the case of unwritten tracks	 we describe results obtained
by running the algorithms on the trace ten times in sequence	 in an attempt to see how well
the algorithms reorganize the unwritten tracks� Section � contains results for the �t�age�nat�
�
algorithm�


�



� The Fitness Algorithm

Results for the �tness algorithm	 with no unwritten tracks	 are shown in Figure �� �Figures showing
detailed results and plots are collected in the Appendix�� Each table entry contains three numbers�
GCU	 CltdCount �in thousands�	 and WorkRdLive �in thousands�� Some observations can be made
about this data�


� As mentioned earlier	 in all cases GCU and WorkRdLive generally decrease as the SortExp�s
increase �there is only one exception in Figure ��� The only signi�cant increase is an increase
by ��� to ���� in WorkRdAll �not shown in the tables� when going from point ��� j� to
�
� j�	 for j � �� 
� � �� � in the case Sorting � Fifo	 and j � � in the case Sorting � Tree	
both in the case Cache � 
�

� CltdCount �the number of segments collected	 including naturally emptied ones� remains
fairly constant across each row of the table� When Cache � 
	 CltdCount increases down
each column� Increasing CltdCount together with decreasing GCU is an indication that
caching in the destage streams is less e�ective as DtgSortExp increases� An explanation
for this behavior	 due to Harry Butterworth	 is that as DtgSortExp increases	 young �and
presumably hotter� tracks are concentrated in fewer destage streams	 with the consequence
that they spend on average less time in the streams before they are put in a closed segment�
However	 the increase in CltdCount is accompanied by a decrease in GCU	 which is enough
to make WorkRdLive decrease� In the case Cache � ��	 CltdCount decreases slowly with
increasing DtgSortExp� This is consistent with the explanation� if there is an LRU cache in
front of the LSA	 �hits� in the destage streams are less likely to occur�

�� To compare Sorting � Tree with Sorting � Fifo	 Figure � gives the percentage by which
the GCU ��rst number in entry�	 WorkRdLive �second number in entry�	 and WorkRdAll
�third number in entry� in the case Sorting � Tree is larger �positive percentage� or smaller
�negative percentage� than that in the case Sorting � Fifo� So � �resp�	 �� means that �tness�
�fo �resp�	 �tness�tree� performs better� With four insigni�cant exceptions� Fifo has better
WorkRdLive than Tree when FscSortExp � �� Tree has better WorkRdAll than Fifo when
Cache � 
 and DtgSortExp � �� Fifo has better WorkRdAll than Tree when Cache � ��
and DtgSortExp � ��

Figures �	 �	 and � show plots of GCU of �tness��fo	 WorkRdLive of �tness��fo	 and WorkRdLive
of �tness�tree	 respectively	 as a function of �DtgSortExp	 FscSortExp��

� The Age�Threshold Algorithm

The age�threshold algorithm was simulated at NAT�s from ���� to ��
�� in steps of ����� We
did not consider larger NAT�s because the fraction of free space in the system is 
 � ASU � ���
Most of the optimal NAT�s were ��
 or larger� Recall that the age�threshold algorithm was always
simulated with Sorting � Fifo� Figure 
� shows the results� For each entry	 GCU	 CltdCount	
and WorkRdLive are shown� In the left�hand tables	 GCU and WorkRdLive are given at the







optimal NAT among those tested� Sometimes	 the smallest GCU and the smallest WorkRdLive or
WorkRdAll occurred at two di�erent NAT�s� However	 GCU at the WorkRdLive�optimal NAT was
within ���� of the optimal GCU	 and WorkRdLive at the GCU�optimal NAT was within ���� of
the optimal Work� For WorkRdAll	 these percentages were at most 
� with a few exceptions� The
CltdCount values at the optimal NAT�s di�ered by at most 
K� In the right�hand tables	 NAT is
�xed at ��
�� Regarding the percentage increase in WorkRdLive at the �xed NAT � ��
� compared
to that at the WorkRdLive�optimal NAT� for Cache � 
 this percentage is at most ���
� and is
����� at the point ��� ��� for Cache � �� it is at most ����� and is �� at the point ��� ��� The
changes in CltdCount for changing DtgSortExp and FscSortExp are similar to those for the �tness
algorithm� Plots of GCU and WorkRdLive using optimal AT�s are shown in Figures 

 and 
�

� Comparison of the Fitness and Age�Threshold Algorithms

To compare the age�threshold algorithm with the �tness algorithm	 the tables in Figure 
� show
the percentage by which GCU	 WorkRdLive	 and WorkRdAll of the age�threshold algorithm is
larger �positive percentage� or smaller �negative percentage� of that of the �tness��fo algorithm	
both at the optimal AT and at NAT � ��
�� One fact that can be seen clearly in these tables
is that	 with a few exceptions occurring mostly when DtgSortExp � � or FscSortExp � �	 the
�tness��fo algorithm has smaller GCU and WorkRdLive	 while the age�threshold algorithm �both
optimal AT and NAT � ��
�� has smaller WorkRdAll� To see the e�ect of increasing SortExp�s	 we
can look at the main diagonal of each table	 i
e
	 the points �i� i� for � � i � �� The general trend is
that whichever algorithm has the advantage ��tness for GCU and WorkRdLive	 age�threshold for
WorkRdAll� increases its advantage as i increases� However	 there is often a decrease in advantage
when going from ��� �� to ��� ��	 and there are a few cases where a decrease in advantage occurs for
smaller i�

� Unwritten Tracks

The algorithms were simulated in a scenario where	 in addition to the ����� tracks that are written
in the trace	 the tracks include twice as many ���
�� tracks that are never written during the
simulation on the trace� This gives a total of LsaTrkCount � 
���
� Recall that the unwritten
tracks are written during the initial warm�up consisting of 
��LsaTrkCount uniformly random
writes� Keeping SegTrkCount �xed at �	 LsaSegCount was tripled to maintain ASU � ���� De�
tailed results for the �tness algorithm are shown in Figure 
�	 and plots are shown in Figures 
�
�GCU� and 
� �WorkRdLive�� Results for the age�threshold algorithm are shown in Figure 
�	
and plots �using optimal AT�s� are shown in Figures 
� �GCU� and 
� �WorkRdLive�� Comparing
these results with those in the case of no unwritten tracks	 the absolute GCU and Work values
are smaller in the case of unwritten tracks� However	 the relationships between the numbers in
the case of unwritten tracks are similar to those in the case of no unwritten tracks� For example	
performance still tends to increase as the SortExp�s increase�

The table in Figure � compares the performance of the �tness��fo algorithm with that of the
age�threshold algorithm in the case of unwritten tracks� this is the analogue for unwritten tracks of






Percentage Improvement Percentage Above Goal
Algorithm Unwritten� Cache SortExp�s GCU WRL WRA GCU WRL WRA

�tness Y 
 � ���� ���� ��� 
��� ��� 

�

age�thr Y 
 � 
��� ��� 
��� ���� ���� ���

�tness N 
 � �� ��� �

�tness Y 
 � ���� ��� ��
 
��� 
��� ���

age�thr Y 
 � ���� ���� �� 
��� 
���� ��

�tness N 
 � ��
 ��� 
���

�tness Y �� � ���� �
�� ��� ��� 
� 
�

age�thr Y �� � 
��� �� 
�� ���� ���� ����

�tness N �� � ��
 ��� ���

�tness Y �� � ���� ���� ���� ��� ��� 
���

age�thr Y �� � ���� ���� ���
 
���� 

�� ����

�tness N �� � ���� ���� ����

Figure �� Results from running through the trace ten times�

Figure 
�� As in the case of no unwritten tracks	 the �tness��fo algorithm has better performance
according to GCU and WorkRdLive	 while the age�threshold algorithm does better according to
WorkRdAll�

� Reorganization of Unwritten Tracks

In this section we report results of running the algorithms for ten times in sequence on the full
trace	 starting with unwritten tracks just as in the previous section� The goal was to see how much
improvement in GCU and Work is obtained from the �rst run on the trace to the tenth run� In
summary	 the �tness algorithm shows more improvement than the age�threshold algorithm� It is
reasonable to conjecture that the �tness achieves better improvement because it does a better job
of collecting �frozen� segments and congregating the unwritten tracks into fewer segments� To test
this conjecture	 we also ran the �tness algorithm ten times over the trace where there were no
unwritten tracks� Here the �tness algorithm shows some improvement but it is not as large as that
obtained with unwritten tracks� This supports the conjecture� In the case of no unwritten tracks	
the improvement could be due to a better congregation of the tracks that are written relatively
rarely� Adding a large number of unwritten tracks makes the improvement larger�

We also compare the GCU and Work of an algorithm at the tenth iteration with the GCU and
Work that would occur if the algorithm was completely successful in congregating all the unwritten
tracks into segments by themselves� Although we would not expect an algorithm to reach this
perfect state	 it is interesting to see how close it comes to this �goal�� To �nd the GCU and
Work goals	 we compute the ASU of the system when all the unwritten tracks are in segments by
themselves� In the scenario with unwritten tracks and ASU � ���	 all the tracks �ll a fraction ��
�


�



0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

W
or

kR
dL

iv
e 

(K
)

number of passes through trace

Fitness Algorithm

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

W
or

kR
dL

iv
e 

(K
)

number of passes through trace

Age-Threshold Algorithm

�a� Cache � �

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

W
or

kR
dL

iv
e 

(K
)

number of passes through trace

Fitness Algorithm

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

W
or

kR
dL

iv
e 

(K
)

number of passes through trace

Age-Threshold Algorithm

�b� Cache � ���

Figure �� Plots of WorkRdLive of the �tness��fo �left� and age�threshold �right� algorithms by
number of passes through the trace	 in the case DtgSortExp � FscSortExp � �� The straight
horizontal lines are at the goal values�


�



of the segments� Of these tracks	 �� are unwritten� If all the unwritten tracks were in segments
by themselves	 the unwritten tracks would �ll ���
������ � ��
� of the segments	 and the written
tracks would �ll ���
���
��� � ��
� of the segments� Thus	 the e�ective ASU is ���
����
 � ��
��
� ���� To compute the GCU and Work goals for a given case	 the case was simulated ten times on
the trace with no unwritten tracks and ASU � ���� that is	 LsaTrkCount � �����	 LsaSegCount
� ���	 and SegTrkCount � ��

The cases considered were Cache � 
 and ��	 Sorting � Fifo and Tree for the �tness algorithm	
and DtgSortExp � FscSortExp � i for � � i � �� For simplicity we only report results at the
extreme points i � � and i � �	 and only for Sorting � Fifo� With other parameters �xed	 Sorting
� Fifo consistently showed larger improvement than Sorting � Tree� A �xed AT � 


 was used
for the age�threshold algorithm� This value is close to the optimal value for both scenarios� ASU
� ��� and unwritten tracks� ASU � ��� and no unwritten tracks� The NAT�s in the two scenarios
are ��
�� and ����� The heuristic of ��� described above would give ��
� and ��
	 respectively�

Results are shown in Figure � �where WorkRdLive and WorkRdAll are abbreviated WRL and
WRA�� For each case are given the percentage improvement in GCU and Work from the �rst
iteration to the last	 and the percentage that the tenth�iteration value is larger than the goal value
for the case�

Most of the improvement in GCU and Work occurred during the earlier iterations� This can be
seen in Figure � for the �tness��fo and age�threshold algorithms with unwritten tracks in the cases
Cache � 
� �� and SortExp � ��

It is also reasonable to wonder what is happening during the early runs on the trace� To check
this	 the trace was divided in four parts of equal size� The WorkRdLive �K� values during the �rst
eight quarters �twice through the whole trace� are


�
 �
 

� ��
�� �� �� ��

This suggests that certain quarters of the trace need more work than others�

	 The Fitness Algorithm with an Age�Threshold

Detailed results for the �t�age�nat�
� algorithm without and with unwritten tracks are shown in
Figures 
 and 	 respectively�

�
 Notes


� The FSC simulation program used in this study simulates the all�age version of the age�
threshold algorithm	 where all closed segments must wait to pass the AT before being col�
lected� In another version	 the TW�age version	 only segments closed from the destage stream
must wait� Results of Sections 
� and 
� of ��� show that on a realistic synthetic trace and
on the trace used here	 the GCU�s of the all�age and TW�age versions are virtually identical
for all reasonably small values of the AT	 in particular	 for all values of AT smaller than or
in the vicinity of the �optimal� AT where GCU is minimized� Because we consider only such


�



values of AT in this study	 one would expect the results to have been virtually identical if the
TW�age version had been simulated�

� The simulation program used in this study allows multiple destage and FSC streams	 and a
write to track in a stream causes the track to be removed from the stream and placed in a new
destage stream� This means that a closed segment is always full� For the simulation program
used in ���	 there is only one destage stream and one FSC stream	 and a write to a track in
the destage stream causes the track to be removed from the stream	 but a �hole� remains
in the stream where the track was� This means that a destage segment can contain holes	
i�e�	 free space	 when closed� In particular	 this means that if a sequence of N track writes
enters the LSA	 the FSC process must create very close to N tracks of free space� �This is
not true if the streams act as a cache�� Thus	 smaller GCU implies that a smaller number of
segments are collected� So in ���	 decreasing GCU always means increasing performance	 and
vice versa�

�� Experiments were done to determine the e�ect on the performance of the age�threshold algo�
rithm caused by increasing MaxEmpty� Both Cache � 
 and Cache � �� were considered�
In one type of experiment	 MaxEmpty was increased slowly from 
 to �����LsaSegCount	
while Threshold was decreased from its optimal �at MaxEmpty � 
� value at each step by
the same amount that MaxEmpty increased� �The reason why it is reasonable to decrease
AT by the same amount that MaxEmpty increases is explained in ��	 x
���� The second type
of experiment was the same except that Threshold was held �xed at its optimal value� In all
cases	 both GCU and work generally increased as MaxEmpty increased	 with the exception
of a few cases with MaxEmpty � ���
�LsaSegCount where the measure decreased by less
than �����

Acknowledgements� I am grateful to Harry Butterworth	 not only for supplying the simulation
program	 but also for many helpful suggestions about the details of the simulations� In particular	
he noticed early on that varying the number of streams was producing skewed results	 and he
suggested the solution of varying the amount of stream sorting instead� I also thank Jody Glider
for helpful discussions about work measures for FSC algorithms�

References

�
� H� E� Butterworth	 The design of segment �lling and selection algorithms for e�cient free�space
collection in a log structured array	 unpublished manuscript	 IBM Hursley	 
����

�� J� Menon	 A performance comparison of RAID�� and log�structured arrays	 Fourth IEEE
Symposium on High�Performance Distributed Computing	 Aug� 
���	 Charlottesville	 Virginia	
pp� 
���
���

��� J� Menon and L� Stockmeyer	 An age�threshold algorithm for garbage collection in log�
structured arrays and �le systems	 IBM Research Report RJ 
�
�	 May 
���� a shorter


�



version appears in High Performance Computing Systems and Applications	 J� Schae�er	 ed�	
Kluwer Academic Publishers	 
���	 pp� 

��
��

��� M� Rosenblum and J� K� Ousterhout	 The design and implementation of a log�structured �le
system	 ACM Trans
 Computer Systems 
� �
���	 pp� ����

��� C� Ruemmler and J� Wilkes	 UNIX disk access patterns	 Proc
 USENIX ���� Winter Confer�
ence	 Jan� 
���	 pp� �������


�



Appendix� Tables and Plots

Destage
Sort
Exponent

FSC Sort Exponent
� � � � �

���	
 ���

 ����� ���� �����
� �	 � �
 �
 ��


� 
�� �
 ��
 ���

���� ����� ���	� ���� ���


� �
 �� �� �� ��


� �
� ��� ��� �	

���		 ����� ����� ���� �����
� �� �� �� �� ��


�� ��� �	� �
� ���

���
� ����� ����	 ����� ����

� �� �� �� �� ��

�
 �	� ��	 �� ��


����� ����	 ���	� ���
 ����
� �� �� �� �� ��

��	 �� ��	 �	 ��

Sorting � Fifo

FSC Sort Exponent
� � � � �

����� ���� ���� ���� ����
� �� � �	 �	 �

�� 
�� 
�� 
�
 
�

����
 ���� ����� ����� ���	
� �� �� �� �� ��


�� �� �
	 �
� ���

����� ����� ����� ����� �����
� �� �� �� �� ��


�
 ��� ��
 ��
 ���

���
� ����� ���� ����� �����
� �� �� �� �� ��

�� �	� �� �
� ���

����
 ����� ���	 ���	
 ���	�
� �� �� �� �� ��

��� ��� ��� ��� ���

Sorting � Tree

�a� Cache � �

Destage
Sort
Exponent

FSC Sort Exponent
� � � � �

���		 ���� ���
� ���� �����
� � �
 �
 �� ��

��� ��� ��� �	� ��

���
� ����� ����� ����� �����
� �� �� �� �� ��

��� ��
 ��� �� ���

����� ����� ����
 ����� �����
� �� �� �� �� ��

��� ��
 ��� �
 �
	

���� ����� ���	� ��� ����
� �� �� �� �� ��

��� �	� �� ��� ���

����� ���	� ����
 ����� ����	
� �� �� �� �� ��

�	� ��� ��� ��� ���

Sorting � Fifo

FSC Sort Exponent
� � � � �

����� ���	� ���	� ���	 ���	
� � �
 �
 �
 �


��� ��	 ��� ��� ���

���
	 ����� ����� ����� �����
� �
 �� �� �� ��

��� �� ��� ��� ��	

����� ����
 ����� ����� ����
� �� �� �� �� ��

�
� �� �� ��	 ���

����� ����� ����� ����
 �����
� �� �� �� �� ��

�� �� �	 �� �
	

����� ���	� ���� ���� ���

� �� �� �� �� ��

�	� ��� ��� ��� ���

Sorting � Tree

�b� Cache � ���

Figure �� �GCU	 CltdCount �K�	 WorkRdLive �K�� of the �tness algorithm�


�



Destage
Sort
Exponent

FSC Sort Exponent
� � � � �

����� ���
	 ���
� �
��� ���

� ����
 ����� �	�� ����	� ������

����� ����� ����� ���	 �����

����� ����� ����� �
�
� �
���
� ����� ����� ���
� ������ ������

����� ��� ���	� ����	 �����

����� ����� ���		 ����� �
�
�
� ����� ���� ���
� �	��
 �����

���
� ���� ���� ����� ����

����� ����	 ����� ����� �
���
� ���
� ����� ���	� ��	� �	��

����� �
��� ����� ���

 ����

����� ����� ���	� ����
 �����
� ����� ����� ���

 ���	� ����

�
�	� ��
� ���� ����� �
���

�a� Cache � �

Destage
Sort
Exponent

FSC Sort Exponent
� � � � �

����� ���	
 ���
	 ����� ����
� ����	 ����� ���		 ���� ������

����� ����� ����� ����� �����

����
 ����� ����� ����� ���	
� ����� ����� ����
 �
�
� ����

���

 ���
� ���	 ����� ���
�

����� ����� ����� ���	� ���


� ����� ����� �
��� ���� �	�
�

����� ����� ����� ���
	 �����

���	� ����
 ����� ����� �����
� ���� ����� ���� ���� �	�	�

����� ����� ���
� ����� ����


����� ����
 ����� ����� �����
� ����� ���� ���� �
��� ����

����� ���
� ����� ����� ���
�

�b� Cache � ���

Figure �� Percentage by which �GCU	 WorkRdLive	 WorkRdAll� in the case Sorting � Tree is larger
�positive percentage� or smaller �negative percentage� than that in the case Sorting � Fifo�


�



0
1

2
3

4

0
1

2
3

4

0.15

0.2

0.25

0.3

0.35

0.4

DtgSortExp

FscSortExp

GCU

�a� Cache � �� Sorting � Fifo

0
1

2
3

4

0
1

2
3

4

0.35

0.4

0.45

0.5

DtgSortExp

FscSortExp

GCU

�b� Cache � ���� Sorting � Fifo

Figure �� Plot of GCU for the �tness��fo algorithm with Cache � 
	 ���

�



0
1

2
3

4

0
1

2
3

4

450
500
550
600
650
700
750
800

DtgSortExp

FscSortExp

WorkRdLive (K)

�a� Cache � �� Sorting � Fifo

0
1

2
3

4

0
1

2
3

4

300

350

400

450

500

550

600

DtgSortExp

FscSortExp

WorkRdLive (K)

�b� Cache � ���� Sorting � Fifo

Figure �� Plot of WorkRdLive for the �tness��fo algorithm with Cache � 
	 ���






0
1

2
3

4

0
1

2
3

4

500
550
600
650
700
750
800
850

DtgSortExp

FscSortExp

WorkRdLive (K)

�a� Cache � �� Sorting � Tree

0
1

2
3

4

0
1

2
3

4

300

350

400

450

500

550

600

DtgSortExp

FscSortExp

WorkRdLive (K)

�b� Cache � ���� Sorting � Tree

Figure �� Plot of WorkRdLive for the �tness�tree algorithm with Cache � 
	 ���





Destage
Sort
Exponent

FSC Sort Exponent
� � � � �

���	
 ���
 ���� ����� ����

� �� � � �
 �



	� 
�� �		 �
� ���

����� ����� ����� ���	� ���	�
� �
 �� �� �� ��


� 
�� �
� ��	 ���

���	� ���
� ���� ����� ����

� �� �� �� �� ��


�� ��� ��	 ��� ���

����� ����� ����� ����� ����	
� �� �� �� �� ��

�
� ��� �	� �
� ���

����� ����� ����� ���	 ���	�
� �� �
 �
 �
 ��

��� �
� ��� ��
 ��


At optimal AT

FSC Sort Exponent
� � � � �

���	
 ���
 ���� ����� ����

� �� � � �
 �



	� 
�� �		 �
� ���

����� ����� ����� ���	� ���	�
� �
 �� �� �� ��


�� 
�	 �
� ��	 ��


���	 ���
� ����� ����� �����
� �� �� �� �� ��


�� �
� ��
 ��� ���

���
� ���� ����
 ����� ����

� �� �� �� �� ��

�	� ��� ��� �	� ��

����� ����� ����� ����
 �����
� �
 �
 �
 �
 �


��	 �	� ��� ��� ���

At NAT � ����

�a� Cache � �

Destage
Sort
Exponent

FSC Sort Exponent
� � � � �

����� ��� ���
	 ���
� ����	
� � �
 �
 �
 ��

��	 ��� ��� ��� �	�

���

 ����� ����� ����� �����
� �
 �� �� �� ��

��� �� ��� ��� ���

����
 ����� ����� ����� �����
� �� �� �� �� ��

�
� ��� ��� ��� ���

����� ���� ����
 ����� ���	

� �� �� �� �� ��

�� ��� �� �
� ��	

����
 ���	� ���� ���
� ���
�
� �� �� �� �� ��

�� ��� ��� ��� ��

At optimal AT

FSC Sort Exponent
� � � � �

����� ���	 ���� ���
� ���
�
� � �
 �
 �
 ��

��	 ��� �� ��
 �		

���
	 ����� ����� ����� �����
� �
 �� �� �� ��

��� �� ��
 ��� ���

����� ����� ����� ����� �����
� �� �� �� �� ��

�
 ��� ��� ��� ��	

����� ����� ����
 ����� ���	
� �� �� �� �� ��

�� ��
 �� �

 ��	

����� ���	
 ���� ���
� ���
�
� �� �� �� �� ��

�	
 ��
 ��
 ��� ��

At NAT � ����

�b� Cache � ���

Figure 
�� �GCU	 CltdCount �K�	 WorkRdLive �K�� of the age�threshold algorithm�

�



0
1

2
3

4

0
1

2
3

4

0.15

0.2

0.25

0.3

0.35

0.4

DtgSortExp

FscSortExp

GCU

�a� Cache � �

0
1

2
3

4

0
1

2
3

4

0.35

0.4

0.45

0.5

0.55

DtgSortExp

FscSortExp

GCU

�b� Cache � ���

Figure 

� Plot of GCU for the age�threshold algorithm �at optimal AT��

�



0
1

2
3

4

0
1

2
3

4

500
550
600
650
700
750
800

DtgSortExp

FscSortExp

WorkRdLive (K)

�a� Cache � �

0
1

2
3

4

0
1

2
3

4

300

350

400

450

500

550

600

DtgSortExp

FscSortExp

WorkRdLive (K)

�b� Cache � ���

Figure 
� Plot of WorkRdLive for the age�threshold algorithm �at optimal AT��

�



Destage
Sort
Exponent

FSC Sort Exponent
� � � � �

���� ����
 ���� ����� �����
� ���� ����� ����
 ���	 ����	

���	� ���	
 ����	 ����� ���	�

����� ���� ����� ���	 ����	
� ����� ����� ���	� ��� ����

����		 ������ ������ �	��� �	���

����� ���� ����
 ����� �����
� ����� ���
� �
�
� �
��� �	���

��
�	� ����	� ������ ������ ����	�

���� ���� ���� ����� �����
� ����	 ����� �
�
	 ��	� ����

���� ����	 ����
 ������ �����

��� ���� ����� ����� ���	

� ����� ���	 �
�� �
�
� �
���

��	�� �����
 ����� ����� ������

At optimal AT

FSC Sort Exponent
� � � � �

���� ����
 ���� ����� �����
� ���� ����� ����
 ���	 ����	

���	� ���	
 ����	 ����� ���	�

���� ����� ����� ���	 ����	
� ���	� ����� ���	� ��� ���	

����� �	��
 ��
 ���	� �
��

����
 ����� ����	 ���	� ����
� ����� ����	 �	��� �	�	� �����

������ ����	� �	��� �	��	 �
���

���� ����� ���� �	��� �	�
	
� ���	� �
�� �����	 ����
� ������

������ �	�	� �
�	� �
��� �����

���
� ����� ���� ������ �	��

� ����� �
�� ����	 ������ �����


������ �	��� �
��� ����
 ����

At NAT � ����

�a� Cache � �

Destage
Sort
Exponent

FSC Sort Exponent
� � � � �

����	 ���� ���
	 ����� �����
� ����� ���	� ���� ����� �����

���
� ����� ����
 ����� �����

����� ����� ����� ���� �����
� ����� ���	� ���

 ����
 �����

���	 ����� ����	 ����	 �����

����� ���	� ����� ����	 ���	
� ���	� ����� ����� ����� �
��

���

 ���� ����� ����� �����

��� ���
	 ����
 ����� �����
� ����	 ���
� ���� ���	� ���	


�
��� ���
� ����� ���	� ����

����� ����� ����� ����� ���	�
� ����� ����� ����� ����� ����

�	��	 ���� ����� ���� �����

At optimal AT

FSC Sort Exponent
� � � � �

����� ����� ����� ���� ���
�
� ����� ����� ���
� ����
 �����

����
 ����� ����� ����� ���	�

����� ����� ����� ���	� ����	
� ����� ���	� ���� ����� �����

���
� ����� ����� ���
� �����

���� ����� ����� ���	 �����
� ���� ����� ����	 ���	
 ����

���		 ���� ����� ����� ����

����� ����
 ����
 ����
 �����
� ����� ����� ���� ��� �
���

���� ���� ���� ���
 ���



����� ���
� ����� ���
� ���	�
� ����	 ����� �
��� ����� ����

����� ����� ����� ���
� ����

At NAT � ����

�b� Cache � ���

Figure 
�� Percentage by which �GCU	 WorkRdLive	 WorkRdAll� of the age�threshold algorithm
exceeds that of the �tness��fo algorithm�

�



Destage
Sort
Exponent

FSC Sort Exponent
� � � � �

����� ���� ���� ���� ���
�
� �� �� �� �� ��

��� �� �
� ��	 ��	

����� ����
 ����� ����	 �����
� �� �� �� �� ��

�� ��� ��
 ��� ��	

����� ���� ���
� ���
� ���
�
� � �� �� �� ��

�
� ��
 �	� �� ��

���� ����� ����� ����� �����
� �� �	 �� �� �	

�� �� ��	 ��� ���

����� ����� ����
 ����� �����
� �� �� �� �� ��

��� ��� ��� ��	 ���

Sorting � Fifo

FSC Sort Exponent
� � � � �

����� ���
 ���� ���
 ���
�
� �� �� �� �� ��

��	 �� �� ��� ��

����� ����	 ����� ����� ����

� �� �� �� �� ��

��� �� ��� ��
 ���

����� ���� ���

 ���
� ���
�
� � �
 �� �� ��

�	
 ��	 ��� �	� �	

���	� ����� ����
 ����� �����
� �� �	 �	 �	 ��

�� �� �
� ��	 ��


���
� ����� ���� ����� �����
� �� �� �� �� ��

��� ��
 ��� ��� ��	

Sorting � Tree

�a� Cache � �

Destage
Sort
Exponent

FSC Sort Exponent
� � � � �

����� ����� ���	� ���	� ���
� �� �� �� �� ��

�� �

 ��� �� ���

����� ���

 ����� ����� �����
� �� �� �� �� ��

�
	 ��� ��� ��� ���

���� ���� ����� ����� �����
� �� �� �� �� ��

��� ��� �	
 �	 �	�

���� ����	 ���� ����� �����
� �� �� �� �� ��

��� � �
� �
� �
�

����� ����� ����� ����� ����	
� �� �� �� �� ��

��� �
� ��	 ��� ���

Sorting � Fifo

FSC Sort Exponent
� � � � �

����� ����� ���	� ���	� ���	
� �� �� �� �� ��

��� �
� ��� �� ���

����� ���
� ���� ����� �����
� �� �� �� �� ��

�	� ��� ��
 ��� ��

���	� ����� ���� ����� �����
� �� �� �� �� ��

��� ��	 �	 �	� �	�

���
	 ����� ���� ����� �����
� �� �� �� �� ��

��� �� �
� �� ���

����	 ����� ����
 ����� �����
� �� �� �� �� ��

��� �� �� ��� ���

Sorting � Tree

�b� Cache � ���

Figure 
�� �GCU	 CltdCount �K�	 WorkRdLive �K�� of the �tness algorithm with unwritten tracks�

�



0
1

2
3

4

0
1

2
3

4

0.1

0.15

0.2

0.25

0.3

0.35

DtgSortExp

FscSortExp

GCU

�a� Cache � �� Sorting � Fifo

0
1

2
3

4

0
1

2
3

4

0.3

0.35

0.4

0.45

DtgSortExp

FscSortExp

GCU

�b� Cache � ���� Sorting � Fifo

Figure 
�� Plot of GCU for the �tness��fo algorithm with unwritten tracks�

�



0
1

2
3

4

0
1

2
3

4

300

350

400

450

500

550

DtgSortExp

FscSortExp

WorkRdLive (K)

�a� Cache � �� Sorting � Fifo

0
1

2
3

4

0
1

2
3

4

250

300

350

400

450

DtgSortExp

FscSortExp

WorkRdLive (K)

�b� Cache � ���� Sorting � Fifo

Figure 
�� Plot of WorkRdLive for the �tness��fo algorithm with unwritten tracks�

�



Destage
Sort
Exponent

FSC Sort Exponent
� � � � �

����� ���		 ���	� ���	 ����
� �� �� �� �� ��

��� ��� ��� �	 ��

����� ����	 ����� ����� ����
� �� �� �� �� ��

��� ��� ��
 �� ���

����� ���	 ���� ���� ����
� � �
 �
 �
 �


�� ��� ��� ��� ��	

���� ���
� ����� ����� �����
� �� �� �� �� ��

��� ��� ��� �	� �


����� ����� ����� ����� �����
� �� �� �� �� ��

��� �� �� �
� ���

At optimal AT

FSC Sort Exponent
� � � � �

����� ����� ���	� ���	� ���	
� �� �� �� �� ��

�
� ��	 ��� �	� �

���� ����� ����� ����� ����	
� �� �� �� �� ��

��� �	 �� �
� ��


����� ����� ���	 ���	� ���	�
� �	 � � � �

��� �� ��� ��� ���

����� ���� ���� ���

 ���


� �� �� �� �� ��

��� ��� ��� ��� ���

���� ����
 ����� ���� ����

� �� �� �� �� ��

�� ��� ��� ��� ���

At NAT � ����

�a� Cache � �

Destage
Sort
Exponent

FSC Sort Exponent
� � � � �

����� ����� ���		 ���	� ���	�
� �� �� �� �� ��

�� �
	 �
� ��� ���

���	� ���� ���
� ���
� ����	
� �� �� �� �� ��

�
� �� ��
 ��� ���

���
� ���� ����� ����� �����
� �� �� �� �� ��

��� ��� ��� ��� ���

����� ����� ����� ����� �����
� �� �� �� �� ��

��� �	� �� �
 �



����� ����� ����
 ����� �����
� �� �� �� �� ��

�� �� ��� �� ���

At optimal AT

FSC Sort Exponent
� � � � �

����	 ����� ����� ����� ���	
� �� �� �� �� ��

��� �	 �
	 �
� �
�

���� ���	� ���� ���� ���

� �� �� �� �� ��

� ��� ��� ��� ���

���	 ���
� ����� ����� �����
� �� �� �� �� ��

��
 ��� ��� ��� ��	

���
� ����� ���� ����� �����
� �� �� �� �� ��

��� ��	 ��� �	� �	�

����� ����� ����� ����� �����
� �� �� �� �� ��

��
 �� �

 �
� �
�

At NAT � ����

�b� Cache � ���

Figure 
�� �GCU	 CltdCount �K�	 WorkRdLive �K�� of the age�threshold algorithm with unwritten
tracks�

��



0
1

2
3

4

0
1

2
3

4

0.1

0.15

0.2

0.25

0.3

0.35

DtgSortExp

FscSortExp

GCU

�a� Cache � �

0
1

2
3

4

0
1

2
3

4

0.3

0.35

0.4

0.45

DtgSortExp

FscSortExp

GCU

�b� Cache � ���

Figure 
�� Plot of GCU for the age�threshold algorithm with unwritten tracks�

�




0
1

2
3

4

0
1

2
3

4

350

400

450

500

550

600

DtgSortExp

FscSortExp

WorkRdLive (K)

�a� Cache � �

0
1

2
3

4

0
1

2
3

4

250

300

350

400

450

DtgSortExp

FscSortExp

WorkRdLive (K)

�b� Cache � ���

Figure 
�� Plot of WorkRdLive for the age�threshold algorithm with unwritten tracks�

�



Destage
Sort
Exponent

FSC Sort Exponent
� � � � �

����� ���
� ����� ���	� ����

� ����� ���	 ���
� ����
 �����

���� ���� ���		 �
�� �
���

���	
 ���� �
��	 ����	 ���

� ���� �
��
 �	��� ���� �
�
�

������ �����
 �����	 ������ ������

����� ���
� ���� ���	� ���	�
� ��� ����� �
��� �
�
� �
��


���	� ����	
 �����
 ������ ������

���� ���� ���	� �
�
� ���	
� ���� ���� ���	 �	��	 ����

���� ������ �����
 ������ ����
�

���
� ���	� �	�� �
��� �
���
� ��� ���� ������ �	��� ��
�

��
��	 ����	
 �����	 ����
 ������

At optimal AT

FSC Sort Exponent
� � � � �

����� ����� ����	 ���

 �����
� ����	 �
�	� ���	� ����� �����

����� ����� ����� ����� �����

���
� �����	 ������ ����
� ����	�
� ����� ����
 ����
� ������ �����

�����	 ���� ���	� ����� ����


���	 ����	� ������ ������ ������
� ������ ��
�	
 ��
�
� ��
�	� �����

�
��� ����� ����	 ���� ���	�

�	��
 ������ ������ ������ ��
��	
� ����� ��	�	� ��	�� ��	��� �����

���		 ���� ���	� ����� ����	

������ ��
�� ��
��� ������ ��
���
� ������ ������ ������ ��	��
 ������

����� ����� ���� ���� ���
�

At NAT � ����

�a� Cache � �

Destage
Sort
Exponent

FSC Sort Exponent
� � � � �

����� ����� ����
 ����� �����
� ����	 ����	 ��� ����
 �����

���

 ���
� ���
	 ����� ���
�

����� ����� ����
 ����� �����
� ����� ����� ���	 ����
 ����


����� �	��� ���	 �	��� ��
�

����� ����� ���

 ����
 �����
� ����� ����� ���
	 ����� ����


����� ������ ����	 ����	� ������

����� ����� ����� ����� �����
� ����� ����� ����� ����
 �����

��
��� ������ ����	� ������ ����


����� ���	
 ����� ���� ����

� �
�� ����� ���� ����
 ����

����� ����� ����
� ������ ������

At optimal AT

FSC Sort Exponent
� � � � �

����� ���� ����� ����� ���
�
� ����� ����� ���� ����	 ����	

����� ����� ���	� ���� ����


���� ����� ���	 ���
� ����

� ����� ���� ���� ����� �����

���� ���� ����� ���	� ����

���� ���	
 ����� ����� �����
� ���� ����� �	��� ���� �	��

��� ����� ���� ����� �����

����	 ���
� ����	 ���	� ����
� ���

 �
��� �	��� �	��	 ���


���� ����	 ����
 ���� �����

����� ���	� ����� ����� ���	�
� ����� ����	 �
��� ����� �
���

�	��� �
��
 ���	� ����� �����

At NAT � ����

�b� Cache � ���

Figure �� Percentage by which �GCU	 WorkRdLive	 WorkRdAll� of the age�threshold algorithm
exceeds that of the �tness��fo algorithm in the case of unwritten tracks�

��



Destage
Sort
Exponent

FSC Sort Exponent
� � � � �

���	� ���
� ����� ����� ����
� �	 � �
 �� ��



 
�� �� ��� ���

����� ����� ���
 ���� ���
�
� �� �� �� �� ��


�� ��
 ��	 ��� �	

���� ����
 ����� ����� �����
� �� �� �� �� ��

� ��� �� ��� ���

����	 ����� ����� ���� �����
� �� �� �� �� ��

��� �� ��� ��� ���

����� ����� ���	� ���� ���
	
� �� �� �� �� ��

��� ��� ��� �
	 ��


Sorting � Fifo

FSC Sort Exponent
� � � � �

����� ���	 ���	 ���� ���

� �� �	 �	 �	 �


	 
�� 
�� 
� 
��

����� ����� ����� ����� �����
� �� �� �� �� ��


�� �	 
�� �	� �
�

���	� ����
 ����	 ����� �����
� �� �� �� �� ��

�		 ��� ��� ��� ���

����
 ����
 ����� ���� �����
� �� �� �� �� ��

��� �	 �
 �� �
�

����� ���� ����� ���	 ���	�
� �� �� �� �
 �


��� ��� ��� �� ��


Sorting � Tree

�a� Cache � �

Destage
Sort
Exponent

FSC Sort Exponent
� � � � �

���	� ���� ���
� ����� ����

� � �
 �� �� ��

��� ��
 �		 �
	 �
�

����
 ����� ���� ����� �����
� �� �� �� �� ��

�	� ��� ��
 ��� ��

���� ���� ����� ����	 �����
� �� �� �� �� ��

��� ��	 ��� � �
�

����
 ���� ���	� ���� ����
� �� �� �� �� ��

��� �� ��	 ��	 ���

����� ���� ����� ����� �����
� �� �� �� �� ��

�
 �� ��� ��
 ��

Sorting � Fifo

FSC Sort Exponent
� � � � �

����� ���	� ���	� ��� ���
� � �
 �
 �
 �


��� ��� ��� ��� ���

���
� ����� ����
 ����� ����	
� �
 �� �� �� ��

��� �� �
� ��
 ��


����� ����� ����� ����	 �����
� �� �� �� �� ��

��� ��� ��� ��	 ���

����� ����� ����� ����� �����
� �� �� �� �� ��

��
 ��� �
 �� �
�

���� ���	� ���� ���� ���


� �� �� �� �� ��

�� ��� ��� ��� ��	

Sorting � Tree

�b� Cache � ���

Figure 
� �GCU	 CltdCount �K�	 WorkRdLive �K�� of the �t�age�nat�
� algorithm�

��



Destage
Sort
Exponent

FSC Sort Exponent
� � � � �

����� ���	 ���� ���
	 ���
�
� �� �� �� �� ��

��� � �
� ��� ���

����� ����� ����� ���� �����
� �� �� �� �� ��

�	� ��� �� ��� ��	

����� ���

 ���
� ����	 ����

� �
 �� �� �� ��

�� �		 �� �
 �
�

���� ����� ����� ����� �����
� �� �	 �	 �	 �	

��
 �
� ��� ��� ��


����� ����	 ����� ����� �����
� �� �� �� �� ��

��� �� ��	 ��� ���

Sorting � Fifo

FSC Sort Exponent
� � � � �

����� ���� ���

 ���
� ���
�
� �� �� �� �� ��

��� �
 ��� ��� ���

����	 ����� ���� ����� �����
� �� �� �� �	 ��

�	 ��
 ��� ��
 ���

����� ���
 ���
� ���
� ����
� �
 �� �� �� ��

��� ��� � �� �


���� ����� ����� ����� �����
� �� �	 �	 �	 ��

��� �
	 ��� ��� ��

����� ����� ����� ����� �����
� �� �� �� �� ��

��� ��� ��� ��� ��	

Sorting � Tree

�a� Cache � �

Destage
Sort
Exponent

FSC Sort Exponent
� � � � �

����� ���	
 ���	� ���� ����
� �� �� �� �� ��

��� �� �� ��� ��

���	� ����	 ����� ����� ����
� �� �� �� �� ��

��� ��� ��� ��� ���

���
� ����� ����� ����� ����	
� �� �� �� �� ��

��
 ��� �	
 �	� �	

����
 ����� ����
 ����� �����
� �� �� �� �� ��

��� �� �
� ��	 �
�

����	 ����� ����� ���� ����

� �� �� �� �� ��

� ��� ��� ��� ��	

Sorting � Fifo

FSC Sort Exponent
� � � � �

����� ���	� ��� ���� ����
� �� �� �� �� ��

�	 ��� ��� ��� ��

���	� ����	 ����� ����� ����
� �� �� �� �� ��

��� ��� ��� ��	 ���

���
� ����	 ����� ����� ����
� �� �� �� �� ��

�� ��� �	� �	� �


����� ����� ����� ����� �����
� �� �� �� �� ��

��	 �
	 ��	 ��� ���

����
 ����� ����� ����� ���		
� �� �� �� �� ��

�� ��� ��
 ��� ���

Sorting � Tree

�b� Cache � ���

Figure � �GCU	 CltdCount �K�	 WorkRdLive �K�� of the �t�age�nat�
� algorithm with unwritten
tracks�

��


