
RJ 10234 (A0203-001) March 1, 2002
Computer Science

IBM Research Report

Evaluating Knowledge Base Relevancy

Scott Spangler
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

ABSTRACT

As the web and e-business have proliferated, the
practice of using customer facing knowledge
bases to augment customer service and support
operations has increased. This can be a very
efficient, scalable and cost effective way to
share knowledge. Because of the costs involved
in developing knowledge bases, we would
prefer to reuse knowledge base content rather
than redevelop it. The problem is, how to
determine the relevancy of an existing
knowledge base to a new problem domain, or to
determine which of a set of existing knowledge
bases is most relevant.

In this paper, we describe an implementation of
an algorithm and methodology for comparing
the relevancy of different knowledge bases to a
set of problem tickets. Using distance metrics
that have been applied in the field of Text
Clustering, we systematically compare the text
of the problem domain to the text of each
knowledge base. We then allow an expert in the
domain area to check the validity of the
problem/solution matches and determine where
to draw the line between the sets of solved and
unsolved problem tickets. Our claim is that this
approach makes it possible to objectively
compare thousands of problems against
thousands of solutions in a matter of hours, to
determine an approximate percent coverage of
the solutions when applied to the problem
domain. We have implemented our approach,

and we present the results of performing
knowledge base relevancy evaluation on a
computer helpdesk problem ticket set compared
to different knowledge base solution sets.

1. INTRODUCTION
In this paper, we focus on analyzing text
produced by service and support helpdesks and
corresponding knowledge bases. Human
helpdesk operation is very labor intensive and
therefore expensive. Developing knowledge
bases for these helpdesks to automate the
helpdesk process is also very time consuming.
Consequently, wherever possible we would like
to reuse generic helpdesk knowledge or apply
the knowledge developed at one helpdesk to
another. The thesis of this paper is that there is
much value derived from using our algorithms
and methodology to help determine which of a
set of candidate knowledge bases is best suited
to address the problems most often found at a
particular helpdesk. Our approach uses text
mining distance metrics to summarize the
content of problem tickets and compare this
content to candidate solutions. Our algorithms
then help the expert rapidly make a
determination as to what percentage of the
problem space is addressed by the candidate
knowledge base.

In this paper, we apply our algorithm
specifically to the domain of the computer

Scott Spangler
IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120-6099
408-927-2887

email: spangles@us.ibm.com

Evaluating Knowledge Base Relevancy

1

helpdesk support center. A typical text
document (known as a problem ticket) from
such a data set consists of a brief description by
the helpdesk agent of the exchanges between an
end user and an expert helpdesk advisor, for
example:

1836853 User calling in
with WORD BASIC error when
opening files in word. Had
user delete NORMAL.DOT and
had her reenter Word, she
was fine at that point.
00:04:17 ducar May
2:07:05:656PM

Problem tickets may be comprised only of a
single symptom and resolution pair as in the
above example, or they may span multiple
questions, symptoms, answers, attempted fixes,
and resolutions--all pertaining to the same basic
issue. Problem tickets are opened when the user
makes the first call to the helpdesk and closed
when all user problems documented in the first
call are finally resolved in some way. Helpdesk
operators enter problem tickets directly into the
database. Spelling, grammar and punctuation
are inconsistent. The style is terse and the
vocabulary very specialized.

Knowledge bases are essentially a combination
of content and inference [6]. For the purposes
of this paper we ignore the underlying
inferencing mechanism of the knowledge base
and focus solely on the knowledge base content,
in the form of unstructured text. Our solution
web site at Almaden contains over 2000 solution
documents. A typical example of the relevant
text taken from a solution on this website is the
following:

To request an Agora account,
fill in the form on this page.
You will receive e-mail
addressed to your Lotus Notes
userid with Agora account and
further instructions. If you
would like to arrange for
AIX/Agora to be installed on
your RS/6000 workstation, fill
in the installation request form
on this page.

Given this format for problems and solutions,
our task is to compare them objectively to
determine approximately what percentage of the
problems are addressed by the solutions. We
describe our approach to this problem in the
remaining sections of this paper. In Section 2,
we describe how we use text clustering
techniques to represent and compare text
content and also to narrow the scope of the
problem tickets to only those that are suitable
for automated resolution. In Section 3, we
describe how we systematically compare
representative problem tickets to a set of
solution documents. In Section 4, we describe
an interactive tool that allows a domain expert
to determine the percent coverage of a given
knowledge base solution set. In Section 5 we
validate our approach on an artificial problem
ticket set where the exact percent coverage of
each solution set is known. Finally, in Section
6, we discuss how our application has been used
to compare two real world knowledge bases and
draw some conclusions about the overall
usefulness of this approach.

2. TEXT ANALYSIS & CLUSTERING
In general, not all problem tickets in a given
domain are amenable to automated knowledge
base solutions. For example, at a computer
help desk a broken disk drive may need to be
replaced, requiring an on-site visit by a repair
person. The first step, therefore, in automation
of this task is to understand it, and one of the
first steps in understanding is to segment
examples into meaningful categories [1]. In
general, this is not a simple problem, because
the straightforward solution of having an expert
read each problem ticket and decide if it is
solvable is far too time consuming.

Instead we employed standard text clustering
techniques [5]. We used tabulation of word
occurrences in each problem ticket as the basis
for or feature space. After eliminating common
stop words and (high- and low-frequency)
non-content-bearing words, we represented the
text data set as a vector space model, that is, we
represented each problem ticket as a vector of

2

certain weighted frequencies of the remaining
words [7]. A stemming algorithm [3] is used to
produce a “synonym table” which allows us to
treat various similar word forms as a single term
(e.g. print, printer, printing). To create a
document vector, we used the txn weighting
scheme [8]. This scheme emphasizes words
with high frequency in a document, and
normalizes each document vector to have unit
Euclidean norm. For example, if a document
were the sentence, “We have no bananas, we
have no bananas today,” and the dictionary
consisted of only two terms, bananas and today,
then the unnormalized document vector would
be [2 1] (to indicate two bananas and one
today), and the normalized version would be:

.
��

�
��

�
5

1,
5

2

Once we represent each document as such a
vector of unit Euclidean norm, we use the
k-means text clustering algorithm [2] [4] to
obtain an initial clustering of the data. The
distance metric employed is the cosine
similarity metric. Thus two points are
considered identical if the cosine of the angle
between them is 1.0 and considered most
dissimilar if the cosine of this angle is 0.0.

The k-means approach starts by finding the
nearest of the k problem ticket seeds to each
problem ticket example (using the cosine
distance metric). The expert chooses the value
of k (the number of clusters). A typical value is
usually somewhere around 30, a number of
clusters that can be easily examined by the
expert in less than an hour. Each problem ticket
is then said to “belong” to the cluster
corresponding to that nearest seed. For each
cluster, a centroid is then calculated, which is
the vector space mean of the examples
contained in that cluster. In the next iteration,
each problem ticket is compared to every
centroid and each problem ticket is moved to the
cluster of the nearest centroid. The centroids
are then recalculated and the process continues
until an iteration does not result in any cluster
membership changes from the previous
iteration. The result of the clustering is the set

of problem ticket classes. Each class is given a
name based on the dictionary term or terms that
dominate the class (i.e. are contained by most of
the class examples).

Next a domain expert selects the set of problem
classes that are amenable to knowledge based
solutions. In most cases the name of the
problem class is enough to identify to the expert
whether or not the class of problems in
amenable to solution or not. In a few cases,
typical examples from a class may need to be
examined to identify the common theme of the
class. In any case, once the expert selects the
classes that are solvable, all the members of the
selected problem classes are placed in a pool of
candidate examples.

3. COMPARING PROBLEMS AND
SOLUTIONS

This section discusses our method for
objectively comparing problems and solutions.
The goal in this comparison is to find out what
percentage of problems is addressed by a given
solution set. The first step is to find the closest
solution to each problem and the second step is
to determine whether or not that solution is
relevant enough to address the problem in
question. All of this needs to be done with
minimal expert intervention, though we
recognize that some expert involvement is
necessary since there is no practical way for a
machine to reason about whether or not a given
problem ticket is actually solved by a given
solution.

We begin by measuring the cosine distance
between every solution document and a
representative sample of the problem tickets.
Sampling of problem tickets is often necessary
to make the problem tractable, since many
helpdesks have hundreds of thousands of
problem tickets in their repositories. However,
knowledge base solution sets are not sampled in
our approach. Note that in most cases the
solution documents will be far less numerous
than the problem tickets.

To directly compare problem and solution

3

documents, we first reduce each solution
document to a vector of word occurrence
counts, using the same dictionary and synonym
table that was used in clustering the problem
tickets. We then convert these to unit vectors as
we did with the problem tickets. The most
similar document in the solution set to a given
problem is defined to be the document whose
word occurrence vector is nearest to the centroid
of the given cluster (using the cosine distance
metric).

||||||||
),cos(

YX
YXYX
�

�

�

Equation 1: Where X is the problem set
document vector, and Y is the solution set

document vector.

Note that in the equation for cosine distance the
denominator simplifies to 1.0 whenever the
input vectors are unit Euclidean norms, as is the
case here. For each problem document we then
calculate a g score which is the largest (i.e.
nearest) cosine distance between that problem
document and the set of solutions.

)),(cos()(yXMaxXg
solutionsy�

�

Equation 2: The g-score is the distance of the
problem set document to nearest solution

document

Note that we use the maximum cosine distance
to select the “most similar” document because
cosine distance returns a value of 1.0 for
identical documents and 0.0 for completely
distinct documents. As the g-score increases,
therefore, we expect the likelihood of a
matching solution document to the problem to
also increase. A low g-score indicates that no
matching solution document is present (thus a
low g-score indicates a large “knowledge gap”
[9]).

There are some inherent assumptions underlying
this approach. The principle assumption is that
solution documents contain many of the same
terms as the problems that they intend to solve.

While there are applications and domains where
this may not be the case, we have observed
across a broad set of helpdesks and knowledge
bases that this assumption holds true. We have
found that in practice most helpdesk solution
documents contain at least a brief
summarization of the problem that they propose
to solve, and this summary invariably will
contain words that are similar to those used in
the problem ticket descriptions. In addition, the
problem tickets themselves will often contain
brief descriptions of what was done to resolve
the issue. In many cases, the terms in this
solution description match those used in the
solution documentation. Therefore, we believe
this assumption is valid and will hold for many
other domains as well.

Once a g-score has been calculated for each
problem in the problem set, the problems are
sorted in order of decreasing g-score and
displayed to the expert in that order, along with
a set of solutions for each problem which most
nearly match the problems word content. These
solutions are also sorted in order of g-score.
The problems and their corresponding solutions
are then presented to the expert for further
evaluation, as described in the next section.

4. KNOWLEDGE BASE
EVALUATION

The sorted problem tickets and g-scores
calculated above serve as the basis for our
knowledge base evaluation. Our goal in this
step is to approximately determine the
percentage of problem tickets that are addressed
by a solution. Our assumption in determining
this percentage is that those problems that are
solved occur before those that are not solved in
g-score sorted order. Our strategy then, is to
determine just where in the sorted order we can
best draw the line between solved and unsolved
problems. Once we draw this line, we can
approximate the percent solved by counting all
the problem tickets above the line and dividing
by the total number of problem tickets.

4

Obviously, an expert’s judgement is critical in
drawing this line in the correct place. Only by
actually reading and understanding the problem
and solution pair can the expert determine if the
knowledge base actually addresses the problem
in question, which is something no computer
program can do. What our system does is allow
the expert to make an educated guess as to the
percent solved, while putting forth the minimum
effort required to make an informed choice. We
claim that our approach leverages whatever time
the expert can spend comparing problems and
solutions to the utmost, by extrapolating
information about the individual problems that
are solved or not solved to evaluate the
knowledge base as a whole.

Once the expert has drawn the line between
solved and unsolved in the ordering of problem

tickets, further refinement in the knowledge
base evaluation may still be done if time
permits. Individual problem tickets that occur
above the line may be marked as unsolved by
the expert and similarly individual problem
tickets occurring below the line may be marked
as solved. This is done in each case by compare
the problem ticket in question to the
corresponding most similar solutions in terms of
g-score. The system will then adjust the
percentage-solved score accordingly, based on
this additional expert input. Thus the system
allows the expert to utilize whatever time they
are willing or able to spend in fine tuning their
evaluation to improve its accuracy.

Figure 1: Knowledge Base Evaluation

5

In addition to marking problem tickets as “solved” or
“unsolved” the user may choose to mark a ticket as “unknown”
meaning neither or not sure. This allows us to put some “error
bars” on our estimate of knowledge base coverage. Also note
that each time the expert scrolls to a new problem, the GUI
automatically updates the right hand side solution display
window to include the 10 most applicable solutions from the
knowledge base, sorted in order of decreasing g-score.

5. VALIDATION
To validate our approach we applied our knowledge base
evaluator to an artificial situation where the problem space and

solution space were identical. The text of the solution/problems
were 1000 randomly selected solution documents from the
Almaden helpdesk website. We then applied the automated
method described in this paper to the identical problem and
solution sets. Next we reduced the solution set size by
systematically removing solutions to see the effect on solution
set coverage. We tried this evaluation strategy with three
different solved/unsolved g-score thresholds to see the effect
(0.5, 0.75, and 0.9). The chart in figure 3 shows the results,
along with the actual percentage solved by each solution set.

Figure 2: Knowledge Base Evaluator GUI

6

Clearly our algorithm is able to detect the missing
solutions as they are removed from the solution set
and reflect this in the percent correct score (i.e.
percent solved) in every case. The fact that the
algorithm overestimates the actual percentage
correct for every threshold is not surprising, because
some of the solution examples may use similar
words and thus look “almost” the same to the
system. The selection of the threshold at 0.9
produces the most accurate results for this artificial
problem domain. Against a real problem ticket data
set, this high a threshold might be impractical since
problem tickets do not usually match so exactly with
the corresponding solution text. In practice we have
found that the 0.5 threshold works fairly well as a
starting point, though clearly this might vary from
domain to domain. Ultimately the expert must
judge the best point at which to set this threshold in
each situation.

6. APPLICATIONS AND CONCLUSIONS
We applied our knowledge base evaluator to two
different knowledge solution sets to see which best
addressed the solvable problems found at a typical

IBM Managed Helpdesk. The purpose of the
evaluation was to determine if the purchase of an
off-the-shelf computer helpdesk knowledge base
would be cost effective in terms of additional
customer problems solved. Following the procedure
described in the previous sections and using a
g-score solved/unsolved threshold of 0.5, we arrived
at the following percent-solved score for each KB.

Figure 4: Percentage Solved for Two Knowledge
Base Solution Sets on IBM Managed Helpdesk
data.

33.4%21728Competitive KB
15.3%5547IBM KB

Percent SolvedSolution Set
Size

Knowledge Base

We found that the coverage of the competitive
knowledge base was substantially better than the
one we had developed in house. Based partly on
this information it was decided that purchase of the
competitive KB would be cost effective.

This initial application of our automated knowledge

Figure 3: Knowledge Relevancy Estimates of Artificial Solution Sets using Different Thresholds

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

1000 800 600 400 200

Solution Set Size

Pe
rc

en
t C

or
re

ct

0.5
0.75
0.9
actual

7

base evaluator has shown that it has the potential to
greatly reduce the cost of evaluating knowledge
bases, thus allowing for greater knowledge base
reuse. Further study is needed to determine the
overall accuracy of this approach when compared to
direct expert evaluation of knowledge. One area of
future work will focus on providing better “error
bars” on the percentage-solved score. This might be
accomplished by having an expert evaluate a sample
of the “solved” problem tickets to determine how
many were actually addressed by the solution set.

In conclusion, our approach shows significant
promise as a method for automatically evaluating
problem tickets against solution sets. Ultimately
this method can be used as one ingredient in a
determination of knowledge base relevancy. The
ability to determine knowledge base relevancy in a
cost effective manner should allow a greater degree
of reuse of existing knowledge base resources
within and across organizations.

ACKNOWLEDGEMENTS
The author would like to thank Mike Kreklow of
IBM Global Services for first suggesting the
problem of Knowledge Base Evaluation and for
being the first user of the technology. His feedback
was an invaluable ingredient in shaping this
application.

7. REFERENCES
[1] Brachman, R. and Anand T. (1996). The Process
of Knowledge Discovery in Databases. In Fayyad,
U.M., Piatetsky-Shapiro, G., Smyth, P., and
Uthurusamy, R., editors, Advances in Knowledge
Discovery and Data Mining, Chapter 2, pages
37-58. AAAI/MIT press.
[2] Duda, R. O. and Hart, P. E. (1973). Pattern
Classification and Scene Analysis. Wiley.
[3] Frakes, W. (1992). Stemming algorithms. In
Frakes, W. B. and Baeza-Yates, R., editors,
Information Retrieval: Data Structures and
Algorithms, pages 131-160. Prentice Hall,
Englewood Cliffs, New Jersey.
[4] Hartigan, J. A. (1975) Clustering Algorithms.
Wiley.
[5] Rasmussen, E. (1992). Clustering algorithms.
In Frakes, W. B. and Baeza-Yates, R., editors,

Information Retrieval: Data Structures and
Algorithms, pages 419-442. Prentice Hall,
Englewood Cliffs, New Jersey.
[6] Rich E., and Knight K. (1991). Artificial
Intelligence 2nd Edition, McGraw-Hill Book
Company, pp. 547-558.
[7] Salton, G. and McGill, M. J. (1983).
Introduction to Modern Retrieval. McGraw-Hill
Book Company.
 [8] Salton, G. And Buckley, C. (1988).
Term-weighting approaches in automatic text
retrieval. Information Processing & Management,
4(5):512:523.
[9] Spangler, S. and Kreulen, J. (2001). Knowledge
Base Maintenance Using Knowledge Gap Analysis.
Proceedings of the Seventh ACM SIGKDD-2001.
Pages 462-466. ACM, New York, NY, 2001.

8

