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Abstract

In-place reconstruction of delta compressed data allows information on devices with limited storage
capability to be updated efficiently over low-bandwidth channels. Delta compression encodes a version
of data compactly as a small set of changes from a previous version. Transmitting updates to data as
delta versions saves both time and bandwidth. In-place reconstruction rebuilds the new version of the
data in the storage or memory space the current version occupies – no additional scratch space is needed.
By combining these technologies, we support large-scale, highly-mobile applications on inexpensive
hardware.

We develop an algorithm that modifies a delta compressed version to be in-place reconstructible; it
trades a small amount of compression to achieve in-place reconstruction. This algorithm brings the ben-
efits of delta compression to space-constrained machines and devices on low-bandwidth networks. Our
treatment includes an implementation and experimental results that show our algorithm to be efficient in
space and time and verifies that compression losses are small. Also, we give results on the computational
complexity of performing this modification while minimizing lost compression. We take a data-driven
approach to determine important performance features, classifying files distributed on the Internet based
on their in-place properties, and exploring the scaling relationship between files and data structures used
by in-place algorithms. We conclude that in-place algorithms are I/O bound and that the performance
of algorithms is more sensitive to the size of inputs and outputs, rather than the computational time to
modify the delta version.

keywords: Delta compression, data distribution, in-place reconstruction, storage systems, network com-
puting, mobile computing
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1 Introduction
We develop algorithms for data distribution and version management to be used for highly-mobile and

resource-limited computers over low-bandwidth networks. The software infrastructure for Internet-scale file
sharing is not suitable for this class of applications, because it makes demands for network bandwidth and
storage/memory space that many small computers and devices cannot meet.

While file sharing is proving to be the new prominent application for the Internet, it is limited in that
data are not writable nor are versions managed. The many recent commercial and freely available systems
underscore this point, examples include Freenet [1] and GnuTella [2]. Writable replicas greatly increase the
complexity of file sharing – problems include update propagation and version control.

Delta compression has proved a valuable tool for managing versions and propagating updates in dis-
tributed systems and should provide the same benefits for Internet file sharing. Delta-compression has been
used to reduce latency and network bandwidth for Web serving [4, 22] and backup and restore [7].

Our in-place reconstruction technology addresses one of delta compression’s major shortcomings. Delta
compression makes memory and storage demands that are not reasonable for low-cost, low-resource devices
and small computers. In-place reconstruction allows a version to be updated by a delta in the memory or
storage that it currently occupies; reconstruction needs no additional scratch space or space for a second
copy. An in-place reconstructible delta file is a permutation and modification of the original delta file.
This conversion comes with a small compression penalty. In-place reconstruction brings the latency and
bandwidth benefits of delta compression to the space-constrained, mass-produced devices that need them
the most, such as personal digital assistants, cellular phones, and wireless handhelds.

A distributed inventory management system based on mobile-handheld devices is an archetypal appli-
cation for in-place technology. Many limited-capacity devices track quantities throughout an enterprise. To
reduce latency, these devices cache portions of the database for read-only and update queries. Each device
maintains a radio link to update its cache and run a consistency protocol. In-place reconstruction allows
the devices to keep their copies of data consistent using delta compression without requiring scratch space,
thereby increasing the cache utilization at target devices. Any available scratch space can be used to reduce
compression loss, but no scratch space is required for correct operation. We observe that in-place recon-
struction applies to both structured data (databases) and unstructured data (files), because they manipulate a
delta encoding, as opposed to the original data. While algorithms for delta compressing structured data are
different [9], they employ encodings that are suitable for in-place techniques.

1.1 Delta Compression and In-Place Reconstruction
Recent developments in portable computing and computing appliances have resulted in a proliferation

of small network attached computing devices. These include personal digital assistants (PDAs), Internet
set-top boxes, network computers, control devices, and cellular devices. The data contents of these devices
are often updated by transmitting the new version over a network. However, low bandwidth channels and
heavy Internet traffic often makes the time to perform software update prohibitive.

Differential or delta compression (see, for example, [14, 6, 9, 15, 8, 3]), encoding a new version of
a file compactly as a set of changes from a previous version, reduces the size of the transmitted file and,
consequently, the time to perform software update. Currently, decompressing delta encoded files requires
scratch space, additional disk or memory storage, used to hold a second copy of the file. Two copies of the
file must be available concurrently, as the delta file reads data from the old file version while materializing
the new file version in another region of storage. This presents a problem because network attached devices
often cannot store two file versions at the same time. Furthermore, adding storage to network attached
devices is not viable, because keeping these devices simple limits their production costs.

We modify delta encoded files so that they are suitable for reconstructing the new version of the file in-
place, materializing the new version in the same memory or storage space that the previous version occupies.
A delta file encodes a sequence of instructions, or commands, for a computer to materialize a new file version
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in the presence of a reference version, the old version of the file. When rebuilding a version encoded by
a delta file, data are both copied from the reference version to the new version and added explicitly when
portions of the new version do not appear in the reference version.

If we were to attempt naively to reconstruct an arbitrary delta file in-place, the resulting output would
often be corrupt. This occurs when the delta encoding instructs the computer to copy data from a file region
where new file data has already been written. The data the algorithm reads have already been altered and
the algorithm rebuilds an incorrect file.

We present a graph-theoretic algorithm for modifying delta files that detects situations where a delta file
attempts to read from an already written region and permutes the order that the algorithm applies commands
in a delta file to reduce the occurrence of conflicts. The algorithm eliminates the remaining conflicts by
removing commands that copy data and adding explicitly these data to the delta file. Eliminating data
copied between versions increases the size of the delta encoding but allows the algorithm to output an in-
place reconstructible delta file.

Experimental results verify the viability and efficiency of modifying delta files for in-place reconstruc-
tion. Our findings indicate that our algorithm exchanges a small amount of compression for in-place recon-
structibility.

Experiments also reveal an interesting property of these algorithms that conflicts with algorithmic anal-
ysis. We show in-place reconstruction algorithms to be I/O bound. In practice, the most important perfor-
mance factor is the output size of the delta file. Two heuristics for eliminating data conflicts were studied in
our experiments, and they show that the heuristic that loses less compression is superior to the more time-
efficient heuristic that loses more compression. Any time saved in detecting and eliminating conflicts is lost
when writing a larger delta file out to storage.

The graphs constructed by our algorithm form an apparently new class of directed graphs, which we call
CRWI (conflicting read write interval) digraphs. Our modification algorithm is not guaranteed to minimize
the amount of lost compression, but we do not expect an efficient algorithm to have this property, because
we show that minimizing the lost compression is an NP-hard problem. We also consider the complexity
of finding an optimally-compact in-place reconstructible delta file “from scratch”, that is, directly from a
reference file and a version file. We show that this problem is NP-hard; in contrast, without the requirement
of in-place reconstructibility, a optimally-compact delta file can be found in polynomial time [27, 21, 23].

In Section 2, we summarize the preceding work in the field of delta compression. We describe how we
encode delta files in Section 3. In Section 4, we present an algorithm that modifies delta encoded files to
be in-place reconstructible. In Section 4.3, we further examine the exchange of run-time and compression
performance. In Section 4.6, we present limits on the size of the graphs our algorithm generates. Section
5 presents experimental results for the execution time and compression performance of our algorithm. In
Section 6 we begin to explore the properties of CRWI digraphs by giving a simple sufficient condition for a
graph to be a CRWI digraph. Sections 7 and 8 contain results on the computational complexity of problems
related to finding in-place reconstructible delta encodings. We present conclusions in Section 9 and mention
some directions for future research in Section 10.

2 Related Work
Encoding versions of data compactly by detecting altered regions of data is a well known problem. The

first applications of delta compression found changed lines in text data for analyzing the recent modifications
to files [11]. Considering data as lines of text fails to encode minimum sized delta files, as it does not examine
data at a fine granularity and finds only matching data that are aligned at the beginning of a new line.

The problem of representing the changes between versions of data was formalized as string-to-string
correction with block move [27] – detecting maximally matching regions of a file at an arbitrarily fine
granularity without alignment. However, delta compression continued to rely on the alignment of data, as
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in database records [25], and the grouping of data into block or line granularity, as in source code control
systems [24, 28], to simplify the combinatorial task of finding the common and different strings between
versions.

Efforts to generalize delta compression to un-aligned data and to minimize the granularity of the smallest
change resulted in algorithms for compressing data at the granularity of a byte. Early algorithms were based
upon either dynamic programming [21] or the greedy method [27, 23, 19] and performed this task using
time quadratic in the length of the input files.

Delta compression algorithms were improved to run in linear time and linear space. Algorithms with
these properties have been derived from suffix trees [30, 20, 18] and as a generalization of Lempel-Ziv
data compression [14, 15, 8]. Like algorithms based on greedy methods and dynamic programming, these
algorithms generate optimally compact delta encodings.

Recent advances produced algorithms that run in linear time and constant space [3]. These differencing
algorithms trade a small amount of compression, verified experimentally, in order to improve performance.

Any of the linear run-time algorithms allow delta compression to scale to large input files without known
structure and permits the application of delta compression to file system backup and restore [7].

Recently, applications distributing HTTP objects using delta files have emerged [4, 22]. This permits
web servers to both reduce the amount of data transmitted to a client and reduce the latency associated with
loading web pages. Efforts to standardize delta files as part of the HTTP protocol and the trend toward
making small network devices HTTP compliant indicate the need to distribute data to network devices
efficiently.
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Figure 1: Encoding delta files. Common strings are encoded as copy commands hf� t� li and new strings in
the new file are encoded as add commands ht� li followed by the string of length l of added data.

3 Encoding Delta Files
Differencing algorithms encode the changes between two file versions compactly by finding strings

common to both versions. We term these files a version file that contains the data to be encoded and a
reference file to which the version file is compared. Differencing algorithms encode a file by partitioning
the data in the version file into strings that are encoded using copies from the reference file and strings that
are added explicitly to the version file (Figure 1). Having partitioned the version file, the algorithm outputs
a delta file that encodes this version. This delta file consists of an ordered sequence of copy commands and
add commands.

An add command is an ordered pair, ht� li, where t (to) encodes the string offset in the file version and
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Figure 2: Data conflict and corruption when performing copy command C1 before C2.

l (length) encodes the length of the string. The l bytes of data to be added follow the command. A copy
command is an ordered triple, hf� t� li where f (from) encodes the offset in the reference file from which
data are copied, t encodes the offset in the new file where the data are to be written, and l encodes that
length of the data to be copied. The copy command moves the string data in the interval �f� f � l� �� in the
reference file to the interval �t� t� l� �� in the version file.

In the presence of the reference file, a delta file rebuilds the version file with add and copy commands.
The intervals in the version file encoded by these commands are disjoint. Therefore, any permutation of the
command execution order materializes the same output version file.

4 In-Place Modification Algorithms
An in-place modification algorithm changes an existing delta file into a delta file that reconstructs cor-

rectly a new file version in the space the current version occupies. At a high level, our technique examines
the input delta file to find copy commands that read from the write interval (file address range to which the
command writes data) of other copy commands. The algorithm represents potential data conflicts in a di-
graph. The algorithm topologically sorts the digraph to produce an ordering on copy commands that reduces
data conflicts. We eliminate the remaining conflicts by converting copy commands to add commands. The
algorithm outputs the permuted and converted commands as an in-place reconstructible delta file. Actu-
ally, as described in more detail below, the algorithm performs permutation and conversion of commands
concurrently.

4.1 Conflict Detection
Since we reconstruct files in-place, we concern ourselves with ordering commands that attempt to read

a region to which another command writes. For this, we adopt the term write before read (WR) conflict [5].
For copy commands hfi� ti� lii and hfj � tj � lji, with i � j, a WR conflict occurs when

�ti� ti � li � �� � �fj � fj � lj � �� �� �� (1)

In other words, copy command i and j conflict if i writes to the interval from which j reads data. By
denoting, for each copy command hfk � tk� lki, the command’s read interval as Readk � �fk � fk� lk� �� and
its write interval as Writek � �tk� tk�lk���, we write the condition (1) for a WR conflict as Writei�Readj ��
�. In Figure 2, commands C1 and C2 executed in that order generate a data conflict (blacked area) that
corrupts data when a file is reconstructed in place.

This definition considers only WR conflicts between copy commands and neglects add commands. Add
commands write data to the version file; they do not read data from the reference file. Consequently, an
algorithm avoids all potential WR conflicts associated with adding data by placing add commands at the
end of a delta file. In this way, the algorithms completes all reads associated with copy commands before
executing the first add command.

Additionally, we define WR conflicts so that a copy command cannot conflict with itself. Yet, a single
copy command’s read and write intervals intersect sometimes and would seem to cause a conflict. We deal
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with read and write intervals that overlap by performing the copy in a left-to-rightor right-to-leftmanner. For
command hf� t� li, if f � t, we copy the string byte by byte starting at the left-hand side when reconstructing
the original file. Since, the f (from) offset always exceeds the t (to) offset in the new file, a left-to-right copy
never reads a byte over-written by a previous byte in the string. When f � t, a symmetric argument shows
that we should start our copy at the right hand edge of the string and work backward. For this example,
we performed the copies in a byte-wise fashion. However, the notion of a left-to-right or right-to-left copy
applies to moving a read/write buffer of any size.

To avoid WR conflicts and achieve the in-place reconstruction of delta files, we employ the following
three techniques.

1. Place all add commands at the end of the delta file to avoid data conflicts with copy commands.

2. Permute the order of application of the copy commands to reduce the number of write before read
conflicts.

3. For remaining WR conflicts, remove the conflicting operation by converting a copy command to an
add command and place it at the end of the delta file.

For many delta files, no possible permutation eliminates all WR conflicts. Consequently, we require the
conversion of copy commands to add commands to create correct in-place reconstructible files for all inputs.

Having processed a delta file for in-place reconstruction, the modified delta file obeys the property

��j�
�
Readj �

�
j���
i��

Writei

�
� �

�
� (2)

indicating the absence of WR conflicts. Equivalently, it guarantees that a copy command reads and transfers
data from the original file.

4.2 CRWI Digraphs
To find a permutation that reduces WR conflicts, we represent potential conflicts between the copy com-

mands in a digraph and topologically sort this digraph. A topological sort on digraph G � �V�E� produces
a linear order on all vertices so that if G contains edge

�
uv then vertex u precedes vertex v in topological

order.
Our technique constructs a digraph so that each copy command in the delta file has a corresponding

vertex in the digraph. On this set of vertices, we construct an edge relation with a directed edge
�
uv from

vertex u to vertex v when copy command u’s read interval intersects copy command v’s write interval. Edge
�
uv indicates that by performing command u before command v, the delta file avoids a WR conflict. We
call a digraph obtained from a delta file in this way a conflicting read write interval (CRWI) digraph. A
topologically sorted version of this graph adheres to the requirement for in-place reconstruction (Equation
2). To the best of our knowledge, the class of CRWI digraphs has not been defined previously. While we
know little about its structure, it is clearly smaller than the class of all digraphs. For example, the CRWI
class does not include any complete digraphs with more than two vertices.

4.3 Strategies for Breaking Cycles
As total topological orderings are possible only on acyclic digraphs and CRWI digraphs may contain

cycles, we enhance a standard topological sort to break cycles and output a total topological order on a
subgraph. Depth-first search implementations of topological sort [10] are modified easily to detect cycles.
Upon detecting a cycle, our modified sort breaks the cycle by removing a vertex. When completing this
enhanced sort, the sort outputs a digraph containing a subset of all vertices in topological order and a set
of vertices that were removed. This algorithm re-encodes the data contained in the copy commands of the
removed vertices as add commands in the output.
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As the string that contains the encoded data follows converted add, this replacement reduces compres-
sion in the delta file. We define the amount of compression lost upon deleting a vertex to be the cost of
deletion. Based on this cost function, we formulate the optimization problem of finding the minimum cost
set of vertices to delete to make a digraph acyclic. A copy command is an ordered triple hf� t� li. An add
command is an ordered double ht� li followed by the l bytes of data to be added to the new version of the
file. Replacing a copy command with an add command increases the delta file size by l � kfk, where kfk
denotes the size of the encoding of offset f . Thus, the vertex that corresponds to the copy command hf� t� li
is assigned cost l � kfk.

When converting a digraph into an acyclic digraph by deleting vertices, an in-place conversion algorithm
minimizes the amount of compression lost by selecting a set of vertices with the smallest total cost. This
problem, called the FEEDBACK VERTEX SET problem, was shown by Karp [16] to be NP-hard for general
digraphs. In Section 7 we show that it remains NP-hard even when restricted to CRWI digraphs. Thus,
we do not expect an efficient algorithm to minimize the cost in general. For our implementation of in-
place conversion, we examine two efficient, but not optimal, policies for breaking cycles. The constant-time
policy picks the “easiest” vertex to remove, based on the execution order of the topological sort, and deletes
this vertex. This policy performs no extra work when breaking cycles. The local-minimum policy detects
a cycle and loops through all vertices in the cycle to determine and then delete the minimum cost vertex.
The local-minimum policy may perform as much additional work as the total length of cycles found by the
algorithm. Although these policies perform well in our experiments, we note in Section 4.7 that they do not
guarantee that the total cost of deletion is within a constant factor of the optimum.

4.4 Generating Conflict Free Permutations
Our algorithm for converting delta files into in-place reconstructible delta files takes the following steps

to find and eliminate WR conflicts between a reference file and the new version to be materialized.

Algorithm

1. Given an input delta file, we partition the commands in the file into a set C of copy commands and a
set A of add commands.

2. Sort the copy commands by increasing write offset, Csorted � fc�� c�� ���� cng. For ci and cj , this set
obeys: i � j �� ti � tj . Sorting the copy commands allows us to perform binary search when
looking for a copy command at a given write offset.

3. Construct a digraph from the copy commands. For the copy commands c�� c�� ���� cn, we create a
vertex set V � fv�� v�� ���� vng. Build the edge set E by adding an edge from vertex vi to vertex vj
when copy command ci reads from the interval to which cj writes:

��
vivj �� Readi �Writej �� � �� �fi� fi � li � �� � �tj � tj � lj � �� �� ��

4. Perform a topological sort on the vertices of the digraph. This sort also detects cycles in the digraph
and breaks them. When breaking a cycle, select one vertex on the cycle, using either the local-
minimum or constant-time cycle breaking policy, and remove it (we give further details below). We
replace the data encoded in its copy command with an equivalent add command, which is put into
set A. The output of the topological sort orders the remaining copy commands so that they obey the
property in Equation 2.

5. Output all add commands in the set A to the delta file.
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The resulting delta file reconstructs the new version out of order, both out of write order in the version
file and out of the order that the commands appeared in the original delta file.

For completeness, we give a brief description of how a standard depth-first search (DFS) algorithm was
modified to perform step 4 in our implementation, as these details affect both the results of our experiments
and the asymptotic worst-case time bounds. As described, the algorithm outputs the un-removed copy com-
mands in reverse topologically sorted order; to output them in topologically sorted order simply reverse the
edge relation. A DFS algorithm uses a stack to visit the vertices of a digraph in a certain order. The algo-
rithm marks each vertex either un-visited, on-stack, or finished. Initially, every vertex is marked un-visited.
Until no more un-visited vertices exist, the algorithm chooses a un-visited vertex u and calls VISIT�u�. The
procedure VISIT�u� marks u as on-stack, pushes u on the stack, and examines each vertex w such that there
is an edge

�
uw in the graph. For each such w: (1) if w is marked finished then w is not processed further;

(2) if w is marked un-visited then VISIT�w� is performed; (3) if w is marked on-stack then the vertices be-
tween u and w on the stack form a directed cycle, which must be broken. For the constant-time policy, u is
popped from the stack and removed from the graph. Letting p denote the new top of the stack, the execution
of VISIT�p� continues as though u were marked finished. For the local-minimum policy, the algorithm loops
through all vertices on the cycle to find one of minimum cost, that is, one whose removal causes the smallest
increase in the size of the delta file; call this vertex r. Vertices u through r are popped from the stack and
marked un-visited, except r which is removed. If there is a vertex p on the top of the stack, then the exe-
cution of VISIT�p� continues as though r were marked finished. Recall that we are describing an execution
of VISIT�u� by examining all w such that there is an edge

�
uw. After all such w have been examined, u is

marked finished, u is popped from the stack, and the copy command corresponding to vertex u is written
in reverse sorted order. Using the constant-time policy, this procedure has the same running time as DFS,
namely, O�jV j � jEj�. Using the local-minimum policy, when the algorithm removes a vertex, it retains
some of the work (marking) that the DFS has done. However, in the worst case, the entire stack pops after
each vertex removal, causing running time proportional to jV j�. (While we can construct examples where
the time is proportional to jV j�, we do not observe this worst-case behavior in our experiments.)

4.5 Algorithmic Performance
Suppose that the algorithm is given a delta file consisting of a set C of copy commands and a set A of

add commands. The presented algorithm uses time O�jCj log jCj� both for sorting the copy commands by
write order and for finding conflicting commands, using binary search on the sorted write intervals for the
jV j vertices in V – recall that jV j � jCj. Additionally, the algorithm separates and outputs add commands
using time O�jAj� and builds the edge relation using time O�jEj�. As noted above, step 4 takes time
O�jV j � jEj� using the constant-time policy and time O�jV j�� using the local-minimum policy. The total
worst-case execution time is thusO�jCj log jCj� jEj� jAj� for the constant-time policy and O�jV j�� jAj�
for the local-minimum policy. The algorithm uses space O�jEj� jCj � jAj�. Letting n denote the total
number of commands in the delta file, the graph contains as many vertices as copy commands. Therefore,
jV j � jCj � O�n�. The same is true of add commands, jAj � O�n�. However, we have no bound for the
number of edges, except the trivial bound O�jV j�� for general digraphs. (In Section 4.6, we demonstrate by
example that our algorithm can generate a digraph having a number of edges meeting this bound.) On the
other hand, we also show that the number of edges in digraphs generated by our algorithm is linear in the
length of the version file V that the delta file encodes (Lemma 1). We denote the length of V by LV .

Substituting these bounds on jEj into the performance expressions, for an input delta file containing n
commands encoding a version file of lengthLV , the worst-case running time of our algorithm isO�n logn�
min�LV � n��� using the constant-time policy and O�n�� using the local-minimum policy. In either case, the
space is O�n�min�LV � n���.
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Figure 3: Reference and version file that have O�jCj�� conflicts.

4.6 Bounding the Size of the Digraph
The performance of digraph construction, topological sorting and cycle breaking depends upon the

number of edges in the digraphs our algorithm constructs. We asserted previously (Section 4.5) that the
number of edges in a CRWI digraph constructed grows quadratically with the number of copy commands
and is bounded above by the length of the version file. We now verify these assertions.

No digraph has more than O�jV j�� edges. To establish that this bound is tight for CRWI digraphs, we
show an example of a delta file whose CRWI digraph realizes this bound. Consider a version file of length
L that is broken up into blocks of length

p
L (Figure 3). There are

p
L such blocks, b�� b�� ���� bpL. Assume

that all blocks excluding the first block in the version file, b�� b�� ���� bpL, are all copies of the first block in

the reference file. Also, the first block in the version file consists of
p
L copies of length � from any location

in the reference file. A delta file for this reference and version file consists of
p
L “short” copy commands,

each of length 1, and
p
L�� “long” copy commands, each of length

p
L. Since each short command writes

into each long command’s read interval, a CRWI digraph for this delta file has an edge from every vertex
representing a long command to every vertex representing a short command. This digraph has

p
L � �

vertices each with out-degree
p
L for total edges in ��L� � ��jCj��.

The ��L� bound also turns out to be the maximum possible number of edges.

Lemma 1 For a delta file encoding a version file V of length LV , the number of edges in the digraph
representing potential WR conflicts at most LV .

Proof. The CRWI digraph has an edge representing a potential WR conflict from copy command i to copy
command j when

�fi� fi � li � ��� �tj � tj � lj � �� �� ��
Copy command i has a read interval of length li. Recalling that the write intervals of all copy commands
are disjoint, there are at most li edges directed out of copy command i – this occurs when the region
�fi� fi � li � �� in the version file is encoded by li copy commands of length �. We also know that, for
any delta encoding, the sum of the lengths of all read intervals is less than or equal to LV , as no encoding
reads more symbols than it writes. As all read intervals sum to 	 LV , and no read interval generates more
out-edges than its length, the number of edges in the digraph from a delta file encoding V is less than or
equal to LV . �
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Figure 4: A CRWI digraph constructed from a binary tree by adding a directed edge from each leaf to the
root vertex. Each leaf has cost C and each other vertex has cost C � �. The local-minimum cycle breaking
policy performs poorly on this CRWI digraph, removing each leaf vertex, instead of the root vertex.

If each copy command in the delta file encodes a string of length at least �, then a similar proof shows
that there are at most LV�� edges.

By bounding the number of edges in CRWI digraphs, we verify the performance bounds presented in
Section 4.5.

4.7 Non-Optimality of the Local-Minimum Policy
An adversarial example shows that the cost of a solution (a set of deleted vertices) found using the

local-minimum policy is not bounded above by any constant times the optimal cost. Consider the digraph of
Figure 4; Lemma 2 in Section 6 shows that this is a CRWI digraph. The local-minimum policy for breaking
cycles looks at the k cycles �v�� � � � � vi� v�� for i � �� 	� � � � � k. For each cycle, it chooses to delete the
minimum cost vertex – vertex vi with cost C. As a result, the algorithm deletes vertices v�� v�� � � � � vk,
incurring total cost kC. However, deleting vertex v�, at cost C � �, is the globally optimal solution. If we
further assume that the original delta file contains only the 	k � � copy commands in Figure 4 and that the
size of each copy command is c, then the size of the delta file generated by the local-minimum solution is
�	k � ��c � kC, the size of the optimal delta file is �	k � ��c � C � �, and the ratio of these two sizes
approaches � � C��	c� for large k. As C�c can be arbitrarily large, this ratio is not bounded by a constant.

The merit of the local-minimum solution, as compared to breaking cycles in constant time, is difficult
to determine. On delta files whose digraphs have sparse edge relations, cycles are infrequent and looping
through cycles saves compression at little cost. However, worst-case analysis indicates no preference for
the local-minimum solution when compared to the constant-time policy. This motivates a performance
investigation of the run-time and compression associated with these two policies (Section 5).

5 Experimental Results
As we are interested in using in-place reconstruction to distribute software, we extracted a large body of

Internet available software and examined the compression and execution time performance of our algorithm
on these files. Sample files include multiple versions of the GNU tools and the BSD operating system
distributions, among other data, with both binary and source files being compressed and permuted for in-
place reconstruction. These data were examined with the goals of:


 determining the compression loss due to making delta files in-place reconstructible;


 comparing the constant-time and local-minimum policies for breaking cycles;


 showing in-place conversion algorithms to be efficient when compared with delta compression algo-
rithms on the same data; and
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 characterizing the graphs created by the algorithm.

In all cases, we obtained the original delta files using the correcting 1.5-pass delta compression algorithm
[3].

We categorize the delta files in our experiments into 3 groups that describe what operations were required
to make files in-place reconstructible. Experiments were conducted over more than 34,000 delta files totaling
6.5MB (Megabytes). Of these files (Figure 5), 63% of the files contained cycles that needed to be broken.
29% did not have cycles, but needed to have copy commands reordered. The remaining 8% of files were
trivially in-place reconstructible; i.e., none of the copy commands conflicted. For trivial files, performing
copies before adds creates an in-place delta.

The amount of data in files is distributed differently across the three categories than are the file counts.
Files with cycles contain over 4MB of data with an average file size of 31.4KB. Files that need copy com-
mands reordered hold 1.9MB of data, with an average file size of 11.6KB. Trivially in-place reconstructible
files occupy 585KB of data with an average file size of 10.2KB.

The distribution of files and data across the three categories confirms that efficient algorithms for cycle
breaking and command reordering are needed to deliver delta compressed data in-place. While most delta
files do not contain cycles, those that do have cycles contain the majority of the data.

We group compression results into the same categories. Figure 6(a) shows the relative size of the delta
files and Figure 6(b) shows compression (size of delta files as a fraction of the original file size). For
each category and for all files, we report data for four algorithms: the unmodified correcting 1.5-pass delta
compression algorithm [3] (HPDelta); the correcting 1.5-pass delta compression algorithm modified so that
code-words are in-place reconstructible (IP-HPDelta); the in-place modification algorithm using the local-
minimum cycle breaking policy (IP-Lmin); and the in-place modification algorithm using the constant-time
cycle breaking policy (IP-Const).

The HPDelta algorithm is a linear time, constant space algorithm for generating delta compressed files.
It outputs copy and add commands using a code-word format similar to industry standards [17].

The IP-HPDelta algorithm is a modification of HPDelta to output code-words that are suitable for in-
place reconstruction. Throughout this paper, we have described add commands ht� li and copy commands
hf� t� li, where both commands encode explicitly the to t or write offset in the version file. However, delta
algorithms that reconstruct data in write order need not explicitly encode a write offset – an add command
can simply be hli and a copy command hf� li. Since commands are applied in write order, the end offset
of the previous command implies the write offset of the current command implicitly. The code-words of
IP-HPDelta are modified to make the write offset explicit. The explicit write offset allows our algorithm to
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(a) Delta size (b) Delta compression

Figure 6: Compression performance

reorder copy commands. This extra field in each code-word introduces a per-command overhead in a delta
file. The amount of overhead varies, depending upon the number of commands and the original size of the
delta file. Encoding overhead incurs a 3% compression loss over all files.

From the IP-HPDelta algorithm, we derive the IP-Const and IP-Lmin algorithms. They run the IP-
HPDelta algorithm to generate a delta file and then permute and modify the commands according to our
technique to make the delta file in-place reconstructible. The IP-Const algorithm implements the constant-
time policy and the IP-Lmin algorithm implements the local-minimum policy.

Experimental results indicate the amount of compression lost due to in-place reconstruction and divides
the loss into encoding overhead and cycle breaking. Over all files, HPDelta compresses data to 12.9% its
original size. IP-HPDelta compresses data to 15.9%, losing 3% compression to encoding overhead. IP-
Const loses an additional 3.4% compression by breaking cycles for a total compression loss of 6.4%. In
contrast, IP-Lmin loses less than 0.5% compression for a total loss of less than 3.5%. The local-minimum
policy performs excellently in practice, because compression losses are small when compared with encoding
overheads. With IP-Lmin, cycle breaking accounts for less than 15% of the loss. For comparison, with IP-
Const cycle breaking more than doubles the compression loss.

For reorder and trivial in-place delta files, no cycles are present and no compression lost. Encoding
overhead makes up all lost compression – 0.5% for trivial delta files and 1.8% for reordered files.

Files with cycles exhibit an encoding overhead of 3.8% and lose 5.4% and 0.7% to cycle breaking for
the IP-Const and IP-Lmin respectively. Because files with cycles contain the majority of the data, the results
for files with cycles dominate the results for all files.

In-place algorithms incur execution time overheads when performing additional I/O when permuting
the commands in a delta file. An in-place algorithm must generate a delta file and then modify the file to
have the in-place property. Since a delta file does not necessarily fit in main memory, in-place algorithms
create an intermediate file that contains the output of the delta compression algorithm. This intermediate
output serves as the input for the algorithm that modifies/permutes commands. We present execution-time
results in Figure 7(a) for both in-place algorithms – IP-Const and IP-Lmin. IP-Lmin and IP-Const perform
all of the steps of the base algorithm (IP-HPDelta) before manipulating the intermediate file. Results show
that the extra work incurs an overhead of about 75%. However, figure 7(b) shows that almost all of this
overhead comes from additional I/O. We conclude that the algorithmic tasks for in-place reconstruction are
small when compared with the effort compressing data (about 10% the run-time) and miniscule compared
to the costs of performing file I/O.
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Figure 7: Run-time results
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Figure 8: Run-time results

Despite inferior worst-case run-time bounds, the local-minimum policy runs faster than the constant-
time policy in practice. Because file I/O dominates the run-time costs and because IP-Lmin creates a smaller
delta file, it takes less total time than the theoretically superior IP-Const. In fact, IP-Const spends 2.2% more
time performing I/O as a direct result of the files being 2.9% larger. IP-Lmin even uses slightly less time
performing computation than IP-Const, which has to manipulate more data in memory.

Examining run-time results in more detail continues to show that IP-Lmin outperforms IP-Const, even
for the largest and most complex input files. In Figure 8, we see how run-time performance varies with the
input file size and with the size of the graph the algorithm creates (number of edges and vertices); these plots
measure run time by data rate – file size (bytes) divided by run time (seconds).

Owing to start-up costs, data rates increase with file size up to a point, past which rates tend to stabilize.
The algorithms must load and initialize data structures. For small files, these costs dominate, and data rates
are lower and increase linearly with the file size (Figure 8(a)). For files larger than 2000 bytes, rates tend
to stabilize, exhibiting some variance, but neither increasing or decreasing as a trend. These results indicate
that for inputs that amortize start-up costs, in-place algorithms exhibit a data rate that does not vary with the
size of the input – a known property of the HPDelta algorithm [3]. IP-Lmin performs slightly better than
IP-Const always.

The performance of all algorithms degrades as the size of the CRWI graphs increase. Figure 8(b) shows
the relative performance of the algorithms as a function of the number of vertices, and Figure 8(c) shows
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Figure 9: Edges in delta files that contain cycles.

this for the number of edges. For smaller graphs, performance degrades quickly as the graph size increases.
For larger graphs, performance degrades more slowly. The graph size corresponds directly to the number of
copy commands in a delta file. The more commands, the more I/O operations the algorithm must execute.
Often more vertices means more small I/O rather than fewer large I/O, resulting in lower data rates.

Surprisingly, IP-Lmin continues to out-perform IP-Const even for the largest graphs. Analysis would
indicate that the performance of IP-Lmin and IP-Const should diverge as the number of edges increase. But
no evidence of divergent performance exists. We attribute this to two factors: (1) graphs are relatively small
and (2) all algorithms are I/O bound.

In Figure 9, we look at some statistical measures of graphs constructed when creating in-place delta files,
restricted to those graphs that contain cycles. While graphs can be quite large, a maximum of 11503 vertices
and 16694 edges, the number of edges scales linearly with the number of vertices and less than linearly
with input file size. The constructed graphs do not exhibit edge relations that approach the O�jV j �� upper
bound. Therefore, data rate performance should not degrade as the number of edges increases. For example
consider two files as inputs to the IP-Lmin algorithm – one with a graph that contains twice the edges of
the other. Based on our result, we expect the larger graph to have twice as many vertices and encode twice
as much data. While the larger instance does twice the work breaking cycles, it benefits from reorganizing
twice as much data, realizing the same data rate.

The linear scaling of edges with vertices and file size matches our intuition about the nature of delta
compressed data. Delta compression encodes multiple versions of the same data. Therefore, we expect
matching regions between these files (encoded as edges in a CRWI graph) to have spatial locality; i.e., the
same string often appears in the same portion of a file. These input data do not exhibit correlation between
all regions of a file that results in dense edge relations. Additionally, delta compression algorithms localize
matching between files, correlating or synchronizing regions of file data [3]. All of these factors result in
the linear scaling that we observe.

6 A Sufficient Condition for CRWI Digraphs
In this section we give a simple sufficient condition (Lemma 2) for a digraph to be a CRWI digraph.

We use this result in Sections 7 and 8. We state and prove the lemma in greater generality than we need in
Sections 7 and 8, because the more general lemma is not harder to prove and it is of separate interest as a
sufficiency condition for CRWI digraphs.

We begin by recalling the definition of a CRWI digraph and defining the CRWI digraphs meeting two

restrictions. An interval is of the form I � �i� j�
def
� fi� i � �� � � � � jg where i and j are integers with
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 	 i 	 j. Let jI j denote the length of I , that is, j � i � �. A read-write interval set (RWIS) has the form
�R�W� where R � fR���� � � � � R�n�g andW � fW ���� � � � �W �n�g are sets of intervals such that the
intervals inW are pairwise disjoint and jR�v�j � jW �v�j for � 	 v 	 n. Given a RWIS �R�W� as above,
define the digraph graph�R�W� as follows: (i) the vertices of graph�R�W� are �� � � � � n; and (ii) for each
pair v� w of vertices with v �� w, there is an edge

�
vw in graph�R�W� iff R�v��W �w� �� �.

A digraph G � �V�E� is a CRWI digraph if G � graph�R�W� for some RWIS �R�W�. Furthermore,
G is a disjoint-read CRWI digraph if in addition the intervals in R are pairwise disjoint. The motivation
for this restriction is that if a version string V is obtained from a reference string R by moving, inserting
and deleting substrings, then a delta encoding of V could have little or no need to copy data from the same
region of R more than once. An NP-hardness result with the disjoint-read restriction tells us that the ability
of a delta encoding to copy data from the same region more than once is not essential to the hardness of
the problem. Let N� denote the positive integers. A digraph G with cost function Cost � V � N� is a
length-cost CRWI digraph if there is an RWIS �R�W� such that G � graph�R�W� and jR�v�j � Cost�v�
for all � 	 v 	 n. The motivation for the length-cost restriction is that replacing a copy of a long string s
by an add of s causes the length of the delta encoding to increase by approximately the length of s. If in
addition the intervals inR are pairwise disjoint, then G is a disjoint-read length-cost CRWI digraph. We let
�G�Cost� denote the digraph G with cost function Cost.

For a digraph G and a vertex v of G, let indeg�v� denote the number of edges directed into v, and let
outdeg�v� denote the number of edges directed out of v. Define indeg�G� to be the maximum of indeg�v�
over all vertices v of G, and define outdeg�G� to be the maximum of outdeg�v� over all vertices v of G. The
digraph G has the 1-or-1 edge property if, for each edge

�
vw of G, either outdeg�v� � � or indeg�w� � �

(or both).

Lemma 2

1. Let G be a digraph. If G has the 1-or-1 edge property then G is a CRWI digraph. If in addition
indeg�G� 	 	, then G is a disjoint-read CRWI digraph.

2. Let G � �V�E� be a digraph and let Cost � V � N� with Cost�v� � 	 for all v � V . If G has
the 1-or-1 edge property and outdeg�G� 	 	, then �G�Cost� is a length-cost CRWI digraph. If in
addition indeg�G� 	 	, then �G�Cost� is a disjoint-read length-cost CRWI digraph.

We give the formal proof of this lemma, which is somewhat tedious, in Appendix A. Here we briefly out-
line how the assumption thatG has the 1-or-1 edge property is used in the proof. Suppose that indeg�w� � 	

and let v�� v�� � � � � vd be the vertices such that there is an edge
��
viw for � 	 i 	 d (see Figure 11 in the

Appendix). By the 1-or-1 edge property, outdeg�vi� � � for all i. Then we choose the read intervals
R�v��� R�v��� � � � � R�vd� consecutively and choose the write interval W �w� so that it intersects all of these
read intervals. Because outdeg�vi� � � for all i, there does not exist a vertex w� �� w such that R�vi�
intersects W �w��. Therefore, the order of the intervals R�v��� R�v��� � � � � R�vd� does not matter, and we
are not forced to choose W �w�� so that it intersects W �w�. Similarly, suppose that outdeg�v� � 	 and let
w�� w�� � � � � wd be the vertices such that there is an edge

��
vwi for � 	 i 	 d (see Figure 11). By the 1-or-1

edge property, indeg�wi� � � for all i, so there does not exist a v � �� v such that R�v�� intersects W �wi�.
Therefore, we can choose W �w���W �w��� � � � �W �wd� consecutively and their order does not matter.

While Lemma 2 shows that the 1-or-1 edge property is a sufficient condition for a digraph to be a CRWI
digraph, it is not necessary. This is shown by the graph in Figure 10(a), which does not have the 1-or-1 edge
property but is a CRWI digraph, in fact, a disjoint-read length-cost CRWI digraph for any cost function with
Cost�v� � 	 for all v. On the other hand, the conditions outdeg�G� 	 	 and indeg�G� 	 	 alone are not
sufficient. This is shown by the graph in Figure 10(b), which is not a CRWI digraph.
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(b)(a)

Figure 10: (a) A disjoint-read length-cost CRWI digraph that does not have the 1-or-1 edge property. (b) A
graph with outdeg 	 	 and indeg 	 	 that is not a CRWI digraph.

7 Optimal Cycle Breaking on CRWI Digraphs is NP-hard
In this section we prove the result mentioned in Section 4.3, that given a CRWI digraph G and a cost

function on its vertices, finding a minimum-cost set of vertices whose removal breaks all cycles in G is
an NP-hard problem. Moreover, NP-hardness holds even when the problem is restricted to the case that
�G�Cost� is a disjoint-read length-cost CRWI digraph and all costs are the same.

For a digraph G � �V�E�, a feedback vertex set (FVS) is a set S � V such that the digraph obtained
from G by deleting the vertices in S and their incident edges is acyclic. Define ��G� to be the minimum
size of an FVS for G. Karp [16] has shown that the following decision problem is NP-complete.

FEEDBACK VERTEX SET

Instance: A digraph G and a K � N�.
Question: Is ��G� 	 K?

His proof does not show that the problem is NP-complete when G is restricted to be a CRWI digraph.
Because we are interested in the vertex-weighted version of this problem where G is a CRWI digraph, we
define the following decision problem.

WEIGHTED CRWI FEEDBACK VERTEX SET

Instance: A CRWI digraph G � �V�E�, a function Cost � V � N�, and a K � N�.
Question: Is there a feedback vertex set S for G such that

P
v�S Cost�v� 	 K?

The following lemma is the basis for the proof of NP-completeness of this problem.

Lemma 3 There is a polynomial-time transformation that takes an arbitrary digraph G � � �V �� E�� and
produces a digraph G � �V�E� such that G has the 1-or-1 edge property, outdeg�G� 	 	, indeg�G� 	 	,
jV j 	 �jV �j�, and ��G� � ��G��.

Proof. The digraph G contains the directed subgraph Dv for each v � V �. The subgraph Dv consists of
the vertex v, a directed binary in-tree Tin�v with root v and indeg�v� leaves (i.e., all edges are directed from
the leaves toward the root v), and a directed binary out-tree Tout�v with root v and outdeg�v� leaves (i.e.,
all edges are directed from the root v toward the leaves). If indeg�v� � 
 (resp., outdeg�v� � 
) then
Tin�v (resp., Tout�v) is the single vertex v. For each edge

�
xy of G�, add to G an edge from a leaf of Tout�x

to a leaf of Tin�y, such that each leaf is an end-point of exactly one such “added edge”. By construction,
outdeg�G� 	 	 and indeg�G� 	 	. To see that the 1-or-1 edge property holds: Let e �

�
vw be an arbitrary

edge of G; if e is an edge of some in-tree, then outdeg�v� � �; if e is an edge of some out-tree, then
indeg�w� � �; and if e is an added edge, then outdeg�v� � indeg�w� � �. To show that jV j 	 �jV �j�, it is
enough to note that, for each v � V � having indeg�v� � outdeg�v� �� 
, the number of vertices of Dv is at
most 	�indeg�v� � outdeg�v�� 	 �jV �j.

It remains to show that ��G� � ��G��. Say first that S� is a FVS for G� with jS �j � ��G��. It is clear
that S � f v j v � S � g is a FVS for G with jSj � jS �j, because every path from a leaf of Tin�v to a leaf of
Tout�v must pass through v. Therefore, ��G� 	 jSj � jS �j � ��G��. Say now that S is a FVS for G with
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jSj � ��G�. Define S� � V � by placing v in S � iff at least one vertex of Dv is in S. Obviously, jS �j 	 jSj.
It is easy to see that S � is a FVS for G�, because if C� is a cycle inG� that passes through vertices v�� � � � � vm
and none of these vertices belong to S �, then no vertex of Dvi for � 	 i 	 m can belong to S. So there is a
cycle in G, obtained from C �, that passes through no vertex of S; this contradicts the assumption that S is a
FVS for G. Therefore, ��G�� 	 jS�j 	 jSj � ��G�. �

Theorem 1 WEIGHTED CRWI FEEDBACK VERTEX SET is NP-complete. Moreover, for each constant
C � 	, it remains NP-complete when restricted to instances where �G�Cost� is a disjoint-read length-cost
CRWI digraph, Cost�v� � C for all v, indeg�G� 	 	, and outdeg�G� 	 	.

Proof. The problem clearly belongs to NP. To prove NP-completeness we give a polynomial-time reduction
from FEEDBACK VERTEX SET to WEIGHTED CRWI FEEDBACK VERTEX SET. LetG� andK � be an instance
of FEEDBACK VERTEX SET, where G� is an arbitrary digraph. Transform G� to G using Lemma 3. Let
Cost  C. Because G has the 1-or-1 edge property, outdeg�G� 	 	, and indeg�G� 	 	, Lemma 2 says
that �G�Cost� is a disjoint-read length-cost CRWI digraph. Clearly the minimum cost of an FVS for G is
C � ��G�, and C � ��G� � C � ��G�� by Lemma 3. Therefore, the output of the reduction is �G�Cost� and
CK. �

Given an NP-hard optimization problem, it is natural to ask whether the problem can be approximately
solved by a polynomial-time algorithm. The worst-case approximation performance is typically measured
by the worst-case ratio of the cost of the solution found by the algorithm to the optimum cost; see, for
example, [13, x6.1]. The currently best known polynomial-time approximation algorithm for the min-cost
FVS problem on general digraphs has ratio O�logn log log n� where n is the number of vertices in the
input digraph; this is shown by Even et al. [12], building on work of Seymour [26]. An obvious question is
whether this ratio can be improved, perhaps to a constant, by restrictingG to CRWI digraphs. Unfortunately,
the restriction to CRWI digraphs cannot help much, in the sense that an improvement in r�n� for CRWI G
would give a related improvement in r�n� for general G. A modification to the proof of Theorem 1, again
using Lemma 3, shows the following: If there is a polynomial-time approximation algorithm with ratio
r�n� for the min-cost FVS problem where the input �G�Cost� is restricted to be a disjoint-read length-cost
CRWI digraph, then there is a polynomial-time approximation algorithm with ratio r ��n� � r��n�� for the
min-cost FVS problem where �G�Cost� is arbitrary. For example, if r is constant then r� is constant, and if
r�n� � O�logn log logn� and r is sufficiently smooth then r ��n� � O�r�n��.

8 Complexity of Optimal In-Place Reconstructible Delta Encoding
The subject of the paper up to this point has been the problem of post-processing a given delta encoding

of a version file V so that V can be reconstructed in-place from the reference file R using the modified delta
encoding. A more general problem is to find an in-place reconstructible delta encoding of a given version
file V in terms of a given reference file R. Thus, this paper views the general problem as a two-step process,
and concentrates on methods for and complexity of the second step.

Two-Step In-Place Delta Encoding
Input: A reference file R and a version file V .

1. Using an existing delta encoding algorithm, find a delta encoding � of V in terms of R.

2. Modify � by permuting commands and possibly changing some copy commands to add commands
so that the modified delta encoding is in-place reconstructible.

A practical advantage of the two-step process is that we can utilize existing differencing algorithms
to perform step 1. A potential disadvantage is the possibility that there is an efficient (in particular, a
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polynomial-time) algorithm that finds an optimally-compact in-place reconstructible delta encoding for any
input V and R. Then the general problem would be made more difficult by breaking it into two steps
as above, because solving the second step optimally is NP-hard. However, we show that this possibility
does not occur: Finding an optimally-compact in-place reconstructible delta encoding is itself an NP-hard
problem. For this result we define an in-place reconstructible delta encoding � to be one that contains no
WR conflict. (As noted in Section 10, there is an alternate and more lenient definition, which we do not
study in this paper.) It is interesting to compare the NP-hardness of minimum-cost in-place delta encoding
with the fact that minimum-cost delta encoding (not necessarily in-place reconstructible) can be solved in
polynomial time [27, 21, 23].

This NP-hardness result is proved using the following simple measure for the cost of a delta encoding.
This measure simplifies the analysis while retaining the essence of the problem.

Simple Cost Measure: The cost of a copy command is 1, and the cost of an add command h t� l i is the length
l of the added string.

BINARY IN-PLACE DELTA ENCODING

Instance: Two stringsR and V of bits, and a K � N�.
Question: Is there a delta encoding� of V in terms ofR such that � contains no WR conflict and the simple
cost of � is at most K?

Taking R and V to be strings of bits means that copy commands in � can copy any binary substrings from
R; in other words, the granularity of change is one bit. This makes our NP-completeness result stronger,
as it easily implies NP-completeness of the problem for any larger (constant) granularity. The following
theorem is proved in Appendix B.

Theorem 2 BINARY IN-PLACE DELTA ENCODING is NP-complete.

9 Conclusions
We have presented algorithms that modify delta files so that the encoded version may be reconstructed

in the absence of scratch memory or storage space. Such an algorithm facilitates the distribution of software
to network attached devices over low bandwidth channels. Delta compression lessens the time required
to transmit files over a network by encoding the data to be transmitted compactly. In-place reconstruction
exchanges a small amount of compression in order to do so without scratch space.

Experimental results indicate that converting a delta file into an in-place reconstructible delta file has
limited impact on compression, less than 4% in total with the majority of compression loss from encoding
overheads rather than modifications to the delta file. We also find that for bottom line performance, keeping
delta files small to reduce I/O matters more than execution time differences in cycles breaking heuristics, be-
cause in-place reconstruction is I/O bound. The algorithm to convert a delta file to an in-place reconstructible
delta file requires less time than generating the delta file in the first place.

Our results also add to the theoretical understanding of in-place reconstruction. We have given a simple
sufficient condition, the 1-or-1 edge property, for a digraph to be a CRWI digraph (for some delta file). Two
problems of maximizing the compression of an in-place reconstructible delta file have been shown NP-hard:
first, when the input is a delta file and the objective is to modify it to be in-place reconstructible; and second,
when the input is a reference file and a version file and the objective is to find an in-place reconstructible
delta file for them. The first result justifies our use of efficient, but not optimal, heuristics for cycle breaking.

In-place reconstructible delta file compression provides the benefits of delta compression for data dis-
tribution to an important class of applications – devices with limited storage and memory. In the current
network computing environment, this technology decreases greatly the time to distribute software with-
out increasing the development cost or complexity of the receiving devices. Delta compression provides
Internet-scale file sharing with improved version management and update propagation, and in-place recon-
struction delivers the technology to the resource constrained computers that need it most.
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10 Future Directions
Detecting and breaking conflicts at a finer granularity can reduce lost compression when breaking cycles.

In our current algorithms, we eliminate cycles by converting copy commands into add commands. However,
typically only a portion of the offending copy command actually conflicts with another command; only the
overlapping range of bytes. We propose, as a simple extension, to break a cycle by converting part of a copy
command to an add command, eliminating the graph edge (rather than a whole vertex as we do today), and
leaving the remaining portion of the copy command (and its vertex) in the graph. This extension does not
fundamentally change any of our algorithms, only the cost function for cycle breaking.

As a more radical departure from our current model, we are exploring reconstructing delta files with
bounded scratch space, as opposed to zero scratch space as with in-place reconstruction. This formulation,
suggested by Martı́n Abadi, allows an algorithm to avoid WR conflicts by moving regions of the reference
file into a fixed size buffer, which preserves reference file data after that region has been written. The
technique avoids compression loss by resolving data conflicts without eliminating copy commands.

Reconstruction in bounded space is logical, as target devices often have a small amount of available
space that can be used advantageously. However, in-place reconstruction is more generally applicable. For
bounded space reconstruction, the target device must contain enough space to rebuild the file. Equivalently,
an algorithm constructs a delta file for a specific space bound. Systems benefit from using the same delta file
to update software on many devices. For example distributing an update calendar program to many PDAs.
In such cases, in-place reconstruction offers a lowest common denominator solution in exchange for a little
lost compression.

An even more radical departure follows from the fact that the absence of WR conflicts is a sufficient,
but not necessary, condition for in-place reconstructibility. One could relax the definition of in-place recon-
structibility to require only that application of the delta file to the reference file in-place produces the version
file. For example, the reference file R � 
l�l	l containing three “blocks” of length l can be converted in-
place to the version file V � �l
l�l by copying the first two blocks 
l�l to the last two blocks, producing

l
l�l; and then copying the last block � l to the first block, producing V . These two copy commands conflict
because the first copy writes to the third block and the second copy then reads from this block. It is easy
to see that there is no way to convert R to V using two non-conflicting copy commands. This more lenient
definition could yield smaller in-place reconstructible delta files when blocks of data are repeated in V .

Although departing from our current model could yield smaller delta files, the message of this paper
remains that the compression loss due to in-place reconstructibility is modest even within this simple model.

We also are developing algorithms that can perform peer-to-peer style delta compression [29] in an in-
place fashion. This allows delta compression to be used between two versions of a file stored on separate
machines and is often a more natural formulation, because it does not require a computer to maintain the
original version of data to employ delta compression. This works well for file systems, most of which do
not handle multiple versions.

Our ultimate goal is to use in-place algorithms as a basis for a data distribution system. The system will
operate both in hierarchical (client/server) and peer-to-peer modes. It will also conform to Internet standards
[17] and, therefore, work seamlessly with future versions of HTTP.

Appendix
A Proof of Lemma 2

We prove parts 1 and 2 together. For both parts we assume that G � �V�E� has the 1-or-1 edge property
and Cost�v� � 	 for all v � V . We show how to choose the read intervals and write intervals such that
jR�v�j � jW �v�j for all v � V , the write intervals are pairwise disjoint, and R�v� � W �w� �� � iff
�
vw � E. If in addition indeg�G� 	 	, then the chosen read intervals are pairwise disjoint. If in addition
outdeg�G� 	 	, then the choices also satisfy the length-cost condition jR�v�j � Cost�v� for all v � V .
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Figure 11: Examples of vertices in the sets Hj � Tj for j � 
� �� 	. All edges directed out of v� v�� � � � � vd or
into w�w�� � � � � wd are shown. Edges directed into v� v�� � � � � vd or out of w�w�� � � � � wd are not shown.
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Figure 12: Example of the sets Hj � Tj for a particular digraph.

Let T� (resp., T�� T�) be the set of vertices v � V with outdeg�v� � 
 (resp., outdeg�v� � �,
outdeg�v� � 	). The three sets T�� T�� T� partition V ; that is, they are pairwise disjoint and their union
equals V . Let H� be the set of vertices w such that indeg�w� � 
. Let H� be the set of w such that:
(i) indeg�w� � �, and (ii) all v with

�
vw � E have outdeg�v� � � (i.e., v � T�). Let H� be the set of w

such that there exists a v with
�
vw � E and outdeg�v� � 	; that is, w is the head of some edge whose tail v

belongs to T�. Note that H�� H�� H� partition V . In Figure 11 the sets Hj � Tj for j � 
� �� 	 are illustrated
in general, and Figure 12 shows these sets for a particular digraph. The intervals are chosen by the following
procedure. For j � 
� �� 	, executions of step j choose read (resp., write) intervals for vertices in Tj (resp.,
Hj). Because T� �T� � T� � H� �H� �H� � V , the procedure chooses a read and write interval for each
vertex. Because T�� T�� T� are pairwise disjoint and H�� H�� H� are pairwise disjoint, no interval is chosen
at executions of two differently numbered steps. We show, during the description of the procedure, that no
interval is chosen at two different executions of the same-numbered step. It follows that each vertex has its
read interval and its write interval chosen exactly once. (The steps 0, 1, 2 are independent; in particular,
it is not important that they are done in the order 0, 1, 2.) While describing the procedure, it’s operation
is illustrated for the graph in Figure 12, assuming that all vertices have Cost � 	. Because this graph has
indeg � outdeg � 	, the chosen read intervals will be pairwise disjoint and the length-cost condition will
be satisfied.

Interval Choosing Procedure
Set k � 
. The parameter k is increased after each execution of step 0, 1, or 2, in order that all intervals
chosen during one execution of a step are disjoint from all intervals chosen during later executions of these
steps. By an “execution of step j” we mean an execution of the body of a while statement in step j.
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0. (a) While T� �� �:
Let v � T� be arbitrary (in this case, R�v� should not intersect any write interval); choose
R�v� � �k� k� Cost�v�� ��; remove v from T�; and set k � k � Cost�v�.

(b) While H� �� �:
Let w � H� be arbitrary (in this case, W �w� should not intersect any read interval); choose
W �w� � �k� k� Cost�w�� ��; remove w from H�; and set k � k � Cost�w�.

Illustration. In Figure 12, T� � f�g and H� � f	g. Step 0 is executed twice. First, step 0(a) sets
R��� � �
� ��, T� � �, and k � 	. Then, step 0(b) sets W �	� � �	� ��,H� � �, and k � �.

1. While T� �� �:

(a) Let v� be an arbitrary vertex in T� and let w be the (unique) vertex such that
��
v�w � E. If

indeg�w� � d � 	, let v�� v�� � � � � vd be the vertices such that
��
viw � E for � 	 i 	 d. We

claim that vi � T� for all � 	 i 	 d: for i � � this is true by assumption; if 	 	 i 	 d and
outdeg�vi� � 	, this would contradict the 1-or-1 edge property because

��
viw � E, outdeg�vi� �

	, and indeg�w� � 	. A consequence of the claim is that w � H�. (See Figure 11.)

(b) Choose R�v�� � �l� r� and W �w� � �l�� r��� such that minfl� l�g � k, j �l� r� j� Cost�v��, and
j �l�� r� �� j � Cost�w�. Because Cost�w� � 	, we have l� 	 r; so r � R�v�� �W �w� (which
implies R�v�� �W �w� �� �). If d � 	, choose R�vi� � �r � �� ri� such that j �r � �� ri� j �
Cost�vi� for 	 	 i 	 d. So r � � � R�vi� �W �w� for 	 	 i 	 d. Note that if outdeg�G� 	 	
then d 	 	, and R�v���R�v�� � � if d � 	. Because this step is the only one where more than
one read interval is chosen at the same execution of a step, if outdeg�G� 	 	 then the chosen
read intervals are pairwise disjoint.

(c) Remove v�� � � � � vd from T�. Because
�
vw � E implies that v � vi for some � 	 i 	 d, this

ensures that none of W �w�� R�v��� � � � � R�vd� are re-chosen at another execution of step 1. Set
k� maxfr � �� r�� r�� � � � � rdg� �.

Illustration. In Figure 12, T� � f�� 	� �g. At the first execution of step 1, say that v� � � is chosen.
This defines (recall that all costs are 2 in the example) w � �, d � 	, v� � 	, R��� � ��� ��,
W ��� � ��� ��, R�	� � ��� ��, T� � f�g, and k � �. At the next execution of step 1, the only
choice is v� � � which defines w � �, d � �, R��� � ��� ��, W ��� � ��� �
�, T� � �, and k � ��.
(Because d � � in this execution, it would also work to set R��� � W ��� � ��� �� and k � �
, but
for simplicity this special case is not included in the procedure.)

2. While T� �� �:

(a) Let v be an arbitrary vertex in T�, let d � outdeg�v� (so d � 	), and let w�� � � � � wd be the
vertices such that

��
vwi � E for � 	 i 	 d. Note that wi � H� for all i, by definition of H�. By

the 1-or-1 edge property, indeg�wi� � � for all i. (See Figure 11.)

(b) If outdeg�G� 	 	, then d � 	, and our choice of intervals must satisfy the length-cost prop-
erty. In this case, choose R�v� � �l� r�, W �w�� � �l�� r � ��, and W �w�� � �r� r�� such that
minfl� l�g � k and the intervals have the correct lengths according to the cost function. Note
that Cost�v� � 	 implies that l 	 r � �, and this in turn implies that r � � � R�v� �W �w��.
Also r � R�v� �W �w�� by definition.

If outdeg�G� � �, then the length-cost property does not have to hold, so we choose R�v� �
�k� k� d� �� and W �wi� � �k � i� �� k � i� �� for � 	 i 	 d.
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(c) Remove v from T�. Because indeg�wi� � � for all � 	 i 	 d, it follows that none of
R�v��W �w��� � � � �W �wd� are re-chosen at another execution of step 2. Set k to one plus the
maximum right end-point of the intervals R�v��W �w��� � � � �W �wd�.

Illustration. In Figure 12, T� � f�g. This defines v � �, d � 	, w� � �, w� � �, R�v� � ��	� ���,
W ��� � ���� �	�,W ��� � ���� ���, and T� � �. �

B Proof of Theorem 2
In this proof, “cost” means “simple cost”, and a “conflict-free” � is one containing no WR conflict. It

suffices to give a polynomial-time reduction from FEEDBACK VERTEX SET to BINARY IN-PLACE DELTA

ENCODING. Let G� and K � be an instance of FEEDBACK VERTEX SET. We describe binary stringsR and V
and an integer K such that ��G�� 	 K� iff there is a conflict-free delta encoding � of V in terms of R such
that the cost of � is at most K.

First, using the transformation of Lemma 3, obtainGwhereG has the 1-or-1 edge property, outdeg�G� 	
	, indeg�G� 	 	, and ��G� � ��G��. Let G � �V�E� and V � f�� 	� � � � � ng. Let l � dlog ne. For each
v � V , define the binary string �v as

�v � �
�

b�

b�

b�

 � � � bl



where b�b�b� � � � bl is the l-bit binary representation of v � �. Note that the length of �v is �l � � for all
v, and that v �� w implies �v �� �w . Let L � �l � �, and define Cost�v� � L for all v � V . It follows
from Lemma 2 that �G�Cost� is a disjoint-read length-cost CRWI digraph. Because the interval-finding
procedure in the proof of Lemma 2 runs in polynomial time, we can construct in polynomial time a RWIS
�R�W�, with R � fR���� � � � � R�n�g and W � fW ���� � � � �W �n�g, such that G � graph�R�W�,
jR�v�j � jW �v�j � L for all v � V , and the intervals of R are pairwise disjoint (the intervals ofW are
pairwise disjoint by definition). Moreover, because indeg�G� 	 	 and L � �, it is easy to see that we
can make the read intervals be at least distance 3 apart, that is, if i � R�v�, j � R�w�, and v �� w, then
ji � jj � �. (Referring to the interval-choosing procedure in the proof of Lemma 2, this can be done by
incrementing k by an additional 2 after every execution of a step; and in executions of step 2 where d � 	
choosingR�v�� � �k� k�L� ��, R�v�� � �k�L� 	� k�	L� ��, and W �w� � �k�L� �� k� 	L� 	�.
Note that R�v���W �w� �� � because L � � implies k � 	L� 	 � k � L� 	.)

Let � � f�� � � � � ng � f�� � � � � ng be a permutation such that the intervals of R in left-to-right order
(ordered as intervals) are R������� R���	��� � � � � R���n��; thus, if � 	 j� � j� 	 n, i� � R���j���, and
i� � R���j���, then i� � i� (in fact, i� 	 i�� �). Similarly, let 	 be a permutation such that the intervals in
W in left-to-right order are W �	�����W �	�	��� � � � �W �	�n��.

The binary stringsR and V are of the form

R �

PRz �� �
�� 
�� 
 � � � �n 
 
* ����� � 
 
 


*����� � 
 
 

* � � � ���n��� � 
 
 


*���n� �

V � �* � � � �* ����� � �
* ����� � �

* � � � ���n��� � �
*���n� �� �z �

SV

where 
* (resp., �*) denotes a string of zero or more 
’s (resp., �’s), and where these “rubber-length” strings
are adjusted so that: (i) the prefix PR of R does not overlap the suffix SV of V , and (ii) for all v� w � V , the
substring �v� of R overlaps the substring �w� of V iff

�
vw is an edge of G. That (ii) can be accomplished

follows from the facts G � graph�R�W�, all read and write intervals have lengthL � �l�� (which equals
the length of �v� for all v), and the read intervals are at least distance 3 apart so we can insert at least two
zeroes between ���i�� and ���i���� for � 	 i � n.

Three properties thisR and V will be used:
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(P1) R contains no occurrence of the substring 11;

(P2) for each v � V , the string �v� appears exactly once as a substring of R;

(P3) for each v � V with v �� 	�n�, the string �v� always appears in V in the context � � ���v�� � � � .

Property P1 is obvious by inspection. Property P2 follows from the facts: (i) 101 appears as a substring ofR
only as the first three symbols of �w for each w � V ; and (ii) if v �� w then �v �� �w . Property P3 follows
because, for each w � V , the string �w� both begins and ends with 1, and there are only 1’s between ���i��
and ���i��� for � 	 i � n.

Let LV denote the length of V , and define K � LV � nL � n �K �. We show that

��G� 	 K� � there is a conflict-free delta encoding � of V
such that the cost of � is at most K.

��� Let ��G� 	 K � and let S be a FVS for G with jSj 	 K �. We first describe an encoding �� of V
that is not necessarily conflict-free. Each substring represented by �* is encoded by an add command; the
total cost of these add commands is LV � nL. If v � V � S, then �v� is encoded by a copy of ���i�� in
R, where i is such that ��i� � v; the total cost of these copy commands is jV � Sj � n � jSj. If v � S,
then �v� is encoded by a copy of �v from PR followed by an add of “1”; the total cost of these commands
is 	jSj. Therefore, the total cost of �� is LV � nL � n� jSj 	 LV � nL � n �K� � K. For each v � S,
the read interval of the copy command that copies �v from PR does not intersect the write interval of any
copy command in ��. Therefore, the CRWI digraph of �� is a subgraph of the graph obtained from G by
removing, for each v � S, all edges directed out of v. Because S is an FVS for G, the CRWI digraph of ��

is acyclic. Therefore, a conflict-free delta encoding � of the same cost can be obtained by permuting the
copy commands of �� and moving all add commands to the end.

��� Let � be a conflict-free delta encoding of V having cost at most K � LV � nL � n � K�. By
properties P1 and P3, it follows that no copy command in � can encode a prefix (resp., suffix) of a substring
�v� together with at least one of the 1’s preceding it (resp., following it). Therefore, using property P1 again,
the commands in � that encode substrings denoted �* must have total cost equal to the total length of these
substrings, that is, cost LV � nL. The remaining commands can be partitioned into sets C�� C�� � � � � Cn

such that the commands in Cv encode �v� for each v � V . Let S be the set of v � V such that Cv contains
at least two commands. We first bound jSj and then argue that S is a FVS for G. By definition of S, the
cost of � is at least LV � nL � jV � Sj� 	jSj. Because the cost of � is at most LV � nL � n �K� by
assumption, we have jSj 	 K �. To show that S is a FVS, assume for contradiction that there is a cycle in G
that passes only through vertices in V �S. If v � V �S then Cv contains one command 
v, so 
v must be a
copy command that encodes �v�. By property P2, the copy command 
v must be to copy the substring �v�
from the unique location where it occurs in R as ���i�� where i is such that v � ��i�. The stringsR and V
have been constructed such that, if

�
vw is an edge of G (in particular, if

�
vw is an edge on the assumed cycle

through vertices in V � S), then the substring �v� of R overlaps the substring �w� of V . So the existence
of this cycle contradicts the assumption that � is conflict-free. �
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