
RJ 10244 (A0205-022) May 23, 2002
Computer Science

IBM Research Report

Workload Characterization and Resource Usage Patterns
for a Linux SAMBA Server

T. Paul Lee
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Workload Characterization and Resource Usage Patterns
for a Linux SAMBA Server

T. Paul Lee

IBM Almaden Research Center
San Jose, CA 95120

tpl@almaden.ibm.com

Abstract

Samba is a suite of Unix applications that speak the SMB/CIFS protocol to serve files to
a plethora of heterogeneous operating systems and hardware platforms. In this study, we
analyze two workloads to gain insight on message exchanges and resource usage
patterns. One is that of a simple interactive “rename” operation; its trace allows us to see
the typical message exchanges between a Linux Samba server and a Windows NT client.
The other is that of the well-known NetBench benchmark which measures throughput
and response time with a simulated set of typical Win32 application scripts. We use
Linux system call tracing facilities and Samba logging features to characterize the
workload in terms of file system pathnames, system calls, and traffic patterns. This
technique and insight allows the proper planning and monitoring of Samba servers which
are becoming more popular in modern-day corporate computing environments.

1. Introduction

Samba [1] is a suite of Unix applications that speak the SMB (Server Message Block)
protocol. SMB is a client-server, request-response protocol for sharing files, printers,
serial ports, and communication abstractions such as named pipes and mail slots between
computer systems. It dates back to the mid-80s as an early IBM PC network protocol and
was subsequently developed further by Microsoft and others [2]. Many of the documents
for SMB are available at Microsoft FTP site [3]. Microsoft has also contributed
materially by putting forward its definition of SMB and the Common Internet File
System (CIFS/1.0), as a public Request for Comments (RFC), a standards document.
This preliminary draft remained as working documents for the Internet Engineering Task
Force (IETF) after its expiration in 1998. Nevertheless, the de facto standard status of
this important protocol prevails in spite of many unfinished pieces.

Linux-based Samba servers are becoming more popular and visible in modern-day
corporate computing environments [4,5]. In the data-centric heterogeneous client-server
model, file servers like SAMBA make data available to clients of all sorts in a seamless
fashion. In this study, we analyze two workloads to gain insight on message exchanges
and resource usage patterns. One is that of a simple interactive “rename” operation; its
trace allows us to see the typical message exchanges between a Linux Samba server and a
Windows NT client. This is presented first as a simple example for understanding the
SMB/CIFS protocol.

 1

mailto:tpl@almaden.ibm.com

The other is that of the well-known NetBench [6] benchmark which measures throughput
and response time with a simulated set of typical Win32 application scripts. This
benchmark is often used to compare SMB/CIFS file servers for their serving capacities.
We use Linux system call tracing facilities and Samba logging features to characterize
the workload in terms of file system pathnames, system calls, and traffic patterns. This
technique can be also applicable to on going monitoring of Linux-based SAMBA servers.

2. Workload Characteristics of a Simple “Rename” Operation

To gain insight on the SMB/CIFS message exchanges and the resource usage pattern, we
start with a simple “rename” operation of a file object. In a typical command language,
we run “rename oldname newname” to change the name of a file object from oldname to
newname. Most operating systems and protocols have direct support for this common
operation either as standard system call or as a transaction operation code. This
experiment uses a Windows NT 4.0 Explorer as client shown in Figure 1. You single
click twice to allow the GUI to highlight and open up a box to enter a new name for the
file object called “oldname”. We type in “newname” with “Enter” key to complete the
operation.

Figure 1: A Simple Rename Operation with Windows NT Explorer

 2

On the server side, the Samba daemon is started as “smbd –D –d 10”. This starts the
Samba as a daemon process that detaches itself from the terminal, and runs in the
background with debug level set to 10. This produces lots of debug and tracing
information to a log file which we extract transaction information to produce Tables 1
and 2. The extraction processing is straightforward using Linux command “grep
smb_com –C5 logfile” [7]. In essence, we are extracting all occurrences of “smb_com”
keyword along with its 5-line context.

We have observed a total of 37 transactions for this “rename” operation in a Windows
NT environment as shown in Tables 1 and 2. We do not show the first eight transactions
when Windows’ Explorer first accesses and opens the top-level directory as shown in
Figure 1. These CIFS transactions include initial protocol negotiation, tree connect
request, querying file system information, reading the root directory for display purposes,
opening the root directory, and asking the server to notify change in the root directory.

The client implementation, that is, the Windows NT Explorer, uses the request/response
SMB/CIFS protocol taking appropriate steps to ensure the desired file system properties
and integrity constraints are observed and maintained before and after the operation.
There are total of 37 transactions and we break this down to two tables of manageable
sizes for illustration purposes. At the highest level, a rename operation has to verify first
that the original name exists with proper attributes, second that the new name does not
exist, and then the “move” operation is issued to the server for the desired change.
Nevertheless, lower file-system specific details have to be considered by the client
implementation such as case sensitivity (or insensitivity) and name mangling possibility.
This usually adds a few exchanges of messages somewhat unexpectedly by the normal
users of the system. It is also useful to note that “FindFirst” (a trans2 subcode)
subcommand is used to search directory for the desired filename or filename pattern.

Table 1: CIFS Transactions for Rename Operation (part 1/2)
Transaction
Number

CIFS transaction Sub-
commands

Argument Return Remark

9 (0xA2)NTcreateX \oldname Fnum 4527 (starting point)
10 (0x04)Close 4527
11 (0xA2)NTcreateX \oldname Fnum 4528 (second time)
12 (0x04)Close 4528
13 (0xA2)NTcreateX \oldname Fnum 4529 (third time)
14 (0x2E)readX 4529 Max=min=8 Nread=8
15 (0x04)Close 4529
16 (0xA2)NTcreateX \oldname Fnum 4530
17 (0x2E)readX 4530 Max=min=8 Nread=8 (read again)
18 (0x32)trans2 Qfileinfo,0x104 . (dot)
19 (0x32)trans2 Qfsinfo, 0x105
20 (0x32)trans2 Findfirst \oldname
21 (0x32)trans2 Findfirst \newname Error code
22 (0x04)Close 4530

 3

In Table 1, “NTCreateX” transaction is used to open the file object with name
“\oldname”. At some point, the file length information is obtained so that a “readX”
transaction is issued to read the content. It is not clear why this client has to issue three
NtcreateX requests before it issues the readX request. Different clients might have
different implementations for similar operations.

Transactions 18 through 22 basically query file system tree information and check the
existence of “oldname” and non-existence of “newname” in the current directory. Note
that the number of bytes read happens to be 8 bytes long since the content of the file is
initialized to be “oldname\r” in our example.

Table 2: CIFS Transactions for Rename Operation (part 2/2)

Transaction
Number

CIFS
transaction

Sub-
commands

Argument Return Remark

23 (0xA2)NTcreat
eX

 \oldname Fnum 4531 (until #43)

24 (0xA2)NTcreat
eX

 \newname Error code

25 (0xA2)NTcreat
eX

 \newname Error code (second time)

26 (0xA2)NTcreat
eX

 \newname Error code (third time)

27 (0x08)getattr \newname Error code
28 (0x32)trans2 Qfilepathinfo,0

x101
 \oldname

29 (0xA2)NTcreat
eX

 \oldname Fnum 4535 (nested open)

30 (0x04)Close 4535
31 (0xA2)NTcreat

eX
 \oldname Fnum 4536 (nested open)

32 (0x32)trans2 Qfileinfo,0x102 \oldname
33 (0x2E)readX 4536 Max=min=256 Nread=8
34 (0x2E)readX 4536 Max=min=512 Nread=8 (read again)
35 (0x32)trans2 Qfileinfo,0x102 \oldname (same as #32)
36 (0x2E)readX 4536 Max=min=2 Nread=2 (read third time)
37 (0x32)trans2 Qfileinfo,0x102 \oldname
38 (0x32)trans2 Qfileinfo,0x102 \oldname
39 (0x32)trans2 Qfileinfo,0x102 \oldname
40 (0x2E)readX 4536 Max=min=8 Nread=8 (read exact)
41 (0x2E)readX 4536 Max=min=4096 Nread=8 (read last time)
42 (0x04)Close 4536 (open at #31)
43 (0x04)Close 4531 (open at #23)
44 (0x07)move .\oldname

.\newname
 (THE command)

45 (0x32)trans2 Findfirst, 0x104 \newname (all done)

In Table 2, transactions 23 through 43 encompass a large nested open loop to ensure that
the “newname” does not exist, the “oldname” has certain attributes, and the pathname
agrees with access permission before the actual “rename/move” transaction is requested.

 4

Many read attempts with different maximum/minimum combination are definitely very
peculiar for this implementation. We observed the same kind of behavior with a DOS
client (under command prompt) and other clients in different versions of Windows.

The very last transaction corresponds to the verification of the file object name before the
string is displayed on the Explorer’s window. Note that this last transaction is
understandably specific to the GUI requirements of visual change/update of file attribute
and size for the object selected. Analyzing the log file resulted from running a simple
“rename oldname newname” using DOS client can help us to explain some differences
with respect to that of the Explorer counterpart. Nevertheless, multiple re-reads and re-
opens are present on both log files in our study.

In addition to preparing for the server to log important details for this simple operation,
we use the system call trace utility (strace) to record the system call activities. Two
variations were used:

strace –f –c –o /tmp/rename.Ctrace –p 1238
strace –f –o /tmp/rename.trace –p 4131

The first form traces the process 1238, presumably the samba daemon process for the
client in question, follows through fork() system calls, and saves the summary (-c option)
to the log file named /tmp/rename.Ctrace. The second form does no summary, but it
provides a history of traced system calls in the log file.

Table 3: System Call Breakdown in terms of CPU Time
2.0.7 samba NT4.0 Explorer

% time seconds usecs/call calls errors syscall

80.00 0.041734 1128 37 select
6.37 0.003323 185 18 getdents
4.37 0.002281 62 37 send
2.99 0.001558 19 81 read
1.62 0.000846 11 78 semop
1.59 0.000831 19 43 20 stat
0.79 0.000412 21 20 6 open
0.51 0.000267 6 44 gettimeofday
0.39 0.000201 201 1 rename
0.35 0.000185 11 17 getpid
0.35 0.000182 9 21 fstat
0.28 0.000148 11 14 close
0.18 0.000093 8 12 lseek
0.12 0.000064 7 9 fcntl
0.04 0.000022 22 1 lstat
0.03 0.000018 9 2 kill

100.00 0.052165 435 26 total

rename oldname newname

The system call trace breakdown is shown in Table 3 for the “rename” operation. Since
this trace is gathered when the user is using the GUI to do file name change, most of the

 5

time server spent is on network and socket related select() system call. It is worth noting
that there are many getdents() calls and stat() calls which are results of going through the
directory many times and checking the existence and non-existence of given file names.

System call traces without the summary mode logs each system call and thus provides a
time-sequenced set of events. Among these 435 system calls, 43 of them are stat() calls.
Figure 2 gives the flavor of some of these stat() calls with their arguments and return
values. These naturally lead to the investigation of the needs of stat() system calls and
the overall architecture of implementing a cache for the stat() system call results. That
was a different but a related task in this study. It is illustrated further in the next Section.

strace output and grep "stats" (43 calls)

2.0.7 samba and NT4.0, Explorer, rename oldname newname

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat(".", {st_mode=S_IFDIR|S_ISVTX|0777, st_size=204800, ...}) = 0

4131 stat(".", {st_mode=S_IFDIR|S_ISVTX|0777, st_size=204800, ...}) = 0

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("./oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("newname", 0xbfffe398) = -1 ENOENT (No such file or directory)

4131 stat("newname", 0xbfffe398) = -1 ENOENT (No such file or directory)

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("newname", 0xbfffe778) = -1 ENOENT (No such file or directory)

4131 stat("newname", 0xbfffe778) = -1 ENOENT (No such file or directory)

4131 ……………….
Figure 2: A Sample of stat() System Calls in "rename" Operation

3. Workload Characteristics of NetBench Runs

NetBench is a portable benchmark that measures the performance of file servers as they
handle network file requests from clients [6]. Clients in this context are PCs running
Windows 95/98, 2000, or Windows NT. The server environment is modeled as data
provider for the applications such as word-processing or spreadsheet program that run on
the clients. As a result, the server’s disk I/O speed and network I/O speed are expected to
be the areas that affect the benchmark score. NetBench provides an overall I/O
throughput score and average response time for the server and individual scores for the
clients.

Figure 3 shows the result of throughput measurement for a Linux Samba Server
configured with 2-way SMP 800MHz Pentium III, 2GB memory, and 1Gbps Ethernet
card. The Linux server in question runs a stock 2.4.0 kernel with ext2 file system and

 6

Samba version 2.0.7. We use NetBench version 6.0 for this experiment. The client
environment consists of 22 Windows NT machines each of which logically simulates up
to 3 clients per machine for the experiment. Note that the unit of throughput is Mbits per
second (Mbps). This is proportionally correlated to the number of transactions and work
done by the clients. This metric represents the number of bits moved divided by the
amount of time to do so, and it is an internal measure of work done and is not a direct
measure of any throughput of disk or network bandwidth. This represents the total of all
participating clients in the experiment. The server performance peaks out around 317
Mbps for this configuration. Without the SMPness, the throughput stops around 240
Mbps in the same configuration.

0.000

50.000

100.000

150.000

200.000

250.000

300.000

350.000

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 66
Number of NT Clients

Th
ro

ug
hp

ut
 (M

bp
s)

Figure 3: NetBench Throughput as a function of Number of Windows NT Clients

NetBench also tracks the response times of the majority of the I/O calls in milliseconds.
Figure 4 depicts the average response time across all calls and all clients participated in
the experiment. This metric is typically used as a sanity check to detect any undesirable
server behavior while the throughput measure is used to compare one SMB/CIFS server
against another.

 7

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 66
Number of NT Clients

R
es

po
ns

e
Ti

m
e

(m
se

c)

Figure 4: NetBench Average Response Time as a function of Number of Windows
NT Clients

From a microscopic viewpoint, we are also interested in the detailed resource usage
pattern and file system access behavior of NetBench runs. For this, we look into the
details of one client run, record and examine its pathname access pattern.

In a typical 5-minute run for NetBench, each client generates about 80,000 pathname
resolution requests, that is, number of calls to unix_convert() function, and issues 370,000
stat() system calls with 120,000 bad return code. This heavy usage of stat() calls and
unix_convert() function leads to serious investigation on the current implementation of
unix_convert() function. This function transforms the Windows pathname to canonical
Unix pathname plus case sensitivity and name mangling processing and using stat()
system call to verify the existence or non-existence of the translated pathname. For
example, this involves the translation of pathname “\clients\client1\~dmtmp*” to
“clients/client1/~dmtmp/*”. Heuristics to cache partially matched prefixes of pathnames
are used to speed up the translation and search. This part has been traced and analyzed
for a more efficient implementation. Since the NetBench runs are basically CPU and
network bound, and a sheer reduction in the number of stat() calls does not provide
significant improvement in throughput measures. Nevertheless, one of the internal tools
used to stress various aspects of samba server functionality, that is, the smbtorture
program, was used to compare “trans2” transaction for the change of the stat cache
implementation. This test happens to measure the efficiency of the alternate

 8

implementation. The overall CPU time decreases by about 23% with significant
reduction of getdents() and stat() calls in the new implementation.

We show the “before” and “after” system call distribution in Tables 4 and 5 to compare
the new implementation using the insights of data analysis and review of access pattern.
The number of stat() calls drop significantly with the new implementation, and the
correct and more efficient handling stat() calls resulted in eliminating unnecessary re-
reading of the directory content. The elimination of most of the getdents() calls is the
reason for most of the 23% CPU time reduction.

Table 4: System Call Distribution BEFORE the Change

strace -c output (smbtorture trans2 test)

2.0.7 samba

getdents and stat calls are high
% timeseconds usecs/call calls errors syscall

34.96 4.343811 207 21002 send
17.01 2.114332 96 22004 getdents
13.30 1.653141 30 56012 semop

8.48 1.053835 26 41001 26001 stat
5.09 0.632101 15 42007 read
4.58 0.568644 27 21004 select
3.80 0.471903 118 4000 unlink
3.74 0.464828 46 10004 1 open
1.42 0.176387 176 1000 mkdir
1.35 0.167648 7 25003 gettimeofday
1.13 0.140352 9 16004 fstat
1.12 0.139495 139 1003 write
1.00 0.124036 12 10004 close
0.86 0.107101 107 1000 rmdir
0.79 0.098323 20 5000 1000 lstat
0.62 0.077106 6 12014 getpid
0.44 0.054617 9 6003 fcntl
0.18 0.022139 22 1000 chmod
0.13 0.015683 8 2001 lseek
0.01 0.000784 7 116 time
0.00 0.000075 38 2 chdir
0.00 0.000044 22 2 brk
0.00 0.000034 7 5 geteuid
0.00 0.000022 11 2 setresuid
0.00 0.00002 10 2 setresgid
0.00 0.000018 6 3 getegid
0.00 0.000007 7 1 setgroups

100.00 12.42649 297199 27002 total

 9

Table 5: System Call Distribution AFTER the Change

strace -c output (smbtorture trans2 test)

2.0.7 samba with new unix_convert() implementation

getdents and stat calls drop significantly
% timeseconds usecs/call calls errors syscall

45.31 4.389434 209 21002 send
16.84 1.631563 29 56012 semop

8.76 0.848463 25 34003 15003 stat
6.52 0.631489 15 42007 read
5.71 0.553045 26 21004 select
3.82 0.370403 93 4000 unlink
3.41 0.330606 83 4006 1 open
1.86 0.180265 7 25003 gettimeofday
1.71 0.165212 165 1000 mkdir
1.30 0.126113 126 1003 write
0.99 0.096295 96 1000 rmdir
0.97 0.09366 19 5000 1000 lstat
0.91 0.088597 9 10005 fstat
0.80 0.077281 6 12018 getpid
0.65 0.062744 16 4006 close
0.23 0.02251 23 1000 chmod
0.18 0.017473 9 2001 lseek
0.01 0.000899 90 10 getdents
0.01 0.000748 6 120 time
0.00 0.00008 16 5 fcntl
0.00 0.000073 37 2 chdir
0.00 0.000048 24 2 brk
0.00 0.000031 6 5 geteuid
0.00 0.000028 28 1 ftruncate
0.00 0.00002 10 2 setresuid
0.00 0.000019 10 2 setresgid
0.00 0.000018 6 3 getegid
0.00 0.000007 7 1 setgroups

100.00 9.687124 244223 16004 total

Since NetBench is a script-based benchmark, the set of pathname used is somewhat a
well characterized closed set of 260 unique names. Their skewed distribution is partially
shown in Table 6 sorted by reference count. In this table, we can gain some insight on
the pattern of the pathnames used.

 10

Table 6: Part of Cumulative Distribution of Pathname References

index cumulative(%) raw count pathname

1 11.74% 6378 \clients\client1\~dmtmp*

2 18.19% 3506 \clients\client1\~dmtmp\PARADOX

3 23.80% 3052 \clients\client1\~dmtmp

4 26.94% 1708 \clients\client1\~dmtmp\WORDPRO

5 29.97% 1646 \clients\client1\~dmtmp\PM

6 32.60% 1429 \clients\client1\~dmtmp\WORD

7 35.12% 1367 \clients\client1\~dmtmp\ACCESS

8 37.57% 1336 \clients\client1\~dmtmp\COREL

9 39.67% 1139 \clients\client1\~dmtmp\EXCEL

10 41.67% 1088 \clients\client1\~dmtmp\PWRPNT

11 43.21% 837 \clients\client1\~dmtmp\PWRPNT\NEWTIPS.PPT

12 44.75% 837 \clients\client1\~dmtmp\PWRPNT\NEWPCB.PPT

13 46.18% 775 \clients\client1\~dmtmp\COREL\@@@CDRW.TMP

14 47.32% 620 \clients\client1\~dmtmp\WORDPRO\LWPSAV0.TMP

15 48.45% 616 \clients\client1\~dmtmp\EXCEL\RESULTS.XLS

For file log1a/log.dendro.UCCdout,

Total references = 54350, unique references = 267

(true hit 25952, 47%, and miss 28378)

In Figure 5, we depict the cumulative distribution of most to leastly used pathnames.
Because of this narrow set and limited file operations to this set, the footprint of
NetBench runs is mostly captured in main memory’s cache structures and leaves the
NetBench runs CPU and network bound. In a reasonably configured Linux Samba
server, the typical resource limitations are in network bandwidth, CPU speed and the
efficiency of Samba server implementation and network protocol stack implementation.

 11

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

Most to Leastly Used Pathname

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

Figure 5: Cumulative Distribution of Pathname Frequencies in NetBench Runs

4. Conclusions

File servers are becoming an important part of enterprise computing. They serve files to
a plethora of heterogeneous operating systems and hardware platforms. Linux-based
SAMBA servers speak SMB/CIFS protocol allowing simultaneous file accesses to both
Windows-based file systems and non-Windows-based, most notably, UNIX file systems,
possible and convenient.

In this study, we have analyzed two workloads to gain insight on the message exchanges
and resource usages between Samba client and server. One is that of a simple interactive
“rename” operation; its trace allows us to see the typical message exchanges between a
Linux Samba server and a Windows NT client. The large number of transactions
required to do a simple “rename” calls for a careful and efficient implementation of client
and file serving daemon. The other is that of the well-known NetBench benchmark
which measures throughput and response time with a simulated set of scripts that use
typical Win32 applications. The planning of such server requires attention for efficient
network protocol implementation and bandwidth as well as raw CPU power with
sufficient memory for file system caching. We have used Linux system call tracing
facilities and Samba logging features to characterize the workloads in terms of file
system pathnames, system calls, and traffic patterns. This technique and insight allows
the proper planning and monitoring of Samba servers which are becoming more popular
in modern-day corporate computing environments.

 12

Acknowledgement

The author would like to express his gratitude to Ying Chen and Manoj Naik for their
time and patience in discussing the data gathered for this work and their expertise in
Samba implementation details. The author would also thank Nhan Tran for her help in
the laborious setup of the lab environment for the experiment of NetBench runs.

References

[1] R. Eckstein, D. Collier-Brown and P. Kelly, Using Samba. O’Reilly & Associates,
Sebastopol, CA, 2000.

[2] R. Sharpe, “Just What is SMB?” http://samba.anu.edu.au/cifs/docs/what-is-smb.html,
September 1999.

[3] FTP site for SMB and CIFS documents: ftp://ftp.microsoft.com/developr/drg/CIFS/

[4] J. Allison, “Samba 2.0 Released,” http://linuxtoday.com/stories/2298.html, January
1999.

[5] Linux Magazine, “The Story of Samba: Linux’s Stealth Weapon,” http://www.linux-
mag.com/1999-08/samba_02.html, September 1999.

[6] “Understanding and Using NetBench 6.0,” http://www.zdnet.com/, Ziff Davis Inc.,
1999.

[7] M. Welsh, M. Dalheimer and L. Kaufman, Running Linux. Third Edition, O’Reilly &
Associates, Sebastopol, CA, 1999.

 13

http://samba.anu.edu.au/cifs/docs/what-is-smb.html
ftp://ftp.microsoft.com/developr/drg/CIFS/
http://linuxtoday.com/stories/2298.html
http://www.linux-mag.com/1999-08/samba_02.html
http://www.linux-mag.com/1999-08/samba_02.html
http://www.zdnet.com/

	Workload Characterization and Resource Usage Patterns
	for a Linux SAMBA Server
	Abstract

	1. Introduction
	2. Workload Characteristics of a Simple “Rename”
	3. Workload Characteristics of NetBench Runs
	4. Conclusions
	Acknowledgement
	References

