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Abstract 
 
Samba is a suite of Unix applications that speak the SMB/CIFS protocol to serve files to 
a plethora of heterogeneous operating systems and hardware platforms.  In this study, we 
analyze two workloads to gain insight on message exchanges and resource usage 
patterns.  One is that of a simple interactive “rename” operation; its trace allows us to see 
the typical message exchanges between a Linux Samba server and a Windows NT client.  
The other is that of the well-known NetBench benchmark which measures throughput 
and response time with a simulated set of typical Win32 application scripts.  We use 
Linux system call tracing facilities and Samba logging features to characterize the 
workload in terms of file system pathnames, system calls, and traffic patterns.  This 
technique and insight allows the proper planning and monitoring of Samba servers which 
are becoming more popular in modern-day corporate computing environments. 
 
1. Introduction 
 
Samba [1] is a suite of Unix applications that speak the SMB (Server Message Block) 
protocol.  SMB is a client-server, request-response protocol for sharing files, printers, 
serial ports, and communication abstractions such as named pipes and mail slots between 
computer systems.  It dates back to the mid-80s as an early IBM PC network protocol and 
was subsequently developed further by Microsoft and others [2].  Many of the documents 
for SMB are available at Microsoft FTP site [3].  Microsoft has also contributed 
materially by putting forward its definition of SMB and the Common Internet File 
System (CIFS/1.0), as a public Request for Comments (RFC), a standards document.  
This preliminary draft remained as working documents for the Internet Engineering Task 
Force (IETF) after its expiration in 1998.  Nevertheless, the de facto standard status of 
this important protocol prevails in spite of many unfinished pieces. 
 
Linux-based Samba servers are becoming more popular and visible in modern-day 
corporate computing environments [4,5].  In the data-centric heterogeneous client-server 
model, file servers like SAMBA make data available to clients of all sorts in a seamless 
fashion.  In this study, we analyze two workloads to gain insight on message exchanges 
and resource usage patterns.  One is that of a simple interactive “rename” operation; its 
trace allows us to see the typical message exchanges between a Linux Samba server and a 
Windows NT client.  This is presented first as a simple example for understanding the 
SMB/CIFS protocol. 
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The other is that of the well-known NetBench [6] benchmark which measures throughput 
and response time with a simulated set of typical Win32 application scripts.  This 
benchmark is often used to compare SMB/CIFS file servers for their serving capacities.  
We use Linux system call tracing facilities and Samba logging features to characterize 
the workload in terms of file system pathnames, system calls, and traffic patterns.  This 
technique can be also applicable to on going monitoring of Linux-based SAMBA servers. 
 
2. Workload Characteristics of a Simple “Rename” Operation 
 
To gain insight on the SMB/CIFS message exchanges and the resource usage pattern, we 
start with a simple “rename” operation of a file object.  In a typical command language, 
we run “rename oldname newname” to change the name of a file object from oldname to 
newname.  Most operating systems and protocols have direct support for this common 
operation either as standard system call or as a transaction operation code.  This 
experiment uses a Windows NT 4.0 Explorer as client shown in Figure 1.  You single 
click twice to allow the GUI to highlight and open up a box to enter a new name for the 
file object called “oldname”.  We type in “newname” with “Enter” key to complete the 
operation. 
 

 
Figure 1:  A Simple Rename Operation with Windows NT Explorer 
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On the server side, the Samba daemon is started as “smbd –D –d 10”.  This starts the 
Samba as a daemon process that detaches itself from the terminal, and runs in the 
background with debug level set to 10.   This produces lots of debug and tracing 
information to a log file which we extract transaction information to produce Tables 1 
and 2.  The extraction processing is straightforward using Linux command “grep 
smb_com –C5 logfile” [7].  In essence, we are extracting all occurrences of “smb_com” 
keyword along with its 5-line context. 
 
We have observed a total of 37 transactions for this “rename” operation in a Windows 
NT environment as shown in Tables 1 and 2.  We do not show the first eight transactions 
when Windows’ Explorer first accesses and opens the top-level directory as shown in 
Figure 1.  These CIFS transactions include initial protocol negotiation, tree connect 
request, querying file system information, reading the root directory for display purposes, 
opening the root directory, and asking the server to notify change in the root directory. 
 
The client implementation, that is, the Windows NT Explorer, uses the request/response 
SMB/CIFS protocol taking appropriate steps to ensure the desired file system properties 
and integrity constraints are observed and maintained before and after the operation.  
There are total of 37 transactions and we break this down to two tables of manageable 
sizes for illustration purposes.  At the highest level, a rename operation has to verify first 
that the original name exists with proper attributes, second that the new name does not 
exist, and then the “move” operation is issued to the server for the desired change.  
Nevertheless, lower file-system specific details have to be considered by the client 
implementation such as case sensitivity (or insensitivity) and name mangling possibility.  
This usually adds a few exchanges of messages somewhat unexpectedly by the normal 
users of the system.  It is also useful to note that “FindFirst” (a trans2 subcode) 
subcommand is used to search directory for the desired filename or filename pattern. 
 
 

Table 1: CIFS Transactions for Rename Operation (part 1/2) 
Transaction 
Number 

CIFS transaction Sub-
commands 

Argument Return Remark 

9 (0xA2)NTcreateX  \oldname Fnum 4527 (starting point) 
10 (0x04)Close  4527   
11 (0xA2)NTcreateX  \oldname Fnum 4528 (second time) 
12 (0x04)Close  4528   
13 (0xA2)NTcreateX  \oldname Fnum 4529 (third time) 
14 (0x2E)readX 4529 Max=min=8 Nread=8  
15 (0x04)Close  4529   
16 (0xA2)NTcreateX  \oldname Fnum 4530  
17 (0x2E)readX 4530 Max=min=8 Nread=8 (read again) 
18 (0x32)trans2 Qfileinfo,0x104 . (dot)   
19 (0x32)trans2 Qfsinfo, 0x105    
20 (0x32)trans2 Findfirst \oldname   
21 (0x32)trans2 Findfirst \newname Error code  
22 (0x04)Close  4530   
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In Table 1, “NTCreateX” transaction is used to open the file object with name 
“\oldname”.  At some point, the file length information is obtained so that a “readX” 
transaction is issued to read the content.  It is not clear why this client has to issue three 
NtcreateX requests before it issues the readX request.  Different clients might have 
different implementations for similar operations. 
 
Transactions 18 through 22 basically query file system tree information and check the 
existence of “oldname” and non-existence of “newname” in the current directory.  Note 
that the number of bytes read happens to be 8 bytes long since the content of the file is 
initialized to be “oldname\r” in our example. 
 

Table 2:  CIFS Transactions for Rename Operation (part 2/2) 

 

Transaction 
Number 

CIFS 
transaction 

Sub-
commands 

Argument Return Remark 

23 (0xA2)NTcreat
eX 

 \oldname Fnum 4531 (until #43) 

24 (0xA2)NTcreat
eX 

 \newname Error code  

25 (0xA2)NTcreat
eX 

 \newname Error code (second time) 

26 (0xA2)NTcreat
eX 

 \newname Error code (third time) 

27 (0x08)getattr  \newname Error code  
28 (0x32)trans2 Qfilepathinfo,0

x101 
 \oldname  

29 (0xA2)NTcreat
eX 

 \oldname Fnum 4535 (nested open) 

30 (0x04)Close 4535    
31 (0xA2)NTcreat

eX 
 \oldname Fnum 4536 (nested open) 

32 (0x32)trans2 Qfileinfo,0x102 \oldname   
33 (0x2E)readX 4536 Max=min=256 Nread=8  
34 (0x2E)readX 4536 Max=min=512 Nread=8 (read again) 
35 (0x32)trans2 Qfileinfo,0x102 \oldname  (same as #32) 
36 (0x2E)readX 4536 Max=min=2 Nread=2 (read third time) 
37 (0x32)trans2 Qfileinfo,0x102 \oldname   
38 (0x32)trans2 Qfileinfo,0x102 \oldname   
39 (0x32)trans2 Qfileinfo,0x102 \oldname   
40 (0x2E)readX 4536 Max=min=8 Nread=8 (read exact) 
41 (0x2E)readX 4536 Max=min=4096 Nread=8 (read last time) 
42 (0x04)Close 4536   (open at #31) 
43 (0x04)Close 4531   (open at #23) 
44 (0x07)move  .\oldname 

.\newname 
 (THE command) 

45 (0x32)trans2 Findfirst, 0x104 \newname  (all done) 

 
In Table 2, transactions 23 through 43 encompass a large nested open loop to ensure that 
the “newname” does not exist, the “oldname” has certain attributes, and the pathname 
agrees with access permission before the actual “rename/move” transaction is requested.  
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Many read attempts with different maximum/minimum combination are definitely very 
peculiar for this implementation.  We observed the same kind of behavior with a DOS 
client (under command prompt) and other clients in different versions of Windows. 
 
The very last transaction corresponds to the verification of the file object name before the 
string is displayed on the Explorer’s window.  Note that this last transaction is 
understandably specific to the GUI requirements of visual change/update of file attribute 
and size for the object selected.  Analyzing the log file resulted from running a simple 
“rename oldname newname” using DOS client can help us to explain some differences 
with respect to that of the Explorer counterpart.  Nevertheless, multiple re-reads and re-
opens are present on both log files in our study. 
 
In addition to preparing for the server to log important details for this simple operation, 
we use the system call trace utility (strace) to record the system call activities.  Two 
variations were used: 

strace –f –c –o /tmp/rename.Ctrace –p 1238 
strace –f –o /tmp/rename.trace –p 4131 

The first form traces the process 1238, presumably the samba daemon process for the 
client in question, follows through fork()  system calls, and saves the summary (-c option) 
to the log file named /tmp/rename.Ctrace.  The second form does no summary, but it 
provides a history of traced system calls in the log file. 
 

Table 3: System Call Breakdown in terms of CPU Time 
2.0.7 samba NT4.0 Explorer

% time seconds usecs/call calls errors syscall

80.00 0.041734 1128 37 select
6.37 0.003323 185 18 getdents
4.37 0.002281 62 37 send
2.99 0.001558 19 81 read
1.62 0.000846 11 78 semop
1.59 0.000831 19 43 20 stat
0.79 0.000412 21 20 6 open
0.51 0.000267 6 44 gettimeofday
0.39 0.000201 201 1 rename
0.35 0.000185 11 17 getpid
0.35 0.000182 9 21 fstat
0.28 0.000148 11 14 close
0.18 0.000093 8 12 lseek
0.12 0.000064 7 9 fcntl
0.04 0.000022 22 1 lstat
0.03 0.000018 9 2 kill

100.00 0.052165 435 26 total

rename oldname newname

 
 
The system call trace breakdown is shown in Table 3 for the “rename” operation.  Since 
this trace is gathered when the user is using the GUI to do file name change, most of the 
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time server spent is on network and socket related select() system call.  It is worth noting 
that there are many getdents() calls and stat() calls which are results of going through the 
directory many times and checking the existence and non-existence of given file names. 
 
System call traces without the summary mode logs each system call and thus provides a 
time-sequenced set of events.  Among these 435 system calls, 43 of them are stat() calls.  
Figure 2 gives the flavor of some of these stat() calls with their arguments and return 
values.  These naturally lead to the investigation of the needs of stat() system calls and 
the overall architecture of implementing a cache for the stat() system call results.  That 
was a different but a related task in this study.  It is illustrated further in the next Section. 
 

strace output and grep "stats" (43 calls)

2.0.7 samba and NT4.0, Explorer, rename oldname newname

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat(".", {st_mode=S_IFDIR|S_ISVTX|0777, st_size=204800, ...}) = 0

4131 stat(".", {st_mode=S_IFDIR|S_ISVTX|0777, st_size=204800, ...}) = 0

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("./oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("newname", 0xbfffe398) = -1 ENOENT (No such file or directory)

4131 stat("newname", 0xbfffe398) = -1 ENOENT (No such file or directory)

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("oldname", {st_mode=S_IFREG|0664, st_size=8, ...}) = 0

4131 stat("newname", 0xbfffe778) = -1 ENOENT (No such file or directory)

4131 stat("newname", 0xbfffe778) = -1 ENOENT (No such file or directory)

4131 ……………….  
Figure 2: A Sample of stat() System Calls in "rename" Operation 
 
3. Workload Characteristics of NetBench Runs 
 
NetBench is a portable benchmark that measures the performance of file servers as they 
handle network file requests from clients [6].  Clients in this context are PCs running 
Windows 95/98, 2000, or Windows NT.  The server environment is modeled as data 
provider for the applications such as word-processing or spreadsheet program that run on 
the clients.  As a result, the server’s disk I/O speed and network I/O speed are expected to 
be the areas that affect the benchmark score.  NetBench provides an overall I/O 
throughput score and average response time for the server and individual scores for the 
clients. 
 
Figure 3 shows the result of throughput measurement for a Linux Samba Server 
configured with 2-way SMP 800MHz Pentium III, 2GB memory, and 1Gbps Ethernet 
card.  The Linux server in question runs a stock 2.4.0 kernel with ext2 file system and 
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Samba version 2.0.7.  We use NetBench version 6.0 for this experiment.  The client 
environment consists of 22 Windows NT machines each of which logically simulates up 
to 3 clients per machine for the experiment.  Note that the unit of throughput is Mbits per 
second (Mbps).  This is proportionally correlated to the number of transactions and work 
done by the clients.  This metric represents the number of bits moved divided by the 
amount of time to do so, and it is an internal measure of work done and is not a direct 
measure of any throughput of disk or network bandwidth.  This represents the total of all 
participating clients in the experiment.  The server performance peaks out around 317 
Mbps for this configuration.  Without the SMPness, the throughput stops around 240 
Mbps in the same configuration. 
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Figure 3: NetBench Throughput as a function of Number of Windows NT Clients 
 
NetBench also tracks the response times of the majority of the I/O calls in milliseconds.  
Figure 4 depicts the average response time across all calls and all clients participated in 
the experiment.  This metric is typically used as a sanity check to detect any undesirable 
server behavior while the throughput measure is used to compare one SMB/CIFS server 
against another. 
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Figure 4: NetBench Average Response Time as a function of Number of Windows 
NT Clients 
 
From a microscopic viewpoint, we are also interested in the detailed resource usage 
pattern and file system access behavior of NetBench runs.  For this, we look into the 
details of one client run, record and examine its pathname access pattern. 
 
In a typical 5-minute run for NetBench, each client generates about 80,000 pathname 
resolution requests, that is, number of calls to unix_convert() function, and issues 370,000 
stat() system calls with 120,000 bad return code.  This heavy usage of stat() calls and 
unix_convert() function leads to serious investigation on the current implementation of 
unix_convert() function.  This function transforms the Windows pathname to canonical 
Unix pathname plus case sensitivity and name mangling processing and using stat() 
system call to verify the existence or non-existence of the translated pathname.  For 
example, this involves the translation of pathname “\clients\client1\~dmtmp\*” to 
“clients/client1/~dmtmp/*”.  Heuristics to cache partially matched prefixes of pathnames 
are used to speed up the translation and search.  This part has been traced and analyzed 
for a more efficient implementation.  Since the NetBench runs are basically CPU and 
network bound, and a sheer reduction in the number of stat() calls does not provide 
significant improvement in throughput measures.  Nevertheless, one of the internal tools 
used to stress various aspects of samba server functionality, that is, the smbtorture 
program, was used to compare “trans2” transaction for the change of the stat cache 
implementation.  This test happens to measure the efficiency of the alternate 
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implementation.  The overall CPU time decreases by about 23% with significant 
reduction of getdents() and stat() calls in the new implementation. 
 
We show the “before” and “after” system call distribution in Tables 4 and 5 to compare 
the new implementation using the insights of data analysis and review of access pattern.  
The number of stat() calls drop significantly with the new implementation, and the 
correct and more efficient handling stat() calls resulted in eliminating unnecessary re-
reading of the directory content.  The elimination of most of the getdents() calls is the 
reason for most of the 23% CPU time reduction. 
 

Table 4: System Call Distribution BEFORE the Change 

strace -c output (smbtorture trans2 test)

2.0.7 samba

getdents and stat calls are high 
% timeseconds usecs/call calls errors syscall

34.96 4.343811 207 21002  send 
17.01 2.114332 96 22004  getdents 
13.30 1.653141 30 56012  semop 

8.48 1.053835 26 41001 26001 stat 
5.09 0.632101 15 42007  read 
4.58 0.568644 27 21004  select 
3.80 0.471903 118 4000  unlink 
3.74 0.464828 46 10004 1 open 
1.42 0.176387 176 1000  mkdir 
1.35 0.167648 7 25003  gettimeofday
1.13 0.140352 9 16004  fstat 
1.12 0.139495 139 1003  write 
1.00 0.124036 12 10004  close 
0.86 0.107101 107 1000  rmdir 
0.79 0.098323 20 5000 1000 lstat 
0.62 0.077106 6 12014  getpid 
0.44 0.054617 9 6003  fcntl 
0.18 0.022139 22 1000  chmod 
0.13 0.015683 8 2001  lseek 
0.01 0.000784 7 116  time 
0.00 0.000075 38 2  chdir 
0.00 0.000044 22 2  brk 
0.00 0.000034 7 5  geteuid 
0.00 0.000022 11 2  setresuid 
0.00 0.00002 10 2  setresgid 
0.00 0.000018 6 3  getegid 
0.00 0.000007 7 1  setgroups 

100.00 12.42649   297199 27002 total 
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Table 5: System Call Distribution AFTER the Change 

strace -c output (smbtorture trans2 test)

2.0.7 samba with new unix_convert() implementation

getdents and stat calls drop significantly 
% timeseconds usecs/call calls errors syscall

45.31 4.389434 209 21002  send 
16.84 1.631563 29 56012  semop 

8.76 0.848463 25 34003 15003 stat 
6.52 0.631489 15 42007  read 
5.71 0.553045 26 21004  select 
3.82 0.370403 93 4000  unlink 
3.41 0.330606 83 4006 1 open 
1.86 0.180265 7 25003  gettimeofday 
1.71 0.165212 165 1000  mkdir 
1.30 0.126113 126 1003  write 
0.99 0.096295 96 1000  rmdir 
0.97 0.09366 19 5000 1000 lstat 
0.91 0.088597 9 10005  fstat 
0.80 0.077281 6 12018  getpid 
0.65 0.062744 16 4006  close 
0.23 0.02251 23 1000  chmod 
0.18 0.017473 9 2001  lseek 
0.01 0.000899 90 10  getdents 
0.01 0.000748 6 120  time 
0.00 0.00008 16 5  fcntl 
0.00 0.000073 37 2  chdir 
0.00 0.000048 24 2  brk 
0.00 0.000031 6 5  geteuid 
0.00 0.000028 28 1  ftruncate 
0.00 0.00002 10 2  setresuid 
0.00 0.000019 10 2  setresgid 
0.00 0.000018 6 3  getegid 
0.00 0.000007 7 1  setgroups 

100.00 9.687124   244223 16004 total 
 
Since NetBench is a script-based benchmark, the set of pathname used is somewhat a 
well characterized closed set of 260 unique names.  Their skewed distribution is partially 
shown in Table 6 sorted by reference count.  In this table, we can gain some insight on 
the pattern of the pathnames used. 
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Table 6: Part of Cumulative Distribution of Pathname References 

index cumulative(%) raw count pathname

1 11.74% 6378 \clients\client1\~dmtmp\*

2 18.19% 3506 \clients\client1\~dmtmp\PARADOX

3 23.80% 3052 \clients\client1\~dmtmp

4 26.94% 1708 \clients\client1\~dmtmp\WORDPRO

5 29.97% 1646 \clients\client1\~dmtmp\PM

6 32.60% 1429 \clients\client1\~dmtmp\WORD

7 35.12% 1367 \clients\client1\~dmtmp\ACCESS

8 37.57% 1336 \clients\client1\~dmtmp\COREL

9 39.67% 1139 \clients\client1\~dmtmp\EXCEL

10 41.67% 1088 \clients\client1\~dmtmp\PWRPNT

11 43.21% 837 \clients\client1\~dmtmp\PWRPNT\NEWTIPS.PPT

12 44.75% 837 \clients\client1\~dmtmp\PWRPNT\NEWPCB.PPT

13 46.18% 775 \clients\client1\~dmtmp\COREL\@@@CDRW.TMP

14 47.32% 620 \clients\client1\~dmtmp\WORDPRO\LWPSAV0.TMP

15 48.45% 616 \clients\client1\~dmtmp\EXCEL\RESULTS.XLS

For file log1a/log.dendro.UCCdout,

Total references = 54350, unique references = 267

(true hit 25952, 47%, and miss 28378)

 
 
In Figure 5, we depict the cumulative distribution of most to leastly used pathnames.  
Because of this narrow set and limited file operations to this set, the footprint of 
NetBench runs is mostly captured in main memory’s cache structures and leaves the 
NetBench runs CPU and network bound.  In a reasonably configured Linux Samba 
server, the typical resource limitations are in network bandwidth, CPU speed and the 
efficiency of Samba server implementation and network protocol stack implementation. 
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Figure 5: Cumulative Distribution of Pathname Frequencies in NetBench Runs 

 
4. Conclusions 
 
File servers are becoming an important part of enterprise computing.  They serve files to 
a plethora of heterogeneous operating systems and hardware platforms.  Linux-based 
SAMBA servers speak SMB/CIFS protocol allowing simultaneous file accesses to both 
Windows-based file systems and non-Windows-based, most notably, UNIX file systems, 
possible and convenient. 
 
In this study, we have analyzed two workloads to gain insight on the message exchanges 
and resource usages between Samba client and server.  One is that of a simple interactive 
“rename” operation; its trace allows us to see the typical message exchanges between a 
Linux Samba server and a Windows NT client.  The large number of transactions 
required to do a simple “rename” calls for a careful and efficient implementation of client 
and file serving daemon.  The other is that of the well-known NetBench benchmark 
which measures throughput and response time with a simulated set of scripts that use 
typical Win32 applications.  The planning of such server requires attention for efficient 
network protocol implementation and bandwidth as well as raw CPU power with 
sufficient memory for file system caching.  We have used Linux system call tracing 
facilities and Samba logging features to characterize the workloads in terms of file 
system pathnames, system calls, and traffic patterns.  This technique and insight allows 
the proper planning and monitoring of Samba servers which are becoming more popular 
in modern-day corporate computing environments. 
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