
RJ 10260 (A0210-041) October 24, 2002
Computer Science

IBM Research Report

Efficient Short String Compression with the
Burrows-Wheeler Transform

Cornel Constantinescu, J. Q. Trelewicz, Ron Arps
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

EFFICIENT SHORT STRING COMPRESSION WITH THE BURROWS-WHEELER
TRANSFORM

Cornel Constantinescu, J. Q. Trelewicz, and Ron Arps

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120 USA

e-mail: cornel@us.ibm.com, trelewicz@us.ibm.com, arps@almaden.ibm.com

ABSTRACT

There are applications (such as Internet search engines) where
short textual strings, for example abstracts or pieces of Web
pages, need to be compressed independently of each other.
The usual adaptive compression algorithms perform poorly
on these short strings due to the lack of necessary data to
learn.

In this manuscript, we introduce a compression algo-
rithm targeting short text strings; e.g., containing a few hun-
dred symbols. The algorithm is based on the following find-
ings. Applying the move-to-front transform (MTFT) after
the Burrows-Wheeler transform (BWT) brings the short tex-
tual strings to a “normalized form” where the distribution of
the resulting “ranks” has a shape similar over the set of nat-
ural language strings in a given language. This facilitates
the use of a static coding method with few variations, which
we call shortBWT, where no on-line learning is needed,
to encode the ranks. Finally, for short strings, shortBWT
runs very fast because the strings fit into the cache of most
current computers.

1. INTRODUCTION

Compression of symbolic information constructed accord-
ing to a grammar, such as textual strings, has long been a
topic of interest in computer science. The Burrows Wheeler
transform (BWT), combined with some form of the move-
to-front transform (MTFT), has received significant atten-
tion in recent years. Applying the MTFT after the BWT
brings textual strings to a “normalized form”, utilizing con-
textual information inherent in language grammars. Alone,
these two transforms do not compress the data but utilize
contextual redundancy to facilitate entropy coding. The BWT
and MTFT are invertible, still permitting subsequent loss-
less compression. The “ranks”, output from the MTFT, are
then entropy-encoded to achieve the needed compression.

In applications such as Internet search engines, short
textual strings need to be compressed independently of each
other. These strings may comprise titles or abstracts of the

pages. The usual adaptive compression algorithms give rel-
atively low relative compression gain (rCG) on these short
strings due to the lack of necessary data to learn. rCG is de-
fined as the relative decrease in size of the string, as a result
of compression. Furthermore, the application is extremely
sensitive to speed of computation, since compression and
decompression must occur in real time. In [1], it is shown
that the speed of convergence of BWT-type compression is
faster than, e.g., that of Lempel-Ziv-type algorithms, sug-
gesting the suitability of BWT-type algorithms for this type
of application.

Much of the BWT and MTFT literature has debated the
suitability of one algorithm configuration over another, jus-
tifying these results against standardized test suites of large
files. However, there has been little activity in short string
compression, where computation speed is critical.

In this paper we introduce a notation for the BWT and
MTFT to facilitate the subsequent discussion. We give an
overview of the recent literature concerning these transforms
applied to the compression of symbolic grammatical data.
We then develop our algorithm, ShortBWT, for short string
compression, comparing its compression performance to that
of several popular compression algorithms.

2. UNDERSTANDING THE TRANSFORMS

This section gives an overview of the transforms, devel-
oping a notation. An illustrative example is provided in
Sec. 2.4 to aid the reader in understanding the operation of
the transforms.

2.1. Burrows-Wheeler Transform

Let finite, well-ordered, symbol alphabet
�

be given, with
length � � � and lexicographical ordering � (extending natu-
rally to � , � , and �). Define ���	 � the sentinel symbol
such that �
������ 	 � . Consider � a finite string of sym-
bols in

�
, and let � ��� be the length of � in symbols. The

BWT is denoted by ��� , which permutes � . The inclusion

1

of the symbol � facilitates the inversion of � � in this con-
figuration. Some other configurations of the BWT do not
employ the sentinel, using other methods for inversion.

The BWT is used to group locally-frequent symbols in a
string. The transform is invertible, thus suitable for lossless
compression of text information. All substrings of � , each
terminated by � , are sorted lexicographically by the second
symbol in the symbol-order-reversed substring. The value
of ��� � ��� is the first symbol of each substring, in the sorted
substring order. For example, if �����	��
	��
	� , ��� � �����

	����� , with an implicit � at the end of ��� � ��� .

The BWT can be seen as sorting the symbols of the tex-
tual string according to their symbol contexts, thus cluster-
ing in ��� � ��� the symbols that appear in the same context.
These substrings, or suffixes, may be ordered through con-
struction of a suffix array [2], essentially a sorted suffix tree.
Using conventional algorithms, the suffix tree may be con-
structed in � � � ����� ��� � � � � time in � � � ��� � space. Much of
the recent interest in the BWT is based on this characteris-
tic, making it well-suited for use in natural language string
compression.

The BWT by itself does not provide compression, but
when combined with a transform like the MTFT and an
entropy code, compression of the text information may be
achieved. Efficient implementations of � � are described in,
for example, [3].

2.2. Move-to-Front Transform

The MTFT is denoted by ��� , taking a string (such as ��� � ���)
to � , the set of finite sequences in � . These sequences are
called ranks, and are used to compress � , by providing po-
sition and context information for suffixes of � .

Any localized region of ��� � ��� is likely to contain a
large number of a few distinct symbols. The overall effect is
that the probability that given symbol will occur at a given
index � in ��� � ��� higher if that symbol occurs near index �
in ��� � ��� . This property is exactly that needed for effective
compression by ��� , which encodes an instance of a sym-
bol by the count of distinct symbols encountered since the
most recent occurrence of that symbol. When ��� is applied
to ��� � ��� , the output is ideally dominated by low numbers,
which can be efficiently encoded with a Huffman or arith-
metic coder.

The MTFT operates in order on the elements of ���
��� � ��� , giving ��� ��� � ��� � ��� with sequence elements
�"!#�%$'&(&(&)�+* ,-* . In what follows, .0/1��2"34/"5 6�7 * 8'*6:9 ! is a permu-
tation of

�
, with . ! defined as

�
and

� / �<;�=+3 /"5 6 �>� /
. /"? ! � � � /�@ �A! @ &(&(& @ � /+B ! @ � /"? ! @ &(&(& @ ��* 8'* �

Thus, as ��� steps through the string, it moves the current
symbol in the string to the front of the permuted alphabet

and outputs as the rank the previous position of the sym-
bol in the alphabet. The MTFT can be seen as associating
smaller integers with frequently-occurring symbols in � .

Although ��� does not compress � , it can help sub-
sequent entropy coding to reduce redundancy. When ���
follows ��� , locally-frequent symbols for every context of
the given string are grouped. Even though ��� is language
independent, a language-sensitive initial ordering of

�
can

help to improve the rCG by reducing the magnitude of � / by
placing frequently-occurring symbols near the beginning of�

. In [4], a non-lexicographical ordering of
�

is recom-
mended, which affects ���C� ��� and thus impacts rCG. If
the language of the text is known in advance,

�
may be or-

dered according to statistics for the language.

A number of improvements on ��� for specific applica-
tions are discussed in the literature. In [5], a dictionary of
common words in the target language is used, where these
words are replaced with alternate strings of symbols, which
in their application provides improvements in the rCG of
up to 20% over bzip2 (a freeware implementation of a
BWT-based coder using adaptive arithmetic entropy cod-
ing, adapted from [3]). In [6], Inversion Coding replaces
��� , which is shown to provide better rCG than ���C� ���
for large files, but comparable results for small files.

Some implementations avoid ��� altogether. In [7], sym-
bols in are encoded directly, without ranks. This is shown to
provide higher rCG on large files, but is significantly slower
than ��� . Our application must run in real time, so that run-
time speed must be traded against rCG. Also, the gains in
rCG obtained coding symbols directly are not significantly
high (on the order of 2%) to justify the additional computa-
tional complexity for our application.

2.3. Huffman coding

It is shown in [8] that the output of ��� is approximately
memoryless and piecewise stationary, making it appropriate
for Huffman entropy coding [9]. As can be seen in the com-
pression comparison of Fig. 2, using self Huffman code-
books (i.e., separate Huffman codebooks trained on each
compressed string) gives the best compression. However, in
this case the Huffman codebook must be encoded and sent
to the decoder, significantly impacting both rCG and speed
for our short-string application.

Alternatively, the Huffman codebook can be approxi-
mated to simplify its encoding (without significantly affect-
ing the overall code lengths). It should be noted that this
method is robust, while providing some adaptivity. Alter-
natively, the encoder may employ a set of predetermined
Huffman codebooks, sending to the decoder the index of the
appropriate codebook. The codebook may be chosen by, for
example, a metric such as that mentioned in Sec. 2.6.

2

2.4. Illustrative Example

The following small example is discussed to illustrate how
��� � ��� can lead to compression of text. Consider the effect
on a single symbol in the common English word “the”, and
assume that the input string is long enough to have several
instances of this word. In ��� � ��� , all substrings beginning
with “the” will be grouped together. Because � � operates
on the symbol-order-reversed string (e.g., where “the” be-
comes “eht”), a large proportion of them are likely to end
in “t”. The reason for this is that English has many words
beginning in “t”. One region of ��� � ��� will contain a large
number of suffixes beginning in “t”, intermingled with other
symbols that can precede “the”. The same argument can be
applied to all symbols in all words, so any localized region
of the transformed string is likely to contain a large number
of a few distinct symbols.

2.5. Alternative Implementations

It has been shown (e.g., [10]) that a natural language can
be modeled by an exponential distribution in language fea-
tures, such as � . We denote the language parameter � in
the distribution; i.e., the probability that two suffixes in the
language are identical in the first � symbols and different
in the ����� st is approximately ��� B
	�� for large � . This
parameter � can be sent in the compression header, giving
a similar rCG advantage as the Huffman codebook approx-
imation method, discussed in Sec. 2.3 above.

2.6. Screening Strings

Because this short string application is extremely sensitive
to computation speed, it is important to be able to estimate
whether a short string will compress with ShortBWT. How-
ever, performing this screening must not significantly slow
the compression.

In [11] we developed a computational method for Short-
BWT that compresses the string iteratively. The algorithm
builds a two-dimensional function, based on the alphabet�

and the truncated suffixes of � , iterating on the maxi-
mum truncated suffix length � . The two-dimensional func-
tion is used to compute a metric, which is an approximation
of the expected rCG. Although the details are beyond the
scope of this paper, our previous work shows that the met-
ric converges quickly to the actual rCG for natural-language
strings. The building of the two-dimensional function also
computes the compressed output directly. Thus, the metric
can be used to abort the computation quickly if little or no
compression is indicated.

3. DETAILS

For short textual strings, of few hundreds symbols, it is illus-
trated in Fig. 1 that the distribution of the symbols frequen-
cies in ��� � ��� � ��� is very similar for different strings in a
given language (in this case, English). Thus, a static Huff-
man coder can efficiently encode the transformed string.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

Symbol

N
or

m
al

iz
ed

 F
re

qu
en

cy

s1
s2
s3
s4
s5
s6

Figure 1: Symbol frequencies after ��� � ��� .

To build the Huffman code for use over a very large set
of short strings, a relatively small set of strings was used as
a training set. These strings were individually transformed
(��� � ���) and the frequency of occurrence of each rank
was accumulated. To waste the least possible code space,
a frequency of 1 was assigned to each of the 256 possible
ranks that did not occur with the training set, and all the
other rank frequencies were multiplied by a constant (50 in
our experiment). By doing this frequency assignment, the
alphabet does not need to be explicitly encoded. Based on
these frequencies we chose to generate a canonical Huff-
man code, where the Huffman algorithm is used to get the
lengths of the codewords, but the codewords for each length
are consecutive binary numbers [12]. The canonical Huff-
man code has several well-known advantages: fast decoding
and minimal memory required to hold the codebook. These
advantages are especially useful when the codebook has to
be sent to the decoder.

1 2 3 4 5 6
50

100

150

200

250

300

String Number

S
tr

in
g

S
iz

e
(b

yt
es

)

Original
compress
bzip2
self Huff
s2
s3
s6

Figure 2: The compressed sizes on six realistic sample tex-
tual strings.

In Fig. 2 we compare ShortBWT (using a static Huff-
man coder) with available adaptive coding algorithms: UNIX

3

compress and bzip2. The “self Huff” configuration uses
ShortBWT with a self Huffman table for each string. Con-
figurations “s2”, “s3” and “s6” use ShortBWT with the
static self Huffman tables for strings s2, s3, and s6, respec-
tively, to encode all of the other strings. It can be seen from
the figure that using any of the static Huffman tables (s2, s3,
or s6), the compressed sizes are smaller than for the alter-
native, bzip2 or compress, algorithms. Also, the choice
of which Huffman table to use is not as critical; this is be-
cause the frequency distribution of the symbols in any of the
transformed strings are very similar, as seen in Fig. 1.

In Fig. 3, we show the result of compressing 1000 short
textual strings (with lengths on the order of a few hundred
symbols) with ShortBWT and some popular, conventional
text compression algorithms. It can be seen from the fig-
ure that ShortBWT provides about 30% rCG improvement
over the comparison algorithms.

0

20

40

60

80

100

120

140

160

180

200

String

C
om

pr
es

si
on

 S
iz

e
(b

yt
es

)

ShortBWT

Original Size

Gzip

Compress Bzip2

Figure 3: Compression comparison of ShortBWT, com-
press, gzip, and bzip2 on 1000 short textual strings.

4. CONCLUSIONS AND FUTURE WORK

We have introduced an algorithm for compression of short
strings, with applications in Internet search engines and other
indexing operations. Our algorithm has been shown to per-
form better than other, popular algorithms used for com-
pression of textual strings. This algorithm can be imple-
mented using iterative technology that we introduced previ-
ously, facilitating screening of the strings for expected rCG.

We are also exploring improvements to the algorithm.
For example, if the distribution of zeros is very skewed
the algorithm can use arithmetic coding to encode events
as zero or non-zero, using Huffman coding to encode only
the non zero symbols.

5. REFERENCES

[1] M Effros, “Universal lossless source coding with
the Burrows Wheeler transform,” in Proc. DCC’99
Data Compr. Conf., Snowbird, UT, USA, 29-31 March
1999, pp. 178–187.

[2] U Manber and G Myers, “Suffix arrays: a new method
of on-line string searches,” SIAM J. Comput., vol. 22,
no. 5, pp. 935–948, Oct. 1993.

[3] P M Fenwick, “The Burrows-Wheeler transform for
block sorting text compression: principles and im-
provements,” Comput. J., vol. 39, no. 9, pp. 731–740,
1996.

[4] B Chapin and S R Tate, “Higher compression from
the Burrows Wheeler transform by modified sorting,”
in Proc. DCC’98 Data Compr. Conf., Snowbird, UT,
USA, 30 March - 1 April 1998, p. 532.

[5] H Kruse and A Mukherjee, “Improving text com-
pression ratios with the Burrows Wheeler transform,”
in Proc. DCC’99 Data Compr. Conf., Snowbird, UT,
USA, 29-31 March 1999, p. 536.

[6] Z Arnavut, “Move to front and inversion coding,” in
Proc. DCC 2000 Data Compr. Conf., Snowbird, UT,
USA, 28-30 March 2000, pp. 193–202.

[7] A I Wirth and A Moffat, “Can we do without ranks in
Burrows Wheeler transform compression?,” in Proc.
DCC 2001 Data Compr. Conf., Snowbird, UT, USA,
27-29 March 2001, pp. 419–428.

[8] K Visweswariah, S Kulkarni, and S Verdu, “Output
distribution of the Burrows Wheeler transform,” in
Proc. 2000 IEEE Int’l Sym. on Information Thy., Sor-
rento, Italy, 25-30 June 2000, p. 53.

[9] T M Cover and J A Thomas, Elements of Information
Theory, John Wiley and Sons, Inc., New York, 1991.

[10] S F Chen, K Seymore, and R Rosenfeld, “Topic adap-
tation for language modeling using unnormalized ex-
ponential models,” in Proc. 1998 IEEE ICASSP, II,
Seattle, WA, USA, 12-15 May 1998, pp. 681–684.

[11] J Q Trelewicz, Cornel Constantinescu, and Ron Arps,
“A metric for compression with the Burrows-Wheeler
and move-to-front transforms,” to appear in Int. Jnl.
of Comp. and Num. Anal. and Apps., 2002.

[12] D Hirschberg and D Lelewer, “Efficient decoding of
prefix codes,” Comm. ACM, vol. 33, no. 4, pp. 449–
459, Apr. 1990.

4

