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Abstract

This paper describes a real-time computer vision system to
detect and track people in stores to understand retail cus-
tomer behavior while shopping. We propose an approach
to detect and track people and their body posture without
using an explicit 3D human model using overhead narrow-
baseline stereo cameras. The proposed method is based on
a 3D silhouette of people that is constructed from a 2D sil-
houette. The 2D silhouette is detected by color and disparity
background subtraction. Once the 3D silhouette is gener-
ated, people are identified with iterative segmentation of a
3D silhouette based on the topological structure of human
body. Once people are detected, their appearance model
based on color and shape are generated and tracked over
multiple camera using their 2D trajectory continuity and
their appearance models. A shape histogram, the distribu-
tion of relative positions of points on a 3D silhouette, is
introduced to estimate the posture and body parts to under-
stand the people and object interactions in stores, such as
”customer picking a object from a shelf”. The initial pilot
studies show the real-time performance and accuracy of the
system to understand customer behavior.

1 Introduction

Leading edge retailers are using cameras to understand cus-
tomer behavior to improve customer relationship manage-
ment (CRM). CRM allows companies to understand their
customers behavior for better customer understanding, such
as, how customer interact with their brands in stores, prod-
uct purchase decision, product promotion, and better cus-
tomer satisfaction, such as, customer activity monitoring,
improved operation efficiency and labor productivity, better
store layout, self-service efficiency.

One challenging problem for retailers is to understand
the interaction between customers and merchandise in the
store to explore the shopping behavior. For example, a cus-
tomer looks at an item on a shelf, picks up the item, looks
for a price or information, then places it back on the shelf
or in a shopping cart. In order to extract this information,

∗this paper includes color illustrations, please print this paper with color
printer

Figure 1: An example of understanding customer behav-
ior in store: the color (top-left) and disparity image(top-
right), the detection of 2D silhouette of people (in blue) and
shadow removal (in red) (bottom-left), detection of ”Pick
Event” where 3D scene are constructed by disparity and the
3D silhouette of detected person (in white pixel).

we need to detect and track shoppers in the store, their body
orientation, posture. In this paper, we describe a real-time
system to detect and track people to understand their behav-
ior in retail stores while shopping using overhead narrow
baseline stereo cameras as shown in Figure 1(movie1).

Several challenging vision problem arose during our in-
vestigation of human shopping behavior. First, we need to
detect each customer as soon as they enter the store. In
many cases, people appear as a small groups and they move
together in store where individual people may not visually
isolated. We propose a method based on iterative segmenta-
tion and of a 3D silhouette of people to segment each indi-
vidual people and determine their body orientation and pos-
ture. Second, we need to detect the head, shoulder, arms,
and hands to detect and understand the “picking an object
from shelf” event and other interactions. The computational
models proposed in the system are based on observations
obtained by analyzing human body structure. The human
body has topological constrains on the relative location of
body parts with respect to each other, e.g. head supported
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Figure 2: an instance of VCRM system with three camera
monitoring an aisle in a retail store: color images (top-row),
disparity images (second row), 3D reconstructed aisle and
people segmentation in two different virtual view (third-
row), and customer trajectories mapped floor plan (bottom-
row)

by shoulder and torso, arms connected to shoulder. Third,
we need to track them trough out entire store to recover the
full trajectory to understand their moving pattern. That re-
quires tracking each people over multiple camera. We com-
bined appearance based tracking method with trajectory-
continuity constraints in an hierarchical way to recover the
full trajectory of each people over multiple camera. Ap-
pearance model is generated for each detected person using
their color and shape of their 3D silhouette. The trajectory
continuity constraints and appearance similarity allows us
to resolve the tracking ambiguities while people leaving one
camera’s field of views and enter other’s.

Our system consists of multiple narrow-baseline over-
head digital stereo cameras [7] mounted on the 13 feet
ceiling looking down to the floor as shown in Figure 2.
The camera captures two images (left color and right
monochrome) and a disparity image is computed using area
based stereo matching [8]. The cameras are fully calibrated
using an automatic calibration procedure developed for this
project. Both extrinsic and intrinsic parameters are recov-
ered, including radial and tangential lens distortion param-
eters. This enables us to construct a 3D scene from an over-
head camera and compute the transformation from camera
coordinate system to a common world coordinate system.

The system first detects the 2D silhouette of people using
background subtraction on color and disparity [5] images
along with “volume of interest” thresholding [1]. After
that, we reconstruct a 3D silhouette from 2D silhouette us-
ing the disparity information. Using iterative segmentation
of the 3D silhouette based on body topological structure
constraints, each person in group is segmented. A further
body posture analysis for each person, which does not re-
quire a explicit 3D human model, are applied to determine
body orientation and body posture to understand whether
people interacting object on the shelf. In addition, a hier-
archical multi-camera tracking algorithm based on appear-
ance and trajectory-continuity constraints are employed to
recover the trajectory of each person in the store as shown
in Figure 2.

There are four main contributions of our system: (a)dot-
coded checker pattern target used in multi-camera calibra-
tion which does not require a full view of target, (b) us-
ing 3D silhouettes to detect and segment each people, (c)
analysis of body posture and parts without using explicit
3D human body model, (d) combining shape and color ap-
pearance of people with trajectory-continuity constraints
to solve disambiguate while tracking people during hand-
off. A large number of people single camera real-time
tracking systems have been developed over the last several
years, most of them using color [15], background subtrac-
tion [5, 2], contour modeling, stereo [1, 9, 10] to detect and
track people and understand activities [11, 4]. Our system
takes advantage of both using color and stereo for better
detection and tracking which allows us to use 2D and 3D
information. Recently, the detecting and tracking of people
and body parts of people from video has been explored in
surveillance, HCI, and animation to understand high level
people activities. The majority of the researches rely on ex-
plicit 3D human body models where potential dynamic con-
straints and appearance of parts are used as main features to
detect and track body parts [12]. Most of the models rely on
edges and contours of body parts to estimate the location of
joint angles. However, the method we are describing in this
paper takes a different approach and leverages the method
and results of our previous work using 2D silhouettes [5].
Our approach to estimating body configuration is similar
to shape context, the distribution of relative positions of a
2D shape for shape matching, introduced by Belongie and
Later [14] used the shape context to estimate human body
configuration in 2D.

The remainder of this paper is organized as follows. Sec-
tion 2 explains multi-camera calibration, synchronization,
and color calibration used in our pilot-system. Section 3 de-
scribes the 2D foreground silhouette detection method we
employ and the construction of the 3D silhouettes. Sec-
tion 4 explains the computational model used to segment
each people from 3D silhouette. Section 5 describes the
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Figure 3: an instance of multi-camera camera calibration
and dot-coded checker calibration target used in the system
calibration procedure

multi camera tracking methods to recover full trajectories
of people. Section 6 introduces the view-invariant shape
model for body posture and determining the body posture
and part to understand ”pick event”. Section contains the
experimental results and discussion of future extensions.

2 Multi Camera Calibration

Our system consists of multiple narrow-baseline overhead
digital stereo cameras [7]. The cameras connected to PC-
based servers. Servers are synchronized using Network
time protocol (NTP). The cameras are fully calibrated us-
ing an automatic calibration procedure developed for this
project. Both extrinsic and intrinsic parameters are recov-
ered, including radial and tangential lens distortion param-
eters. As our Video-CRM system is going to be installed in
thousands stores, the multi camera calibration should not
take considerable long time in such a broad installation.
Therefore, we developed fast, easy of use, and automatic
calibration procedure for this project. We developed a dot-
coded checker pattern calibration target that allows us to
multi-camera calibration even when the calibration target
seen partially as shown in Figure 3. The each checker has
special dot codes which indicated its relative location in the
target. The calibration produce is simply moving the cali-
bration target in the store, where the target is automatically
detected by each camera system as soon as it enters the cam-
era’s field of view partially. Each camera collects the mea-
surements while the target in it’s field of view and those
measurement are used to compute the camera transforma-
tion. This procedure enables us to construct a 3D scene
from an overhead camera and compute the transformation
from camera coordinate system to a common world coordi-
nate system.

As the color mapping of each camera is not identical as

Figure 4: Example of 2D silhouette detection of a person
in two neighbor camera: color images, detected silhouette
in blue (middle row) and the detail (zoomed) of detected
silhouette of area of person hand (bottom row). Note that,
the shadows are extracted from silhouette and two fingers
can be detected precisely from 13 feet distance.

shown in Figure 2, we need to calibrate the color setting
in order to use appearance based methods across the cam-
eras. We used a checker colored color calibration target and
move the target across the camera to understand the color
transformation from camera to camera using first camera
as reference camera. In our system, experimental results
shows that the color transformation is linear all color chan-
nel. Each camera normalize the color before processing and
appearance information during multi-camera handoff.

3 Silhouette Detection

The silhouette of people is detected using a combination of
color and disparity based background subtraction followed
by a volume of interest filter. In our system, both color
and disparity differences are computed separately, and com-
bined together in a robust way that each method compen-
sate the weakness of the other one. We used a robust and
efficient color background subtraction algorithm that copes
with shadows [6]. In Figure 4, examples of foreground
detection and shadow elimination are shown where the de-
tected silhouette is in blue color.Note that, the detection can
achieve to distinguish two finger separation from 13 feet and
good shadow separation. The background image is learned
by computing the color chromaticity and brightness of each
pixel over a period of time. During silhouette detection, the
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Figure 5: An example of Silhouette detection: (a) Color
image, (b) disparity image (c) detected 2D silhouette, (d)
occupancy map (e) constructed 3D silhouette (side view),
(f) People segmentation results

chromaticity distortion and brightness distortion are com-
puted for each pixel, and each pixel is classified as fore-
ground, background, or shadow. The background model
in range is modeled as a single Gaussian computed using
over hundreds background disparity image. In order to re-
duce false positive errors caused by compression, camera
jitter and digitization, we combine consecutive foreground
detection results to obtain a 2D foreground silhouette.

We define a 3D silhouette a cloud of points in 3D, in
which each point in 3D is constructed from a point in 2D
silhouette using it’s disparity value. Since the stereo cam-
era has fully calibrated extrinsic and intrinsic parameters,
we can easily defined a transformation which maps a 2D
silhouette pixelp2 = [pu, pv, pd] to 3D silhouette pixel
p3 = [px, py, pz]. Here, u,v,d represents horizontal, vertical
and disparity value respectively , andx, y, z represents its
3D location. 3D Silhouette is not a complete 3D construc-
tion of human body since an overhead camera has limited
visibility of human body. However most of the upper body
can be reconstructed and be identified easily in 3D. One of
our main motivation is to be able use 3D silhouette for body
posture and part analysis and person detection (movie3).
An example of 2D silhouette detected by background sub-
traction and 3D silhouette generated by 2D detection and
range information is shown in Figure 5.

4 People Detection

3D silhouettes allow us to locate people in the scene, how-
ever they do not locate an individual person within the sil-
houette boundary as a 3D silhouette may contain multiple
people in its boundary. Person segmentation addresses the
problem of how each person be segmented from given a 3D
silhouette. In our system, the 3D silhouette are analyzed by
scanning from near to far in z iteratively to detect any one of
a head/shoulder region. In each iteration, a 3D silhouette of
a person is segmented, remaining 3D silhouette goes under
the same procedure to detect any other people until no more
3D silhouette points left. In each iteration, the head loca-
tion of a person is detected first, since head regions are rel-
atively simple to identify. Then, we compute a relative po-
sitions of each 3D silhouette point to the head location. We
do this in a manner that exploits the topological constraints
of body parts that enables us to identify the connection be-
tween body parts. Once a head/shoulder is detected, a nor-
malized distance map based on 3D path distances between
detected head/shoulder and any other 3D silhouette points
are computed. This normalized distance map allows us to
assign each 3D silhouette point to an individual people with
anowner likelihood. All 3D points which have high owner-
likelihood value, are segmented from 3D silhouette and as-
signed to one individual person. We applied same method
to all remaining 3D points which has low or zero owner-
probability recursively until there is no more head/shoulder
regions is detected (movie5).

4.1 Head/shoulder detection

The system employs a global shape constraint derived from
the requirement that the head be aligned with the axis of
the torso. In particular, by projecting 3D silhouette points
to the floor plane-projection histograms [5]-, the projection
peak occurs near the head since the majority of points in
the silhouette come from the head, torso, and shoulder re-
gions. We vertically project silhouette points into a floor
map representationH we call anoccupancy map[1]. Con-
sider a division of the floor plane into ann × m grid of
vertical bins. We define a functionγ : {x, y, z} → {n, m}
which uniquely maps a 3D location to an index{n, m} of
H. In our current implementation, each bin size represents
a20× 20mm2 area in the floor plane. The occupancy map
H is computed as:

H(n, m) =
∑
p∈S3

a(p) δ[γ(p)− (n, m)] (1)

whereδ is the Kronecker delta function,p is a 3D point in
S3, anda(p) is a measure of the area covered by the point
p. Figure 5(d) shows the occupancy map of 3D silhouettes,
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where potential heads are retained only where there are sig-
nificant peaks. The area measurea(p) boosts the contribu-
tion of pixels that are further away relative to closer pixels.
In our person tracking application, it helps to equalize the
appearance of tall and short people in the occupancy map.
To compute the area measurea(p), we compute a surface
approximation for each point in 3D. For a 2D silhouette
pixel, p2 = [pu, pv, pd], and its east and south neighbor-
ing pixelsp2

e = [pu+1, pv, pd] andp2
s = [pu, pv+1, pd] and

their corresponding 3D points<(p2),<(p2
e) and<(p2

s) the
area is computed as

a(p) = |<(p2)−<(p2
e)|x|<(p2)−<(p2

s)|y.

Here, the notation| · |x or | · |y means use thex or y coordi-
nate in the computation.

Head and shoulder locations are estimated using a near-
to-far scanning process inz. We observe that the total
surface area of head-shoulder region in the 3D silhouette
should be similar to the surface area of the head-shoulder re-
gion of a typical human body. Therefore, in an offline step,
we estimate a total surface areaAhs of head-shoulder region
of a typical human body. Then the system computes area
a(p) as discussed in the previous paragraph. As a 3D sil-
houette may contain multiple head/shoulder regions, we try
to detect one head/shoulder region at a time. In order to find
the group of 3D points in which represents a head-shoulder
region, we analyze the 3D silhouette from top to bottom.
While we are scanning the 3D-silhouette from top to bot-
tom, we are grouping 3D points based on their location. We
continue scanning until we scan enough 3D points where
the total area of 3D points in any one group is larger than the
expected area of a head-shoulder regionAhs. Depending on
the body posture and configuration as well as the number of
people in 3D silhouette, you can have more than one group
of 3D points for each head/shoulder region. We pick only
one group of 3D points in each scan that satisfies the total
visible surface area constraints to determine the correspond-
ing head/shoulder region. Once we find group of 3D points
which satisfies the total visible surface area constraints, we
use only those 3D points with their occupancy map values
together to estimate a head/shoulder point which represents
the head/shoulder region. In Figure 6(f) the weighted area
of each 3D points are shown, the size of the each rectangle
is directly related to the occupancy map value of that point:
One observes that the rectangles around shoulder and head
regions are bigger than the hands since the occupancy map
tends to peak at head regions.

4.2 Segmenting rest of the body

Once a head/shoulder point is identified on 3D Silhou-
ette, we analyze the connectivity and distance between
head/shoulder point and other 3D points on 3D silhouette.
The relative distances of each body parts to other parts is

Figure 6: An example of person segmentation using top-down
scanning: (a) color image, (b) detected 2D silhouette, (c) top-view
of constructed 3D silhouette (d) scanned 3D points (in green) in
first iteration of top-down scanning and detected head/shoulder re-
gion at this iteration (in red box) (e) occupancy maps (f) 3D rectan-
gular surface for 3D points, (g) distance transform computation for
detected head to other 3D point silhouette (h) segmented silhouette
region (in red) in first iteration using distance maps (j) remaining
scanned 3D points are shown in green in second iteration of top-
down scanning(k) detected head/shoulder region on remaining 3D
silhouette in second iteration (m) path distances computation for
detected head in second iteration (n) segmented silhouette region
(in yellow) in second iteration
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an important feature to distinguish the body configuration.
As human body is an articulated shape, the Euclidean dis-
tance may not be true to represent the topological structure
of the body part. Rather, apathdistance is more suitable for
computing topological distance as it takes the connectivity
properties of body parts into consideration. In our system,
we employ a method which computes a distance transform
from head location to each 3D point. Finding the neighbor
points in 3D is a computational expensive method. Instead
using 3D neighbor-connectivity, we describe a method us-
ing 2D neighbor-connectivity in 2D silhouette to find the
neighbor pixels, then their distance is computed in 3D. So
the total path distance from a detected head/point to another
point is just a distance transform over 2D silhouette using
3D distances of neighbor pixels. LetR(p3) = [p3

0, p
3
1, ..., p

3
k

be a path (ordered point list in 2D) from a detected head
point p3

0 = p3
head to a pointp3

k = p3 in 3D silhouette. The
distanced between any two consecutive pointp3

i andp3
i+1

in R is computed using Euclidean distance in 3D as

d(p3
i , p

3
i+1) = |p3

i , p
3
i+1| (2)

wherep3
i+1 is the one of 8 neighbor pixel ofp3

i in 2D sil-
houette and with a minimum 3D distance withp3

i . The total
path distanceD(p3) is computed as

D(p3) =
k∑

j=0

d(p3
j .p

3
j+1) (3)

If a neighbor pixel has more than 200mm in 3D, then we
consider those points are not neighbor in 3D even two pixel
are neighbor pixel in 2D.

Once a head/shoulder region detected and a path dis-
tances from head point to any other 3D points are computed,
normalized distancesN(p3) are computed to segment 3D
points from silhouette using path distanceD(p3) and the
size (sz) of the head/shoulder region, whereN(p3) =
2 ∗ sz/D(p3). Normalized distanceN(p3) indicates a like-
lihood (owner-probability) of a 3D point belong a particular
person. Therefore, we segment the 3D points which has
high likelihoodN(p3) > N thr (N thr is 0.8m in current
implementation) and remaining silhouette withN(p3) <
N thr are analyzed with the same method to detect any
other head and shoulder region to segment the remaining
people. This recursive method continues until no more
head/shoulder detected. Remaining 3D points which has
very low owner-probability is considered as false-detected
pixels in 2D points. Figure 6 illustrated an example of peo-
ple segmentation for two people.

5 People Tracking

Tracking a single person in entire stores requires multi-
ple camera as single camera’s field of view is not enough

to cover the entire surveillance area in entire stores. We
proposed a hierarchical approach for people tracking using
multiple camera to recover each person’s trajectory in entire
stores. This approach combines each camera’s local track-
ing results in hierarchical way to obtain the full trajecto-
ries in system’s common coordinate system. Each individ-
ual camera system tracks people while they are in camera’s
field of view using an appearance based tracking methods.
Each camera system reports their local tracks to it’strack
manager. Track managers are responsible to convert lo-
cal tracks to common coordinate system, combine them,
and resolve disambiguates in overlap areas. The overhead
cameras in our pilot-system are located and oriented as the
overlapped area between each cameras field of view is min-
imal enough that allow us to handle hand-off tracking from.
In Figure 7, an example of overlapped areas between three
cameras are shown.

Each camera system employs an appearance based track-
ing algorithm based on mean-shift tracking to track people
as long as they are in camera’s field of view. This tracking
allows us to recoverlocal (camera-centric) trajectories of
each people. The people appearance (color of clothing and
shape) is an important cue for visual tracking. We devel-
oped a real-time tracker based on the visual appearance of
people. The goals of person tracking stage are to initialize
an appearance model based on color and edge density when
a person appears on the camera’s field of view, and compute
the correspondence between person detected by the person
segmentation and the people currently being tracked and re-
cover the trajectories of each person in the cameras field of
view.

An appearance model is constructed for a person as soon
as they are detected in the person segmentation stage. The
appearance model consists of the red, green, blue color and
edge (gradient magnitude) densities of a person silhouette.
For computational simplicity, we approximate the appear-
ance distribution of a person using an n-bin histogram,θi.
Once the appearance model for person is computed, the lo-
cation of the person in the next frame is estimated by com-
puting the similarity between its appearanceθi and the ap-
pearance of each candidate locationαy in the next frame.
The two distributions are most similar when their correla-
tion is maximum. To find the location, in the next frame
requires an exhaustive search in the neighborhood. Instead,
we used a mean shift approach to achieve real-time perfor-
mance. The details about the appearance based tracking
used in our system can be found in [5].

Track managers handle tracking people in overlap areas
(hand-offs) and resolve ambiguities using both appearance
based methods (color and shape of people) and trajectory-
continuity constraints as shown in Figure 7. Track managers
also determine when a new person enters in the scene, gives
an unique person ID and track them using their unique IDs.
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Figure 7: People in overlapped areas are matched using ap-
pearance information-color and shape in tracking, and their
trajectory-continuity

Track Manager uses time-stamped local tracks to combine
multiple local tracks to a single common coordinate trajec-
tory. If a person in an overlap area, two or more local tracks
for the same person are reported by camera systems. Track
Manager combines these multiple tracks, which belongs
two same person, in to one common coordinate track by
using two constraints based on observations of how people
move: (a)Trajectory-Continuity: when combined, their
trajectories should show a continuation trends in common
coordinate system, (b)Appearance-Continuity: The color
and shape of the person should be similar in all the local
camera system.

6 Analyzing ”Pick Event”

We employed a further body posture analysis to understand
the interaction between customers and merchandise in the
store. For example, a customer looks at an item on a shelf,
picks up the item, looks for a price or information, then
places it back on the shelf or in a shopping cart. In order
to extract this information, we need to recover their body
orientation, posture and head orientation. We prefer an ap-
proach to detecting body posture without using an explicit
3D human model. We define a shape descriptor that ex-
presses the configuration of an entire 3D silhouette of a per-
song as a distribution of path distances (D(g)) and relative
orientations (α(g) andβ(g)) between a point on 3D silhou-
ette and the head point where the relative orientation is de-
fined as the angle between a vector originating from head
point to a point and the body orientation vector. We define
the body orientation vectorc as the minor axis of the 3D
head-shoulder region that can be computed by applying a
principal component analysis (PCA) to the head-shoulder
pixelsx andy locations in 3D. After we compute the body
orientation vectorc, we compute the angle betweenc and a
vectorv originated from head point to a point on 3D Silhou-
ette. We compute two anglesα andβ as relative orientation
descriptor.α is the angle onx axis betweencx andax, and

β is the angle onz axis betweencz and az. We believe
that the distribution of relative distance and orientation over
3D silhouettes is a robust, compact discriminative descrip-
tion that is invariant to orientation and translation and not
effected by partial occlusions. We compute ashape his-
togramW (g) of D(g), α(g) andβ(g) to identify the shape
of 3D silhouette. The shape histogram has large variations
in four common upper body postures seen in a store: cus-
tomer using no arm, using left arm, using right arm, and
using both arms. Other postures are a small variation of one
of the main body postures. The relative distances and orien-
tations do not change significantly while a person is in one
of the main postures. However, the relative distances and
orientations do change when they change their main pos-
ture. Our system classifies the observed human upper body
posture in a “hierarchical” manner: any posture is classified
as one of the main postures in the first stage using shape
histograms ofD andα, and the local variation and arm ori-
entation variation are computed in the second stage using
shape histogram onβ. We use an exemplar based shape
similarity approach to estimate the body configuration. We
experimentally generated an average of normalized shape
histogram for each of the four main upper body postures.
Each normalized shape histogram of a 3D silhouette is com-
pared with the shape histogram of those main postures. Let
W (g) be normalized shape histogram of a 3D silhouetteg
andW (Mi) be the normalized shape histogram of theith
main posture. The similarityt(g,Mi) of those shape his-
togram is computed ast(G, Mi) =

∑n
u=1 Wu(g)Wu(MI)

wheren is the number of bins in the shape histograms. The
two shape histogram are most similar whent(g,Mi) is max-
imum. From the highest scoring main posture,β(g) is used
to estimate the relative orientation of arms and hand in the
Z axis. Using both main and secondary posture estimation
allows us to estimate rough location of body parts where we
can detect “pick” events using topological property of body
parts once the posture estimated (movie7).

Once the pick event has been detected, we try to deter-
mine on which shelf level and which item the customer is
interacting. As we have already reconstructed 3D model
of aisles and shelves and we estimated the arm/hand lo-
cation in common world coordinate system using 3D sil-
houette, we can determine which shelf the customer is in-
teracting. Currently, we do not attempt to recognize the
merchandise that customer pick, instead, we used merchan-
dise/layout/ information (which provide ”where the mer-
chandise is stacked in the shelf” information). In Figure 8
showing some instances of 3D reconstructed and silhouettes
that the customer is picking object from different shelf lev-
els.
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Figure 8: Examples of ”Pick Event Detection”: the 3D silhouettes and scene are shown in bottom row

7 Discussion

We preferred stereo camera solution over monocular color
camera even though stereo is aq computational expensive
approach for better detection and posture analysis as we
can use 3D information to overcome some of the occlusion
problems. We preferred an approach to detect people with-
out using explicit 3D model of human, instead we use shape
and appearance constraints on topology of human body.

We evaluated the performance of our system as qualita-
tively using two 15 minutes sequence captured at 10 fps.
There are 17 people (5 of them moving as group) while
shopping in one aisle that we were monitoring. The system
correctly detected and labeled every person in the scene ex-
cept one person detected as two people for first 1 minutes
due to segmentation error and it is recovered later. Dur-
ing shopping, people were in mostly one camera’s field of
view and at most two camera’s field of view at a time, how-
ever, they moved trough the aisle so each camera system
can see them for some time interval. There are 29 hand-off
during tracking and the systems handle hand-off 27 times
correctly using both trajectory-discontinuity and appear-
ance information where trajectory-discontinuity alone han-
dles 18 hand-off correctly, appearance based hand-off alone
handle hand-off 21 cases correctly. There are 83 ”pick-
event” that the customer taking an object from shelves. The
system correctly detected the 76 pick-event with 91% ac-
curacy. For correctly detected pick event, the system cor-
rectly classify 69 pick-event with correct shelf determina-
tion. Currently in pilot system, there are 6 stereo head, two
stereo head connected to a dual with processor 1200 MHz
Pentium III computer runs at 5-7 fps using 320x240 reso-
lution video, this includes stereo computation, background
subtraction, 3D silhouette generation, body segmentation.
The overall system has been calibrated once it is still good
for 6 months.

Current system uses 3D silhouette segmentation by sin-
gle camera. We are working on extending capabilities of 3D
silhouette segmentation by combining 3D silhouettes gen-
erated by multiple camera and apply the 3D silhouette seg-
mentation method onto these merged 3D silhouette. This
yields better segmentation as some of the missing body part
which can not be seen by one camera, can be seen by other
camera.
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