
RJ 10276 (A0212-031) December 11, 2002
Computer Science

IBM Research Report

TSpaces Services Suite: Automating the Development and
Management of Web Services

Marcus Fontoura, Toby Lehman, Dwayne Nelson, Thomas Truong
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Yuhong Xiong
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94304

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

TSpaces Services Suite: Automating the Development and
Management of Web Services

Marcus Fontoura, Toby Lehman,
Dwayne Nelson, Thomas Truong

IBM Almaden Research Center
650 Harry Road San Jose, CA, 95120, USA

+1 (408) 927-1416
fontoura@almaden.ibm.com

Yuhong Xiong
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94304

yuhong.xiong@hp.com

ABSTRACT
Web services allow authorized entities (including individuals,
corporations, and automated agents) to employ software
components created by other parties scattered across the globe. In
support of this powerful model of interaction, we have designed
and implemented an infrastructure and a set of tools to simplify
the development and management of Web services. This
infrastructure and these tools form the TSpaces Services Suite
(TSSuite). This paper shows how TSSuite supports the Web
services model, and it describes the design and functionality of the
main TSSuite components.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Design Tools and Techniques –
modules and interfaces, object-oriented design methods.

D.2.6 [Software Engineering]: Programming Environments –
integrated environments, interactive environments.

General Terms
Design, Standardization, Languages.

Keywords
Web services, Tuplespaces, Service Development, Service
Maintenance, Development Environments.

1. INTRODUCTION
The evolution of distributed, Internet-based applications has
reached another milestone: Web services. Web services represent
a new level of inter-program (and inter-component) interaction
and behavior, as they provide a way to build large, flexible
applications dynamically, from a set of standard independent
software parts. Recently several standards and protocols for Web
services have been proposed [8], [9], [13], [14], [19], [21], [22],
[23] and Web services have gained a lot of attention by both
researchers and practitioners. However, there is still the need for
infrastructures and tools that support the Web services paradigm.
Infrastructures for the development and management of Web
services should be based on widely accepted standards and
interfaces, so that the services from different vendors can inter-
operate. Tools should assist service developers and providers in
automating administrative tasks, such as service registration.
This paper presents the TSpaces Services Suite (TSSuite), which

is an infrastructure and a set of tools for the development and
management of Web services. From the infrastructure point of
view, TSSuite can be viewed as a new layer over TSpaces [24]
that extends the tuplespace model [6] to handle Web services as
first class citizens. From the tools viewpoint, TSSuite automates
the development and management of Web services based on Java.
TSSuite is based on accepted industry standards for Web services,
such as UDDI [14], WSDL [23], and SOAP [21].
The rest of this paper is organized as follows. Section 2 presents
an overview of Web services and the technologies used to
implement them. Section 3 describes some related efforts in the
area of middleware and tool support for Web services. Section 4
discusses technical details, including a TSpaces overview and the
design and functionality of the main TSSuite components. Section
5 shows the TSSuite in action through a small example: a file type
conversion service that converts PDF file to Postscript (PS).
Finally, Section 6 concludes the paper and points out our future
research directions.

2. BACKGROUND AND TERCHNOLOGY
OVERVIEW
2.1 Background and terminology
The core entities related to Web services are services, service
interfaces, service brokers, and clients [11], as shown in Figure 1.
A service is a software application or hardware device that can be
invoked or used across a network. Each service implements one or
more service interfaces, which are described through service
description languages. A service interface describes the set of
operations supported by the service. A service broker is a
registry where services can be published and be discovered by the
clients. In fact, a broker is just a special kind of service that
provides operations for registering and discovering services. A
client is a software application that uses one or more services. In
general, a client uses a service broker to discover the appropriate
information about the service (e.g. its interface, address that it can
be invoked) before it can invoke the service directly or through an
intermediary. A client can itself be a service. In this case it is a
composite service, since it uses one or more services as its
components.
From the process perspective, the core activities related to the
development and management of Web services are creation,
deployment, configuration, and monitoring. Service creation
involves the implementation of the service software and the
specification of its interface in a service description language (no
order is implied here, and these activities are usually done
concurrently). During implementation, the activity of creating a
client by integrating services together is called service

Copyright is held by the author/owner(s).
WWW 2003, May 20-24, 2003, Budapest, Hungary.
ACM xxx.

1

composition. Service deployment includes the task of making the
service available in the Internet, i.e., binding the service to a
physical address where it can be invoked, and the task of
registering the service in one or more brokers (service
registration). Service configuration is an optional activity in
which service the configuration parameters are specified (e.g. the
default language in a text processor service). Finally, service
monitoring is the activity of checking the service availability and
performance.

Service

Broker

Client

1. Register

3. Invoke

2. Discover

Database of
service interfaces

Interfaces

Interfaces

Figure 1. Components in Web services
Service discovery and invocation are activities that happen at
runtime. Service discovery is the interaction between the client
and the broker to discover services and their information. Service
invocation is the interaction between the client and the service for
invoking the service operations, once the client has all the
necessary information about the service.
To illustrate these concepts, let us suppose that a librarian wants
to buy a large volume of books. Without the support of Web
services, she would have to go through the time consuming task of
searching several online bookstores for good deals before
deciding where to buy each book. On the other hand, if several
bookstores are deployed as services, and if these services are
published in one or more service brokers, the librarian’s task
would be greatly simplified. She would develop a client (or use
one previously developed) that would query service brokers for
discovering all services that implement a given “selling book”
interface. This service interface would provide operations for
finding book prices and reviews, manipulating shopping carts, and
performing the actual buying transaction. During service
discovery, the brokers would return a list of all bookstore services
to the client. The client could then invoke the appropriate service
operations in each of these services to select the ones that provide
the better deals, and to actually perform the buying transactions.
All interactions among the clients, brokers, and services are done
programmatically, i.e., without human interference. The different
systems (service, service broker, and client) are connected through
some form of message passing. This kind of interaction is called
system-to-system integration, which is one of the key technologies
supporting business-to-business (B2B) e-commerce. It allows
buyers (clients) to search for and interact with a large number of
sellers (services), which would be impossible without such
integration.

2.2 Standards and technologies
Numerous standards and technologies are cooperating and
competing in the Web services arena. For example:

� The services can be implemented directly in a programming
language, such as Java, C++, or C# [19], or as components in
a component-based framework, such as COM [20], CORBA
[17], or Java Beans [4];

� The service interface can be described using the Web Services
Description Language (WSDL) [23], or proprietary interface
description languages (IDLs);

� The service broker can implement the standard Universal
Description, Discovery and Integration (UDDI) [14], Jini
discovery [3], LDAP [10], or other proprietary discovery
mechanisms;

� The services can be invoked remotely (the proxy approach) or
downloaded to local computer (the applet approach);

� The communication infrastructure among the components and
the associated data encoding formats include SOAP [21] and
XML [8], RMI [18] and objects, and proprietary RPC
standards.

In recent years, Java has emerged as the dominant language for
Web programming. Among the standards for Web services,
UDDI, WSDL, and SOAP have gained strong industry support,
and are likely to become the standard Web services stack for
service brokering, description, and invocation, respectively. The
following section describes several initiatives for implementing
the Web services model and it discusses the standards and
technologies supported by each of them.

3. RELATED WORK
With its huge promise to bring Internet-based software
development to a new level, it is not surprising that Web services
have drawn significant attention from the major players in
industry. This section describes the existing efforts for the
development and maintenance of Web services, highlighting their
core functionality and their limitations.
Microsoft .NET [19] is a framework and a set of developer tools
in Visual Studio [16] that share the same goals as TSSuite. The
components in the framework communicate through the SOAP
protocol. The Rapid Application Development (RAD) tools in
Visual Studio facilitate the deployment and maintenance of
services. Message passing between components is handled by
Microsoft Message Queuing (MSMQ). Although this framework
and toolkit is feature rich, a large portion of it is based on
proprietary technologies. As of the first beta release, service
description using WSDL and the UDDI broker is not supported.
Instead, Web services are described using SCL (Service Contract
Language) and discovery is handled through a Microsoft’s
proprietary file-based mechanism called DISCO [15]. In this
mechanism, service interface and implementation are not
distinguished, which prevents searches for services that
implement a given interface. Although service composition is
highlighted as a key feature in the .NET overview document, the
current framework does not allow users to compose services in a
straightforward way.
Sun Microsystems Jini [3] was one of the first available toolkits
for services. Jini provides service discovery, remote method

2

invocation, security, leasing, transactions, and events. It simplifies
the deployment and invocation of services and Java applications
in a local area network (LAN) environment. Once a Jini service
has been discovered, it transmits its interface in the form of a Java
class that functions as a proxy. However, Jini pre-dates the
widespread acceptance of current Web service standards and,
therefore, is not based in any of them. This limits the benefits of
Jini for the Web services model, in which interoperability is a key
factor.
SunONE [22] is Sun Microsystems “Open Net Environment”, a
product portfolio that includes tools that support the development
of services compatible with UDDI, XML, WSDL and other
standards. An example of such a tool is Forte, an integrated
development environment for Java that assists service creation.
SunONE can be viewed as a peer to Microsoft’s .NET or IBM’s
Visual Age [2] in that its tools are designed to make it simple for
developers to construct Web services (or clients to Web services).
However, it does not directly address the problems of service
composition and deployment, two of the major concerns of
TSSuite.
Hewlett Packard’s e-Speak [9] is a framework and a set of
components for developing Web services. The framework
provides support for service creation, deployment, and discovery.
The components provide low-level support to Web services, such
as message routing and security. E-Speak supports a wide variety
of service standards including SOAP, XML, UDDI, J2EE, .NET,
and their own J-ESI (Java E-Service Interface). However, e-Speak
does not provide an integrated environment for service
development and, like SunOne, it currently provides no support
for service composition.
Vinci [1], a project at IBM Research, is an infrastructure for
developing applications as a set of interacting services deployed
over a LAN. It provides support for creating fast and reliable
distributed applications through service composition. Vinci
prioritizes performance and reliability and, therefore, is not based
on any of the Web services standards. Instead, it uses proprietary
protocols such as Xtalk [1], a binary representation of XML. The
performance experiments described in [1] have shown that
services developed with Vinci are considerably faster then the
ones based on the standard Web services protocols. An important
point is that applications developed with Vinci can still be
deployed using TSSuite. In this case they are externalized through
standard Web services protocols while benefiting from the high-
performance features of Vinci internally.
The Web Services Toolkit (WSTK) by IBM [11] provides a set of
tools for assisting the development of Web services and it is
compatible with the Web services protocols (SOAP, UDDI, and
WSDL). The WSTK tools automate the generation of services
from service interfaces described in WSDL (and vice-versa) and
allow users to browse and publish information in UDDI.
However, WSTK does not provide an infrastructure for
composing, deploying, and monitoring services, and it is limited
to SOAP-based services. As will be discussed in the following
section, TSSuite and WSTK can be used together, once they
provide complementary tools.

4. TSSUITE INFRASTRUCTURE AND
TOOLS
This section presents the TSSuite design and functionality,
showing how its components work together to assist the
development and maintenance of Web services. Figure 2 shows
the high-level architecture of TSSuite. It includes a UDDI broker,
the TSpaces Service API (TSSAPI), and a set of tools. The UDDI
broker and the TSSAPI are developed as an extra layer over
TSpaces [24], extending its programmatic capabilities towards
Web services. The other components are tools for service
developers and administrators and can be viewed as clients of the
TSSuite infrastructure. The following subsections provide an
overview of TSpaces and each of the TSSuite components.

UDDI

Service
Builder

TSSAPI

Service
Monitor

Notify
Service

Service Tools

Service Infrastructure

Figure 2. TSSuite main components

4.1 TSpaces overview
TSpaces [24] is a network communication buffer with database
capabilities. It enables communication between applications and
devices in a network of heterogeneous computers and operating
systems using the shared space concept from the Linda
programming model [6].

write

write

read

take

Figure 3. TSpaces basic operations
The basic TSpaces commands are write, read, and take. The
difference between read and take is that after a take the tuple is
removed from the space while read leaves a copy of the tuple in

3

the space. TSpaces clients communicate asynchronously through
shared spaces by writing, reading, and taking tuples. Each tuple is
a vector of Java objects. Figure 3 shows the interaction among
three TSpaces clients.
Tuples are not directed to any specific client, meaning that any
client can read (or take) any tuple, as long as it has access rights to
do so. Tuples reside on the space until someone issues a take
removing them or until they expire. Therefore, a client can read a
tuple even if it, the client, was not alive when the tuple was
written. Clients can also register for event notifications, such as
“let me know when a tuple with the following content is written to
the space.” When the event occurs (e.g. the specified tuple is
written) the client is notified through a callback method. Figure 4
illustrates this scenario.

1. register for the
insert (i.e. write) of

2. write

3. callback

Figure 4. TSpaces event registration mechanism

4.2 TSpaces Service API (TSSAPI)
The TSpaces Service API (TSSAPI) is a framework that simplifies
the creation, deployment, configuration, and invocation of
services. TSSAPI accomplishes this by standardizing the
interfaces between services and by formalizing the types of
interactions that services can support. TSSAPI handles all the
specifics of the several available communication infrastructures
allowing the service developer to concentrate on the service-
specific code. Moreover, it frees the service developer from
having to deal with administrative tasks, such as service
registration.
TSSAPI uses the WSDL vocabulary for service description. The
core concepts in TSSPAI are operations, messages, port types,
and ports.

An operation is a function that the service can perform, such as
convert in a PDF to PS conversion service (detailed in Section 5).
The operation is bound to some object and method that will do the
processing as required by the operation. In the PDF to PS
example, the convert operation is bound to the method convert()
in the PDF2PS class. Operations may be invoked in response to
some request, or may start in response to some service-internal or
environmental trigger. Operations produce and consume data in
the form of messages.
A message is a container used to encapsulate data going to or
coming from an operation. Messages may contain zero or more
parameters (or parts), each having a label and an object-type
(String, for example). An operation may contain one input

message, one output message, or one of each (operations
containing neither are not allowed). Messages that have no parts
can be used for invoking parameter-less service routines (in the
case of input messages) or for representing service routines with
no return value (in the case of output messages). A port type is a
collection of operations. Each port type corresponds to a service
interface. Figure 5 shows the relationship between port types,
operations and messages, in the context of a PDF to PS
conversion service which provides two operations: configure and
convert.

Configure
Operation

Input
message

Convert
Operation

PDF2PS Port Type

Input
message

Output
message

Figure 5. TSSAPI port types, operations and messages
A port is an implementation of a port type. Each port is bound to
some service communication infrastructure. Ports are also bound
to a specific server location, which will define the access points
for invoking the service. A port is the specification of the service
implementation.
TSSAPI is a flexible architecture that allows additional
communication infrastructures through the creation of new sub-
classes of the Port class. Currently TSSAPI provides
implementations for TSpaces and SOAP ports. Services based on
the TSpaces port may take the advantage of asynchronous
communication, which may be more appropriate for some
services1. On the other hand, SOAP is a widely accepted standard
and is independent of programming language – clients can be
written in any language as long as they can send XML messages.
The following paragraphs describe the TSpaces and SOAP ports
in more detail.

Service activation
space

Client

1. write

Service
4. write

2. callback

5. take or
callback

 input message
 output message

3. operation() =

Figure 6. Sequence of events for invoking services through
TSpaces ports

1 For instance, a synchronous call to a service operation that does

very long computations would block the client for a long time,
while an asynchronous call would free the client to do other
tasks and it would “call back” the client when the computation
is done.

4

Services deployed in TSpaces ports are invoked by writing tuples
into a space, called the service activation space. The result of the
operation (output message) is also written to the space. Figure 6
shows the sequence of events that happen when a service is
invoked through a TSpaces port. TSSAPI handles the entire
interaction among the client, the service, and TSpaces, including
the registration for callbacks and the invocation of the appropriate
service operations.
In the case of the SOAP port, services are invoked through a
SOAP server (TSSuite uses Apache Tomcat [12] as the SOAP
server). One important point here is that all the ports in which the
service is deployed share the same service code, as shown in
Figure 7. Moreover, the service and the infrastructure code are
totally decoupled. Even when new service communication
infrastructures are defined, TSSAPI does not require any changes
to the service code.

Client

Service

write callback

SOAP
Server

SOAP
call

Service activation
space

Figure 7. Sharing the service code among different ports
TSSAPI supports service invocation through a library of service
proxies. Each port defined in TSSAPI has a corresponding service
proxy. Service proxies encapsulate the infrastructure-specific
details necessary to invoke services. This is accomplished by a
mapping between the port invocation format (e.g. XML in SOAP,
tuples in TSpaces) and the TSSAPI standard format. Clients can
use the same code to invoke a service in different infrastructures,
only changing the line that selects the appropriate proxy. Figure 8
illustrates this design through UML class diagrams.

AbstractServiceProxy

invoke()

TSServiceProxy

invoke()

SOAPServiceProxy

invoke()

Client write tuple in the active
space perform SOAP call

Figure 8. TSSAPI service proxies
Besides the support to service creation, deployment, and
invocation, TSSAPI also provides classes for handling service
configuration, as described in detail in Section 5.

4.3 TSpaces UDDI Broker
The TSpaces UDDI broker is an implementation of the UDDI
specification [14] that uses TSpaces as a global directory for
storing Web services information. UDDI is based on SOAP/XML
and defines an API for retrieving information about businesses
and the services they provide. UDDI is composed of two different
API’s: publisher and inquiry. The publisher API allows for the
registration of businesses and Web services in the global
directory. It provides methods such as “save_bussiness” and
“save_service.” Once this information is registered it can be
retrieved through the inquiry API, which provides methods for
locating the available services and for retrieving information
about how to invoke them. It allows a client to determine
dynamically if a service it needs is available, discover how it
works, and invoke it. Figure 9 illustrates the UDDI broker
architecture. Please note that the UDDI client can be either a
service, during service registration, or a client, during service
discovery.

UDDI space

UDDI
Client publish/

inquiry

SOAP
Server

SOAP
call UDDI

Broker
write/read

Figure 9. TSpaces UDDI broker architecture
Since all the information published in UDDI is stored in TSpaces,
clients can use the TSpaces event registration mechanism to be
notified when certain kinds of services are published. A possible
scenario would be “let me know when a new bike store is
available in California.” This form of interaction with the UDDI
broker is not part of the UDDI specification and can be viewed as
a value-added service. This is a typical example where the
TSpaces communication infrastructure is more appropriate than
SOAP.

4.4 Service Builder
The Service Builder automates most of the service development
and maintenance tasks. It acts as the bridge that connects the
service implementation program, the TSSAPI, and the UDDI
broker. To deploy a service the user just needs to provide the
implementation program and the service interface description,
which can be retrieved from UDDI. The Service Builder then
extracts the service interface from the WSDL file, finds the Java
methods in the service implementation classes, and deploys the
service using the TSSAPI service description, deployment, and
configuration classes. Figure 10 illustrates a possible interaction
between the Service Builder, UDDI, and TSSAPI. Section 5
details how this component is used to assist the development of
Web services through a case study.

4.5 Notify Service
The Notify Service (TSSNotify) is a general-purpose mechanism
for associating tuplespace events by defining rules that map
triggering conditions to actions. TSSNotify was designed to be a
low-level component that processes only tuples and tuplespaces.
However, since services can use the TSpaces communication

5

infrastructure, TSSNotify is capable of manipulating standardized
service messages just as easily as it can create and route other
kinds of tuples. Therefore, TSSNotify can be seen as a tool for
integrating (or composing) services based on the TSpaces port.
In this context, the rules specify the control flow among several
interacting services, while TSNotify takes care of performing the
appropriate service invocations (by writing the appropriate tuples
in the service activation spaces). One example is the integration of
a PDF to PS file conversion service and a printing service to
compose an “intelligent print” service, as shown in Figure 11. The
name “intelligent print” is due to the fact that the file conversion
will only happen if necessary.

UDDI

Service
Builder

TSSAPI

1:Search for service
descriptions

 ...
 <portType name="SamplePortType">
 <operation name="register">
 <input message="Request"/>
 </operation>
 <operation name="deregister">
 <input message ="Request"/>
 </operation>
 </portType>
...

 ...
 <portType name="SamplePortType">
 <operation name="register">
 <input message="Request"/>
 </operation>
 <operation name="deregister">
 <input message ="Request"/>
 </operation>
 </portType>
...

2: Parse WSDL
description &
register service

During step (2), while parsing the
WSDL description the Service
Builder uses the TSSAPI classes to
create port types, operations,
messages, etc.

Figure 10. Service Builder interaction with UDDI and TSSAPI
A client activates “intelligent print” by writing a tuple with the
file to be printed and the information about the desired printer to
the “intelligent print” activation space. Then, TSNotify performs
two actions in parallel. It moves file information in the tuple
provided by the user to the PDF to PS conversion space and it
moves the printer information to the print space. If the file tuple
moved is a PDF file, as shown in Figure 11, the PDF to PS
service will be automatically invoked and the file will be
converted to PS. On the other hand, if the tuple moved is a PS
file, steps 3 and 4 will not be performed since the conversion
service is invoked only in the presence of PDF tuples. In both
cases TSNotfiy will move the PS tuple to the print space, which
will automatically trigger the printing process and generate a print
report (at that point the printer information is already there, so the
print service knows which printer to use). After the report is
generated, TSNotify moves it to the “intelligent print” space,
generating the client notification. Note that the fact that
“intelligent print” is composed of two sub-services is totally
transparent to the client. Another important point is that besides
the three TSNotify rules, no code was necessary to implement this
service. The move rules are easily defined using the TSSNotify
user interface explained below. This example illustrates how
TSSuite allows the creation of arbitrarily complex services from
the composition of simple, basic services.
TSSNotify rules are stored as tuples. This provides several
benefits. First, rules that are represented as tuples are easy to
duplicate and move from space to space. Furthermore, since
TSSNotify operates on rules, it is possible to create rules that, in
turn, create additional rules. Finally, rules that are stored as tuples
are persistent so even if the host computer crashes or loses power,

the state of the system remains within the space (assuming the
TSpaces persistence option is enabled) so that the operation can
continue once TSSNotify has been restarted.
TSSNotify provides a rule editor, which is a GUI that makes it
easy to create and update rules. Figure 12 illustrates the rule editor
interface. On the left side of the panel the user can specify the
trigger and action tuples. In the “intelligent print” example the
trigger tuple is an event-write tuple, which means that the action
will be fired when a tuple that has the specified format is written
to the space. The trigger tuple has only one field that holds the
file. The action tuple is also an event-write tuple, which means
that when the action is triggered a new tuple will be written. In
this case the action tuple has also only one field, since the files are
simply copied and no extra information is added. This rule
specifies the “move” behavior described above, the file tuple is
copied from one space to another whenever a file is written to the
“intelligent print” activation space. On the right side of the screen
the user can specify the rule name and the space in which it will
be stored.

PDF2PS activation
space

PDF2PS
Service

Print
Service

PS

PDF &
printer

Print activation
space

Intelligent print
activation
space

PDF PS Report

ReportClient
1. write

2.1 TSNotify rule:
move file tuples

3. callback 4. write

5. TSNotify rule:
move PS tuples

6. callback

7. write

8. TSNotify rule:
move report
tuples

9. callback

Printer

2.2 TSNotify
rule: move
printer tuples

Figure 11. TSNotify application scenario: composing the
“intelligent print” service

Figure 12. TSNotify’s rule editor

4.6 Service Monitor
Service Monitor is a visualization tool that works with TSSAPI.
It provides a view of service messages and it allows the user to
monitor or troubleshoot service logic by viewing the service
messages and their contents as they occur.

6

The Service Monitor can monitor several services
simultaneously. Its user interface allows users to selectively add
or remove services from the list of services that are being
monitored. The user interface also tracks new services and it is
aware of services that are no longer present within the system.
When a service message for a monitored service occurs, the
service monitor displays the message in a table. The table’s
columns represent services and the table’s rows represent
messages. Selecting a message from the table displays the
message details including the message payload and the time/date
the message was received by the server. Figure 13 shows the
Service Monitor in action.

Figure 13. Using the Service Monitor to view a list of input
and output messages

5. TSSUITE@WORK: THE PDF TO PS
CONVERSION SERVICE
This section describes the role of TSSuite in service creation,
deployment, and configuration through an example scenario: a file
conversion service. Let us assume that we want to offer a Web
service that converts files from PDF to PS. In general, we need to
go through the following steps to get the service created,
deployed, and configured:

1. Service creation. The service creation activity is composed of
the service implementation (step 1.1) and the specification of
the service interface (step 1.2).

1.1 Service implementation. For the PDF to PS conversion, we
can either write a program that does the transformation or use
some an existing application that already provides this feature.
A well-known application that can do this conversion is
Ghostscript [7]. To take advantage of this, we could simply
write a wrapper program in Java that invokes Ghostscript.
This program would have a method convert() that takes in a
PDF file as a parameter and returns a PS file.

1.2 Interface definition. If a service is based on an accepted
interface or ontology [5], chances are that its interface
definition already exists and can be retrieved from a broker. If
not, the service interface must be specified in a service
description language, such as WSDL.

2. Service deployment. The mechanism used to deploy the
service depends on the chosen communication infrastructure.
For example, if the infrastructure is SOAP, the service
interface and the implementation classes must be registered in
a SOAP server. After the service is deployed, it should also be
registered with a service broker so that potential clients can
find it. In general, service deployment is a very mechanical
process and should be facilitated by a tool.

3. Service configuration. Sometimes a service needs to be
configured before it is invoked for the first time. In the PDF to
PS conversion service for example, the implementation class
has parameters that specify the command used to invoke
Ghostscript and a working directory. Parameterization makes
the service implementations reusable - once the parameters are
not “hard coded” the same service can be used in different
contexts with different parameters. One possible solution to
facilitate service configuration is to provide a graphical user
interface (GUI) in which administrators would enter values for
the configuration parameters. However, requiring the service
developers to build a GUI for each configurable service would
put too much burden on them. In the PDF to PS example, the
GUI code would be much longer, and harder to write, then the
wrapper code that invokes Ghostscript. Because of this, it is
desirable to have the GUI generated automatically by the
service deployment tool.

Ideally, a service developer would need to address only step 1.1,
which is the actual service implementation. The Web services
infrastructure and its surrounding tools should handle all of the
other steps, which can be classified as administrative steps. Once
the administrative steps have been automated, deploying and
configuring a service should be as easy as installing an application
on a PC. TSSuite has largely achieved this goal. In the rest of this
section we describe the steps we have used to create, deploy, and
configure the PDF to PS conversion service with TSSuite.
We first wrote a Java class called PDF2PS.java. This class has a
method convert() that invokes Ghostscript to do the PDF to PS
conversion. To start service deployment, we use the service
deployment tool in TSSuite, the Service Builder. Figure 14 shows
a Service Builder dialog box asking the user to enter the link to
the WSDL service interface and the service implementation class.

Figure 14. Using Service Builder for deploying the conversion
service

For the service interface, the WSDL file can either be provided by
the user or retrieved from an UDDI broker. The first case would
only be used if the service is new and no interface is available in
UDDI. In this situation the Web Services Toolkit (WSTK) can be
used to extract the WSDL interface from its implementation
classes. Often the WSDL file can be found in UDDI. To perform
the search, a partial or full service name, such as “pdf” or
“pdf2ps”, can be used. Service Builder searches the UDDI broker
and it lists all the entries that match the name (Figure 15).
In this example, Figure 15 shows that only one service interface
with name “pdf” was registered in UDDI at the time of the search.
In a more realistic production environment, the search would
likely return multiple entries.
Back in the “Service Builder” dialog in Figure 14, the “Register”
button can now be used to start service deployment. The Service
Builder will then parse the WSDL description file, find all the
operations that must be implemented for this service, use Java
reflection to find the methods in the implementation class that
implements those operations, and deploy those operations through
the TSpaces Service API (TSSAPI). TSSAPI allows the service

7

developer to deploy a service without having to code for the
specifics of each communication infrastructure.

Figure 15. Searching service descriptions in UDDI
TSSAPI also creates a WSDL document for the service. This
document is a service implementation (as opposed to a service
interface) description, since it describes detailed information
about this particular instance of the service, such as the addresses
in which the service can be invoked and encoding format for each
operation. The service provider can then use the tools in WSTK
[11] to register the generated WSDL service implementation file
and the WSDL service interface file in an UDDI broker,
completing the service registration.
One of the main advantages of WSDL over other service
description languages is that it allows the separation of service
interface and implementation. This allows service interfaces to be
registered in service brokers during service deployment (e.g. as
UDDI tModels2 [14]) and to be searched during service discovery.
A search based on the PDF to PS interface, for instance, would
retrieve all the service implementations that conform to it.
After passing the service details to TSSAPI, the Service Builder
checks if the service needs configuration. It finds this information
by checking if the service class implements the
ConfigurableService interface. This interface is defined as part of
the TSSAPI. It has a method getParameterNames() that returns
the names of the configuration parameters, and a method
configure() that sets the parameter value. The Service Builder uses
this interface to generate the configuration GUI and to configure
the service.
In the case of PDF to PS conversion, a configuration GUI that
contains the “Conversion command” and the “Working directory”
parameters would pop up, as shown in Figure 16. The conversion
command is a batch file that sets the path and invokes
Ghostscript, the working directory can be any temporary
directory. The Service Builder sends the parameter values through
the configure() method. However, the Service Builder does not
call this method on instances of the implementation class directly.
Instead, the configure() method is treated as a regular service
operation. For instance, in the case of a SOAP service the Service
Builder would act as a client, invoking the configure operation
through a SOAP server. Figure 16 illustrates this architecture,

2 A tModel is the UDDI element used to represent services

interfaces. Each tModel references one or more WSDL files,
and defines all the operations that can be used for a given
domain. A tModel for stock quotes would specify operations
such as getQuote, getVolume, and so on.

through a combination of a UML class diagram and a process
description diagram.

«interface»

ConfigurableService

getParameterNames()

configure()

PDF2PS

getParameterNames()

configure()

convert()

2: Show GUI

1: Get
parameters

3: Configure

Service
Builder

SOAP
Server

Figure 16. Service configuration scenario
As described above, the only component we need to develop to
deploy the PDF to PS service is the PDF2PS.java class. Excluding
comments, this class has less than 50 lines of Java code and was
written in less than an hour. Before the TSuite was available, we
also tried to offer this service through SOAP and TSpaces but
then the total amount of code we had to write was almost 10 times
more.

6. CONCLUSIONS AND FUTURE WORK
This paper described the TSSuite infrastructure and its set of
tools. TSSuite automates several administrative activities related
to the deployment and maintenance of Web services. Services
developed with TSSuite are much more compact (in terms of lines
of code) than services developed “from scratch.” In the example
presented in Section 5 we had almost 10 times reduction in both
code size and development time. Section 4.5 has show that
TSSuite has been used to develop complex Web services: the
TSNotify component allows the composition of basic services to
create arbitrarily complex ones, such as “intelligent print”. We
have also shown how the Web Services Toolkit (WSTK) [11] can
be used in conjunction of TSSuite for automating the generation
of WSDL files and the interaction with the UDDI broker.
TSSuite is currently available on alphaWorks
(http://www.alphaworks.ibm.com/tech/tssuite). In the first months
of availability, there have been more than 1,000 downloads. The
following table summarizes the code size for each of the TSSuite
components. All components have been developed in Java.
Our future research directions include adding fault-tolerance and
replication capabilities to the TSpaces infrastructure, which will
improve the TSSuite scalability. Another point of investigation is
how to map TSSNotify rules to Web Services Flow Language
[13] (WSFL) descriptions.

7. REFERENCES
[1] R. Agrawal, R. J. Bayardo Jr., D. Gruhl, and S.

Papadimitriou, “Vinci: A Service-Oriented
Architecture for Rapid Development of Web Applications,”

8

Proceedings of the 10th International World Wide Web
Conference (WWW’10), 2001.

[2] J. Akerley, N. Li, and A. Parlavecchia, Programming with
Visual Age for Java 2, Prentice Hall, 1999.

[3] K. Arnold, B. Osullivan, R. W. Scheifler, J. Waldo, A.
Wollrath, and B. O’Sullivan, The Jini Specification,
Addison-Wesley Pub. Co., 1999.

[4] R. Englander and M. Loukides, Developing Java Beans,
O’Reilly & Associates, 1997.

[5] D. Fensel, Ontologies: Silver Bullet for Knowledge
Management and Electronic Commerce, Springer, 2001.

[6] D. Gelernter, “Generative Communication in Linda,” ACM
Transactions on Programming Languages and Applications
(TOPLAS), 7(1), 80-112, 1985.

[7] Ghostscript, Ghostview and Gsview,
(http://www.cs.wisc.edu/~ghost/).

[8] C. F. Goldfarb and P. Prescod, The XML Handbook,
Prentice Hall PRT, 1998.

[9] Hewlett-Packard Company, “Ten Ways to Think e-Speak,”
1999, (http://www.e-
speak.net/library/pdfs/ThinkEspeak.pdf).

[10] T. A. Howes and M. C. Smith, LDAP: Programming
Directory-Enabled Applications with Lightweight Directory
Access Protocol, Macmillan Technical Publishing, 1997.

[11] IBM, “Web Service Toolkit,”
(http://alphaworks.ibm.com/tech/webservicestoolkit).

[12] The Jakarta Project, “Jakarta Tomcat,”
(http://jakarta.apache.org/tomcat/).

[13] Frank Leymann, “Web Service Flow Language (WSFL 1.0),”
2001, (http://www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf).

[14] B. McKee, D. Ehnebuske, and D. Rogers (editors), “UDDI
Version 2.0 API Specification,”
(http://www.uddi.org/pubs/ProgrammersAPI-V2.00-Open-
20010608.pdf)

[15] Microsoft, “Enabling Discovery for a Web Service,”
(http://msdn.microsoft.com/library/default.asp?url=/library/e
nus/cpguidnf/html/cpconenablingdiscoveryforwebservice.asp
).

[16] Microsoft, Visual Studio .NET,
(http://msdn.microsoft.com/vstudio/nextgen/default.asp).

[17] R. Orfali, D. Harkey, and J. Edwards, Instant CORBA, John
Wiley & Sons, 1997.

[18] E. Pitt and K. McNiff, Java.RMI: The Remote Method
Invocation Guild, Addison Wesley Professional, 2001.

[19] D. S. Platt, Introducing Microsoft .NET, Microsoft Press,
2001.

[20] D. S. Platt, Understanding COM+: The Architecture for
Enterprise Development Using Microsoft Technologies,
Microsoft Press, 2001.

[21] K. Scribner and M. C. Stiver, Understanding SOAP, Sams,
2000.

[22] Sun Microsystems, “Open Net Environment (ONE) Software
Architecture,” (http://www.sun.com/sunone/).

[23] W3C, “Web Services Description Language (WSDL) 1.1,”
2001 (http://www.w3.org/TR/wsdl).

[24] P. Wyckoff, S. W. McLaughry, T. J. Lehman and D. A. Ford,
“TSpaces,” IBM Systems Journal, 37(3), 454-474, 1998.

9

