RJ 10282 (A0302-007) February 13, 2003
Computer Science

IBM Research Report

A Framework for User Defined Periodic Calendars

Yael Shaham-Gafni, Daniel A. Ford
IBM Research Division
Almaden Research Center
650 Harry Road
San Jose, CA 95120-6099

="/"—="S= Research Division
i _=__=?=_ Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g, payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

A Framework for User Defined Periodic Calendars

Yael Shaham-Gafni Daniel Ford

Abstract

Most contemporary calendaring and scheduling systems represent time using the Gregorian
calendar. Systems that are more conscious of internationalization provide a choice of several
predefined calendaring systems. We have observed that humans are constantly contriving new
systems of time description that reflect specific domains of their activities, such as academic,
agriculture, finance, sports calendars, and more. In this paper we investigate a model that offers the
flexibility of adding an arbitrary time description system to an existing calendaring and scheduling
application. Such a model allows organizations to define their own calendar and the periods of time
that are significant to their activities, so that users within the organization can view, plan and
reason about time in terms relevant to their domain.

Most of the formal symbolic definitions of calendars are logic oriented, and use constraints to
represent valid dates, and to represent transformation rules between different calendars. This type
of representation is not intuitive, and requires many hours of learning for a casual user to master. In
this work we took an object oriented approach to representing calendars. The temporal concepts are
represented by classes that are organized in hierarchies, and are related to each other via
aggregation. A calendar definition is created by declaring instances of these classes, and the actual
links between them.

Page 1 of 11

1 Introduction

The problem of measuring and representing time is as old as human civilization. Virtually all successful (?)
human civilizations created a calendaring system that allowed them to track the changes in their
environment and to establish the times for various agricultural, religious or civil events that bonded their
communities together. While each such calendar system is as unique as the culture that created it, they all
have a single common feature, they are all periodic. This trait is no accident, the only accurate temporal
reference available to ancient cultures were the orbits of celestial bodies such as the Earth, the Moon and
Venus. These orbits are periodic.

In this paper we describe a model and representation for declaratively defining arbitrary periodic calendar
systems. This model was specifically created to allow the definition of new specialized (periodic) calendar
systems that have domain specific uses. While it has modest goals, it turns out that the model is powerful
enough to describe most historical human calendaring systems (e.g., Gregorian, Islamic, Mayan). A
limitation of the model is that it cannot completely describe calendar systems that have arbitrary rules that
require logical interpretation; the Hebrew calendar is an example of this type of system. But, given that the
main purpose of the model is to define new calendar systems, not old ones, that limitation is of little
consequence.

The development of this model is a direct result of the observation that human activities have become quite
complex and specialized, and that humans are constantly contriving new systems of time description that
reflect specific domains of their activities. The model is needed because the technology for supporting
these new temporal inventions has not yet evolved. For instance, academic organizations known as
“Universities” have a specific temporal measurement that they call the “Academic Year” and they even
publish an “Academic Calendar” that specifies the various important subdivisions of that “year” (e.g.,
“Fall Semester”, “Spring Break”, “Winter Exam Period”, “Summer Vacation”, etc.). Various other
examples exist in other domains (e.g., agriculture, finance, sports). The problem is that all of these
domains are currently forced to map their temporal organizations (i.e., calendar systems) on to another
calendar system (usually the Gregorian calendar system) that has measurement periods that are completely
unrelated to the domain. Why should an academic calendar be mapped to arbitrary units of time dedicated
to the memories of dead Roman emperors (e.g., Augusts) A more appropriate solution would be to allow
new units of time to be defined that match the domain and allow them to be organized into a full system
that more directly supports specific human activities.

The model and framework we have developed enable a user (an organization) to declaratively describe and
define a periodic calendar. The framework supports integrating a multiple calendars, and provides means
for graphically displaying a periodic calendar and customizing the display. Using a straightforward
language, the user can define the basic time units, the relations between them, and what constitutes a date
in the calendar. The framework knows how to interpret these definitions and can produce a graphic
depiction of the desired calendar, or of multiple calendars simultaneously.

Our model is structured according to the object oriented paradigm and consists of a framework of classes.
The temporal concepts are represented by classes that are organized in a hierarchy. Other classes are
related to each other via aggregation. The user proceeds by declaring instances of these classes, and the
actual links between them. Section 2, "A Model for Defining Periodic Calendar Systems, describes the
temporal class hierarchy in detail, section 3An Example of a User Defined Calendar", shows how these
definitions are used to declare a calendar, section 4 describes how the calendar system definitions are used
to count time and create dates. In section 5, "Related Work", we survey other work in this area, and in
section 6 we conclude.

2 A Model for Defining Periodic Calendar Systems

A calendar system typically defines a set of time units, each time unit is intended to measure time in a
different level of granularity. The units are usually related, such that one unit consists of » repetitions of
another unit. We capture the notion of a time unit in our TemporalMeasure class. Examples of
TemporalMeasures are second, day, month, year, and century. Another purpose of the time units is to
provide a labeling scheme for intervals of time, that covers the timeline, and allows to easily identify a time

Page 2 of 11

interval. For example "January 1, 2000" is a label that identifies a specific day. We denote a labeled time
interval as a date. The labeling scheme defines both form and content. The form of a label describes which
time units participate in a date and the content of a label uniquely identifies a date. In the following
subsections we describe the classes that capture these notions in detail.

2.1 Temporal Measure

A TemporalMeasure is an abstraction for measuring the length of time, i.e. a definition of a unit of time,
e.g. second, day, decade. A TemporalMeasure therefore defines a time duration.

Formally a TemporalMeasure T consists of a name and a time span. In the most general case, the time span
of a TemporalMeasure is 7 itself.

2.2 SubdividedTemporalMeasure

A TemporalMeasure can be divided into smaller units of time. Such a temporal measure is called a
SubdividedTemporalMeasure. For example a minute is divided into 60 seconds. In this case we say that a
second is a subMeasure of minute, and minute has one subMeasure which is repeated 60 times. A measure
need not be divided into equal sized parts. For example a year is divided into 12 months but their lengths
differ. In this case the measure year has a sequence of 12 subMeasures each having it's own length.

Formally, a SubdividedTemporalMeasure 7 is a TemporalMeasure that has a sequence of subMeasures (T},
... T,) which are themselves TemporalMeasures, and a repetition which is a positive (>0) integer number.
The time span of a SubdividedTemporalMeasure is the sum of the time spans of its subMeasures times the
repetition. For example let 7, R, S, be temporal measures, such that (R, S, S) are the subMeasures of 7, and
the repetition of 7 is 3. Then the time span of T is 3*R + 6*S.

2.3 PeriodicSubdividedTemporalMeasure

A SubdividedTemporalMeasure can define an infinite duration of time, by infinitely repeating its sequence
of subMeasures. Such a temporal measure is called a PeriodicSubdividedTemporalMeasure. For example
AD (anno Domini, the Christian era) is an infinite repetition of years.

Formally, a PeriodicSubdividedTemporalMeasure T is a SubdividedTemporalMeasure whose repetition is
infinity (o)

2.4 EquivalenceTemporalMeasure

Some TemporalMeasures are inexact, for example a year may be 365 days, or 366 days long, depending
whether it is a leap year or not. In this situation the measure year represents a set of equivalentMeasures.
Such a temporal measure is called an EquivalenceTemporalMeasure.

Formally, an EquivalenceTemporalMeasure 7 is a TemporalMeasure that has a set of equivalentMeasures
(T,, ... T,) which are themselves TemporalMeasures. The time span of an EquivalenceTemporalMeasure
remains as for a TemporalMeasure, T itself.

2.5 LabelingTemporalMeasure

Up to this point we have shown how TemporalMeasures define time durations and subdivide time into
various durations. Our goal is to generate labels for these durations such that the timeline can be covered.
Intuitively, every time unit has a set of values that is associated with it. For example in the Gregorian
calendar a year is associated with positive integer values: {1, 2, ..., 1999, 2000, ...} and a month is
associated with a name out of the set { January, ..., December }.

Page 3 of 11

An important question that comes up is: who has the 'knowledge' to provide a label for the next time
interval of a time unit. This question is best illustrated through an example. Lets consider two schemes for
labeling days: The day of the week scheme, and the day of the month scheme. In the day of the week
scheme, there are seven names that are repeated cyclically: {Monday, ... , Sunday}. In this case we say that
the 'day’ time unit has enough knowledge to generate names for itself, given the set of weekday names. In
the day of the month scheme, there are 31 names taken from the integer set { 1, ..., 31 }, but not all names
are used in every month, thus the choice of day names depends on which month it is. In this case the 'day’'
time unit does not have enough knowledge to generate names for itself, only the containing time unit,
month, has that knowledge. In terms of our ontology, a TemporalMeasure may generate labels for itself,
and a SubdividedTemporalMeasure may in addition generate labels for its subMeasures.

A LabelingTemporalMeasure is a TemporalMeasure that has a time-value set associated with it. A
time-value set is a linearly ordered set of labels, which can be finite or infinite. Every time the
LabelingTemporalMeasure is asked for a label, it returns the next label in the time-value set. If the set is
finite, the labels are repeated cyclically.

Formally, a LabelingTemporalMeasure 7 is a TemporalMeasure that has time-value set V which is a
linearly ordered set of labels (/,, ..., 1,) (or (I;, ...) in case it is infinite), a current value which is one of the
labels in the time-value set, and an operation next(label), that returns the next label according to the linear
order, or the first label when the argument is the last label.

2.6 LabelingSubdividedTemporalMeasure

A LabelingSubdividedTemporalMeasure inherits from both LabelingTemporalMeasure and
SubdividedTemporalMeasure. In addition, a LabelingSubdividedTemporalMeasure may generate labels for
its subMeasures, by defining a subMeasures-time-value set. A subMeasures-time-value set, is a linearly
ordered set of labels, which can be finite or infinite. Every time the LabelingSubdividedTemporalMeasure
is asked for a label for a subMeasure, it returns the next label in the time-value set. If the set is finite, the
labels are repeated cyclically.

Formally, a LabelingSubdividedTemporalMeasure 7 is a SubdividedTemporalMeasure and a
LabelingTemporalMeasure that has subMeasures-time-value set V which is a linearly ordered set of labels
(l;, ... I,) (or (I;, ...) in case it is infinite), a subMeasures current value which is one of the labels in the
time-value set, and an operation subMeasures-next(label), that returns the next label according to the linear
order, or the first label when the argument is the last label.

2.7 LabeledTemporalMeasure

A LabeledTemporalMeasure is a TemporalMeasure who's labels are provided by a
LabelingSubdividedTemporalMeasure.

Formally, a LabeledTemporalMeasure T is a TemporalMeasure that has a set of labelingMeasures (T, ...
T,) which are themselves LabelingSubdividedTemporalMeasures.

2.8 Creating Additional Subclasses With Multiple Inheritance
Up until now we have described the basic subclasses of TemporalMeasure:
* SubdividedTemporalMeasure

* EquivalenceTemporalMeasure

¢ LabelingTemporalMeasure

We have also defined some specific subclasses: PeriodicSubdividedTemporalMeasure and
LabelingSubdividedTemporalMeasure. Using multiple inheritance we can create additional subclasses.
The characteristic of being subdividing or equivalence is mutually exclusive, a TemporalMeasure can be

Page 4 of 11

only one of them. The characteristic of being labeling or labeled can be mixed and matched. Thus we can
create additional subclasses from the basic subclasses:

* LabelingLabeledSubdividedTemporalMeasure

* LabelingEquivalenceTemporalMeasure

2.9 DesignationFormat

Most calendars identify a time interval by labeling it, and relating it to a higher level time interval that
contains it. For example, in the Gregorian calendar, a day is labeled by the sequence: year, month, day. A
DesignationFormat captures this notion.

Formally, a DesignationFormat F consists of a sequence of designatingMeasures (T, ..., T,), such that T; is
a LabelingTemporalMeasure and the duration of 7}, is contained in 7.

2.10 AbstractDate

An AbstractDate uniquely labels an interval of time according to a calendar.
Formally, an AbstractDate consists of a sequence of pairs (7}, v;) i=1..n, such that the following holds:
* The T; are LabelingTemporalMeasures, and v; is an element of the time-value set of T:.

e (T, .. T,) are the designatingMeasures, or a prefix of the designatingMeasures of a
DesignationFormat.

2.11 CalendarSystem
The framework class that represents a calendar is CalendarSystem. A calendar system consists of:

* A set of TemporalMeasures, that are usually related to each other by subdivision or equivalence
relations.

* A top level measure, which is the measure corresponding with the time interval the calendar
represents. This can be a finite time interval, or an infinite time interval.

* A DesignationFormat, which describes how to form dates according to this calendar system.

* An epoch, which is a number relating the first day of this calendar to the Julian Day calendar. We
chose the Julian Day calendar as our calendar of reference for reasons of convenience.

3 AAn Example of a User Defined Calendar

Our example is a simple academic calendar. Imagine a hypothetical university academic year that has three
trimesters, each 14 weeks long. Between the trimesters there is a two week break period, and after the third
trimester there is a vacation period of 6 weeks. All together the academic year is 3*14+2*2+6 = 52 weeks
long which is 364 days. This academic year does not coincide with the civil year since it is one or two days
shorter. What are the time units in this definition? The first obvious unit is the academic year. The year is
subdivided into periods of various lengths: trimesters which are 14 weeks long, breaks which are 2 weeks
long, and a vacation which is 6 weeks long. Thus the second unit will be called an academic period, and it
has 3 different values, or equivalent time units. The third time unit is the week, and the last is a day. The
definition of the time units for such a calendar follows in figure 1. Now that we have defined the time units
of the system, let's concentrate on defining a date according to the simple academic year calendar. In order
to reference a specific day we would need to know the year, period (trimester, break, vacation), week, and
day of the week. The definition of a DesignationFormat for the simple academic calendar is shown in
figure 2. The graphic presentation of this defined calendar is shown in Figures 3 - 5.

Page 5 of 11

<PeriodicSubdividingTemporalMeasure>
<name>Academic Era</name>
<subMeasures>
Academic Year
</subMeasures>
</PeriodicSubdividingTemporalMeasure>

<LabelingSubdividingTemporalMeasure>
<names>Academic Year</name>
<timeValueSet>I, II, III,
</timevValueSet>
<subMeasures>
Trimester
Break</1li>
Trimester</1li>
Break</1li>
Trimester
Vacation
</subMeasures>
<repetition> 1 </repetitions
</LabelingSubdividingTemporalMeasure>

<LabelingEquivalenceTemporalMeasure>
<name>AcademicPeriod</name>
<timevalueSets>
Fall trimester
<lis>Winter break</lis>
Winter trimester</lis
Spring break
Spring trimester</lis>
Summer vacation
</timeValueSet>
<equivalentMeasures>
Trimester</1i>
Break
Vacation
</equivalentMeasuress>
</LabelingEquivalenceTemporalMeasure>

<LabelingSubdividingTemporalMeasure>
<name>Trimester</names>
<subMeasuresTimeValueSet>
Week 1</1li>

Week 14</1li>
</subMeasuresTimeValueSet>
<subMeasures>
Week</1li>
</subMeasures>
<repetition> 14 </repetition>
</LabelingSubdividingTemporalMeasure>

<LabelingSubdividingTemporalMeasure>
<name>Break</name>
<subMeasuresTimeValueSet>
Week 1</1li>
Week 2</1li>
</subMeasuresTimeValueSet>
<subMeasures>
<lis>Week</1li>
</subMeasures>
<repetition> 2 </repetitions
</LabelingSubdividingTemporalMeasure>

<LabelingSubdividingTemporalMeasure>
<name>Vacation</name>
<subMeasuresTimeValueSet>
<lis>Week 1</1i>

Week 6</1li>
</subMeasuresTimeValueSet>
<subMeasures>
Week</1li>
</subMeasures>
<repetition> 6 </repetitions>
</LabelingSubdividingTemporalMeasure>

<LabeledSubdividingTemporalMeasure>
<name>Week</name>
<labelingMeasuress>
Trimester
Break</1li>
Vacation</1i>
</labelingMeasures>
<subMeasures>
Day</1li>
</subMeasures>
<repetition> 7 </repetitions>
</LabeledSubdividingTemporalMeasure>

<LabelingTemporalMeasure>
<name>Day</name>
<timeValueSet>
Monday</1li>
Tuesday</1li>
<lis>Wednesday</1li>
Thursday</1li>
Friday
Saturday</1li>
Sunday</1li>
</timeValueSet>
</LabelingTemporalMeasure>

Figure 2: Simple Academic Year Time Units

<DesignationFormat>
<name>Break</name>
<designatingMeasures>
<lis>Day</1li>
Week</1li>
AcademicPeriod</1li>
Academic Year</lis>
</designatingMeasuress>
</DesignationFormat>

Figure 1: Simple Academic Year DesignationFormat

Page 6 of 11

Simple Academic Calendar 1

) Wint . . Spr . . Summer
Autumn Trimester Breal Winter Trimester Brd Spring Trimester Vacation
WWWWIWIWIWWIWIWIW W WW W IW WA WA WA WA WA WW WA WWWWWWWIA Y
213(4|5(6|7|8 (910111213141 (2|1|2314(5/6|78|9/111|1{1]1412|11(2|3 4 |5|6(7|89|111(111]141|2(3|4|5|6
Figure 3: Simple Academic Calendar Graphic Display for 'Year'
Simple Academic Calendar 1
Autumn Trimester
Week [Week | Week | Week | Week | Week | Week | Week | Week | Week | Week | Week | Week | Week
1 2 3 4 5 6 7 3 9 10 11 12 13 14
Figure 4: Simple Academic Calendar Graphic Display for 'Period’
Simple Academic Calendar 1
Autumn Trimester
Week 1
Monday 23| Tuesday 24| Wednesday 25| Thursday 26 | Friday 27 | Baturday 28 | Bunday 29
September
2002 The Gregorian Calendar

Figure 5: Simple Academic Calendar Graphic Display for "Week'

4 Counting Time and Labeling Time Intervals

In section 2 we defined the different types of TemporalMeasures and the relations between them. In this
section we will see how TemporalMeasures are used to count time, and how AbstractDates can be
generated by a network of TemporalMeasures, to create a coverage of the timeline.

4.1 Counting Time According to a CalendarSystem

We count time by ticking. A TemporalMeasure ticks when the time unit it measures has elapsed. A
SubdividedTemporalMeasure T that has subMeasures (77, ... T,) and k repetitions ticks when it completes k&
repetitions of receiving a tick from each of it's sub measures, n*k ticks. An EquivalenceTemporalMeasure

Page 7 of 11

T that has equivalentMeasures (7}, ... T,) ticks when it receives a tick from one of it's equivalent measures.
A LabelingTemporalMeasure sets it’s current value to the next value, every time it receives a tick.

Imagine an odometer that displays the distance your car has driven. Every mile the rightmost digit
advances to the next value, and when the rightmost position has completed a full cycle, the digit to the left
advances to its next value. The ticks propagate through the network of related temporal measures in a
similar way. Keeping track of time according to a calendar system, when the time units are periodic and
hierarchical, amounts to keeping track of the propagation of ticks. For this purpose we need to keep state
information in the TemporalMeasures, and a stack. State information is kept for Subdividing
TemporalMeasures, and consists of the current sub measure, and the current repetition. Before we begin
counting time the stack needs to be initialized, and then counting time consists of updating the current
state, and popping and pushing TemporalMeasures onto the stack according to the propagation of ticks.
This is best illustrated through and example. Let's use the Simple Academic Calendar from section 3 to
visualize how the ticking works. Figure 6(a) shows the stack and state for the last day of the Fall Trimester
on Year [:

{ L, Fall Trimester, Week 14, Sunday}.

curRep: 14
curVal: Week 14

Day Day

curVal: Sunday curVal: Monday
Week Week
curSubMe: Day curSubMe: Day
curRep: 7 curRep: 1
Trimester Break
curSubMe: Week curSubMe: Week

curRep: 1
curVal: Week 1

AcademicYear
curSubMe: Trimester
curRep: 1

curVal: I

AcademicYear
curSubMe: Trimester
curRep: 1

curVal: 1

AcademicEra
curSubMe: AcademicYear

AcademicEra
curSubMe: AcademicYear

(@)

(b)

Figure 6: Example Stack and State Before and After Tick

Advancing the calendar to the next day results in the following actions:

* Day ticks, its current value is advanced to Monday and it is popped from the stack.

* Week receives a tick, since it has only one subMeasure it advances it's current repetition, and since it

has completed a cycle, it ticks and is popped from the stack.

Page 8 of 11

* Trimester receives a tick, since it has only one subMeasure it advances it's current repetition, and since
it has completed a cycle, it ticks and is popped from the stack.

* Academic Year receives a tick, it advances it's current subMeasure to the next which is Break.

* A sequence of push operations on the stack follows where each TemporalMeasure that is on top of the
stack pushes its current subMeasure. This results in the following pushes: push Break, push Week,
push Day.

The resulting stack and state are shown in figure 6(b).

4.2 Generating Dates According to a CalendarSystem

In addition to providing a network of linked TemporalMeasures, a calendar system should specify how
dates are to be formed. In section 2.9 "DesignationFormat" we described the framework class that is
responsible for this. After every ticking step, the calendar's DesignationFormat is consulted to generate an
AbstractDate that represents the date for that day according to the calendar system. The DesignationFormat
for the Simple Academic Calendar example is shown in figure 2. In essence a date in the Simple Academic
Calendar is formed by a list of values each belonging to a TemporalMeasure with a finer granularity, that is
contained in the preceding TempoalMeasure. Figure 7 shows the values of the TemporalMeasures
comprising the DesignationFormat for the date corresponding with the stack and state in figures 6(a).

LabelingSubdividingTM | LabelingEquivalenceTM | LabeledSubdividingTM LabelingTM
AcademicYear |AcademicPeriod | Week Day
[currentvalie: | currentValue: currentLabelingMeasure | currentvalue: |
I Fall trimester | Sunday

v

LabelingSubdividingTM
Trimester

currentValue:

Week 14

Figure 7: Example DesignationFormat with current values shown

5 Related Work

The calendaring and scheduling community is constantly working on improving and standardizing
representations of time. The current standard, RFC2445 known as iCalendar [2] was developed by the
IETF, and it's predecessor vCal [8] was developed by the Versit Consortium. FitzPatrick [5] presents a
logical model, Orlando, for the representation of dates and times in a mnemonic yet machine readable
format. The representation is in RDF schema based on iCalendar RFC2445. Once information is converted
to this format, RDF Query languages can be used to ask intuitive questions about events data by taking
slices through events along the axes of WHEN, WHERE and WHO. These representations are based on the
Gregorian calendar, and do not support other calendaring systems.

In [10] Kraus, Sagiv and Subrahmanian provide a formal, theoretical definition of a calendar. The basic
building block is a time unit, which is associated with a set of time values. The time units are arranged in a
hierarchy, and the format of a date is determined by taking a path from the hierarchy root to a leaf. The

Page 9 of 11

drawback of this definition is that it allows invalid dates, such as April 31, 2000. To overcome this, the
authors introduce logic constraints to specify the valid dates of a calendar. In the same way, the merging of
two calendars requires one to write the constraints that provide the mapping between the two calendars.
Given these constrains the authors contend that the problem of the validity of a date is solvable using
standard constraint solving techniques over finite domains and over the integers. Using constrains provide
a powerful mechanism to describe any peculiarities of a calendar. It allows the description of calendars that
are not necessarily periodic. On the other hand using standard constraint solving techniques seems
impractical when one needs to quickly produce the consecutive dates of a month.

Ohlbach [14] presents a formal representation of time that is functional based. He defines the notion of a
Reference Time Line, onto which all time representations are mapped. The building block of the time
representation is called a Time Unit and the elements of a time unit are denoted coordinates and represented
by integers. The definition of a time unit involves two functions, one mapping a coordinate onto a half
open interval on the time line, and a second mapping a point in the time line to a coordinate. Time unit
granularity is represented by a function U within_V(v,i) which returns the i-th coordinate of the U time unit
that is within the interval of the coordinate v of the V time unit. For example Month within_Year(2000, 2)
would return the month February of year 2000. Ohlbach also defines the notion of sets of coordinates. This
extensive functional language allows representing arbitrary calendar systems, and facilitates conversions
between them, and also allows expressing notions such as weekend, office hours etc. Since this
representation is based on integers, the advantage of symbolic representation of time is lost.

Ning, Wang, and Jajodia [12] propose an algebraic approach to defining calendars, which is an
instantiation of the general framework proposed in [1]. A calendar is expressed as a collection of
granularities which are derived through algebraic operations from a single 'bottom' granularity. For
example, if 'day' is chosen as the bottom granularity, then 'week' is derived by applying the grouping
operation. Other interesting operations they propose are the altering-tick operation that allows to shrink or
expand a granule (allows to represent months with different numbers of days) , the shifting operation that
allows to define a new granule based on the shifting of an existing granule (good for representing time
zones), and other set based operations. This scheme allows the computation of granule conversions, which
basically lets one answer questions like "What is the date of the first Monday of September 2001". The
authors contend that this representation is natural, and allows for compact representations. We find that the
operations require deep understanding, and it would be difficult for a casual user to define a calendar
system using this representation.

Snodgrass et al. have been concerned with temporal representation issues in the domain of RDBMs
[9][16][17]. They point out that many different calendars exist, and that the value of a particular calendar is
determined by the population that uses it. The authors discuss the inconvenience of not having the ability to
use calendar expressions in DB applications, and propose an approach for supporting internationalized
time constants in the context of a DBMS. They propose an augmentation of SQL with three new data
types: event, that denotes a time point, interval, that denotes a period in time, and span, that denotes a
duration. The DBMS system architecture is modifies to support extensibility, the users can define new
calendars and calendar systems. These calendars can be used in the context of SQL statements and
declarations.

6 Conclusion

We have developed and demonstrated an object oriented model and framework for the definition of
arbitrary periodic calendars. This framework can be added to Calendaring and Scheduling applications to
facilitate the customization of such systems for specific domains and organizations. The model deals with
intuitive temporal concepts such as time units, time cycles, and dates, and presents them in an intuitive
manner, allowing a user to quickly master the framework and easily define a calendaring system.

Page 10 of 11

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

C. Bettini, X. Wang, and S. Jajodia. A general framework for time granularity and its application to
temporal reasoning. Annals of Mathematics and Artificial Intelligence, 22(1-2):29-58, 1998.

F. Dawson, D. Stenerson, "Internet Calendaring and Scheduling Core Object Specification"
(iCalendar) Network Working Group RFC: 2445 November 1998

http://www.fags.org/rfcs/rfc2445 . html

Dyreson, C. et al. Efficiently supporting temporal granularities. Time Center, Technical Report,
TR-31, 1998.

C. Dyreson, R. Snodgrass, and M. Freiman. Efficiently supporting temporal granularities in a
DBMS. FTP, Technical Report 95/7, James Cook University, Australia, 1995.

Greg FitzPatrick, Calendaring and Scheduling with XML-RDF, XML Conference & Exposition
2001, Orlando, Florida, December 9-14, 2001.

Goralwalla, I. et al. Modeling temporal primitives: Back to basics. In Proceedings of the 6th
International Conference on Information and Knowledge Management (CIKM-97), pages 24-31,
1997.

Goralwalla, I. et al. Temporal granularity: completing the puzzle. Journal of Intelligent Information
Systems, 16(1):41-63, 2001.

Internet Mail Consortium, vCalendar - The Electronic Calendaring and Scheduling Exchange
Format, http://www.imc.org/pdi/vcal-10.txt, September 18, 1996.

N. Kline, J. Li, and R. Snodgrass. Specifying multiple calendars, calendric systems, and field tables
and functions in TimeADT. Time Center, Technical Report, TR-41, 1999.

S. Kraus, Y. Sagiv, and V. Subrahmanian. Representing and integrating multiple calendars.
University of Maryland, Technical Report, CS-TR-3751, 1996.

H. Lin. Efficient conversion between temporal granularities. Time Center, Technical Report, TR-19,
1997.

P. Ning, X. Wang, and S. Jajodia. An algebraic representation of calendars. Annuals of Mathematics
and Artificial Intelligence, 36(1): 5-38; Sep 2002.

H. Ohlbach and D. Gabbay. Calendar logic. Journal of Applied Non-classical Logics, 8(4):291-324,
1998.

H. Ohlbach. About real time, calendar systems and temporal notions. In H. Barringer, et al., editors,
Advances in Temporal Logic, Kluwer Academic Publishers, pages 319-338, 1999.

E. Reingold and N. Dershowitz. Calendrical calculations: The millennium edition. Cambridge
University Press, 2001.

Richard Snodgrass, and Michael Soo, The MultiCal Project - Overview of MultiCal. In
http://www.eecs.wsu.edu/~cdyreson/pub/temporal/papers/multical.pdf, November 1993.

M. Soo and R. Snodgrass. Mixed calendar query language support for temporal constants. TemplIS,
Technical Report 29. Computer Science Department, University of Arizona, 1992.

X. Wang. Algebraic query languages on temporal databases with multiple time granularities. In
Proceedings of the International Conference on Information and Knowledge Management (CIKM),
Baltimore, Maryland, pages 304-311, 1995.

G. Wiederhold, S. Jajodia, and W. Litwin. Dealing with granularity of time in temporal databases. In
Lecture Notes in Computer Science, vol. 498, R. Anderson et al., editors, Springer-Verlag, 1991.

R. Zhang and E. Unger. Calendar algebra. Kansas State University, Technical Report, 1996.

Page 11 of 11

