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ABSTRACT 
Taxonomies are meaningful hierarchical categorizations of 
documents into topics reflecting the natural relationships between 
the documents and their business objectives.  Creating effective 
taxonomies and reducing the overall cost required to create them 
is an important area of research.  Unsupervised text clustering is 
one part of the solution, but automated clustering alone is 
insufficient to consistently create effective taxonomies in a 
business environment.  To address this problem, we have 
developed tools that allow for a “mixed initiative” approach to 
taxonomy development, where human expertise can be employed 
to edit and refine a text clustering to make it more meaningful for 
a given application.  Document taxonomies developed using 
mixed initiative methods pose the following challenge: how do 
we model the taxonomy so that future documents will be 
classified correctly.  We have developed a comprehensive 
approach to solving this problem, and implemented this approach 
in a software tool called eClassifier.  The crux of our solution is 
to apply a suite of classifiers, including both statistical and rule 
based varieties at each level of the taxonomic hierarchy, and then 
to choose for each category the best classifier or set of classifiers, 
that produce the most accurate results on unseen test documents.  
We tested various methods of combining these multiple 
classifiers against several different mixed initiative taxonomies 
and against the standard Reuters data set.  We show that in nearly 
all cases, one method in particular performed better than the 
others and that this method significantly improves upon any 
single classifier approach.     

Categories and Subject Descriptors 
H.2.8 [Information Systems]: Data Mining;   
H.3.3[Information Search & Retrieval]: Clustering;  
I.5.3 [Clustering]: Similarity Measures 

General Terms 
Algorithms 
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1 INTRODUCTION 
The ability to organize information around common themes, 
also known as taxonomy generation, is an increasingly 
important area of research, particularly in the area of search and 
information retrieval.  We have developed a comprehensive text 
analysis application, eClassifier, that incorporates the ability to 
generate, edit, and validate taxonomies [3][18].  This tool was 
developed to fill a void where automated clustering algorithms 
fell short and manual categorization was too expensive and 
unscalable.   
 
During the development and utilization of this tool, we have 
increasingly found that many useful taxonomies can be 
developed, even on the same set of information and that you 
need many different capabilities and approaches to generate 
these taxonomies.  Additionally, as we applied this technology 
across many domains and integrated with larger applications, it 
became clear that these human edited taxonomies would need to 
be accurately modeled in order to categorize large numbers of 
new documents automatically.  In short we needed to find a way 
to accurately model document taxonomies developed using 
multiple ad hoc techniques.  For this purpose we implemented a 
suite of classifiers utilizing a broad range of techniques well 
established in the literature as being the most effective known 
for supervised categorization.  In practice, we found that 
different classification algorithms performed better in different 
circumstances. What is more, we saw that even within the same 
taxonomy, some classifiers would perform better for one set of 
categories, whereas others would perform better on different 
categories.  It seemed we needed an approach that would apply 
the most accurate categorizer on each category.  This sounds 
simple enough, but in practice when two (or more) different 
classifiers differ in the way they would categorize a document, 
some accurate way of deciding which categorizer to trust must 
be found.   
 
Past methods for combining different classifier fall into two 
groups. The first group consists of classifiers that attempt to 
compensate for classifier instability or improve accuracy by 
intelligent use of the training data. These techniques are usually 
used to combine several instantiations of a single classification 
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algorithm to produce a single classification.  Bagging [1], 
Arcing [2] and Boosting [6] are all examples of this type of 
classifier combination. 
 
The second camp, to which our multi-classifier approaches 
belongs, attempts to combine the results of several different 
classification algorithms into a single classifier [6][9][20]. This 
“mixture of experts” approach is partially based on the intuition 
that multiple generative processes may be involved in the 
creation of a taxonomy. As different classifiers are better suited 
for modeling different divisions in data, it stands to reason that a 
set of classifiers would better classify documents than a single 
classifier. In our approach we take this intuition one step further. 
We have observed that often when users of eClassifier produce a 
taxonomy, each class is created in a different manner. Some 
classes are created using a particularly distinguishing set of 
keywords, others via a quick scan of included documents, and 
some by making slight modifications to the initial clustering. 
Because of this our techniques are focused around predicting 
each combined classifier’s performance on a particular class, 
and favoring the classifiers that appear to be best able to model 
that class. 
 
This approach is essentially a heuristic for combining classifiers. 
While it may be more limited than approaches that involve 
learning a combining function, such as those described in 
[6][9][20], it works well in practice. Benefits of our approach 
include the fact that category based distinctions in classifier 
performance will be captured with even small training sets. 
Additionally, by focusing in on the subset of the factors that 
might be affecting classifier performance that we feel is most 
likely important, we avoid the noise of the other factors that 
might prevent a learned approach from finding these class based 
differences and adjusting overall behavior accordingly. 
 
In this paper we will describe an approach for accurately 
modeling document taxonomies that are created using a mixed 
initiative approach in eClassifier.  In section 2, we describe in 
detail how such taxonomies are created.  Once created these 
taxonomies need to be modeled so that future documents can be 
accurately classified.  We discuss several approaches for 
combining multiple classifiers in order to accurately model 
mixed initiative document taxonomies in section 3.  In section 4, 
we discuss the results of testing the different modeling 
approaches on several document collections and taxonomies.  
Finally, in section 5 we summarize and outline areas for future 
research. 

2 MIXED INITIATIVE TAXONOMIES 
Mixed Initiative taxonomy generation is the process of creating 
categories of documents from a large collection using both text 
mining and human expertise.  We have found this approach to 
be compelling in business application of taxonomies, because 
people and organizations have many different views of the 
world and how it should be organized.  Taxonomies are used to 
organize information for many different purposes, necessitating 
organizing around things as disparate as technology, process, 
geography, business model and others. In this section we 
describe in detail how such taxonomies are created.   
 

Our process for developing meaningful document taxonomies 
from a large collection of documents usually begins with text 
clustering.  After eliminating common stop words and (high- 
and low-frequency) non-content-bearing words, we represent the 
text data set as a vector space model, that is, we represent each 
text example as a vector of certain weighted frequencies of the 
remaining words [17]. We used the txn weighting scheme [16].  
This scheme emphasizes words with high frequency in a 
document, and normalizes each document vector to have unit 
Euclidean norm.  For example, if a document were the sentence, 
“We have no bananas, we have no bananas today,” and the 
dictionary consisted of only two terms, “bananas” and “today”, 
then the unnormalized document vector would be {2 1} (to 
indicate two bananas and one today), and the normalized version 
would be: 







5
1,

5
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As our primary tool for automated classification, we used the k-
means algorithm [6], [7] using a cosine similarity metric [14] to 
automatically partition the problem tickets into k disjoint 
clusters. The algorithm is very fast and easy-to-implement. See  
[14] for a detailed discussion of various other text clustering 
algorithms.  The k-means algorithm produces a set of disjoint 
clusters and a centroid for each cluster that represents the cluster 
mean.  Typically k is initially set to 30, for the highest level of 
the taxonomy, though the user may adjust this if desired.  The 
initial taxonomy assigns each document to only one category 
(cluster).  Any of the initial high level categories may be 
subcategorized if desired, either automatically and recursively, 
or manually one at a time. 
 
An alternative to k-means clustering is to create an initial 
categorization via Boolean keyword queries.  This approach is 
most useful when the domain expert already has a strong idea of 
how the taxonomy should be structured.  Each category is 
described via a set of keywords connected by “and”, “or”, or 
“not”.  The resulting query defines those document examples 
that belong to the category.  The queries are then ordered and 
the document initially falls into the category of the query that 
matches its content.  Any document that does not match any 
query is placed in a special “Miscellaneous” category.  The user 
may reorder the queries based on the results to insure that every 
category starts with a significant number of matching 
documents.  Once the initial taxonomy is created, further 
refinement can take place via k-means clustering (using 
centroids of the existing categories as seeds) or by manual 
editing of the categories (see next section). 

2.1 Taxonomy Refinement 
Once an initial taxonomy has been generated, the next step is to 
provide tools for rapidly changing the taxonomy to reflect the 
needs of the application.  Keep in mind that our goal here is not 
to produce a “perfect” taxonomy for every possible purpose.  
Such a taxonomy may not even exist, or at least may require too 
much effort to obtain.  Instead we want to focus the user’s 
efforts on creating a “natural” taxonomy that is practical for a 
given application.  For such applications, there is no right or 
wrong change to make.  It is important only that the change 
accurately reflect the expert user’s point of view about the 
desired structure.  In this situation, the user is always right.  The 
tool’s job is to allow the user to make whatever changes may be 
deemed desirable.  In some cases such changes can be made at 
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the category level, in other cases a more detailed modification of 
category membership may be required.   Our tool provides 
capabilities at every level of a taxonomy to allow the user to 
make the desired modifications with a simple point and click. 

2.1.1 Category Level 
Category level changes involve modifying the taxonomy at a 
macro-level, without direct reference to individual documents 
within each category.  One such modification is merging.  
Merging two classes means creating a new category that is the 
union of two or more previously existing category memberships.  
A new centroid is created that is the average of the combined 
examples.  The user supplies the new category with an 
appropriate name. 
 
Deleting a category (or categories) means removing the category 
and its children from the taxonomy.  The user needs to 
recognized this may have unintended consequences, since all the 
examples that formerly belonged to the deleted category must 
now be placed in a different category at the current level of the 
taxonomy.  To make this decision more explicit, we introduce 
the graphic called  “View Similar Categories” chart: 
 

 
Figure 1:  Similar Categories Display 

 
This chart displays what percentage of a categories documents 
would go to which other categories if the selected category were 
to be deleted.  Each slice of the displayed pie chart can be 
selected to view the individual documents represented by the 
slice.  Making such information explicit allows the user to make 
an informed decision when deleting a category, avoiding 
unintended consequences. 
 
In addition to merging and deleting, the user can select any 
category and drag and drop the category into any existing folder 
(a category with children).  An example of when such an 
operation might be performed is when a very specific category is 
created at the root node of the tree, which would more naturally 
belong within an already existing, more general, category.  The 
operation of dragging and dropping a category to a folder has 
consequences to all other folders in a direct line from the root of 
the tree to the destination node (which gain the contents of the 
source node) and to all other folders in a direct line form the root 
to the source node (which lose the contents of the source node).  

All such consequences are automatically handled by eClassifier.
  

2.1.2 Document Level 
While some changes to a taxonomy may be made at the class 
level, others require a finer degree of control.  These are called 
document level changes, and consist of moving or copying 
selected documents form a source category to a destination 
category.  The most difficult part of this operation from the users 
point of view is selecting exactly the right set of documents to 
move so that the source and destination categories are changed 
in the manner desired.  To facilitate this eClassifier provides a 
number of mechanisms for selecting documents. 
 
One of the most natural and common ways to select a set of 
documents is with a keyword query.  EClassifier allows the user 
to enter a query for the whole document collection or for just a 
specific category.  The query can contain keywords separated by 
“and” and/or “or” and also negated words.  Words that co-occur 
with the query string are displayed for the user to help refine the 
query.  Documents that are found using the keyword query tool 
can be immediately viewed and selected one at a time or as a 
group to move or establish a new category. 
 
Another way to select documents to move or copy is via the 
“Most/Least Typical” sorting technique whereby the example 
documents are displayed in sorted order by cosine distance from 
the centroid of their category [18].  For example, the documents 
that are least typical of a given category can be located, selected, 
and moved out of the category they are in.  They may then be 
placed elsewhere or in a new category.   
 
The scatter plot visualization display [5] can also be a powerful 
tool for selecting individual or groups of documents.  Using a 
“floating box”, groups of contiguous points (documents) can be 
selected and moved to the new desired class. 
 

 
Figure 2:  Floating box for moving documents 

Independent of the document selection method, the user is 
allowed to choose between moving, copying, or deleting the 
selected documents.  Moving is generally preferable because 
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single class membership generally leads to more distinct 
categories which are better for the classification of future 
documents.  Still, in cases where a more ambiguous category 
membership better reflects the user’s natural understanding of 
the taxonomy, eClassifier allows the user to create a copy of the 
documents to be moved and to place this copy in the destination 
category.  In such cases the individual document will actually 
exist in two (or more ) categories at once, until or unless the user 
deletes the example.  Deletion is the third option.  It allows the 
document to be removed entirely from the taxonomy, if it is 
judged to be not applicable. 

3 MODELING APPROACHES 
The mixed initiative method of taxonomy development 
described in the previous section introduces a unique set of 
problems when trying to model the taxonomy created with an 
automated classifier.  First of all, each level of the taxonomic 
hierarchy may be created using a different categorization  
approach (e.g. text clustering vs. keyword queries).  But even 
within a single taxonomy level some categories may have been 
created by k-means and left alone, while others will be either 
created or edited by a human expert, so that a centroid model 
will no longer apply uniformly across all categories.   
 
But if a centroid-based classifier is not sufficient, then what is 
the modeling approach that should be used?  The necessity for 
using some kind of multi-classifier approach seems clear, since 
we cannot predict ahead of time which style of categorization 
the user will employ to create the taxonomy.  A simple solution 
would therefore train and test a suite of different classifiers at 
each level of the taxonomy, and choose the most accurate 
classifier (the one having the optimum combination of precision 
and recall) at each level.  This would be an improvement over 
the single classifier approach, but it still would not handle the 
problem of different categorization approaches being used 
within a single level of the taxonomy.   To handle this 
configuration optimally a multi-classifier approach was 
developed.  In this section we describe the single classifier 
components of the multi-classifier, and then describe several 
possible methods of combining these individual classifiers into a 
coherent multi-classifier. 

3.1 Classification Approaches 
We incorporated the following classifiers into our suite of 
available classifiers in the eClassifier toolkit. 

3.1.1 Centroid 
This is the simplest classifier.  It classifies each document to the 
nearest centroid (mean of the category) using a cosine distance 
metric. 

3.1.2 Decision Tree 
We use two types of decision tree classifiers in eClassifier. The 
core decision tree algorithm both share is an implementation of 
the well-known ID3 algorithm [15].  In addition to eClassifier’s 
core feature selection process (which selects only the N most 
frequently occurring words in the text corpus to include in the 
feature dictionary) some classification algorithms benefit from 
additional reduction in the feature space [12][6]. In these 

algorithms we use a method to select terms based on their 
mutual information with the categories [12][4], and selecting all 
terms where the mutual information is above some threshold. 
 
3.1.2.1 Single Decision Tree 
In the first method we use ID3 to learn a single decision-tree that 
classifies each document.  
 
3.1.2.2 Set of Binary Decision Trees 
In this method we learn a binary or “in/out” decision tree for 
each class using the ID3 algorithm. Each decision tree is run on 
each document and returns whether or not the document belongs 
in the class corresponding to that tree. In the case that more than 
one tree classifies a document as in, the document is placed into 
the class with the highest prior probability among those selected. 
In the case that no decision tree classifies the document as in it 
is placed in the largest overall class. 
 

3.1.3 Naïve Bayes 
We have incorporated two variations of Naïve Bayes classifier 
into our suite. The first is based upon numeric features, the 
second on binary features. Both use the well known Bayes 
decision rule and make the Naïve Bayes assumption 
[11][12][13] and differ only in how the probability of the 
document given the class, )|( kCdP , is calculated. 
 
3.1.3.1 Numeric Features: 
This method, also known as the multinomial model [12], 
classification is based upon the number of occurrences of each 
word in the document: 
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Where the individual word probabilities are calculated form the 
training data using Laplace smoothing [12]: 
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Where nk is the total number of word positions in documents 
assigned to class Ck in the training data, nk,i is the number of 
positions in these documents where wi occurs, and V is the set of 
all unique words.  
 
3.1.3.2 Binary Features: 
This method, also known as the multivariate model [12], 
calculates probabilities based on the presence or absence of 
words in documents, ignoring their frequency of occurrence: 
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Where Bi  is 1 if wi occurs in d and 0 otherwise, and the 
individual word probabilities are calculated as: 

∑
∑

∈

∈

+
+

=
Dd k

Dd ki
ki dCP

dCPB
CwP

)|(2
)|(1

)|(  

4



where )|( dCP k is 1 if d is in class Ck and 0 otherwise. 
 
Since this method works best in the case of smaller feature 
spaces [12] we use the same method as in the Decision Tree 
algorithm to do additional feature selection.  

3.1.4 Rule Based 
The rule induction classifier [8] is based on a fast decision tree 
system that takes advantage of the sparsity of text data, and a 
rule simplification method that converts a decision tree into a 
logically equivalent rule set.  The system also uses a modified 
entropy function that both favors splits enhancing the purity of 
partitions and, in contrast to the gini or standard entropy metrics,  
is close to the classification error curve, which has been found to 
improve text classification accuracy.  

3.1.5 Statistical 
The statistical classifier is a version of regularized linear 
classifier that has similar behavior as a support vector machine, 
but also provides a probability estimate for each class. It also 
employs the sparse regularization condition described in [21] to 
produce a sparse weight vector. 
 
The numerical algorithm is described in [21]. 
 

3.2 Multi-Classifier Approaches 
Each of the multi-classifier approaches we created utilizes all of 
the classifiers described in section 3.1.  To prevent 
overspecialization on the training data a two-stage training 
process was employed.   Our general approach was to train each 
of the individual classifiers listed in the previous section on a 
random sample containing 67% of the original  training data set. 
The remaining 33% of the training set is used for the purpose of 
classifier weighting/evaluation.  We designed three possible 
approaches to combine classifier results at the category level. In 
each case once the mathematical formula for determining the 
classifier weighting used for each category has been determined, 
the individual classifiers are then retrained on 100% of the 
training set, in order to achieve optimal performance.  The 
remainder of this section describes the thee approaches we 
employed for combining the individual classifier results. 

3.2.1 Winner take all 
1. For a particular classification algorithm, a, and category, c, let 

),(),(
),(*),(*2),(1 acRacP

acRacPacF +=  

where P(c,a) is the precision of the algorithm on the category 
and R(c,a) is the recall.    
 
2.  Select for each category the classification algorithm with the 
highest F1 score.  So each category is owned by exactly one 
classifier (the "winner") 
 
3.  Run each classifier on each new example.  If exactly one 
categorizer classifies a new example into a category that it 
"owns" then that categorizer chooses the membership of the 
example.  If no categorizer does this, then select the largest 

category in the training set.  If multiple categorizers classify the 
example into a category they "own",, then select the categorizer 
with the best F1(c,a) score for the example's predicted category. 

3.2.2 Weighted Voting 
In the voting approach, we calculate F1 as in 3.3.1.  Then at 
runtime: 
 
1.  Run each classifier on each new example.   
 
2. Each classifier gets one "vote" for a possible category for 
each new example.   
 
3. The value of this vote is the F1(c,a) score for that category and 
algorithm.   
 
4. The category that gets the highest vote sum of squares total is 
the predicted category. 
 

3.2.3 Hybrid 

1. Same as Step 1 in Winner take all (section 3.2.1).   

2. Select for each category the classifier with the best F1 score 
on that category. 

3. Run each classifier on each new example.  If exactly one 
categorizer classifies a new example into a category that it 
"owns" then that categorizer chooses the membership of the 
example.  If no categorizer does this then use a voting 
classifier approach (section 3.2.2), selecting the category 
with the highest F1(c,a) sum of squares total.   If multiple 
categorizers classify the example into a category they "own", 
then give each of these categorizers a vote equal to its 
F1(c,a) score (sum of squares).   

 
Note that other ways of combining precision and recall besides 
F1 may be used (e.g. weighting precision more than recall) in 
this formulation.  In our experience, the variants with a more 
balanced weighting of precision vs. recall appear to do better 
than those which are unbalanced (at least for datasets where 
each example is categorized in one and only one class). 
 
The next section compares these three approaches alongside 
each of the single classifier approaches to see which do better on 
typical “mixed-initiative” taxonomies. 
 

4 RESULTS OF TESTING 
To test our single and multi-classifier approaches we selected 
four data sets.  The first data set was categorized into an 
artificial taxonomy to illustrate the usefulness of a multi-
classifier approach.  The next two data sets were categorized 
into multiple taxonomies by a domain expert using eClassifier.  
The fourth data set is the standard Reuters data set [10] used to 
evaluate text classification approaches. 
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4.1 Almaden Helpdesk Data 
In our first test data set consisting of 6684 Almaden helpdesk 
problem tickets, we purposefully designed a taxonomy using 
eClassifier that clearly had categories designed with a mixture of 
approaches.  In this example we used eClassifier to create 10 
mutually exclusive problem categories, roughly equal in size.  
The first 5 categories were based each on a simple keyword 
query and the next 5 categories were based on a k-means 
clustering approach.   
 
The overall results are shown in Table 1. 

Table 1:  Almaden Helpdesk Results 

Algorithm Accuracy Std. Dev. Confidence 
Hybrid-Algorithm 96.72% 0.40% 0.25% 
Winner-take-all 95.54% 0.58% 0.36% 
Voting Classifier 94.44% 0.42% 0.26% 
Statistical 
Classifier 

93.64% 0.33% 0.21% 

Set of Binary 
Decision Trees 

91.25% 0.52% 0.32% 

Decision Tree 90.89% 0.59% 0.36% 
Naive Bayes 
(binary features) 

90.40% 0.59% 0.37% 

Centroid 89.76% 0.58% 0.36% 
Rule Based 
Classifier 

87.93% 1.28% 0.79% 

Naive Bayes 
(numeric features) 

82.28% 0.94% 0.58% 

 
Each of the single classifier approaches failed to accurately 
model one or more of the categories, leading to poorer 
performance overall.  The multi-classifier algorithms were able 
to choose the correct classification approach to use on each 
individual category, and thus achieve better results overall.   
Furthermore when we look at the classifier performance at the 
individual category level we see a much more even level of 
performance across all categories for the multi-classifiers.   
 

Table 2: Precision & Recall for each Category on Almaden 
Helpdesk Data (sample single classifiers) 

Class Name Centroid Rule Based 
Classifier 

print 99.72%/89.58% 70.86%/100.00% 
password 93.90%/84.03% 100.00%/100.00% 
network 80.46%/77.51% 100.00%/100.00% 
email 96.04%/76.23% 100.00%/100.00% 
vm 73.95%/84.54% 100.00%/100.00% 
file system 88.55%/94.41% 90.64%/53.27% 
install problems 85.03%/99.38% 93.01%/95.65% 
server and address 
problems 

86.25%/92.54% 91.07%/64.15% 

afs 95.77%/93.74% 86.69%/78.45% 
lotus notes 79.51%/97.18% 92.09%/87.69% 
 
 

Table 3: Precision & Recall for each Category on Almaden 
Helpdesk Data (sample multi-classifiers) 

Class Name Hybrid Winner Algorithm 
print 99.82%/100.00% 88.97%/100.00% 
password 100.00%/100.00% 100.00%/99.85% 
network 100.00%/100.00% 100.00%/99.62% 
email 100.00%/100.00% 100.00%/100.00% 
vm 100.00%/100.00% 98.92%/100.00% 
file system 96.58%/89.49% 96.86%/89.21% 
install problems 93.64%/96.38% 93.64%/95.64% 
server and address 
problems 

95.73%/91.93% 98.10%/88.28% 

afs 90.85%/97.52% 98.11%/93.37% 
lotus notes 94.07%/92.46% 94.19%/90.58% 
 
We wish to stress here the advantage of having a modeling 
approach that works consistently well across all categories.   A 
model with high precision and recall overall that has relatively 
low precision and recall for one of the smaller categories in the 
taxonomy may still deliver unacceptable results, depending on 
the importance of the poorly modeled category.  In general, we 
found the Hybrid and Winner algorithms performed much more 
uniformly well on all categories in the taxonomy when 
compared to the other approaches.  The Voting Classifier was 
not as effective as the other two multi-classifiers in this regard. 

4.2 Music Industry Data Set 
The music industry data set is a set of 8182 news articles found 
on the World Wide Web each of which describes some aspect of 
the music industry.  From this data set, 4 taxonomies were 
developed using eClassifier.  In each case the documents are 
categorized in only one category of a flat taxonomy.  Each 
taxonomy contains a Miscellaneous category which represents 
those documents which were deemed not to belong in any of the 
predefined categories. 
 

1. Infrastructure Management - Each category contains a 
relevant technology.  There are 6 categories.  
Miscellaneous contains 23% of the data.   

2. Geography - Each category represents the geographic 
location of a particular musical event.  There are 17 
categories. Miscellaneous contains 53.14% of the 
examples. 

3. Company Organization - Each category represents the 
related department of a music/record company.  There 
are 12 categories, Miscellaneous contains 2.9% of the 
data.  

4. Company - Each category represents a company in the 
music industry.  There are 24 categories 
Miscellaneous, containing 51.06% of the data. 

 
 Each data set was split randomly into 2/3 training and 1/3 test 
set, 100 different times.  The average accuracy, standard 
deviation, and confidence of these 100 trials for each taxonomy 
is described in the following four tables, listing the most 
accurate algorithms first.  Note that accuracy = precision = recall 
in all cases since each document has one and only one correct 
category. 
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Table 4:Music Data, Company Taxonomy Results 

Algorithm Accuracy Std. 
Dev. 

Confidence 

Hybrid-Algorithm 85.77% 1.03% 0.20% 
Winner-take-all 84.49% 1.13% 0.22% 
Voting Classifier 83.66% 0.98% 0.19% 
Statistical Classifier 82.74% 0.87% 0.17% 
Naive Bayes (binary 
features) 

82.46% 0.94% 0.18% 

Decision Tree 82.14% 0.91% 0.18% 
Rule Based Classifier 81.98% 1.05% 0.21% 
Set of Binary Decision 
Trees 

79.01% 1.23% 0.24% 

Naive Bayes (numeric 
features) 

41.88% 1.12% 0.22% 

Centroid 37.57% 1.15% 0.23% 
 

Table 5: Music Data, Infrastructure Mgmt. Taxonomy 
Results 

Algorithm Accuracy Std. 
Dev. 

Confidence 

Hybrid-Algorithm 77.35% 1.10% 0.22% 
Winner-take-all 77.01% 1.04% 0.20% 
Centroid 76.87% 0.90% 0.18% 
Voting Classifier 76.17% 0.93% 0.18% 
Naive Bayes (numeric 
features) 

75.42% 1.05% 0.20% 

Statistical Classifier 71.76% 0.96% 0.19% 
Naive Bayes (binary 
features) 

61.78% 1.04% 0.20% 

Rule Based Classifier 60.59% 1.18% 0.23% 
Decision Tree 56.28% 1.30% 0.26% 
Set of Binary Decision Trees 55.99% 1.17% 0.23% 
 

Table 6: Music Data,Geography Taxonomy Results 

Algorithm Accuracy Std. Dev. Confidence 
Hybrid-Algorithm 88.38% 0.79% 0.15% 
Set of Binary Decision 
Trees 

87.61% 0.72% 0.14% 

Voting Classifier 87.56% 0.75% 0.15% 
Decision Tree 87.26% 0.77% 0.15% 
Winner-take-all 86.88% 0.79% 0.15% 
Naive Bayes (binary 
features) 

85.88% 0.78% 0.15% 

Rule Based Classifier 85.08% 0.86% 0.17% 
Statistical Classifier 84.68% 0.91% 0.18% 
Naive Bayes (numeric 
features) 

41.14% 1.12% 0.22% 

Centroid 33.94% 1.03% 0.20% 
 
 

Table 7: Music Data, Company organization taxonomy 
Results 

Algorithm Accuracy Std. Dev. Confidence 
Hybrid-Algorithm 80.66% 1.26% 0.25% 
Winner-take-all 79.10% 1.15% 0.23% 
Centroid 78.69% 0.85% 0.17% 
Voting Classifier 78.09% 1.02% 0.20% 
Naive Bayes (numeric 
features) 

74.64% 1.04% 0.20% 

Statistical Classifier 68.22% 1.12% 0.22% 
Set of Binary Decision 
Trees 

51.85% 1.30% 0.25% 

Decision Tree 50.47% 1.16% 0.23% 
Rule Based Classifier 49.29% 1.30% 0.26% 
Naive Bayes (binary 
features) 

42.83% 1.28% 0.25% 

 

4.3 Automotive Industry Data Set 
The automotive industry data set is a set of 7793 news articles 
found on the World Wide Web each of which describes some 
aspect of the auto industry.  From this data set, 5 taxonomies 
were developed using eClassifier.  In each case the documents 
are categorized in only one category of a flat taxonomy.  Each 
taxonomy contains a Miscellaneous category which represents 
those documents which were deemed not to belong in any of the 
predefined categories. 
 

Table 8: Auto Taxonomy Characteristics 

Taxonomy Name Num. Categories Miscellaneous Size 
Companies 20 33.2% 
Design 7 82.3% 
Geography 18 24.9% 
Manufacturing 10 89.3% 
Media 9 85.1% 
 
Each data set was split randomly into 2/3 training and 1/3 test 
set, 100 different times.  The average accuracy, standard 
deviation, and confidence of these 100 trials for each taxonomy 
is described in the following five tables, listing the most 
accurate algorithms first.  Note that accuracy = precision = recall 
in all cases since each document has one and only one correct 
category. 
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Table 9: Auto Data, Company Taxonomy Results 

Algorithm Accuracy Std. Dev. Confidence 
Hybrid-Algorithm 88.09% 0.76% 0.15% 
Winner-take-all 86.41% 0.84% 0.16% 
Voting Classifier 86.03% 0.81% 0.16% 
Rule Based Classifier 85.06% 0.83% 0.16% 
Decision Tree 84.79% 0.87% 0.17% 
Statistical Classifier 84.60% 0.84% 0.16% 
Naive Bayes (binary 
features) 

81.58% 0.72% 0.14% 

Set of Binary Decision 
Trees 

81.56% 0.94% 0.19% 

Centroid 49.04% 1.14% 0.22% 
Naive Bayes (numeric 
features) 

48.78% 1.16% 0.23% 

 

Table 10: Auto Data; Design Taxonomy Results 

Algorithm Accuracy Std. Dev. Confidence 
Rule Based Classifier 98.78% 0.30% 0.06% 
Hybrid-Algorithm 98.70% 0.31% 0.06% 
Winner-take-all 98.69% 0.31% 0.06% 
Set of Binary Decision 
Trees 

98.62% 0.30% 0.06% 

Voting Classifier 98.57% 0.29% 0.06% 
Decision Tree 98.47% 0.33% 0.06% 
Statistical Classifier 97.76% 0.37% 0.07% 
Naive Bayes (binary 
features) 

87.64% 0.80% 0.16% 

Naive Bayes (numeric 
features) 

57.01% 1.33% 0.26% 

Centroid 52.75% 1.44% 0.28% 
 

Table 11: Auto Data; Geography Taxonomy Results 

Algorithm Accuracy Std. Dev. Confidence 
Hybrid-Algorithm 99.23% 0.28% 0.05% 
Winner-take-all 98.94% 0.45% 0.09% 
Voting Classifier 97.56% 0.46% 0.09% 
Decision Tree 96.92% 0.74% 0.15% 
Rule Based Classifier 96.36% 0.56% 0.11% 
Naive Bayes (binary 
features) 

95.90% 0.51% 0.10% 

Statistical Classifier 92.02% 0.71% 0.14% 
Set of Binary Decision 
Trees 

91.04% 1.15% 0.22% 

Naive Bayes (numeric 
features) 

34.77% 1.23% 0.24% 

Centroid 29.49% 1.02% 0.20% 
 
 

Table 12: Auto Data, Manufacturing Taxonomy Results 

Algorithm Accuracy Std. Dev. Confidence 
Hybrid-Algorithm 96.13% 0.39% 0.08% 
Winner-take-all 96.10% 0.40% 0.08% 
Rule Based Classifier 96.09% 0.39% 0.08% 
Statistical Classifier 96.04% 0.42% 0.08% 
Voting Classifier 95.80% 0.45% 0.09% 
Set of Binary Decision 
Trees 

93.50% 0.74% 0.14% 

Decision Tree 91.99% 0.73% 0.14% 
Naive Bayes (binary 
features) 

89.74% 0.77% 0.15% 

Naive Bayes (numeric 
features) 

51.61% 1.68% 0.33% 

Centroid 42.45% 1.44% 0.28% 
 

Table 13: Auto Data, Media Taxonomy Results 

Algorithm Accuracy Std. Dev. Confidence 
Rule Based Classifier 94.63% 0.57% 0.11% 
Hybrid-Algorithm 94.49% 0.61% 0.12% 
Winner-take-all 94.46% 0.61% 0.12% 
Voting Classifier 94.32% 0.62% 0.12% 
Set of Binary Decision 
Trees 

94.19% 0.59% 0.12% 

Decision Tree 93.71% 0.58% 0.11% 
Statistical Classifier 93.55% 0.60% 0.12% 
Naive Bayes (binary 
features) 

83.11% 0.87% 0.17% 

Naive Bayes (numeric 
features) 

47.17% 1.35% 0.26% 

Centroid 42.69% 1.53% 0.30% 
 

4.4 Reuters 
 
The Reuters ModApte data set [10] used for this test contained 
9603 news articles in 79 categories, with each news article 
classified in only one category.  The average accuracy, standard 
deviation, and confidence of these 100 trials for each taxonomy 
is described in the following table, listing the most accurate 
algorithms first.  Note that accuracy = precision = recall in all 
cases since each document has one and only one correct 
category. 
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Table 14: Reuters Data, Reuters Taxonomy Results 

Algorithm Accuracy Std. Dev. Confidence 
Hybrid-Algorithm 85.47% 0.95% 0.19% 
Statistical Classifier 84.64% 0.83% 0.16% 
Winner-take-all 84.29% 1.02% 0.20% 
Naive Bayes (numeric 
features) 

83.82% 0.89% 0.17% 

Voting Classifier 83.79% 0.90% 0.18% 
Rule Based Classifier 71.69% 1.03% 0.20% 
Naive Bayes (binary 
features) 

70.62% 1.00% 0.20% 

Centroid 70.11% 0.98% 0.19% 
Set of Binary Decision 
Trees 

68.91% 1.11% 0.22% 

Decision Tree 60.48% 1.17% 0.23% 
 
In summary, the Hybrid multi-classifier algorithm was 
consistently the most accurate classifier, or no worse than the 
most accurate classifier.  Moreover, the Hybrid algorithm 
exhibited the greatest degree of consistency in accuracy both 
within the categories of individual taxonomies and among 
multiple taxonomies.  This consistency of performance achieves 
our design goal of having a classifier that can accurately model 
mixed initiative taxonomies. 

5 CONCLUSIONS 
The Hybrid multi-classifier approach appeared to do as well or 
better than all other multi-classifiers and all single algorithm 
classifiers on all taxonomies we tested.  Performance 
improvement is most marked where multiple strategies are 
employed in generating the taxonomy categories.  Performance 
on taxonomies that are uniformly generated is no better than the 
best single classifier. 
 
We believe we have shown an effective method of combining 
multiple classifiers to accurately model a taxonomy developed 
using a mixed-initiative methodology.  Future work still needs to 
be done to study “fuzzy clustering” taxonomies, or those 
taxonomies that allow classifications of documents into more 
than one category.   
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