
RJ 10288 (A0303-007) March 12, 2003
Computer Science

IBM Research Report

Modeling Document Taxonomies

Scott Spangler, Jeffrey Kreulen, Justin Lessler

IBM Research Division
Almaden Research Center

650 Harry Road
San Jose, CA 95120-6099

David E. Johnson
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Modeling Document Taxonomies

Scott Spangler
IBM Almaden Research

Center
650 Harry Road, San Jose,

CA 95120
408-927-2887

spangles@us.ibm.com

Jeffrey Kreulen
IBM Almaden Research

Center
650 Harry Road

San Jose, CA 95120
408-927-2431

kreulen@us.ibm.com

Justin Lessler
IBM Almaden Research

Center
650 Harry Road, San

Jose, CA 95120
408-927-2449

lessler@us.ibm.com

David E. Johnson
IBM Watson Research

Center
1101 Kitchawan Road,

Yorktown Hts, NY 10598
914-945-1036

dejohns@us.ibm.com

ABSTRACT
Taxonomies are meaningful hierarchical categorizations of
documents into topics reflecting the natural relationships between
the documents and their business objectives. Creating effective
taxonomies and reducing the overall cost required to create them
is an important area of research. Unsupervised text clustering is
one part of the solution, but automated clustering alone is
insufficient to consistently create effective taxonomies in a
business environment. To address this problem, we have
developed tools that allow for a “mixed initiative” approach to
taxonomy development, where human expertise can be employed
to edit and refine a text clustering to make it more meaningful for
a given application. Document taxonomies developed using
mixed initiative methods pose the following challenge: how do
we model the taxonomy so that future documents will be
classified correctly. We have developed a comprehensive
approach to solving this problem, and implemented this approach
in a software tool called eClassifier. The crux of our solution is
to apply a suite of classifiers, including both statistical and rule
based varieties at each level of the taxonomic hierarchy, and then
to choose for each category the best classifier or set of classifiers,
that produce the most accurate results on unseen test documents.
We tested various methods of combining these multiple
classifiers against several different mixed initiative taxonomies
and against the standard Reuters data set. We show that in nearly
all cases, one method in particular performed better than the
others and that this method significantly improves upon any
single classifier approach.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Data Mining;
H.3.3[Information Search & Retrieval]: Clustering;
I.5.3 [Clustering]: Similarity Measures

General Terms
Algorithms

Keywords
Text Mining, Clustering, Mixed Initiative, Classification

1 INTRODUCTION
The ability to organize information around common themes,
also known as taxonomy generation, is an increasingly
important area of research, particularly in the area of search and
information retrieval. We have developed a comprehensive text
analysis application, eClassifier, that incorporates the ability to
generate, edit, and validate taxonomies [3][18]. This tool was
developed to fill a void where automated clustering algorithms
fell short and manual categorization was too expensive and
unscalable.

During the development and utilization of this tool, we have
increasingly found that many useful taxonomies can be
developed, even on the same set of information and that you
need many different capabilities and approaches to generate
these taxonomies. Additionally, as we applied this technology
across many domains and integrated with larger applications, it
became clear that these human edited taxonomies would need to
be accurately modeled in order to categorize large numbers of
new documents automatically. In short we needed to find a way
to accurately model document taxonomies developed using
multiple ad hoc techniques. For this purpose we implemented a
suite of classifiers utilizing a broad range of techniques well
established in the literature as being the most effective known
for supervised categorization. In practice, we found that
different classification algorithms performed better in different
circumstances. What is more, we saw that even within the same
taxonomy, some classifiers would perform better for one set of
categories, whereas others would perform better on different
categories. It seemed we needed an approach that would apply
the most accurate categorizer on each category. This sounds
simple enough, but in practice when two (or more) different
classifiers differ in the way they would categorize a document,
some accurate way of deciding which categorizer to trust must
be found.

Past methods for combining different classifier fall into two
groups. The first group consists of classifiers that attempt to
compensate for classifier instability or improve accuracy by
intelligent use of the training data. These techniques are usually
used to combine several instantiations of a single classification

1

algorithm to produce a single classification. Bagging [1],
Arcing [2] and Boosting [6] are all examples of this type of
classifier combination.

The second camp, to which our multi-classifier approaches
belongs, attempts to combine the results of several different
classification algorithms into a single classifier [6][9][20]. This
“mixture of experts” approach is partially based on the intuition
that multiple generative processes may be involved in the
creation of a taxonomy. As different classifiers are better suited
for modeling different divisions in data, it stands to reason that a
set of classifiers would better classify documents than a single
classifier. In our approach we take this intuition one step further.
We have observed that often when users of eClassifier produce a
taxonomy, each class is created in a different manner. Some
classes are created using a particularly distinguishing set of
keywords, others via a quick scan of included documents, and
some by making slight modifications to the initial clustering.
Because of this our techniques are focused around predicting
each combined classifier’s performance on a particular class,
and favoring the classifiers that appear to be best able to model
that class.

This approach is essentially a heuristic for combining classifiers.
While it may be more limited than approaches that involve
learning a combining function, such as those described in
[6][9][20], it works well in practice. Benefits of our approach
include the fact that category based distinctions in classifier
performance will be captured with even small training sets.
Additionally, by focusing in on the subset of the factors that
might be affecting classifier performance that we feel is most
likely important, we avoid the noise of the other factors that
might prevent a learned approach from finding these class based
differences and adjusting overall behavior accordingly.

In this paper we will describe an approach for accurately
modeling document taxonomies that are created using a mixed
initiative approach in eClassifier. In section 2, we describe in
detail how such taxonomies are created. Once created these
taxonomies need to be modeled so that future documents can be
accurately classified. We discuss several approaches for
combining multiple classifiers in order to accurately model
mixed initiative document taxonomies in section 3. In section 4,
we discuss the results of testing the different modeling
approaches on several document collections and taxonomies.
Finally, in section 5 we summarize and outline areas for future
research.

2 MIXED INITIATIVE TAXONOMIES
Mixed Initiative taxonomy generation is the process of creating
categories of documents from a large collection using both text
mining and human expertise. We have found this approach to
be compelling in business application of taxonomies, because
people and organizations have many different views of the
world and how it should be organized. Taxonomies are used to
organize information for many different purposes, necessitating
organizing around things as disparate as technology, process,
geography, business model and others. In this section we
describe in detail how such taxonomies are created.

Our process for developing meaningful document taxonomies
from a large collection of documents usually begins with text
clustering. After eliminating common stop words and (high-
and low-frequency) non-content-bearing words, we represent the
text data set as a vector space model, that is, we represent each
text example as a vector of certain weighted frequencies of the
remaining words [17]. We used the txn weighting scheme [16].
This scheme emphasizes words with high frequency in a
document, and normalizes each document vector to have unit
Euclidean norm. For example, if a document were the sentence,
“We have no bananas, we have no bananas today,” and the
dictionary consisted of only two terms, “bananas” and “today”,
then the unnormalized document vector would be {2 1} (to
indicate two bananas and one today), and the normalized version
would be:







5
1,

5
2 .

As our primary tool for automated classification, we used the k-
means algorithm [6], [7] using a cosine similarity metric [14] to
automatically partition the problem tickets into k disjoint
clusters. The algorithm is very fast and easy-to-implement. See
[14] for a detailed discussion of various other text clustering
algorithms. The k-means algorithm produces a set of disjoint
clusters and a centroid for each cluster that represents the cluster
mean. Typically k is initially set to 30, for the highest level of
the taxonomy, though the user may adjust this if desired. The
initial taxonomy assigns each document to only one category
(cluster). Any of the initial high level categories may be
subcategorized if desired, either automatically and recursively,
or manually one at a time.

An alternative to k-means clustering is to create an initial
categorization via Boolean keyword queries. This approach is
most useful when the domain expert already has a strong idea of
how the taxonomy should be structured. Each category is
described via a set of keywords connected by “and”, “or”, or
“not”. The resulting query defines those document examples
that belong to the category. The queries are then ordered and
the document initially falls into the category of the query that
matches its content. Any document that does not match any
query is placed in a special “Miscellaneous” category. The user
may reorder the queries based on the results to insure that every
category starts with a significant number of matching
documents. Once the initial taxonomy is created, further
refinement can take place via k-means clustering (using
centroids of the existing categories as seeds) or by manual
editing of the categories (see next section).

2.1 Taxonomy Refinement
Once an initial taxonomy has been generated, the next step is to
provide tools for rapidly changing the taxonomy to reflect the
needs of the application. Keep in mind that our goal here is not
to produce a “perfect” taxonomy for every possible purpose.
Such a taxonomy may not even exist, or at least may require too
much effort to obtain. Instead we want to focus the user’s
efforts on creating a “natural” taxonomy that is practical for a
given application. For such applications, there is no right or
wrong change to make. It is important only that the change
accurately reflect the expert user’s point of view about the
desired structure. In this situation, the user is always right. The
tool’s job is to allow the user to make whatever changes may be
deemed desirable. In some cases such changes can be made at

2

the category level, in other cases a more detailed modification of
category membership may be required. Our tool provides
capabilities at every level of a taxonomy to allow the user to
make the desired modifications with a simple point and click.

2.1.1 Category Level
Category level changes involve modifying the taxonomy at a
macro-level, without direct reference to individual documents
within each category. One such modification is merging.
Merging two classes means creating a new category that is the
union of two or more previously existing category memberships.
A new centroid is created that is the average of the combined
examples. The user supplies the new category with an
appropriate name.

Deleting a category (or categories) means removing the category
and its children from the taxonomy. The user needs to
recognized this may have unintended consequences, since all the
examples that formerly belonged to the deleted category must
now be placed in a different category at the current level of the
taxonomy. To make this decision more explicit, we introduce
the graphic called “View Similar Categories” chart:

Figure 1: Similar Categories Display

This chart displays what percentage of a categories documents
would go to which other categories if the selected category were
to be deleted. Each slice of the displayed pie chart can be
selected to view the individual documents represented by the
slice. Making such information explicit allows the user to make
an informed decision when deleting a category, avoiding
unintended consequences.

In addition to merging and deleting, the user can select any
category and drag and drop the category into any existing folder
(a category with children). An example of when such an
operation might be performed is when a very specific category is
created at the root node of the tree, which would more naturally
belong within an already existing, more general, category. The
operation of dragging and dropping a category to a folder has
consequences to all other folders in a direct line from the root of
the tree to the destination node (which gain the contents of the
source node) and to all other folders in a direct line form the root
to the source node (which lose the contents of the source node).

All such consequences are automatically handled by eClassifier.

2.1.2 Document Level
While some changes to a taxonomy may be made at the class
level, others require a finer degree of control. These are called
document level changes, and consist of moving or copying
selected documents form a source category to a destination
category. The most difficult part of this operation from the users
point of view is selecting exactly the right set of documents to
move so that the source and destination categories are changed
in the manner desired. To facilitate this eClassifier provides a
number of mechanisms for selecting documents.

One of the most natural and common ways to select a set of
documents is with a keyword query. EClassifier allows the user
to enter a query for the whole document collection or for just a
specific category. The query can contain keywords separated by
“and” and/or “or” and also negated words. Words that co-occur
with the query string are displayed for the user to help refine the
query. Documents that are found using the keyword query tool
can be immediately viewed and selected one at a time or as a
group to move or establish a new category.

Another way to select documents to move or copy is via the
“Most/Least Typical” sorting technique whereby the example
documents are displayed in sorted order by cosine distance from
the centroid of their category [18]. For example, the documents
that are least typical of a given category can be located, selected,
and moved out of the category they are in. They may then be
placed elsewhere or in a new category.

The scatter plot visualization display [5] can also be a powerful
tool for selecting individual or groups of documents. Using a
“floating box”, groups of contiguous points (documents) can be
selected and moved to the new desired class.

Figure 2: Floating box for moving documents

Independent of the document selection method, the user is
allowed to choose between moving, copying, or deleting the
selected documents. Moving is generally preferable because

3

single class membership generally leads to more distinct
categories which are better for the classification of future
documents. Still, in cases where a more ambiguous category
membership better reflects the user’s natural understanding of
the taxonomy, eClassifier allows the user to create a copy of the
documents to be moved and to place this copy in the destination
category. In such cases the individual document will actually
exist in two (or more) categories at once, until or unless the user
deletes the example. Deletion is the third option. It allows the
document to be removed entirely from the taxonomy, if it is
judged to be not applicable.

3 MODELING APPROACHES
The mixed initiative method of taxonomy development
described in the previous section introduces a unique set of
problems when trying to model the taxonomy created with an
automated classifier. First of all, each level of the taxonomic
hierarchy may be created using a different categorization
approach (e.g. text clustering vs. keyword queries). But even
within a single taxonomy level some categories may have been
created by k-means and left alone, while others will be either
created or edited by a human expert, so that a centroid model
will no longer apply uniformly across all categories.

But if a centroid-based classifier is not sufficient, then what is
the modeling approach that should be used? The necessity for
using some kind of multi-classifier approach seems clear, since
we cannot predict ahead of time which style of categorization
the user will employ to create the taxonomy. A simple solution
would therefore train and test a suite of different classifiers at
each level of the taxonomy, and choose the most accurate
classifier (the one having the optimum combination of precision
and recall) at each level. This would be an improvement over
the single classifier approach, but it still would not handle the
problem of different categorization approaches being used
within a single level of the taxonomy. To handle this
configuration optimally a multi-classifier approach was
developed. In this section we describe the single classifier
components of the multi-classifier, and then describe several
possible methods of combining these individual classifiers into a
coherent multi-classifier.

3.1 Classification Approaches
We incorporated the following classifiers into our suite of
available classifiers in the eClassifier toolkit.

3.1.1 Centroid
This is the simplest classifier. It classifies each document to the
nearest centroid (mean of the category) using a cosine distance
metric.

3.1.2 Decision Tree
We use two types of decision tree classifiers in eClassifier. The
core decision tree algorithm both share is an implementation of
the well-known ID3 algorithm [15]. In addition to eClassifier’s
core feature selection process (which selects only the N most
frequently occurring words in the text corpus to include in the
feature dictionary) some classification algorithms benefit from
additional reduction in the feature space [12][6]. In these

algorithms we use a method to select terms based on their
mutual information with the categories [12][4], and selecting all
terms where the mutual information is above some threshold.

3.1.2.1 Single Decision Tree
In the first method we use ID3 to learn a single decision-tree that
classifies each document.

3.1.2.2 Set of Binary Decision Trees
In this method we learn a binary or “in/out” decision tree for
each class using the ID3 algorithm. Each decision tree is run on
each document and returns whether or not the document belongs
in the class corresponding to that tree. In the case that more than
one tree classifies a document as in, the document is placed into
the class with the highest prior probability among those selected.
In the case that no decision tree classifies the document as in it
is placed in the largest overall class.

3.1.3 Naïve Bayes
We have incorporated two variations of Naïve Bayes classifier
into our suite. The first is based upon numeric features, the
second on binary features. Both use the well known Bayes
decision rule and make the Naïve Bayes assumption
[11][12][13] and differ only in how the probability of the
document given the class,)|(kCdP , is calculated.

3.1.3.1 Numeric Features:
This method, also known as the multinomial model [12],
classification is based upon the number of occurrences of each
word in the document:

∏
∈

=
dw

kik
i

CwPCdP)|()|(

Where the individual word probabilities are calculated form the
training data using Laplace smoothing [12]:

||
1

)|(,

Vn
n

CwP
k

ik
ki +

+
=

Where nk is the total number of word positions in documents
assigned to class Ck in the training data, nk,i is the number of
positions in these documents where wi occurs, and V is the set of
all unique words.

3.1.3.2 Binary Features:
This method, also known as the multivariate model [12],
calculates probabilities based on the presence or absence of
words in documents, ignoring their frequency of occurrence:

∏
∈

−−+=
Vw

kiikiik
i

CwPBCwPBCdP)]|(1)(1()|([)|(

Where Bi is 1 if wi occurs in d and 0 otherwise, and the
individual word probabilities are calculated as:

∑
∑

∈

∈

+
+

=
Dd k

Dd ki
ki dCP

dCPB
CwP

)|(2
)|(1

)|(

4

where)|(dCP k is 1 if d is in class Ck and 0 otherwise.

Since this method works best in the case of smaller feature
spaces [12] we use the same method as in the Decision Tree
algorithm to do additional feature selection.

3.1.4 Rule Based
The rule induction classifier [8] is based on a fast decision tree
system that takes advantage of the sparsity of text data, and a
rule simplification method that converts a decision tree into a
logically equivalent rule set. The system also uses a modified
entropy function that both favors splits enhancing the purity of
partitions and, in contrast to the gini or standard entropy metrics,
is close to the classification error curve, which has been found to
improve text classification accuracy.

3.1.5 Statistical
The statistical classifier is a version of regularized linear
classifier that has similar behavior as a support vector machine,
but also provides a probability estimate for each class. It also
employs the sparse regularization condition described in [21] to
produce a sparse weight vector.

The numerical algorithm is described in [21].

3.2 Multi-Classifier Approaches
Each of the multi-classifier approaches we created utilizes all of
the classifiers described in section 3.1. To prevent
overspecialization on the training data a two-stage training
process was employed. Our general approach was to train each
of the individual classifiers listed in the previous section on a
random sample containing 67% of the original training data set.
The remaining 33% of the training set is used for the purpose of
classifier weighting/evaluation. We designed three possible
approaches to combine classifier results at the category level. In
each case once the mathematical formula for determining the
classifier weighting used for each category has been determined,
the individual classifiers are then retrained on 100% of the
training set, in order to achieve optimal performance. The
remainder of this section describes the thee approaches we
employed for combining the individual classifier results.

3.2.1 Winner take all
1. For a particular classification algorithm, a, and category, c, let

),(),(
),(*),(*2),(1 acRacP

acRacPacF +=

where P(c,a) is the precision of the algorithm on the category
and R(c,a) is the recall.

2. Select for each category the classification algorithm with the
highest F1 score. So each category is owned by exactly one
classifier (the "winner")

3. Run each classifier on each new example. If exactly one
categorizer classifies a new example into a category that it
"owns" then that categorizer chooses the membership of the
example. If no categorizer does this, then select the largest

category in the training set. If multiple categorizers classify the
example into a category they "own",, then select the categorizer
with the best F1(c,a) score for the example's predicted category.

3.2.2 Weighted Voting
In the voting approach, we calculate F1 as in 3.3.1. Then at
runtime:

1. Run each classifier on each new example.

2. Each classifier gets one "vote" for a possible category for
each new example.

3. The value of this vote is the F1(c,a) score for that category and
algorithm.

4. The category that gets the highest vote sum of squares total is
the predicted category.

3.2.3 Hybrid

1. Same as Step 1 in Winner take all (section 3.2.1).

2. Select for each category the classifier with the best F1 score
on that category.

3. Run each classifier on each new example. If exactly one
categorizer classifies a new example into a category that it
"owns" then that categorizer chooses the membership of the
example. If no categorizer does this then use a voting
classifier approach (section 3.2.2), selecting the category
with the highest F1(c,a) sum of squares total. If multiple
categorizers classify the example into a category they "own",
then give each of these categorizers a vote equal to its
F1(c,a) score (sum of squares).

Note that other ways of combining precision and recall besides
F1 may be used (e.g. weighting precision more than recall) in
this formulation. In our experience, the variants with a more
balanced weighting of precision vs. recall appear to do better
than those which are unbalanced (at least for datasets where
each example is categorized in one and only one class).

The next section compares these three approaches alongside
each of the single classifier approaches to see which do better on
typical “mixed-initiative” taxonomies.

4 RESULTS OF TESTING
To test our single and multi-classifier approaches we selected
four data sets. The first data set was categorized into an
artificial taxonomy to illustrate the usefulness of a multi-
classifier approach. The next two data sets were categorized
into multiple taxonomies by a domain expert using eClassifier.
The fourth data set is the standard Reuters data set [10] used to
evaluate text classification approaches.

5

4.1 Almaden Helpdesk Data
In our first test data set consisting of 6684 Almaden helpdesk
problem tickets, we purposefully designed a taxonomy using
eClassifier that clearly had categories designed with a mixture of
approaches. In this example we used eClassifier to create 10
mutually exclusive problem categories, roughly equal in size.
The first 5 categories were based each on a simple keyword
query and the next 5 categories were based on a k-means
clustering approach.

The overall results are shown in Table 1.

Table 1: Almaden Helpdesk Results

Algorithm Accuracy Std. Dev. Confidence
Hybrid-Algorithm 96.72% 0.40% 0.25%
Winner-take-all 95.54% 0.58% 0.36%
Voting Classifier 94.44% 0.42% 0.26%
Statistical
Classifier

93.64% 0.33% 0.21%

Set of Binary
Decision Trees

91.25% 0.52% 0.32%

Decision Tree 90.89% 0.59% 0.36%
Naive Bayes
(binary features)

90.40% 0.59% 0.37%

Centroid 89.76% 0.58% 0.36%
Rule Based
Classifier

87.93% 1.28% 0.79%

Naive Bayes
(numeric features)

82.28% 0.94% 0.58%

Each of the single classifier approaches failed to accurately
model one or more of the categories, leading to poorer
performance overall. The multi-classifier algorithms were able
to choose the correct classification approach to use on each
individual category, and thus achieve better results overall.
Furthermore when we look at the classifier performance at the
individual category level we see a much more even level of
performance across all categories for the multi-classifiers.

Table 2: Precision & Recall for each Category on Almaden
Helpdesk Data (sample single classifiers)

Class Name Centroid Rule Based
Classifier

print 99.72%/89.58% 70.86%/100.00%
password 93.90%/84.03% 100.00%/100.00%
network 80.46%/77.51% 100.00%/100.00%
email 96.04%/76.23% 100.00%/100.00%
vm 73.95%/84.54% 100.00%/100.00%
file system 88.55%/94.41% 90.64%/53.27%
install problems 85.03%/99.38% 93.01%/95.65%
server and address
problems

86.25%/92.54% 91.07%/64.15%

afs 95.77%/93.74% 86.69%/78.45%
lotus notes 79.51%/97.18% 92.09%/87.69%

Table 3: Precision & Recall for each Category on Almaden
Helpdesk Data (sample multi-classifiers)

Class Name Hybrid Winner Algorithm
print 99.82%/100.00% 88.97%/100.00%
password 100.00%/100.00% 100.00%/99.85%
network 100.00%/100.00% 100.00%/99.62%
email 100.00%/100.00% 100.00%/100.00%
vm 100.00%/100.00% 98.92%/100.00%
file system 96.58%/89.49% 96.86%/89.21%
install problems 93.64%/96.38% 93.64%/95.64%
server and address
problems

95.73%/91.93% 98.10%/88.28%

afs 90.85%/97.52% 98.11%/93.37%
lotus notes 94.07%/92.46% 94.19%/90.58%

We wish to stress here the advantage of having a modeling
approach that works consistently well across all categories. A
model with high precision and recall overall that has relatively
low precision and recall for one of the smaller categories in the
taxonomy may still deliver unacceptable results, depending on
the importance of the poorly modeled category. In general, we
found the Hybrid and Winner algorithms performed much more
uniformly well on all categories in the taxonomy when
compared to the other approaches. The Voting Classifier was
not as effective as the other two multi-classifiers in this regard.

4.2 Music Industry Data Set
The music industry data set is a set of 8182 news articles found
on the World Wide Web each of which describes some aspect of
the music industry. From this data set, 4 taxonomies were
developed using eClassifier. In each case the documents are
categorized in only one category of a flat taxonomy. Each
taxonomy contains a Miscellaneous category which represents
those documents which were deemed not to belong in any of the
predefined categories.

1. Infrastructure Management - Each category contains a
relevant technology. There are 6 categories.
Miscellaneous contains 23% of the data.

2. Geography - Each category represents the geographic
location of a particular musical event. There are 17
categories. Miscellaneous contains 53.14% of the
examples.

3. Company Organization - Each category represents the
related department of a music/record company. There
are 12 categories, Miscellaneous contains 2.9% of the
data.

4. Company - Each category represents a company in the
music industry. There are 24 categories
Miscellaneous, containing 51.06% of the data.

 Each data set was split randomly into 2/3 training and 1/3 test
set, 100 different times. The average accuracy, standard
deviation, and confidence of these 100 trials for each taxonomy
is described in the following four tables, listing the most
accurate algorithms first. Note that accuracy = precision = recall
in all cases since each document has one and only one correct
category.

6

Table 4:Music Data, Company Taxonomy Results

Algorithm Accuracy Std.
Dev.

Confidence

Hybrid-Algorithm 85.77% 1.03% 0.20%
Winner-take-all 84.49% 1.13% 0.22%
Voting Classifier 83.66% 0.98% 0.19%
Statistical Classifier 82.74% 0.87% 0.17%
Naive Bayes (binary
features)

82.46% 0.94% 0.18%

Decision Tree 82.14% 0.91% 0.18%
Rule Based Classifier 81.98% 1.05% 0.21%
Set of Binary Decision
Trees

79.01% 1.23% 0.24%

Naive Bayes (numeric
features)

41.88% 1.12% 0.22%

Centroid 37.57% 1.15% 0.23%

Table 5: Music Data, Infrastructure Mgmt. Taxonomy
Results

Algorithm Accuracy Std.
Dev.

Confidence

Hybrid-Algorithm 77.35% 1.10% 0.22%
Winner-take-all 77.01% 1.04% 0.20%
Centroid 76.87% 0.90% 0.18%
Voting Classifier 76.17% 0.93% 0.18%
Naive Bayes (numeric
features)

75.42% 1.05% 0.20%

Statistical Classifier 71.76% 0.96% 0.19%
Naive Bayes (binary
features)

61.78% 1.04% 0.20%

Rule Based Classifier 60.59% 1.18% 0.23%
Decision Tree 56.28% 1.30% 0.26%
Set of Binary Decision Trees 55.99% 1.17% 0.23%

Table 6: Music Data,Geography Taxonomy Results

Algorithm Accuracy Std. Dev. Confidence
Hybrid-Algorithm 88.38% 0.79% 0.15%
Set of Binary Decision
Trees

87.61% 0.72% 0.14%

Voting Classifier 87.56% 0.75% 0.15%
Decision Tree 87.26% 0.77% 0.15%
Winner-take-all 86.88% 0.79% 0.15%
Naive Bayes (binary
features)

85.88% 0.78% 0.15%

Rule Based Classifier 85.08% 0.86% 0.17%
Statistical Classifier 84.68% 0.91% 0.18%
Naive Bayes (numeric
features)

41.14% 1.12% 0.22%

Centroid 33.94% 1.03% 0.20%

Table 7: Music Data, Company organization taxonomy
Results

Algorithm Accuracy Std. Dev. Confidence
Hybrid-Algorithm 80.66% 1.26% 0.25%
Winner-take-all 79.10% 1.15% 0.23%
Centroid 78.69% 0.85% 0.17%
Voting Classifier 78.09% 1.02% 0.20%
Naive Bayes (numeric
features)

74.64% 1.04% 0.20%

Statistical Classifier 68.22% 1.12% 0.22%
Set of Binary Decision
Trees

51.85% 1.30% 0.25%

Decision Tree 50.47% 1.16% 0.23%
Rule Based Classifier 49.29% 1.30% 0.26%
Naive Bayes (binary
features)

42.83% 1.28% 0.25%

4.3 Automotive Industry Data Set
The automotive industry data set is a set of 7793 news articles
found on the World Wide Web each of which describes some
aspect of the auto industry. From this data set, 5 taxonomies
were developed using eClassifier. In each case the documents
are categorized in only one category of a flat taxonomy. Each
taxonomy contains a Miscellaneous category which represents
those documents which were deemed not to belong in any of the
predefined categories.

Table 8: Auto Taxonomy Characteristics

Taxonomy Name Num. Categories Miscellaneous Size
Companies 20 33.2%
Design 7 82.3%
Geography 18 24.9%
Manufacturing 10 89.3%
Media 9 85.1%

Each data set was split randomly into 2/3 training and 1/3 test
set, 100 different times. The average accuracy, standard
deviation, and confidence of these 100 trials for each taxonomy
is described in the following five tables, listing the most
accurate algorithms first. Note that accuracy = precision = recall
in all cases since each document has one and only one correct
category.

7

Table 9: Auto Data, Company Taxonomy Results

Algorithm Accuracy Std. Dev. Confidence
Hybrid-Algorithm 88.09% 0.76% 0.15%
Winner-take-all 86.41% 0.84% 0.16%
Voting Classifier 86.03% 0.81% 0.16%
Rule Based Classifier 85.06% 0.83% 0.16%
Decision Tree 84.79% 0.87% 0.17%
Statistical Classifier 84.60% 0.84% 0.16%
Naive Bayes (binary
features)

81.58% 0.72% 0.14%

Set of Binary Decision
Trees

81.56% 0.94% 0.19%

Centroid 49.04% 1.14% 0.22%
Naive Bayes (numeric
features)

48.78% 1.16% 0.23%

Table 10: Auto Data; Design Taxonomy Results

Algorithm Accuracy Std. Dev. Confidence
Rule Based Classifier 98.78% 0.30% 0.06%
Hybrid-Algorithm 98.70% 0.31% 0.06%
Winner-take-all 98.69% 0.31% 0.06%
Set of Binary Decision
Trees

98.62% 0.30% 0.06%

Voting Classifier 98.57% 0.29% 0.06%
Decision Tree 98.47% 0.33% 0.06%
Statistical Classifier 97.76% 0.37% 0.07%
Naive Bayes (binary
features)

87.64% 0.80% 0.16%

Naive Bayes (numeric
features)

57.01% 1.33% 0.26%

Centroid 52.75% 1.44% 0.28%

Table 11: Auto Data; Geography Taxonomy Results

Algorithm Accuracy Std. Dev. Confidence
Hybrid-Algorithm 99.23% 0.28% 0.05%
Winner-take-all 98.94% 0.45% 0.09%
Voting Classifier 97.56% 0.46% 0.09%
Decision Tree 96.92% 0.74% 0.15%
Rule Based Classifier 96.36% 0.56% 0.11%
Naive Bayes (binary
features)

95.90% 0.51% 0.10%

Statistical Classifier 92.02% 0.71% 0.14%
Set of Binary Decision
Trees

91.04% 1.15% 0.22%

Naive Bayes (numeric
features)

34.77% 1.23% 0.24%

Centroid 29.49% 1.02% 0.20%

Table 12: Auto Data, Manufacturing Taxonomy Results

Algorithm Accuracy Std. Dev. Confidence
Hybrid-Algorithm 96.13% 0.39% 0.08%
Winner-take-all 96.10% 0.40% 0.08%
Rule Based Classifier 96.09% 0.39% 0.08%
Statistical Classifier 96.04% 0.42% 0.08%
Voting Classifier 95.80% 0.45% 0.09%
Set of Binary Decision
Trees

93.50% 0.74% 0.14%

Decision Tree 91.99% 0.73% 0.14%
Naive Bayes (binary
features)

89.74% 0.77% 0.15%

Naive Bayes (numeric
features)

51.61% 1.68% 0.33%

Centroid 42.45% 1.44% 0.28%

Table 13: Auto Data, Media Taxonomy Results

Algorithm Accuracy Std. Dev. Confidence
Rule Based Classifier 94.63% 0.57% 0.11%
Hybrid-Algorithm 94.49% 0.61% 0.12%
Winner-take-all 94.46% 0.61% 0.12%
Voting Classifier 94.32% 0.62% 0.12%
Set of Binary Decision
Trees

94.19% 0.59% 0.12%

Decision Tree 93.71% 0.58% 0.11%
Statistical Classifier 93.55% 0.60% 0.12%
Naive Bayes (binary
features)

83.11% 0.87% 0.17%

Naive Bayes (numeric
features)

47.17% 1.35% 0.26%

Centroid 42.69% 1.53% 0.30%

4.4 Reuters

The Reuters ModApte data set [10] used for this test contained
9603 news articles in 79 categories, with each news article
classified in only one category. The average accuracy, standard
deviation, and confidence of these 100 trials for each taxonomy
is described in the following table, listing the most accurate
algorithms first. Note that accuracy = precision = recall in all
cases since each document has one and only one correct
category.

8

Table 14: Reuters Data, Reuters Taxonomy Results

Algorithm Accuracy Std. Dev. Confidence
Hybrid-Algorithm 85.47% 0.95% 0.19%
Statistical Classifier 84.64% 0.83% 0.16%
Winner-take-all 84.29% 1.02% 0.20%
Naive Bayes (numeric
features)

83.82% 0.89% 0.17%

Voting Classifier 83.79% 0.90% 0.18%
Rule Based Classifier 71.69% 1.03% 0.20%
Naive Bayes (binary
features)

70.62% 1.00% 0.20%

Centroid 70.11% 0.98% 0.19%
Set of Binary Decision
Trees

68.91% 1.11% 0.22%

Decision Tree 60.48% 1.17% 0.23%

In summary, the Hybrid multi-classifier algorithm was
consistently the most accurate classifier, or no worse than the
most accurate classifier. Moreover, the Hybrid algorithm
exhibited the greatest degree of consistency in accuracy both
within the categories of individual taxonomies and among
multiple taxonomies. This consistency of performance achieves
our design goal of having a classifier that can accurately model
mixed initiative taxonomies.

5 CONCLUSIONS
The Hybrid multi-classifier approach appeared to do as well or
better than all other multi-classifiers and all single algorithm
classifiers on all taxonomies we tested. Performance
improvement is most marked where multiple strategies are
employed in generating the taxonomy categories. Performance
on taxonomies that are uniformly generated is no better than the
best single classifier.

We believe we have shown an effective method of combining
multiple classifiers to accurately model a taxonomy developed
using a mixed-initiative methodology. Future work still needs to
be done to study “fuzzy clustering” taxonomies, or those
taxonomies that allow classifications of documents into more
than one category.

6 ACKNOWLEDGEMENTS
The authors gratefully acknowledge Dharmendra Modha and
Ray Strong for their contributions to the original design of
eClassifier; Lucian V. Lita, Vikas Krishna, and Tong Zhang for
providing classifier implementations; and Norm Pass and Bill
Cody for initiating the eClassifier and eClassifier for Lotus
Discovery Server projects.

7 REFERENCES
[1] Breiman, L. (1996), Bagging Predictors, Machine Learning,
Vol. 24, No. 2, pp. 123-140.
[2] Breiman, L. (1998). Arcing classifiers. The Annals of
Statistics, 26(3), 801--849.
[3] Cody, W., Kreulen, J., Spangler, S., Krishna, V. (2002).
The Integration of Business Intelligence and Knowledge

Management. IBM Systems Journal, Vol. 41, No. 4, pp 697-
713.
[4] Cover, Thomas M., Thomas, Joy A. (1991). Elements of
Information Theory. Wiley-Interscience.
[5] Dhillon, I., Modha, D., and Spangler, S. (2002). Visualizing
class structure of multidimensional data with applications.
Journal of Computational Statistics & Data Analysis (special
issue on Matrix Computations & Statistics) Vol 4:1. November
2002. pp 59-90.
[6] Duda, Richard O., Hart, Peter E., Stork, David E. (2001).
Pattern Classification, 2nd Ed. Wiley-Interscience.
[7] Hartigan, J. A. (1975) Clustering Algorithms. Wiley.
[8] Johnson, D. E., Oles, F. J., Zhang, T., and Goetz, T., 2002.
A decision-tree-based symbolic rule induction system for text
categorization. IBM Systems Journal 41:3, pp. 428-437.
[9] Kittler, J.,Hatef, M., Duin, R., and Matas, J., (1998) "On
Combining Classifiers", IEEE Trans. on Pattern Analysis and
Machine Intelligence, 20, pp. 226-239.
[10] Lewis, D. Reuters-21578 text categorization test collection.
http://www.research.att.com/~lewis. 1999.
[11] Manning, Christopher D., Schütze, Hinrich (2000).
Foundations of Statistical Natural Language Processing. The
MIT Press.
[12] McCallum, Andrew, Nigam, Kamal. A Comparison of
Event Models for Naïve Bayes Text Classification, AAAI-98.
[13] Mitchell, Tom M. (1997). Machine Learning. McGraw-
Hill.
[14] Rasmussen, E. (1992). Clustering algorithms. In Frakes,
W. B. and Baeza-Yates, R., editors, Information Retrieval: Data
Structures and Algorithms, pages 419-442. Prentice Hall,
Englewood Cliffs, New Jersey.
[15] Quinlan, J.R. (1986) Induction of Decision Trees. Machine
Learning 1 (1):81-106.
[16] Salton, G. and Buckley, C. (1988). Term-weighting
approaches in automatic text retrieval. Information Processing
& Management, 4(5):512:523.
[17] Salton, G. and McGill, M. J. (1983). Introduction to
Modern Retrieval. McGraw-Hill Book Company.
[18] Spangler, S. and Kreulen, J. (2002). Interactive Methods
for Taxonomy Editing and Validation. Proceedings of the
Conference on Information and Knowledge Mining (CIKM
2002).
[19] Ting, W. K. and Witten, I., (1997). Stacking bagged
and dagged models. 367-375. Proc. of ICML'97. Morgan
Kaufmann.
[20] Wolpert, D.H. (1992), Stacked Generalization, Neural
Networks, Vol. 5, pp. 241-259, Pergamon Press.
[21] Zhang, T. (2002), On the Dual Formulation of Regularized
Linear Systems, Machine Learning, Vol. 46, pp 91-129.

9

