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Real-time eye detection is important for many HCI 
applications, including eye-gaze tracking, auto-
stereoscopic displays, video conferencing, face detection 
and recognition. Current commercial and research 
systems use a software implementation and require a 
dedicated computer for the image-processing task, a 
large, expensive and complicated-to-use solution. In this 
paper, we present a hardware-based embedded system 
for eye detection implemented using an FPGA, with no 
CPU. A prototype system uses a 1.3MPixel digital 
imaging sensor at 27Mpixel/sec rate and outputs a 
compact list of sub-pixel accurate (x,y) eye coordinates 
via USB communication. By eliminating the CPU in the 
implementation architecture, the processing rate is only 
limited by the effective sensor pixel rate. Our design is 
suitable for single-chip eye detection and eye-gaze 
tracking sensors. 
 
1. Introduction 
 

Eye detection, the task of finding and locating eyes in 
images, is used for a many applications. One example is 
eye-gaze tracking systems, used in HCI for a variety of 
applications [Hut89,Hyr97,ETRA2], such as pointing and 
selection [Jac91], activating commands (e.g., [Sal00]), 
and combinations with other pointing devices [Zha99]. 
The present implementations of eye gaze tracking systems 
are software driven and require a dedicated high-end PC 
for image processing. Yet even high-end PCs cannot 
provide the desired high frame rate (about 200fps) and 
high-resolution images required to increase accuracy. 
Even if the performance requirement were fully met, 
these solutions are bulky and prohibitively expensive thus 
limiting their reach in a very promising market. 

Any CPU-base implementation of real-time image 
processing algorithm has two major bottlenecks – data 
transfer bandwidth and sequential data processing rate. 
First, video frames are captured, from either an analog or 
a digital camera, and transferred to the CPU main 
memory. Moving complete frames around imposes a data 
flow bandwidth bottleneck. Then the CPU can 
sequentially process the pixels. A CPU adds overhead to 
the actual computation. Its time splits among moving data 
between memory and registers, applying arithmetic and 
logic operators on the data, and keeping the algorithm 
flow, handling branches, and fetching code. For example, 

if each pixel is accessed only ten times along the entire 
computation (e.g., applying a single 3x3 filter), it would 
require the CPU to run at least ten times faster than the 
input pixel rate, and even faster due to CPU overhead. 
Hence, the CPU has to run much faster than the camera 
pixel rate. Last, a relatively long latency is imposed by 
the need to wait for an entire frame to be captured before 
it is processed. Device latency is extremely noticeable in 
interactive user interfaces.  

The advantage of a software-based implementation 
lies in its flexibility and short implementation time. A 
hardware implementation would certainly improve cost 
and size, but at the price of increased design time and 
rigidity. An efficient hardware implementation should 
offer the same functionality and exploit its main 
characteristic: concurrency. A simple mapping of the 
software implementation into hardware components falls 
short of the potential benefits offered by a hardware 
solution.  

Our approach to embedded system design is based on 
a methodology [San02,Bal02] that  captures the design at 
a high-level of abstraction where maximum concurrency 
may be exposed. This representation is then mapped into 
a particular architecture and evaluated in terms of cost, 
size, power consumption and performance. The 
methodology offers a continuous trade-off among 
possible implementations including, at the extremes, a 
full software and a full hardware realization. 

This paper presents a prototype of an embedded eye-
detection system implemented completely in hardware. 
The novelty of this paper is the redesign of a sequential 
pupil detection algorithm into a synchronous parallel 
algorithm capable of fully exploiting the concurrency of 
hardware implementations. The algorithm includes 
computation of connected components, shape moments 
and simple shape classification – all of which are 
computed within a single pass over the image, driven by 
the real time pixel-clock of the camera sensor. It operates 
at the camera’s pixel clock. The output is a list of pupil 
location and size, passed via low-bandwidth USB 
connection to an application. In addition to the 
elimination of a dedicated PC and thus major saving in 
cost, the system has virtually no limit in processing pixel 
rate, limited only by the camera output rate. Minimal 
latency is achieved as pixels are processed while being 
received from the camera.  
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A prototype was built using a Field Programmable 
Gate Array (FPGA). It processes 640x480 progressive 
scan frames at 60fps - a pixel rate that is sixteen times 
faster than the one reported in [Mor00]. By integrating 
this logic into camera sensor VLSI, this approach can 
solve the speed, size, complexity and cost of current eye 
gaze tracking systems. 
 
2. Prior Work on Eye Detection 
 

Much of the eye detection literature is associated with 
face detection and face recognition, recently surveyed in 
[Hje01] and [Zha00]. Direct eye detection methods 
search for eyes without prior information about face 
location, and can further be classified into passive and 
active methods. Passive eye detectors work on images 
taken in natural scenes, without any special illumination 
and therefore can be applied to movies, broadcast news, 
etc. One such an example can be found in [Kot96] where 
a gradient field and temporal analysis are used to detect 
eyes in gray-level video.  

Active eye-detection methods use special illumination 
and thus are applicable to real time situations in 
controlled environments, such as eye gaze tracking, iris 
recognition, and video conferencing. They take advantage 
of the retro-reflection property of the eye, a property that 
is rarely seen in any other natural objects. When light 
falls on the eye, part of it is reflected back, through the 
pupil, in a very narrow beam pointing directly towards the 
light source. When a light source is located very close to 
a camera focal axis (on-axis light), the captured image 
shows a very bright pupil [Hut89,You75].  This is often 
seen as the red-eye effect in flash photography. When a 
light source is located away from the camera focal axis 
(off-axis light), the image shows a dark pupil. However, 
neither of these lights allow for good discrimination of 
pupils from other objects, as there are also other bright 
and dark objects in the scene that would generate pupil-
like regions in the image. 
 
2.1. Frame Subtraction Using Two Illuminations 

 
The active eye detection method used here is based on 

the subtraction scheme with two synchronized 
illuminators [Tom89,Ebi93,Mor00]. At the core of this 
approach, two frames are captured, one with on-axis 
illumination and the other with off-axis illumination. 
Then the illumination intensity of the off-axis frame is 
subtracted from the intensity of the on-axis frame. Most 
of the scene, except pupils, reflects the same amount of 
light under both illuminations and subtracts out. Pupils, 
however, are very bright in one frame and dark in the 
other, and thus are detected as elliptic regions after 
applying a threshold on the difference frame. False 

positives might show due to specularities from curved 
shiny surfaces such as glasses, and at the boundaries of 
moving objects due to the delay between the two frames.  

Tomono [Tom89] used a modified three CCD camera 
with two narrow band pass filters on the sensors and a 
polarized filter with two illuminators in the corresponding 
wavelengths, the on-axis being polarized. This 
configuration allowed for simultaneous frames acpture. It 
overcame the motion problem and most of the 
specularities problems. However, it required a more 
expensive, three CCD cameras.  

The frame-subtraction eye-detection scheme has 
become popular in different applications because of its 
robustness and simplicity. It was used for tracking eyes, 
eyebrow and other facial features [Har00,Kap02a], for 
facial expression recognition [Har01], tracking head nod 
and shake, recognition of head gesture [Dav01], 
achieving eye contact in video conferencing [Ver02], 
stereoscopic displays [Per00] and more.  

The increasing popularity and multitude of 
applications suggest that an eye detection sensor would 
be of great value. An embedded eye-detection system 
would simplify the implementation of all of these 
applications. It would eliminate the need for high-
bandwidth image data transfer between imaging sensor 
and the PC, reduce the high CPU requirements for 
software-based image processing, and would dramatically 
reduce their cost. 
 
2.2. The Basic Sequential Algorithm 

 
The frame subtraction algorithm for eye detection is 

summarized in Figure 1. A detailed description can be 
found in [Mor00]. The on-axis and off-axis light sources 
alternate, synchronized with the camera frames. After 
capturing a pair of frames, subtracting the frame 
associated with the off-axis from the one associated with 
the on-axis light and thresholding the result, a binary 
image is obtained. This image contains regions of 
significant difference. The regions are detected using 
connected components [Bal82]. Those regions include 
pupils and false positives, due to object motion and image 
noise. The non-pupil regions are filtered in step 6, and the 
remaining pupil regions are reported to the output. 

 
For each video frame:
1. Capture an on-axis frame
2. Subtract previously captured off-axis frame
3. Apply threshold to obtain regions image
4. Find regions (connected components)
5. Compute shape properties of each region
6. Filter out the non-pupil regions
7. Compute and report pupil centroids and size 
 
Figure 1: Processing steps of the basic sequential 
algorithm. 
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The first five steps are applied on images. They 
consume most of the computational time and large 
memory arrays for image buffers. In step 5 the detected 
regions are represented by their properties, including 
area, bounding box and first-order moments. The filtering 
in step 6 rejects regions that do not look like pupils. 
Pupils are expected to show as elliptic shapes in a certain 
size range. Typical motion artifacts show as elongated 
shapes of large size and are in general easy to distinguish 
from pupils1. At the last step, the centroids and size of the 
detected pupils are reported. This output can be used by 
different applications. 

 
3. Synchronous Pupil Detection Algorithm  
 

To use a synchronous hardware implementation, it was 
necessary to modify the basic sequential algorithm of 
Section 2.2. While a software implementation is 
straightforward, a hardware implementation using only 
registers and logic gates operating at pixel-rate clock is 
far more complicated. The slow clock rate requires any 
pixel operation to be performed in a single clock and any 
line operation to be finished within the number of clock 
cycles equivalent to the number of pixels per image line. 

Figure 2 shows a block diagram of the parallel 
algorithm. The input is a stream of pixels. There is only a 
single frame buffer, used to store the previous frame for 
the frame-to-frame subtraction. The output of the frame 
subtraction is stored in a line buffer as it is being 
computed in a raster scan. The output is a set of XY 
locations within the frame region of the centroid of the 
detected pupils. This set of XY locations is updated once 
per frame. 

Connected components are computed using a single-
pass algorithm, similar to the region-coloring algorithm 
[Bal82]. Here, however, the algorithm operates in three 
parallel stages, running in a pipeline on three lines: when 
line iL is present in the line buffer, it is scanned and line 
components, or just components, are detected. At the 
same time, components from line 1−iL are being 

connected (merged) to components from line 2−iL , and 
those line components are being updated in the frame 
regions table.  

The shape properties, including bounding box and 
moments (step 5 Figure 1) are computed simultaneously 
with the computation of the connected components (step 
4). This saves time and eliminates the need for an extra 
frame buffer, as being used between step 4 and step 5 in 
Figure 1. Consider the computation of a property )(sf  

                                                 
1 More elaborate eye classification methods were applied in 
[Coz99] 

of a region s . The region s  is being discovered on a 
line-by-line basis and is composed of multiple line 
components. For each line object that belongs to s , say 

1s , the property )( 1sf  is computed and stored with the 

line object. When 1s  is merged with another object, 2s , 
their properties are combined to reflect the properties of 
the combined region 21 sss ∪= . This type of 
computation can be recursively applied to any shape 
property that can be computed from its value over parts of 
the shape. The property )(sf  can be computed using the 
form: 

))(),(()( 21 ss ffgsf =  

where )(,g  is an appropriate aggregation function for 
the property f . For example, aggregation of moments is 

simply the sum, ij
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whereas for the aggregation of normalized moments, the 
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The four properties which define the bounding box, 
namely maxminmaxmin ,,, ssss YYXX , are aggregated using, 

e.g., ),min( min
2

min
1

min
sss XXX = . 

Properties that are computed here in this manner include 
area, first order moments and bounding box. Other 
properties that may be useful are higher order moments, 
average color, color histograms, etc.  

In the pipelined architecture, each stage of the pipeline 
performs the computation on the intermediate results 
from the previous stage, using the same pixel clock. The 
memory arrays in the processing stages keep the 
information of only one or two lines at a time. Additional 
memory arrays are used to keep components properties 
and components location, and to form the pipeline.  

To get the effect of bright and dark pupils in 
consecutive frames, the logic circuit drives control signals 
to the on-axis and off-axis infrared light sources. These 
signals are being generated from the frame clock coming 
from the image sensor. 

 
3.1 Pixels Subtraction And Thresholding 
 

The digital video stream is coming from the sensor at 
a pixel rate of 27Mhz. The data is latched in the logic 
circuit and at the same time pushed into a FIFO frame 
buffer. The frame buffer acts as one full frame delay. 
Figure 3 depicts the subtraction and threshold module 
operation. 

3



Since each consecutive pair of frame is processed, the 
order of subtraction changes at the beginning of every 
frame. The on-axis and off-axis illumination signals are 
used to coordinate the subtraction order. To eliminate the 
handling of negative numbers, an offset is added to the 
on-axis frame. The subtraction operation is done pixel by 
pixel and the result is then compared to a threshold that 
may be modified for different light conditions and noise 
environments. The binary result of the threshold 
operation is kept in a line buffer array that is transferred 
to the Line Components Properties module on the next 
line clock.  
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arrays. Preliminary filtering of unreasonable sized objects 
can be done in this stage using the information in M00, 
since it contains the number of pixels in the component. 
 
3.3 Computing Connected Components  
 

The line components and their properties are 
connected to components of previous lines to form 
regions in the frame. The connect components module is 
triggered every line clock, and works on two consecutive 
lines. It receives the xstart and xend arrays and provides at 
the output a component identification number (ID) for 
every component and a list of merged components. Since 
the module works on pairs of consecutive lines, every line 
is processed twice.  

There is never any representation of the boundary of 
a region throughout the entire process. As regions are 
scanned line by line through the pipeline, their properties 
are computed and held. But their shape is never stored, 
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.2 Detecting Line Components and their 
Properties 

Working at the sensor pixel clock, this module is 
iggered every line clock to find the components 
roperties in the binary line buffer resulting from the 
btraction and threshold module. Every “black” pixel in 
e line is part of a component, and consecutive black 

ixels are aggregated to one component. 
Several properties are computed for each of these 

mponents: the starting pixel (xstart), the ending pixel 
end), and first-order moments. The output data structure 
om this module is built of several memory arrays that 
ntain the components properties. For a 640x480 frame 
e arrays with the corresponding bit width are: xstart (10 

its), xend (10 bits), M00 (6 bits), M10 (15 bits), M01 (15 
its). Higher order moments would require additional 

even not as a temporary binary image, as is a common 
practice with sequential implementations.   

The processing uses the xstart and xend information to 
check for neighboring pixels between two line 
components in the two lines. The following condition is 
used to detect all (four-) neighbors line components:  

( ) ( )startPendCendPstartC xxxx ____ & ≥≤   

where the subscripts CP, refer to the previous and 
current lines, respectively. Examples for such regions are 
show in Figure 4. Using this condition, the algorithm 
checks for overlap between every component in the 
current line against all the components in the previous 
line. In software this part can be easily implemented as a 
nested loop. In hardware, the implementation involves 
two counters with a synchronization mechanism to 
implement the loops. If a connected component is found, 
the next internal loop can start from the last connected 
component in the previous line saving computation time. 
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Since the module is reset every line clock and each 
iteration in the loop takes one clock, the number of 
components per line is limited to the square root of the 
number of pixels in a line. For a 640x480 frame size it 
can accommodate up to 25 objects per line. A more 
efficient, linear time merging algorithm exist, but its 
implementation in hardware was somewhat more difficult. 

A component from the current line that is connected 
to a component from the previous line is assigned with 
the same component ID as the one from the previous line. 
Components in the current line, which are not connected 
to any component in the previous line, are assigned with 
new IDs. In some cases, a component in the current line 
connects two or more components from the previous line. 
Figure 5 shows an example of three consecutive lines 
with different cases of connected components, and a 
merge. Obviously, the merged components should all get 
the same ID. Those components, which were assigned an 
ID would no longer need that ID after the merge. This ID 
can then be re-used. This is important in order to 
minimize the required size of arrays for component 
properties. In order to keep the ID list manageable and 
within the size constraint in the hardware, it was 
implemented as a linked-list. The list pointer is updated 
on every issue of a new ID or whenever a merge 
occurred. The ID list is kept non-fragmented. To support 
merging components, the algorithm keeps a merge list 
that is used in the next module in the pipeline. The merge 
list has an entry for each component with the component 
ID to be merged with, or zero if no merge is required for 
this component. 
 
Line1

Line2

Case 1 Case 2 Case 3 Case 4

 
Figure 4: Four cases of connected components 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ID=1

ID=1 ID=3 merge to 1

ID=2
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Figure 5: Three lines connect components example 
  
3.4 Updating the Regions List   
 

This module receives the list of IDs, merged 
components list, and the moments of components that 
were processed in the connect component module. It 
keeps a list of regions and their corresponding moments 
for the entire frame, along with a valid bit for each entry. 
Since regions are forming as the system advances through 
lines of the frame, the moments from each line are being 
updated to the correct entry according to the ID of the 
components. Moments of components with the same ID 
as the region are simply added. When two regions merge, 

their moments are also added, and the entry of the merged 
region is invalidated. When a new region is assigned to an 
invalidated entry, it updates the valid bit accordingly. 
This module is triggered every line clock. The list of 
components of the entire frame and their moments is 
ready at the time of receiving the last pixel of the frame. 
 
3.5 Reporting the Detected Regions 
 
Once the list of moments of the entire frame is ready, the 
system checks the shape properties of regions in the rame 
and decides if a region is a valid pupil. The centroid of a 
region are computed using: 
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This module is triggered every frame clock. It copies 
the list of moments computed in the previous module, to 
allow concurrent processing of the next frame, and 
prepares a list of regions centroids. This compact list can 
be easily transferred to an application system, such as a 
PC. Every location can be expressed in a 19 bit number 
for a 640x480 frame. A USB (Universal Serial Bus) 
connection is used to transfer the pupil locations to a PC. 
A valid bit for the centroids list is updated every time the 
list is ready. This bit is poled by the USB to ensure 
correct locations read from the hardware.  
 
4. Simulink Model 
 

The functionality of the system is captured at an 
abstract level using a rigorously defined model of 
computation. Models of computation are formalisms that 
allow capturing important formal properties of 
algorithms. For example, control algorithms can be often 
represented as finite-state machines, a formal model that 
has been the object of intense study over the years. 
Formal verification of properties such as safety, deadlock 
free, and fairness is possible without resorting to 
expensive simulation runs on empirical models. 
Analyzing the design at this level of abstraction allows 
finding and correcting errors early in the design cycle, 
rather than waiting for a full implementation to verify the 
system. Verifying a system at the implementation level 
often results in long and tedious debugging sessions 
where functional errors may be well hidden and difficult 
to disentangle from implementation errors.  

In addition to powerful verification techniques, models 
of computation offer a way of synthesizing efficient 
implementations. In the case of finite-state machines a 
number of tools are available in the market to either 
generate code or to generate Register Transfer Level 
descriptions that can be then mapped efficiently into a 
library of standard cells or other hardware components. 
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4.1. Synchronous Dataflow Model  
 

The system processes large amounts of data in a 
pipeline and is synchronized with a pixel clock. A 
synchronous dataflow model of computation is the most 
appropriate for this type of application. A synchronous 
dataflow is composed of actors or executable modules. 
Each module consumes tokens on its inputs and produces 
tokens on its outputs. Actors are connected by edges and 
transfer tokens in a first-in first-out manner. Furthermore, 
actors may only fire when there is a sufficient number of 
tokens on all inputs for a particular actor.  

All of the major system modules described in section 3 
are modeled as actors in the dataflow. Data busses, which 
convey data between modules, are modeled as edges 
connecting the actors.   

Several Engineering Design Automation (EDA) tools 
can be used to analyze and simulate this model of 
computation. We decided to use Simulink over other 
tools such as Ptolemy, System C, and the Metropolis 
meta-model because of its ease of use, maturity and 
functionality. 

Simulink provides a flexible tool that contains a great 
deal of built-in support as well as versatility. The Matlab 
tool suite that includes arithmetic libraries as well as 
powerful numerical and algebraic manipulation tools is 
linked into Simulink. Thus providing Simulink with 
methods for efficiently integrating complex sequential 
algorithms into pipeline models and allowing 
synchronization through explicit clock connections. 

The image subtraction and thresholding processes 
corresponding pixels from the current and previous 
frames on a pixel-by-pixel basis. Input tokens for this 
actor represent pixels from the sensor and the frame 
buffer, while output tokens represent thresholded pixels.  

Computing connected components processes data 
accumulated over image lines. This module’s actor 
representation fires only when it has accumulated enough 
pixel data for a complete line. It outputs only a single 
token containing all the data structures for the connect 
components list including object ID tags, component 
moments, and whether they are connected to any other 
components already processed. These output tokens are 
generated on every line of data relative sensor’s pixel 
data.  

These tokens are passed to a module that updates the 
properties of all known regions in the frame. Input is 
received on a line-by-line basis from the connect 
components module and regions in the list are updated 
accordingly. This module accumulates the data about 
possible pupil regions over an entire frame of data. Thus 
the output token is generated per frame of data. 

The regions data per frame is then passed to an actor 
that calculates the XY centroid of the regions. This is 

accomplished with a Matlab script and the XY data 
output is generated for every frame. 

The executable model of computation supported by 
Simulink has given us a platform to correct errors in the 
algorithms and in the data passing. It forces the system to 
use a consistent timing scheme for passing data between 
processing modules. Finally, this model provided us with 
a basis for a hardware implementation, taking advantage 
of a pipeline scheme that could process different parts of 
a frame at the same time. 
 
5. Hardware Implementation  

 
After verifying the functional specification of the 

model using Simulink, hardware components were 
selected and the logic circuit was implemented in HDL. 
Figure 2 depicts the main hardware blocks. Figure 6 
shows a picture of the prototype. 

The image capture device is a Zoran 1.3 Mega pixel 
CMOS Sensor, mounted with a 4.8mm/F2.8 Sunex lens 
providing 59 degrees field of view. It provides a parallel 
video stream of 10 bits per pixel at up to 27Mpps, along 
with pixel-, line-, and frame-clocks. In video mode, the 
sensor can provide up to 60 frames per second at NTSC 
resolution of 640x480. The control over the sensor is 
done through an I2C bus that can configure a set of 20 
registers in the sensor to change different parameters, 
such as exposure time, image decimation, analog gain, 
line integration time, sub-window selection, and more. 
Each of the two infrared light sources is composed of a 
set of eight LEDs [Mor00]. The LEDs are driven by 
power transistors controlled from the logic circuit to 
synchronize the on-axis, off-axis illumination to the 
CMOS sensor frame rate. The LEDs illuminate at near-
Infrared (IR) wavelength and are non obtrusive to human. 

The video is streamed to a FPGA where the complete 
algorithm was implemented. An Altera Apex20K device 
was selected. It provided enough logic gates as well as the 
required running speed. The FPGA controls the frame 
buffer FIFO (Averlogic AL422B device with an easy read 
and write pointers control). Communication with the 
application device, usually a PC, is done through a 
Cypress USB1.1 controller. The USB provides an easy 
way to transfer pupil data to the PC for display and 
verification. It also allows easy implementation of the I2C 
communication and control of the sensor and of algorithm 
parameters.  
 
6. Experimentation 
 
The prototype system was tested using circular targets, 
7mm in diameter, made of a red reflective material of the 
kind used for car reflective stickers. These are very 
directional reflectors, mimicking the eye retro-reflection. 
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r
Figure 6: System prototype. The lens is circled with 
the on-axis IR LED-s. Most of the development board 
is left unused, except of one FPGA and a frame buffer.  

 
Two pairs of targets were placed on a cardboard 

attached to horizontal bearing tracks and manually moved 
along a 25cm straight line in front of the sensor, at 
different locations and distances (about 40-60cm). The 
system output (x,y) coordinates of the targets was logged 
and analyzed. Figure 7 shows the result of one such test.  

 
Figure 7: Results of one experiment. The detected 
(x,y) coordinates of four linearly moving targets along 
approx. 1500 frames are marked with blue dots, and 
superimposed with their polynomial fits (red). 
 

Table 1 summarizes the results of 10 experiments, 
total of 15,850 frames. The average false positive 
detection rate is 1.07%. The average misses rate is 0.2%. 
Position errors are measured by the fluctuation of data 
points from a 2nd order polynomial fit to each of the 
targets in each experiment. The RMS error is 0.9 pixels, 
and the average absolute error is 0.34 pixels. Note that 
the position error computation incorporates all outliears.  

Target 3 has a noticeable higher RMS error than the 
others. To this point the reason is still unclear. One 
limitation of the prototype design was the lack of any 

video output, e.g., to a monitor. Since the FPGA is 
directly connected to the sensor, a video output has to be 
implemented in the FPGA. This could help in monitoring 
the experiments and finding the cause for differences 
between the four targets. 
 
Table 1: Experimentation results 

Target Deletion 
rate 

Insertion 
rate 

Position 
err (RMS) 

Position 
err (abs) 

1 0.00000 0.00151 0.344 0.251 
2 0.00006 0.01154 0.566 0.290 
3 0.00378 0.02415 1.803 0.474 
4 0.00398 0.00543 0.884 0.358 

Average 0.00195 0.01066 0.899 0.343 
 
7. Conclusions and Future Work 
 

The prototype system developed in this work 
demonstrates the ability to implement eye detection using 
simple logic. The logic can be pushed into the sensor 
chip, simplifying the connection between the two and 
providing a single-chip eye detection sensor. More 
capabilities can be added, such as glints detector for eye 
gaze tracking.  

The advantages of hardware implementation over 
software/CPU are lower manufacturing price, ability to 
work at high frame rates and low operational complexity 
(it does not crash). The disadvantages are lower 
flexibility for changes, more complicate development 
cycle and limited monitoring ability. 

Several points require more work. An optional video 
output would support monitoring during development and 
debugging. Work at high frame rates requires very 
sensitive sensors due to the short exposure time. This 
limits the range of eye detection in the current prototype. 
An appropriate optics could improve this deficit. Higher 
order moments would improve filtering of false positives. 

In this paper, we explored one extreme of the possible 
implementation range: a full hardware solution. Our 
methodology based on the capture of the processing 
algorithms at a high level of abstraction is ideal to explore 
a much wider range of implementations from a full 
software realization to intermediate solutions where part 
of the functionality of the algorithm is implemented in 
hardware and others in software. We wish to compare 
these other implementations and to use automatic 
synthesis techniques to optimize the design and its 
implementations. The Metropolis framework under 
development at the Department of EECS of the 
University of California at Berkeley under the 
sponsorship of the Gigascale System Research Center, 
can be used as an alternative to or in coordination with 
Simulink-Matlab to formally verify design properties and 
to evaluate architectures early in the design process as 
well as to automatically synthesize implementations. 
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