
RJ 10289 (A0301-024) January 20, 2003
Computer Science

IBM Research Report

An Embedded System for an Eye Detection Sensor

Lior Zimet1, Sean Kao2, Arnon Amir3, Alberto Sangiovanni-Vincentelli2

1University of California at Santa Cruz
1156 High Street

Santa Cruz, CA 95064

2University of California at Berkeley
Berkeley, CA 94720

3IBM Research Division
Almaden Research Center

650 Harry Road
San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

An Embedded System for an Eye Detection Sensor

Lior Zimet1, Sean Kao2, Arnon Amir3 and Alberto Sangiovanni-Vincentelli2
1 University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 liorz@zoran.com
2 Dept of EECS, University of California Berkeley, CA 94720. kaos,alberto@eecs.berkeley.edu

3 IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120. arnon@almaden.ibm.com

Real-time eye detection is important for many HCI
applications, including eye-gaze tracking, auto-
stereoscopic displays, video conferencing, face detection
and recognition. Current commercial and research
systems use a software implementation and require a
dedicated computer for the image-processing task, a
large, expensive and complicated-to-use solution. In this
paper, we present a hardware-based embedded system
for eye detection implemented using an FPGA, with no
CPU. A prototype system uses a 1.3MPixel digital
imaging sensor at 27Mpixel/sec rate and outputs a
compact list of sub-pixel accurate (x,y) eye coordinates
via USB communication. By eliminating the CPU in the
implementation architecture, the processing rate is only
limited by the effective sensor pixel rate. Our design is
suitable for single-chip eye detection and eye-gaze
tracking sensors.

1. Introduction

Eye detection, the task of finding and locating eyes in
images, is used for a many applications. One example is
eye-gaze tracking systems, used in HCI for a variety of
applications [Hut89,Hyr97,ETRA2], such as pointing and
selection [Jac91], activating commands (e.g., [Sal00]),
and combinations with other pointing devices [Zha99].
The present implementations of eye gaze tracking systems
are software driven and require a dedicated high-end PC
for image processing. Yet even high-end PCs cannot
provide the desired high frame rate (about 200fps) and
high-resolution images required to increase accuracy.
Even if the performance requirement were fully met,
these solutions are bulky and prohibitively expensive thus
limiting their reach in a very promising market.

Any CPU-base implementation of real-time image
processing algorithm has two major bottlenecks – data
transfer bandwidth and sequential data processing rate.
First, video frames are captured, from either an analog or
a digital camera, and transferred to the CPU main
memory. Moving complete frames around imposes a data
flow bandwidth bottleneck. Then the CPU can
sequentially process the pixels. A CPU adds overhead to
the actual computation. Its time splits among moving data
between memory and registers, applying arithmetic and
logic operators on the data, and keeping the algorithm
flow, handling branches, and fetching code. For example,

if each pixel is accessed only ten times along the entire
computation (e.g., applying a single 3x3 filter), it would
require the CPU to run at least ten times faster than the
input pixel rate, and even faster due to CPU overhead.
Hence, the CPU has to run much faster than the camera
pixel rate. Last, a relatively long latency is imposed by
the need to wait for an entire frame to be captured before
it is processed. Device latency is extremely noticeable in
interactive user interfaces.

The advantage of a software-based implementation
lies in its flexibility and short implementation time. A
hardware implementation would certainly improve cost
and size, but at the price of increased design time and
rigidity. An efficient hardware implementation should
offer the same functionality and exploit its main
characteristic: concurrency. A simple mapping of the
software implementation into hardware components falls
short of the potential benefits offered by a hardware
solution.

Our approach to embedded system design is based on
a methodology [San02,Bal02] that captures the design at
a high-level of abstraction where maximum concurrency
may be exposed. This representation is then mapped into
a particular architecture and evaluated in terms of cost,
size, power consumption and performance. The
methodology offers a continuous trade-off among
possible implementations including, at the extremes, a
full software and a full hardware realization.

This paper presents a prototype of an embedded eye-
detection system implemented completely in hardware.
The novelty of this paper is the redesign of a sequential
pupil detection algorithm into a synchronous parallel
algorithm capable of fully exploiting the concurrency of
hardware implementations. The algorithm includes
computation of connected components, shape moments
and simple shape classification – all of which are
computed within a single pass over the image, driven by
the real time pixel-clock of the camera sensor. It operates
at the camera’s pixel clock. The output is a list of pupil
location and size, passed via low-bandwidth USB
connection to an application. In addition to the
elimination of a dedicated PC and thus major saving in
cost, the system has virtually no limit in processing pixel
rate, limited only by the camera output rate. Minimal
latency is achieved as pixels are processed while being
received from the camera.

1

A prototype was built using a Field Programmable
Gate Array (FPGA). It processes 640x480 progressive
scan frames at 60fps - a pixel rate that is sixteen times
faster than the one reported in [Mor00]. By integrating
this logic into camera sensor VLSI, this approach can
solve the speed, size, complexity and cost of current eye
gaze tracking systems.

2. Prior Work on Eye Detection

Much of the eye detection literature is associated with
face detection and face recognition, recently surveyed in
[Hje01] and [Zha00]. Direct eye detection methods
search for eyes without prior information about face
location, and can further be classified into passive and
active methods. Passive eye detectors work on images
taken in natural scenes, without any special illumination
and therefore can be applied to movies, broadcast news,
etc. One such an example can be found in [Kot96] where
a gradient field and temporal analysis are used to detect
eyes in gray-level video.

Active eye-detection methods use special illumination
and thus are applicable to real time situations in
controlled environments, such as eye gaze tracking, iris
recognition, and video conferencing. They take advantage
of the retro-reflection property of the eye, a property that
is rarely seen in any other natural objects. When light
falls on the eye, part of it is reflected back, through the
pupil, in a very narrow beam pointing directly towards the
light source. When a light source is located very close to
a camera focal axis (on-axis light), the captured image
shows a very bright pupil [Hut89,You75]. This is often
seen as the red-eye effect in flash photography. When a
light source is located away from the camera focal axis
(off-axis light), the image shows a dark pupil. However,
neither of these lights allow for good discrimination of
pupils from other objects, as there are also other bright
and dark objects in the scene that would generate pupil-
like regions in the image.

2.1. Frame Subtraction Using Two Illuminations

The active eye detection method used here is based on

the subtraction scheme with two synchronized
illuminators [Tom89,Ebi93,Mor00]. At the core of this
approach, two frames are captured, one with on-axis
illumination and the other with off-axis illumination.
Then the illumination intensity of the off-axis frame is
subtracted from the intensity of the on-axis frame. Most
of the scene, except pupils, reflects the same amount of
light under both illuminations and subtracts out. Pupils,
however, are very bright in one frame and dark in the
other, and thus are detected as elliptic regions after
applying a threshold on the difference frame. False

positives might show due to specularities from curved
shiny surfaces such as glasses, and at the boundaries of
moving objects due to the delay between the two frames.

Tomono [Tom89] used a modified three CCD camera
with two narrow band pass filters on the sensors and a
polarized filter with two illuminators in the corresponding
wavelengths, the on-axis being polarized. This
configuration allowed for simultaneous frames acpture. It
overcame the motion problem and most of the
specularities problems. However, it required a more
expensive, three CCD cameras.

The frame-subtraction eye-detection scheme has
become popular in different applications because of its
robustness and simplicity. It was used for tracking eyes,
eyebrow and other facial features [Har00,Kap02a], for
facial expression recognition [Har01], tracking head nod
and shake, recognition of head gesture [Dav01],
achieving eye contact in video conferencing [Ver02],
stereoscopic displays [Per00] and more.

The increasing popularity and multitude of
applications suggest that an eye detection sensor would
be of great value. An embedded eye-detection system
would simplify the implementation of all of these
applications. It would eliminate the need for high-
bandwidth image data transfer between imaging sensor
and the PC, reduce the high CPU requirements for
software-based image processing, and would dramatically
reduce their cost.

2.2. The Basic Sequential Algorithm

The frame subtraction algorithm for eye detection is

summarized in Figure 1. A detailed description can be
found in [Mor00]. The on-axis and off-axis light sources
alternate, synchronized with the camera frames. After
capturing a pair of frames, subtracting the frame
associated with the off-axis from the one associated with
the on-axis light and thresholding the result, a binary
image is obtained. This image contains regions of
significant difference. The regions are detected using
connected components [Bal82]. Those regions include
pupils and false positives, due to object motion and image
noise. The non-pupil regions are filtered in step 6, and the
remaining pupil regions are reported to the output.

For each video frame:
1. Capture an on-axis frame
2. Subtract previously captured off-axis frame
3. Apply threshold to obtain regions image
4. Find regions (connected components)
5. Compute shape properties of each region
6. Filter out the non-pupil regions
7. Compute and report pupil centroids and size

Figure 1: Processing steps of the basic sequential
algorithm.

2

The first five steps are applied on images. They
consume most of the computational time and large
memory arrays for image buffers. In step 5 the detected
regions are represented by their properties, including
area, bounding box and first-order moments. The filtering
in step 6 rejects regions that do not look like pupils.
Pupils are expected to show as elliptic shapes in a certain
size range. Typical motion artifacts show as elongated
shapes of large size and are in general easy to distinguish
from pupils1. At the last step, the centroids and size of the
detected pupils are reported. This output can be used by
different applications.

3. Synchronous Pupil Detection Algorithm

To use a synchronous hardware implementation, it was
necessary to modify the basic sequential algorithm of
Section 2.2. While a software implementation is
straightforward, a hardware implementation using only
registers and logic gates operating at pixel-rate clock is
far more complicated. The slow clock rate requires any
pixel operation to be performed in a single clock and any
line operation to be finished within the number of clock
cycles equivalent to the number of pixels per image line.

Figure 2 shows a block diagram of the parallel
algorithm. The input is a stream of pixels. There is only a
single frame buffer, used to store the previous frame for
the frame-to-frame subtraction. The output of the frame
subtraction is stored in a line buffer as it is being
computed in a raster scan. The output is a set of XY
locations within the frame region of the centroid of the
detected pupils. This set of XY locations is updated once
per frame.

Connected components are computed using a single-
pass algorithm, similar to the region-coloring algorithm
[Bal82]. Here, however, the algorithm operates in three
parallel stages, running in a pipeline on three lines: when
line iL is present in the line buffer, it is scanned and line
components, or just components, are detected. At the
same time, components from line 1−iL are being

connected (merged) to components from line 2−iL , and
those line components are being updated in the frame
regions table.

The shape properties, including bounding box and
moments (step 5 Figure 1) are computed simultaneously
with the computation of the connected components (step
4). This saves time and eliminates the need for an extra
frame buffer, as being used between step 4 and step 5 in
Figure 1. Consider the computation of a property)(sf

1 More elaborate eye classification methods were applied in
[Coz99]

of a region s . The region s is being discovered on a
line-by-line basis and is composed of multiple line
components. For each line object that belongs to s , say

1s , the property)(1sf is computed and stored with the

line object. When 1s is merged with another object, 2s ,
their properties are combined to reflect the properties of
the combined region 21 sss ∪= . This type of
computation can be recursively applied to any shape
property that can be computed from its value over parts of
the shape. The property)(sf can be computed using the
form:

))(),(()(21 ss ffgsf =

where)(,g is an appropriate aggregation function for
the property f . For example, aggregation of moments is

simply the sum, ij
s

ij
s

ij
s

ij
s

ij
s mmmmgm 2121),(+== ,

whereas for the aggregation of normalized moments, the
regions areas 21, ss AA are needed:

)/()(),(21221121 ss
ij
ss

ij
ss

ij
s

ij
s

ij
s AAmAmAmmgm ++==

The four properties which define the bounding box,
namely maxminmaxmin ,,, ssss YYXX , are aggregated using,

e.g.,),min(min
2

min
1

min
sss XXX = .

Properties that are computed here in this manner include
area, first order moments and bounding box. Other
properties that may be useful are higher order moments,
average color, color histograms, etc.

In the pipelined architecture, each stage of the pipeline
performs the computation on the intermediate results
from the previous stage, using the same pixel clock. The
memory arrays in the processing stages keep the
information of only one or two lines at a time. Additional
memory arrays are used to keep components properties
and components location, and to form the pipeline.

To get the effect of bright and dark pupils in
consecutive frames, the logic circuit drives control signals
to the on-axis and off-axis infrared light sources. These
signals are being generated from the frame clock coming
from the image sensor.

3.1 Pixels Subtraction And Thresholding

The digital video stream is coming from the sensor at
a pixel rate of 27Mhz. The data is latched in the logic
circuit and at the same time pushed into a FIFO frame
buffer. The frame buffer acts as one full frame delay.
Figure 3 depicts the subtraction and threshold module
operation.

3

Since each consecutive pair of frame is processed, the
order of subtraction changes at the beginning of every
frame. The on-axis and off-axis illumination signals are
used to coordinate the subtraction order. To eliminate the
handling of negative numbers, an offset is added to the
on-axis frame. The subtraction operation is done pixel by
pixel and the result is then compared to a threshold that
may be modified for different light conditions and noise
environments. The binary result of the threshold
operation is kept in a line buffer array that is transferred
to the Line Components Properties module on the next
line clock.

3

tr
p
su
th
p

co
(x
fr
co
th
b
b

arrays. Preliminary filtering of unreasonable sized objects
can be done in this stage using the information in M00,
since it contains the number of pixels in the component.

3.3 Computing Connected Components

The line components and their properties are
connected to components of previous lines to form
regions in the frame. The connect components module is
triggered every line clock, and works on two consecutive
lines. It receives the xstart and xend arrays and provides at
the output a component identification number (ID) for
every component and a list of merged components. Since
the module works on pairs of consecutive lines, every line
is processed twice.

There is never any representation of the boundary of
a region throughout the entire process. As regions are
scanned line by line through the pipeline, their properties
are computed and held. But their shape is never stored,

To bin
line bu

Threshold

USB
Controller

Frames
substractio

n and
threshold

Connect
components

Centroid
calculatio

n

I2C

C Video Stream Video stream
and FIFO
Control

Frame
Buf fer
FIFO

Line Buffer

Line
components

IR
Illuminators

control

Clocks
CMOS
Sensor

FPGA

Line
Components

Buf fer

settings

Two Line
Components

Buf fers
Moments

List

Output
Interface

XY
location

List

USB
Driver

Display
Applicatio

n

Sensor and
Hardware
Control

PC

USB

Figure 2: System block diagram, showing the main hardware components and pipeline processing.
C

Image Sensor Frame Buffer
FIFO

On/Off-Axis

+/-

-/+

∑

Figure 3 - Subtraction and Thresholding
.2 Detecting Line Components and their
Properties

Working at the sensor pixel clock, this module is
iggered every line clock to find the components
roperties in the binary line buffer resulting from the
btraction and threshold module. Every “black” pixel in
e line is part of a component, and consecutive black

ixels are aggregated to one component.
Several properties are computed for each of these

mponents: the starting pixel (xstart), the ending pixel
end), and first-order moments. The output data structure
om this module is built of several memory arrays that
ntain the components properties. For a 640x480 frame
e arrays with the corresponding bit width are: xstart (10

its), xend (10 bits), M00 (6 bits), M10 (15 bits), M01 (15
its). Higher order moments would require additional

even not as a temporary binary image, as is a common
practice with sequential implementations.

The processing uses the xstart and xend information to
check for neighboring pixels between two line
components in the two lines. The following condition is
used to detect all (four-) neighbors line components:

() ()startPendCendPstartC xxxx ____ & ≥≤

where the subscripts CP, refer to the previous and
current lines, respectively. Examples for such regions are
show in Figure 4. Using this condition, the algorithm
checks for overlap between every component in the
current line against all the components in the previous
line. In software this part can be easily implemented as a
nested loop. In hardware, the implementation involves
two counters with a synchronization mechanism to
implement the loops. If a connected component is found,
the next internal loop can start from the last connected
component in the previous line saving computation time.

4

Since the module is reset every line clock and each
iteration in the loop takes one clock, the number of
components per line is limited to the square root of the
number of pixels in a line. For a 640x480 frame size it
can accommodate up to 25 objects per line. A more
efficient, linear time merging algorithm exist, but its
implementation in hardware was somewhat more difficult.

A component from the current line that is connected
to a component from the previous line is assigned with
the same component ID as the one from the previous line.
Components in the current line, which are not connected
to any component in the previous line, are assigned with
new IDs. In some cases, a component in the current line
connects two or more components from the previous line.
Figure 5 shows an example of three consecutive lines
with different cases of connected components, and a
merge. Obviously, the merged components should all get
the same ID. Those components, which were assigned an
ID would no longer need that ID after the merge. This ID
can then be re-used. This is important in order to
minimize the required size of arrays for component
properties. In order to keep the ID list manageable and
within the size constraint in the hardware, it was
implemented as a linked-list. The list pointer is updated
on every issue of a new ID or whenever a merge
occurred. The ID list is kept non-fragmented. To support
merging components, the algorithm keeps a merge list
that is used in the next module in the pipeline. The merge
list has an entry for each component with the component
ID to be merged with, or zero if no merge is required for
this component.

Line1

Line2

Case 1 Case 2 Case 3 Case 4

Figure 4: Four cases of connected components

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ID=1

ID=1 ID=3 merge to 1

ID=2

ID=2

ID=1 ID=2

Figure 5: Three lines connect components example

3.4 Updating the Regions List

This module receives the list of IDs, merged
components list, and the moments of components that
were processed in the connect component module. It
keeps a list of regions and their corresponding moments
for the entire frame, along with a valid bit for each entry.
Since regions are forming as the system advances through
lines of the frame, the moments from each line are being
updated to the correct entry according to the ID of the
components. Moments of components with the same ID
as the region are simply added. When two regions merge,

their moments are also added, and the entry of the merged
region is invalidated. When a new region is assigned to an
invalidated entry, it updates the valid bit accordingly.
This module is triggered every line clock. The list of
components of the entire frame and their moments is
ready at the time of receiving the last pixel of the frame.

3.5 Reporting the Detected Regions

Once the list of moments of the entire frame is ready, the
system checks the shape properties of regions in the rame
and decides if a region is a valid pupil. The centroid of a
region are computed using:

00

01

00

10

M
MY

M
MX cc ==

This module is triggered every frame clock. It copies
the list of moments computed in the previous module, to
allow concurrent processing of the next frame, and
prepares a list of regions centroids. This compact list can
be easily transferred to an application system, such as a
PC. Every location can be expressed in a 19 bit number
for a 640x480 frame. A USB (Universal Serial Bus)
connection is used to transfer the pupil locations to a PC.
A valid bit for the centroids list is updated every time the
list is ready. This bit is poled by the USB to ensure
correct locations read from the hardware.

4. Simulink Model

The functionality of the system is captured at an
abstract level using a rigorously defined model of
computation. Models of computation are formalisms that
allow capturing important formal properties of
algorithms. For example, control algorithms can be often
represented as finite-state machines, a formal model that
has been the object of intense study over the years.
Formal verification of properties such as safety, deadlock
free, and fairness is possible without resorting to
expensive simulation runs on empirical models.
Analyzing the design at this level of abstraction allows
finding and correcting errors early in the design cycle,
rather than waiting for a full implementation to verify the
system. Verifying a system at the implementation level
often results in long and tedious debugging sessions
where functional errors may be well hidden and difficult
to disentangle from implementation errors.

In addition to powerful verification techniques, models
of computation offer a way of synthesizing efficient
implementations. In the case of finite-state machines a
number of tools are available in the market to either
generate code or to generate Register Transfer Level
descriptions that can be then mapped efficiently into a
library of standard cells or other hardware components.

5

4.1. Synchronous Dataflow Model

The system processes large amounts of data in a
pipeline and is synchronized with a pixel clock. A
synchronous dataflow model of computation is the most
appropriate for this type of application. A synchronous
dataflow is composed of actors or executable modules.
Each module consumes tokens on its inputs and produces
tokens on its outputs. Actors are connected by edges and
transfer tokens in a first-in first-out manner. Furthermore,
actors may only fire when there is a sufficient number of
tokens on all inputs for a particular actor.

All of the major system modules described in section 3
are modeled as actors in the dataflow. Data busses, which
convey data between modules, are modeled as edges
connecting the actors.

Several Engineering Design Automation (EDA) tools
can be used to analyze and simulate this model of
computation. We decided to use Simulink over other
tools such as Ptolemy, System C, and the Metropolis
meta-model because of its ease of use, maturity and
functionality.

Simulink provides a flexible tool that contains a great
deal of built-in support as well as versatility. The Matlab
tool suite that includes arithmetic libraries as well as
powerful numerical and algebraic manipulation tools is
linked into Simulink. Thus providing Simulink with
methods for efficiently integrating complex sequential
algorithms into pipeline models and allowing
synchronization through explicit clock connections.

The image subtraction and thresholding processes
corresponding pixels from the current and previous
frames on a pixel-by-pixel basis. Input tokens for this
actor represent pixels from the sensor and the frame
buffer, while output tokens represent thresholded pixels.

Computing connected components processes data
accumulated over image lines. This module’s actor
representation fires only when it has accumulated enough
pixel data for a complete line. It outputs only a single
token containing all the data structures for the connect
components list including object ID tags, component
moments, and whether they are connected to any other
components already processed. These output tokens are
generated on every line of data relative sensor’s pixel
data.

These tokens are passed to a module that updates the
properties of all known regions in the frame. Input is
received on a line-by-line basis from the connect
components module and regions in the list are updated
accordingly. This module accumulates the data about
possible pupil regions over an entire frame of data. Thus
the output token is generated per frame of data.

The regions data per frame is then passed to an actor
that calculates the XY centroid of the regions. This is

accomplished with a Matlab script and the XY data
output is generated for every frame.

The executable model of computation supported by
Simulink has given us a platform to correct errors in the
algorithms and in the data passing. It forces the system to
use a consistent timing scheme for passing data between
processing modules. Finally, this model provided us with
a basis for a hardware implementation, taking advantage
of a pipeline scheme that could process different parts of
a frame at the same time.

5. Hardware Implementation

After verifying the functional specification of the

model using Simulink, hardware components were
selected and the logic circuit was implemented in HDL.
Figure 2 depicts the main hardware blocks. Figure 6
shows a picture of the prototype.

The image capture device is a Zoran 1.3 Mega pixel
CMOS Sensor, mounted with a 4.8mm/F2.8 Sunex lens
providing 59 degrees field of view. It provides a parallel
video stream of 10 bits per pixel at up to 27Mpps, along
with pixel-, line-, and frame-clocks. In video mode, the
sensor can provide up to 60 frames per second at NTSC
resolution of 640x480. The control over the sensor is
done through an I2C bus that can configure a set of 20
registers in the sensor to change different parameters,
such as exposure time, image decimation, analog gain,
line integration time, sub-window selection, and more.
Each of the two infrared light sources is composed of a
set of eight LEDs [Mor00]. The LEDs are driven by
power transistors controlled from the logic circuit to
synchronize the on-axis, off-axis illumination to the
CMOS sensor frame rate. The LEDs illuminate at near-
Infrared (IR) wavelength and are non obtrusive to human.

The video is streamed to a FPGA where the complete
algorithm was implemented. An Altera Apex20K device
was selected. It provided enough logic gates as well as the
required running speed. The FPGA controls the frame
buffer FIFO (Averlogic AL422B device with an easy read
and write pointers control). Communication with the
application device, usually a PC, is done through a
Cypress USB1.1 controller. The USB provides an easy
way to transfer pupil data to the PC for display and
verification. It also allows easy implementation of the I2C
communication and control of the sensor and of algorithm
parameters.

6. Experimentation

The prototype system was tested using circular targets,
7mm in diameter, made of a red reflective material of the
kind used for car reflective stickers. These are very
directional reflectors, mimicking the eye retro-reflection.

6

r
Figure 6: System prototype. The lens is circled with
the on-axis IR LED-s. Most of the development board
is left unused, except of one FPGA and a frame buffer.

Two pairs of targets were placed on a cardboard

attached to horizontal bearing tracks and manually moved
along a 25cm straight line in front of the sensor, at
different locations and distances (about 40-60cm). The
system output (x,y) coordinates of the targets was logged
and analyzed. Figure 7 shows the result of one such test.

Figure 7: Results of one experiment. The detected
(x,y) coordinates of four linearly moving targets along
approx. 1500 frames are marked with blue dots, and
superimposed with their polynomial fits (red).

Table 1 summarizes the results of 10 experiments,
total of 15,850 frames. The average false positive
detection rate is 1.07%. The average misses rate is 0.2%.
Position errors are measured by the fluctuation of data
points from a 2nd order polynomial fit to each of the
targets in each experiment. The RMS error is 0.9 pixels,
and the average absolute error is 0.34 pixels. Note that
the position error computation incorporates all outliears.

Target 3 has a noticeable higher RMS error than the
others. To this point the reason is still unclear. One
limitation of the prototype design was the lack of any

video output, e.g., to a monitor. Since the FPGA is
directly connected to the sensor, a video output has to be
implemented in the FPGA. This could help in monitoring
the experiments and finding the cause for differences
between the four targets.

Table 1: Experimentation results

Target Deletion
rate

Insertion
rate

Position
err (RMS)

Position
err (abs)

1 0.00000 0.00151 0.344 0.251
2 0.00006 0.01154 0.566 0.290
3 0.00378 0.02415 1.803 0.474
4 0.00398 0.00543 0.884 0.358

Average 0.00195 0.01066 0.899 0.343

7. Conclusions and Future Work

The prototype system developed in this work
demonstrates the ability to implement eye detection using
simple logic. The logic can be pushed into the sensor
chip, simplifying the connection between the two and
providing a single-chip eye detection sensor. More
capabilities can be added, such as glints detector for eye
gaze tracking.

The advantages of hardware implementation over
software/CPU are lower manufacturing price, ability to
work at high frame rates and low operational complexity
(it does not crash). The disadvantages are lower
flexibility for changes, more complicate development
cycle and limited monitoring ability.

Several points require more work. An optional video
output would support monitoring during development and
debugging. Work at high frame rates requires very
sensitive sensors due to the short exposure time. This
limits the range of eye detection in the current prototype.
An appropriate optics could improve this deficit. Higher
order moments would improve filtering of false positives.

In this paper, we explored one extreme of the possible
implementation range: a full hardware solution. Our
methodology based on the capture of the processing
algorithms at a high level of abstraction is ideal to explore
a much wider range of implementations from a full
software realization to intermediate solutions where part
of the functionality of the algorithm is implemented in
hardware and others in software. We wish to compare
these other implementations and to use automatic
synthesis techniques to optimize the design and its
implementations. The Metropolis framework under
development at the Department of EECS of the
University of California at Berkeley under the
sponsorship of the Gigascale System Research Center,
can be used as an alternative to or in coordination with
Simulink-Matlab to formally verify design properties and
to evaluate architectures early in the design process as
well as to automatically synthesize implementations.

7

8. Acknowledgements

We thank Zoran CMOS Sensor team and Video IP core
team for providing the sensor module and for the support.
We are also grateful to Tamar Kariv for the help with the
USB drivers and PC application, and to Ran Kalechman
and Sharon Ulman for their good advice with the logic
synthesis.

9. References

[Bal82] D.H. Ballard and C.M. Brown, Computer Vision,
Prentice Hall, New Jersey, 1982, pp. 150-152.
[Bal02] F. Balarin, L. Lavagno, C. Passerone, A.
Sangiovanni-Vincentelli, M. Sgroi, and Y. Watanabe,
"Modeling and Designing Heterogeneous Systems," in J.
Cortadella and A. Yakovlev, editors, LNCS: Advances in
Concurrency and Hardware Design, Springer-Verlag, pp.
228-273, 2002.
[Bir97] S. Birchfield, An elliptical head tracker, in Proc.
of the 31st Asilomar Conf. on Signals, Systems, and
Computers, Pacific Grove, CA, November 1997.
[Coz01] A. Cozzi, M. Flickner, J. Mao, S. Vaithyanathan,
A Comparison of Classifiers for Real-Time Eye
Detection. ICANN 2001: 993-999.
[Dav01] J. W. Davis and S. Vaks, a perceptual user
interface for recognizing head gesture acknowledgements,
In IEEE PUI, Orlando, FL, 2001.
[ETRA2] Andrew T. Duchowski, Editor, Proceedings of
the Symposium on Eye Tracking Research &
Applications, March 2002, Louisiana.
[Ebi93] Y. Ebisawa and S. Satoh, effectiveness of pupil
area detection technique using two light sources and
image difference method, In A.Y.J. Szeto and R.M.
Rangayan, editors, Proc. of the 15th Annual Int. Conf. of
the IEEE Eng. in Medicine and Biology Society, pp.
1268-1269, San Diego, CA, 1993.
[Har01] I. Haritaoglu, A. Cozzi, D. Koons, M. Flickner,
D. Zotkin, Y. Yacoob, Attentive Toys, in Proc. Of ICME
2001, Japan, pp. 1124-1127.
[Har00] A. Haro, I. Essa, and M. Flickner, Detecting and
tracking eyes by using their physiological properties, in
Proc. of Conf. on Computer Vision and Pattern
Recognition, June 2000.
[Hje01] E. Hjelm and B.K. Low, Face Detection: A
Survey, Computer Vision and Image Understanding, vol.
83, no. 3, pp. 236-274, Sept. 2001.
[Hyr97] A. Hyrskykari, "Gaze Control as an Input
Device", in Proc. of ACHCI'97, University of Tampere,
pp. 22-27, 1997.
[Hut89] T. Hutchinson, K. W. Jr., K. Reichert, and L.
Frey. Human-computer interaction using eye-gaze input.
IEEE Trans. on Systems, Man, and Cybernetics, 19:1527-
1533, Nov/Dec 1989.

[Jac91] R.J.K. Jacob. The use of eye movements in
human-computer interaction techniques: What you look at
is what you get. ACM Transactions on Information
Systems, 9(3):152-169, April 1991.
[Kap02a] A. Kapoor and R. W. Picard, Real-Time, Fully
Automatic Upper Facial Feature Tracking, Proc. of 5th
Int. Conf. on Automatic Face and Gesture Recognition,
May 2002.
[Kot96] R. Kothari and J.L. Mitchell. Detection of eye
locations in uncon-strained visual images. In Proc. ICPR
Vol. I, pp. 519-522, Lausanne, Switzerland, Sep. 1996.
[Mor00] C. Morimoto, D. Koons, A. Amir, and M.
Flickner, Pupil detection and tracking using multiple light
sources, Image and Vision Computing, 18(4):331-336,
March 2000.
[Oli97] N. Oliver, A. Pentland, and F. Berard. Lafter:
Lips and face real time tracker. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition, pages 123-
129, Puerto Rico,PR, June 1997.
[Per00] K. Perlin , S. Paxia , J. S. Kollin, An
autostereoscopic display, Proc. of the 27th annual
conference on Computer graphics and interactive
techniques, p.319-326, July 2000.
[Sal00] D. D. Salvucci and J. R. Anderson, Intelligent
gaze-added interfaces, Proc. of ACM CHI 2000, pages
265-272, New York, 2000.
[San02] A. Sangiovanni-Vincentelli, Defining Platform-
based Design, EE Design, March 5, 2002.
[Sta81] Stark, L., and Stephen Ellis. 1981. Scanpaths
Revisited: Cognitive Models Direct Active Looking. In
Eye Movements: Cognition and Visual Perception, edited
by D. F. Fisher, R. A. Monty and J. W. Senders. Hillside,
NJ: L. Erlbaum Associates.
[Sti96] R. Stiefelhagen, J. Yang, and A. Waibel, A
model-based gaze tracking system, in Proc. of the Joint
Symp. on Intelligence and Systems, Washington, DC,
1996.
[Tom89] A. Tomono, M. Iida, and Y. Kobayashi, a TV
camera system which extracts feature points for non-
contact eye movement detection, in Proc. of the SPIE
Optics, Illumination, and Image Sensing for Machine
Vision IV, volume 1194, pages 2-12, 1989.
[Ver02] R. Vertegaal, I. Weevers and C. Soln, Queen's
Univ., Canada Gaze-2: an Attentive Video Conferencing
System, Proc. CHI-02, Minneapolis, 2002, pp. 736-737.
[You75] L. Young and D. Sheena. Methods & designs:
Survey of eye movement recording methods, Behavioral
Research Methods & Instrumentation, 7(5):397-429,
1975.
[Zha99] S. Zhai, C. Morimoto and S. Ihde, Manual And
Gaze Input Cascaded (MAGIC) Pointing, In Proc. ACM
CHI-99, pp. 246-253, Pittsburgh, 15-20 May 1999.
[Zha00] W. Y. Zhao, R. Chellappa, A. Rosenfeld, and P.
J. Phillips, Face recognition: A literature survey. UMD
CfAR Technical Report CAR-TR-948, 2000

8

	Table 1: Experimentation results

