
RJ 10294 (A0306-005) June 4, 2003
Computer Science

IBM Research Report

An Improved Approximation Algorithm for the Minimum
Latency Problem

Aaron Archer
Operations Research Department

Cornell University
Ithaca, NY 14853

Asaf Levin
Department of Statistics and Operations Research

Tel-Aviv University
Tel-Aviv 69978

Israel

David P. Williamson
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

An Improved Approximation Algorithm for the

Minimum Latency Problem

Aaron Archer∗ Asaf Levin† David P. Williamson‡

Abstract

We give a 7.18-approximation algorithm for the minimum latency problem that uses only
O(n logn) calls to the prize-collecting Steiner tree (PCST) subroutine of Goemans and Williamson.
This improves the previous best algorithms in both performance guarantee and running time.
A previous algorithm of Goemans and Kleinberg for the minimum latency problem requires an
approximation algorithm for the k-MST problem which is called as a black box for each value
of k. Their algorithm can achieve a performance guarantee of 10.77 while making O(n2 logn)
PCST calls (via a k-MST algorithm of Garg), or a performance guarantee of 7.18+ε while using
nO(1/ε) PCST calls (via a k-MST algorithm of Arora and Karakostas). In all cases, the running
time is dominated by the PCST calls. Since the PCST subroutine can be implemented to run
in O(n2) time, the overall running time of our algorithm is O(n3 logn).

The basic idea for our improvement is that we do not treat the k-MST algorithm as a
black box. This allows us to take advantage of some special situations in which the PCST
subroutine delivers a k-MST with a performance guarantee of 2. We are able to obtain the
same approximation ratio that would be given by Goemans and Kleinberg if we had access to
2-approximate k-MST’s for all values of k, even though we have them only for some values of k
that we are not able to specify in advance.

1 Introduction

Given a metric space with n nodes and a tour starting at some node and visiting all of the others,
the latency of node v is defined to be the total distance traveled before reaching v. The minimum
latency problem (MLP) asks for a tour starting at a specified root r and visiting all nodes, such that
the total latency is minimized. This problem is sometimes called the traveling repairman problem
or the delivery man problem, and has been well studied in both the computer science and operations
research literature. The MLP models routing problems in which one wants to minimize the average
time each customer (node) has to wait before being served (visited), rather than the total time to
visit all nodes, as in the case of the famous traveling salesman problem (TSP). In this sense, the
MLP takes a customer-oriented view, whereas the TSP is server-oriented.

Koutsoupias et al. [21] and Ausiello et al. [7] motivate the MLP in terms of searching a graph
(such as the web) to find a hidden treasure. If the treasure is equally likely to reside at any node
of the graph, then the optimal MLP tour minimizes the expected time to find it.

∗Operations Research Department, Cornell University, Ithaca, NY 14853. Email: aarcher@orie.cornell.edu.
Supported by the Fannie and John Hertz Foundation. Most of this research was performed while visiting the IBM
Almaden Research Center.

†Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv 69978, Israel. Email:
levinas@post.tau.ac.il

‡IBM Almaden Research Center, 650 Harry Rd. K53/B1, San Jose, CA 95120. Email: dpw@almaden.ibm.com.

1

The MLP was shown to be NP-hard for general metric spaces by Sahni and Gonzalez [27].
It is also Max-SNP hard, by a reduction from TSP(1,2) (the traveling salesman problem with
all distances 1 or 2) [25, 10]. Therefore, there is no polynomial-time approximation scheme for
the MLP on general metric spaces unless P = NP . Recently, Sitters [29] showed the problem is
NP-hard even for weighted trees. On the positive side, Arora and Karakostas gave quasipolynomial-
time approximation schemes for the MLP on weighted trees and constant dimensional Euclidean
spaces [4]. Blum et al. [10] gave the first constant factor approximation algorithm for general metric
spaces, which was later improved by Goemans and Kleinberg [19]. We elaborate on these below.
Recently, Fakcharoenphol et al. [12] gave a constant factor approximation algorithm for the variant
where there are k repairmen who must collectively visit all the nodes.

Much work has focused on exact (exponential time) solution approaches to the MLP [28, 14,
9, 23, 35], and on the more general time-dependent traveling salesman problem (TDTSP) [32, 26].
In the TDTSP, the distance between the ith and (i + 1)st nodes in the traveling salesman tour
is multiplied by some weight w(i) in the objective function. The ordinary TSP is the case where
all w(i) = 1; the MLP is the case where w(i) = n − i. The time-dependent orienteering problem
(considered in [15]) is dual to the TDTSP – the salesman aims to maximize the number of nodes
visited before a given deadline, given that travel times vary as in the TDTSP. Various heuristics
for the MLP are evaluated in [31, 33], while [2] analyzes a stochastic version of the problem. In the
online variant [13, 22], new nodes appear in the graph as the repairman is traveling. Many authors
have considered special cases of the MLP, where the metric is given by an underlying network with
some special structure [1, 24, 8, 30, 34].

Because the MLP is NP-hard, we shall consider approximation algorithms for the problem. An
α-approximation algorithm produces solutions with total latency no more than α times the total
latency of a minimum latency tour. The value of α is called the performance guarantee of the
algorithm.

The first approximation algorithm for the problem was given by Blum et al. [10], who achieve
a performance guarantee of 72. They also showed how to use a β-approximation algorithm for
the rooted k-minimum spanning tree (k-MST) problem as a black box, and convert it into an 8β-
approximation algorithm for the MLP. In the k-MST problem, we are given a graph with costs on
the edges, and must find the minimum-cost tree spanning at least k nodes. In the rooted version,
the tree must contain some specified root r. The connection between the k-MST problem and the
MLP is that the cost of the optimal k-MST rooted at r is a lower bound on the latency of the kth

node visited by the optimal MLP tour. Goemans and Kleinberg (GK) [19] subsequently improved
the performance guarantee of the algorithm of Blum et al. to 3.59β. The best approximation
algorithms now known for the rooted k-MST problem are a (2 + ε)-approximation by Arora and
Karakostas (AK) [5], and a 3-approximation by Garg [17], yielding MLP guarantees of 7.18+ ε and
10.77, respectively.1

In this paper we further explore the connection between the MLP and rooted k-MST problem.
We obtain a performance guarantee of 7.18, slightly improving the previous best of 7.18 + ε.2

Moreover, our algorithm also has a running time that is better than the running time of the GK
algorithm using either AK or Garg. In each of these algorithms, the running time is dominated by
subroutine calls to an algorithm of Goemans and Williamson for the prize-collecting Steiner tree
(PCST) problem [20]. The GK algorithm using Garg as a subroutine requires O(n2 logn) PCST

1Arya and Ramesh [6] gave a 2.5-approximation algorithm and Garg [18] announced a 2-approximation algorithm
for the unrooted version of the k-MST problem, but these cannot be used in the MLP algorithms.

2An earlier version of this paper [3] had the same algorithm, but an analysis with a performance guarantee of 9.28.

2

calls, and using AK it requires nO(1
ε
) calls. Our algorithm requires only O(n logn) PCST calls.

Goemans and Williamson showed how to implement their PCST algorithm in O(n2 logn) time.
A recent result of Gabow and Pettie [16] improves this to O(n2). Thus, our algorithm runs in time
O(n3 logn) overall.

The main idea in achieving our result is that we do not treat the k-MST algorithm as a black
box. It is easy to show that the PCST algorithm returns k-MSTs of cost no more than twice optimal
for some values of k that cannot be specified in advance [11]. We call a k-MST with cost no more
than α times the optimal k-MST an α-approximate k-MST. If we had 2-approximate k-MST’s for
all k = 2, . . . , n, then we could run the GK algorithm, which uses the costs of the trees to select
some subset of them to concatenate into an MLP tour. Our trick is to successfully bluff the GK
algorithm. We pretend to have trees of all sizes by interpolating the costs of the trees we do have
to fill in the tree costs for the missing values of k. We refer to these as phantom trees. We then
prove that if the GK algorithm were to be run with both the real and phantom trees, it would
never choose any of the phantom trees to concatenate, so it never calls our bluff. For the analysis
to go through, we must also carefully extend our k-MST lower bounds to the phantom values of
k. To do this, we utilize the fact that the PCST problem is a Lagrangean relaxation of the k-MST
problem, as observed in [11].

The paper is structured as follows. In Section 2, we review the main ideas of previous approx-
imation algorithms for the MLP. In Section 3, we give our algorithm, assuming a certain kind of
k-MST algorithm. Section 4 analyzes the performance guarantee of the algorithm, and in Section
5 we give the k-MST algorithm that we need. We conclude in Section 6 with some thoughts about
approaches for further improvements.

2 Intuition and overview

We now describe the basic ideas behind the Blum et al. [10] and GK [19] algorithms, and how our
approach departs from them. Both analyses use the cost of the optimal k-MST as a lower bound
for the latency of the kth node visited in the optimal MLP tour, and both algorithms start with
β-approximate solutions to the k-MST problem rooted at r, for k = 2, 3, . . . , n. They then select
a subsequence of these trees with geometrically increasing costs and concatenate them to get a
solution for the MLP. For the sake of intuition, let us assume throughout this section that the sets
of nodes spanned by these trees are nested, which turns out to be the worst case for the analysis.

Without loss of generality, the cost of the k-MST’s increases with k. The Blum et al. algorithm
buckets the trees according to their cost – for each integer �, it selects the most expensive tree with
cost in (2�, 2�+1]. It doubles each of the selected trees and shortcuts it to make a cycle rooted at r,
then traverses all of these cycles in order, shortcutting nodes it has already visited. Since the last
tree selected spans all the nodes, so does the resulting MLP tour. They compare the latency of the
kth node visited in the tour to the cost of the optimal k-MST. They upper bound the latency of
the kth node visited by the total cost of all the concatenated cycles up to and including the first
one that visits this node. They lose a factor of β because the trees are β-approximate k-MST’s, a
factor of 2 from the bucketing ratio, a factor of 2 from doubling the trees to get cycles, and a factor
of 2 from the geometric sum. This yields the approximation factor of 8β.

The GK improvement derives from two sources. First, it orients each of the concatenated cycles
in the direction that minimizes the total latency of the new nodes visited by that cycle. Second, it

3

applies a random shift to the bucket breakpoints. Using buckets of ratio γ ≈ 3.59 instead of ratio
2, it achieves a performance guarantee of γβ.

Our algorithm departs from these previous ones in that we do not start off with approximate k-
MST’s for every value of k. Instead, we obtain (2− 1

n)-approximate ni-MST’s for some subsequence
1 = n1 < · · · < n� = n that is not under our control. Let di denote the cost of the tree spanning
i nodes and bi denote our lower bound on the optimal i-MST, for i = n1, . . . , n�. We derive
these trees using a Lagrangean relaxation technique, which allows us to guarantee that linearly
interpolating the bni to the missing values of k yields valid lower bounds on the cost of the optimal
k-MST. We will obtain our MLP solution by concatenating some subset of these trees, as in Blum
et al. and GK.

The GK analysis uses the idea of modified latency. Roughly, one can think of the modified
latency of node v as the average latency of all the nodes first visited by the cycle in the concatenation
that first visits node v. The total modified latency is an upper bound on the latency of the MLP
tour we construct. The GK randomized bucketing procedure yields a solution whose expected total
modified latency is at most γ(d2 + · · ·+ dn) ≤ γβ(OPT2 + · · ·+ OPTn) ≤ γβOPT (where OPT
denotes the value of the optimal MLP tour, and OPTi denotes optimal i-MST value). Goemans
and Kleinberg also observe that one can use a shortest path computation to determine which
concatenation of trees minimizes the total modified latency. Since the minimum is no more than
the expectation, this yields a deterministic γβ-approximation algorithm. Whereas Goemans and
Kleinberg introduce the shortest path calculation merely to derandomize their algorithm, for us
the use of the shortest path computation is central to the analysis of our performance guarantee.

3 The algorithm

Here we precisely specify our MLP algorithm. We start by using our tree-generating algorithm of
Section 5 to produce some set of � trees Tn1, . . . , Tn�

rooted at r and spanning n1 < · · · < n� nodes
respectively, where n1 = 1 and n� = n. For i = n1, n2, . . . , n�, let di denote the cost of tree Ti.
Without loss of generality we assume di is increasing with i. Our tree-generating algorithm also
establishes lower bounds on OPTk, the cost of the optimal k-MST rooted at r, and hence on the
latency of the kth node visited in the optimal MLP tour, for k = 2, . . . , n. These lower bounds bk

satisfy the properties

1. bk ≤ OPTk for 1 ≤ k ≤ n;

2. dni ≤ 2bni for 1 ≤ i ≤ �;

3. bk = bni−1 +
bni−bni−1

ni−ni−1
(k − ni−1) for ni−1 ≤ k ≤ ni and i = 2, . . . , n.

That is, bk is the linear interpolation of bni−1 and bni , and each Tni is a 2-approximate ni-MST.

Now we use a shortest path calculation described below to select some subcollection of these
trees to concatenate. Denote the selected trees by Tj1, . . . , Tjm, so j1, . . . , jm is the increasing
sequence of nodes they span. For each selected tree Ti, double all of the tree edges and traverse an
Eulerian tour starting at r, shortcutting nodes already visited, to obtain a cycle Ĉi. Now obtain
cycle Ci from Ĉi by shortcutting all nodes (except for r) that are visited by some Ĉk with k < i.
Let Si = Ci − r. Orient Ci in the direction that minimizes the total latency of the nodes in Si.

4

To obtain our MLP solution, simply traverse each rooted, oriented cycle Cj1 , . . . , Cjm in order,
shortcutting the intermediate visits to the root between cycles. Let C = Cj1 , . . . , Cjm denote this
concatenated tour. Following Goemans and Kleinberg, we define the modified latency of the kth

node of C to be

πk = djp(k)
+ 2(djp(k)−1

+ · · ·+ dj1), (1)

where p(k) is the smallest index such that k ≤ jp(k). The motivation for this definition is that if
the sets of nodes spanned by Tj1, . . . , Tjm are nested, then πk is an upper bound on the average
latency of the nodes first visited by cycle Cjp(k)

. Indeed, in Section 4, we repeat an argument of
Goemans and Kleinberg that in all cases π2 + · · ·+πn is an upper bound on the total latency of C.

It is now easy to describe the shortest path computation. We construct a graph G with nodes
n1, . . . , n�, and arcs i → k for each i < k. A path j1 → · · · → jm corresponds to selecting trees
Tj1, . . . , Tjm. Thus, the cost on arc i → k is

(k − i)dk + 2(n − k)dk = 2dk

(
n − i + k

2

)
, (2)

which corresponds to the contribution made to the total modified latency by traversing tree Tk

immediately after traversing Ti. This is because tree Tk contributes dk to the modified latencies of
the (k − i) new nodes it visits, and 2dk to each of the remaining (n − k) unvisited nodes. If the
shortest path from n1 to n� in this graph goes j1 → · · · → jm, then we select trees Tj1, . . . , Tjm to
concatenate.

4 Analyzing the approximation ratio

The analysis of our algorithm proceeds in three steps. First we demonstrate that π2 + · · · + πn

really is an upper bound on the latency of the tour we construct. Next, we appeal to a result of
Goemans and Kleinberg that upper bounds the total modified latency of the tour given by the
shortest path computation, in the event that we have trees of all sizes, 2, . . . , n. Finally, we show
that if we were to run this shortest path computation with our real trees and some “phantom”
interpolated trees, the computation would never select any of the phantom trees. Therefore, we
achieve the same performance guarantee that GK would achieve if we actually did have access to
the phantom trees.

We begin by repeating an argument of Goemans and Kleinberg about π2 + · · ·+ πn.

Lemma 4.1 ([19]) The total latency of the MLP tour obtained by concatenating trees Tj1, . . . , Tjm

(where j1 = 1, jm = n) is at most π2 + · · ·+ πn, where the πk are given by (1).
Proof: The following argument essentially says that the worst case for our analysis is when the
sets of nodes spanned by the selected trees Tj1, . . . , Tjm are nested. Let us consider the latency of
the kth node we visit in C, where r is considered to be the first node, whose latency is zero. If
the kth node in C was encountered as part of cycle Cjp , then we can upper bound its latency by
the sum of the costs of cycles Cj1 , . . . , Cjp−1 plus the portion of cycle Cjp that is traversed prior to
reaching this node. Since we traverse cycle Cjp in the direction that minimizes the total latency
of the new nodes Sjp , the average contribution of this cycle to the latencies of the nodes in Sjp

is at most half the cost of the cycle. To see this, notice that for any node i ∈ Sjp , if we traverse
Cjp in one direction, it contributes some amount x to the latency of i, and if we traverse it in the

5

other direction, it contributes cost(Cjp) − x, so on average it contributes cost(Cjp)/2. For each
i = j1, . . . , jm, the cost of Ci is clearly at most 2di. Therefore, the average latencies of the nodes
in Sjp is at most 2(dj1 + · · ·+ djp−1) + djp , so the total latency of C is at most

m∑
p=1

|Sjp |(2(dj1 + · · ·+ djp−1) + djp). (3)

Since
∑ |Sjp | = n, we can view this as a weighted sum. Clearly, the worst case for this

analysis is when the sets of nodes spanned by the trees Tj1, . . . , Tjm are nested, since this puts the
greatest weight on the larger terms in (3). In this worst case, our upper bound on the average
latency of the (jp−1 + 1)th through jth

p nodes in C becomes 2(dj1 + · · ·+ djp−1) + djp . Thus since
πk = djp(k)

+ 2(djp(k)−1
+ · · ·+ dj1), where p(k) is the smallest index such that k ≤ jp(k), our tour

has latency at most π2 + · · ·+ πn.

The advantage of the upper bound π2 + · · · + πn is that it depends only on the costs of the
selected trees and the number of nodes they span, not on their structure. We now state the main
theorem of the Goemans and Kleinberg paper.

Theorem 4.2 ([19]) Given d2, . . . , dn ≥ 0 and a graph G on nodes 1, . . . , n including all arcs
i → k for i < k, with arc lengths given by (2), then the shortest path in G from node 1 to node n
has length at most γ(d2 + · · ·+ dn), where γ ≈ 3.59 is the unique root of γ ln γ = γ + 1.

Recall that our tree-generating procedure of Section 5 returns trees of sizes n1, . . . , n� and costs
dn1, . . . , dn�

. It also establishes lower bounds bk on the cost OPTk of the optimal k-MST, for every
k, and these bounds satisfy properties (1)-(3) from Section 3. Let us linearly interpolate the tree
costs dni to the missing values of k. That is, set

dk = dni−1 +
dni − dni−1

ni − ni−1
(k − ni−1) (4)

for ni−1 ≤ k ≤ ni and i = 2, . . . , n. Then clearly dk ≤ 2bk for all k. That is, if we actually had a
tree of cost dk spanning k nodes, it would be a 2-approximate k-MST. Since we don’t actually have
these trees, we will call them phantom trees. Now suppose we were to run the GK shortest path
computation using the full set of costs d2, . . . , dn, i.e. using both the real trees and the phantom
trees. Then by Theorem 4.2, the modified latency of the resulting solution would be at most

γ(d2 + · · ·+ dn) ≤ 2γ(b2 + · · ·+ bn)
≤ 2γ(OPT2 + · · ·+ OPTn)
≤ 2γOPT,

where OPT denotes the optimal MLP value. The difficulty is that the shortest path computation
might select one of the phantom trees, in which case we cannot actually construct the MLP tour.
Fortunately, this never occurs.

Theorem 4.3 In the shortest path computation described above, a shortest path never visits any
of the nodes corresponding to phantom trees.

6

Proof: Suppose on the contrary that a shortest path visits i → j → k, where nlo < j < nhi and
nlo and nhi are two consecutive sizes of actual trees in our collection. Treating j as a variable now,
we show that we can obtain a strictly shorter path by setting j to either max(i, nlo) or min(k, nhi),
arriving at a contradiction. Set λ = (dnhi

−dnlo
)/(nhi−nlo) > 0. By definition, dj = dnlo

+λ(j−nlo).
By definition of the arc lengths, the subpath from i → j → k costs

(
n − i + j

2

)
2dj +

(
n − j + k

2

)
2dk =

(
n − i + j

2

)
2(dnlo

+ λ(j − nlo)) +
(

n − j + k

2

)
2dk. (5)

This cost is valid for max(i, nlo) ≤ j ≤ min(k, nhi) and is a quadratic function of j, where the
coefficient on the j2 term is −λ. Thus, the cost is strictly concave in j, so it attains a strict
minimum at one of the endpoints max(i, nlo) or min(k, nhi). In the case that the minimum is
attained at i or k, we can eliminate the self-loop i → i or k → k to further reduce the path length.
This is a contradiction, because we already started with a shortest path.

Since a shortest path in the graph with the phantom trees included never actually uses any of
the phantom trees, we might as well run the shortest path computation using just the actual trees,
as in the algorithm description of Section 3. Putting Theorem 4.3 together with the discussion
preceeding it yields our main result.

Theorem 4.4 The algorithm described in Section 3 yields an MLP tour of cost at most 2γOPT ,
where γ ≈ 3.59 is the unique root of γ ln γ = γ + 1.

5 The tree-finding algorithm and analysis

In this section, we give the algorithm for finding the set of trees Tn1, Tn2, . . . , Tn�
including a

root node r and spanning 1 = n1 < n2 < · · · < n� = n nodes. Denote the cost of the trees by
dn1, . . . , dn�

. We also compute a set of n lower bounds b1, . . . , bn. For simplicity, we denote the
cost of an optimal k-MST as OPTk. We need to find a set of trees and lower bounds such that the
following three properties hold:

1. bk ≤ OPTk for all k, 1 ≤ k ≤ n;

2. dni ≤ 2bni;

3. bk = bni−1 +
bni−bni−1

ni−ni−1
(k − ni−1) for ni−1 ≤ k ≤ ni and i = 2, . . . , n,

as promised in Section 3.

The basic idea is as follows. To obtain trees, we apply a primal-dual algorithm that is parame-
terized by λ; more precisely, we apply the 2-approximation algorithm of Goemans and Williamson
[20] for the prize-collecting Steiner tree problem, where all penalties are set to λ. The algorithm
returns a tree T and a lower bound b such that cost(T) ≤ (2 − 1

n−1)b, and b ≤ OPT|T |. For
k = 1, . . . , n, we perform a binary search on the value of λ, seeking a tree returned by the algo-
rithm with exactly k nodes. If we succeed, we add the tree and the lower bound to our collection.
If we do not succeed, in the end we have two trees Tlo and Thi and two bounds blo and bhi with
|Tlo| < k and |Thi| > k for two values of λ sufficiently close. We add both trees and bounds to our
collection. We show that for close enough values of λ, an interpolation of blo and bhi gives a lower

7

bound bk on the value of a tree containing k nodes. At the end of the procedure, we pick a subset
of trees found so that all three desired properties hold.

We begin by explaining the pieces of the algorithm that we will need. We model the k-MST
problem as the following integer program:

Min
∑
e∈E

cexe

subject to: ∑
e∈δ(S)

xe +
∑

T :T⊇S

zT ≥ 1 ∀S ⊆ V \ {r}
∑

S:S⊆V \{r}
|S|zS ≤ n − k

xe ∈ {0, 1} ∀e ∈ E

zS ∈ {0, 1} ∀S ⊆ V \ {r},

where δ(S) is the set of edges with exactly one endpoint in S. The variable xe = 1 indicates that
the edge e is in the tree, while zS = 1 indicates that the set of nodes S is not spanned. The first set
of constraints says that for any set S of nodes not containing the root, either they are contained
in the unspanned set, or there is a selected edge in δ(S). The second constraint says that at most
n − k nodes are unspanned.

Following [11], we can convert this to something close to a prize-collecting Steiner tree problem
by applying Lagrangean relaxation to the second constraint:

Min
∑
e∈E

cexe + λ


 ∑

S:S⊆V \{r}
|S|zS − (n − k)




subject to: ∑
e∈δ(S)

xe +
∑

T :T⊇S

zT ≥ 1 ∀S ⊆ V \ {r}

xe ∈ {0, 1} ∀e ∈ E

zS ∈ {0, 1} ∀S ⊆ V \ {r}.

Note that any solution feasible for the previous integer program will be feasible for this one at no
greater cost for λ ≥ 0. Recall the definition of the prize-collecting Steiner tree problem: we are
given an undirected graph G = (V, E), a root node r ∈ V , non-negative costs on the edges ce ≥ 0
for all e ∈ E, and non-negative penalties pi for i ∈ V, i �= r. The goal is to find a tree spanning
the root node so as to minimize the cost of the edges in the tree plus the penalties of the nodes
not in the tree. Here we set all penalties pi = λ. Observe that the integer program above exactly
models this problem for pi = λ, except that the objective function has an additional constant term
of −(n − k)λ.

Goemans and Williamson [20] give a primal-dual 2-approximation algorithm for the prize-
collecting Steiner tree problem. Their algorithm returns a tree spanning the root node, and a
solution to the dual of a linear programming relaxation of the prize-collecting Steiner tree prob-
lem. The dual solution is feasible for the dual of the linear programming relaxation of the integer

8

program above; in particular, this dual is:

Max
∑

S⊆V \{r}
yS − (n − k)λ

subject to: ∑
S:e∈δ(S)

yS ≤ ce ∀e ∈ E

(D)
∑

T :T⊆S

yT ≤ |S|λ ∀S ⊆ V \ {r}

yS ≥ 0 ∀S ⊆ V \ {r}.

We will abbreviate their algorithm as PCST. In particular, they show the following.

Theorem 5.1 ([20]) PCST returns a tree T and a dual solution y feasible for (D) such that if X

is the set of nodes not spanned by T , then

∑
e∈T

ce +
(

2 − 1
n − 1

)
λ|X | ≤

(
2 − 1

n − 1

) ∑
S⊆V \{r}

yS.

Lemma 5.2 If the tree T returned by PCST contains k nodes, then

b̃k :=
∑

S⊆V \{r}
yS − (n − k)λ ≤ OPTk,

and the cost of T is no more than
(
2 − 1

n−1

)
b̃k.

Proof: Note that if y is a feasible dual solution to (D), then since
∑

S⊆V \{r} yS − (n − k)λ
is the dual objective function of (D), it is a lower bound on the cost of an optimal k-MST. By
Theorem 5.1, if PCST returns tree T and X is the set of n − k nodes not spanned by T , then

∑
e∈T

ce +
(

2 − 1
n − 1

)
λ(n − k) ≤

(
2 − 1

n − 1

) ∑
S⊆V \{r}

yS ,

which implies that

∑
e∈T

ce ≤
(

2 − 1
n − 1

)
 ∑

S⊆V \{r}
yS − (n − k)λ


 ≤

(
2 − 1

n − 1

)
OPTk.

We further need the following observation, which relies on the workings of the PCST algorithm.

Observation 5.3 If we call PCST with λ = 0, it will return a tree containing only the root node.
If we call PCST with λ = cmax, where cmax is the maximum edge cost, it will return a tree with n
nodes.

As suggested above, we now perform the following algorithm. For each value of k, we call a k-
MST subroutine. This subroutine performs binary search on the value of λ, looking for a value of λ

9

such that PCST returns exactly k nodes. If we find such a tree, we return it and the corresponding
dual lower bound b̃k equal to the value of the objective function of (D) for the dual solution returned
by PCST. If we do not find such a tree, we continue the binary search until λhi − λlo is no more
than cmin/n(4n − 5), where cmin is the cost of the cheapest edge adjacent to the root. We then
return the two trees Tlo and Thi, and the two lower bounds b̃lo and b̃hi. Note that we can assume
that cmin > 0 since otherwise we can take the connected component of zero cost edges containing
the root node, visit all the nodes in the component first as part of our latency tour, and return
to the root. We can then discard these nodes from consideration in building the rest of the tour,
since they add no latency to the rest of the tour. Observe that for each value of k, we call PCST
O(log ncmax

cmin
) times, for a total of O(n log ncmax

cmin
) invocations. At the end of the section we discuss

how this can be reduced to O(n logn) PCST invocations.

For technical reasons, we will actually scale the values of the lower bounds down by a factor of
1 − 1

4(n−1) before returning them. Let b denote the scaled value of b̃; that is, b =
(
1 − 1

4(n−1)

)
b̃.

We state below that in the case that the k-MST routine returns two trees, then interpolating the
scaled bounds blo and bhi appropriately gives a lower bound bk on the value of an optimal k-MST.
The proof is deferred for a moment. For two trees Tlo and Thi returned by the algorithm such that
|Tlo| < k and |Thi| > k, let αlo, αhi ≥ 0 be such that αlo + αhi = 1 and αlo|Tlo| + αhi|Thi| = k.

Lemma 5.4 Let Tlo, Thi be trees returned by PCST when all penalties are set to λlo and λhi

respectively, with |Tlo| < k and |Thi| > k, and λhi − λlo ≤ cmin/n(4n − 5). Express k as a convex
combination k = αlo|Tlo| + αhi|Thi|, where αlo + αhi = 1. If we set bk = αloblo + αhibhi, then
bk ≤ OPTk.

At the end of the process we will have a set of trees T and their associated lower bounds b. For
a tree Tk of cost dk, and its associated lower bound bk, Lemma 5.2 gives

dk ≤
(

2 − 1
n − 1

)
b̃k =

2 − 1
n−1

1 − 1
4(n−1)

bk ≤ 2bk, (6)

so we satisfy Property (2). Whatever collection of trees we select, we will linearly interpolate the
bounds bni so that Property (3) holds by definition. Thus, to enforce Property (1) we must figure
out which trees to keep so that the interpolated bounds bk are valid lower bounds on OPTk.

To enforce Property (1), we keep only a subset of the trees, removing every Tk such that its
corresponding bound bk is greater than the linear interpolation of any pair of other bounds in the
set. This is equivalent to keeping only the trees corresponding to the lower envelope of bounds
plotted with the size of the tree on the x axis and the value of the bound on the y axis. We denote
our final set of trees by Tn1 , . . . , Tn�

, where n1 = 1 < n2 < · · · < n� = n, and tree Tni spans ni

nodes, costs dni , and has an associated bound bni . For k such that ni−1 < k < ni, we set bk to be
the appropriate interpolation of bni−1 and bni . We now show that this satisfies Property (1), which
should be clear from Figure 1. Note that the running time for computing this lower envelope is
dominated by the PCST calls.

Lemma 5.5 For all k, 1 ≤ k ≤ n, bk ≤ OPTk.
Proof: For the set of trees prior to pruning it is the case that for every k, 1 ≤ k ≤ n, either there is
a tree of size k in the set or, by Lemma 5.4, there are two trees T ′ and T ′′, with |T ′| < k and |T ′′| > k,
such that there exist α′, α′′ ≥ 0 with α′ + α′′ = 1, α′|T ′| + α′′|T ′′| = k, and α′b′ + α′′b′′ ≤ OPTk.
After taking the lower envelope, we claim it is clear that the appropriate interpolation of bni−1 and

10

0

n1=1 n2 n3 n4=n

nodes spanned (k)

lower

bound

on OPTk

throw away

these trees

Figure 1: Each dot represents a (size of tree,lower bound) pair returned by PCST, and the solid
lines are the interpolated lower bounds from Lemma 5.4. The lower envelope (dotted line) is still
clearly a valid lower bound at each point, since it is below the solid lines. We keep only the trees
whose dots are on the lower envelope.

bni is a lower bound on OPTk, for k such that ni−1 < k < ni. This follows since the lower bound
on OPTk is a convex combination of one or two bounds in the initial set; once we take the lower
envelope, the appropriate interpolation of bni−1 and bni can be no greater.

We now complete the proof of Lemma 5.4.

Proof of Lemma 5.4: Let klo = |Tlo| and khi = |Thi|. Let ylo and yhi be the dual solutions
returned by PCST for penalty value λlo and λhi respectively. Letting y = αloy

lo + αhiy
hi and

δ = (1− 1
4(n−1)), observe that

bk = αloblo + αhibhi

= δ
(
αlob̃lo + αhib̃hi

)

= δ


αlo


 ∑

S⊆V \{r}
ylo
S − (n − klo)λlo


 + αhi


 ∑

S⊆V \{r}
yhi
S − (n − khi)λhi







= δ


 ∑

S⊆V \{r}
yS − αlo(n − klo)(λhi + λlo − λhi) − αhi(n − khi)λhi




≤ δ


 ∑

S⊆V \{r}
yS − (n − k)λhi + αlo(n − klo)

cmin

n(4n − 5)




≤
(

1 − 1
4(n− 1)

)
 ∑

S⊆V \{r}
yS − (n − k)λhi


 +

1
4(n − 1)

cmin

≤ OPTk.

The last inequality holds because (y, λhi) is feasible for (D) by the convexity of the feasible
region, and thus both

∑
S⊆V \{r} yS − (n − k)λhi and cmin are lower bounds on the cost of an

optimal k-MST.

11

We now use a little bit of slack built into our calculations to reduce the number of PCST calls
from O(n log ncmax

cmin
) to O(n logn) and maintain a performance guarantee of 2γ ≈ 7.18. We observe

that the n-MST will always be selected in the lower envelope calculation. By (6) we in fact know
that

dn ≤
(

2 − 1
n − 1

)
b̃n =

2 − 1
n−1

1 − 1
4(n−1)

bn =
(

2 − 2
4n − 5

)
bn ≤

(
2 − 2

4n − 5

)
OPTn.

Therefore, the latency of the tour constructed is in fact no more than 2γOPT − 2γ
4n−5OPTn. We

use this bit of slack to reduce the number of PCST calls as follows. We look at the connected
component of edges of cost at most cmax/4n3 that includes the root, and we visit all of the nodes
of this component first at the beginning of our tour and return to the root. We then disregard
these nodes as we construct the rest of our tour. For the remaining instance cmin ≥ cmax/4n3, and
this adds cost at most cmax/2n to the total latency of the tour, since edge costs obey the triangle
inequality. But cmax ≤ OPTn, so this adds an additional 1

2nOPTn to the tour cost, which can be
absorbed by the − 2γ

4n−5OPTn term.

6 Concluding remarks

We showed how to use the tree concatenation technique of Blum et al. as refined by Goemans
and Kleinberg to construct a 7.18-approximation algorithm for the MLP, while having access to
2-approximate k-MST’s for only a few values of k that we cannot specify in advance. The 7.18 = 2γ
guarantee comes from two sources. The 2 comes from our k-MST’s being 2-approximate, while the
γ comes from the tree concatenation procedure. Both of these pieces represent significant barriers
to further improvement.

All known constant factor approximation algorithms for the k-MST problem rely explicitly
or implicitly on the LP relaxation we used for the PCST problem. Since this relaxation has an
integrality gap of essentially 2, it seems that achieving a β-approximation algorithm for k-MST for
a constant β < 2 will require a significantly different approach.

The factor of γ ≈ 3.59 from the tree concatenation is also inherent in any analysis that blindly
concatenates trees and upper bounds the latency by the sum of modified latencies. This is because
Goemans and Kleinberg prove that Theorem 4.2 is tight; that is, the costs d2, . . . , dn can be selected
such that the ratio of shortest path length in the graph G to d2 + · · ·+ dn is arbitrarily close to γ.
Thus, in order to attain a provably better latency, one would need to either have some knowledge
of the costs di, or pay attention to the actual structure of the trees being concatenated.

One direction for future work would be to consider LP relaxations that address the MLP
objective function directly, rather than using k-MST for our lower bounds. Perhaps the most
attractive special case to look at is the case where the underlying metric is given by a tree. Since k-
MST can be solved optimally on trees, the GK algorithm can be used to obtain a 3.59-approximation
for this special case. At present, this is the best result known.

Acknowledgments

A preliminary version of this paper by the first and third authors [3] had a performance guarantee
of 9.28. The second author contributed the core idea for the improvement of the performance
guarantee to 7.18.

12

We thank Tim Roughgarden for many enlightening discussions. The first author is supported
by the Fannie and John Hertz Foundation. His research was carried out primarily while visiting
IBM Almaden.

References

[1] F. Afrati, S. Cosmadakis, C. H. Papadimitriou, G. Papageorgiou, and N. Papakostantinou.
The complexity of the traveling repairman problem. Informatique Theorique et Applications,
20(1):79–87, 1986.

[2] S. R. Agnihothri. A mean value analysis of the travelling repairman problem. IIE Transactions,
20(2):223–229, June 1988.

[3] A. Archer and D. P. Williamson. Faster approximation algorithms for the minimum latency
problem. In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms,
2003.

[4] S. Arora and G. Karakostas. Approximation schemes for minimum latency problems. In
Proceedings of the 31st Annual ACM Symposium on Theory of Computing, pages 688–693,
1999.

[5] S. Arora and G. Karakostas. A 2 + ε approximation algorithm for the k-MST problem. In
Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 754–
759, 2000.

[6] S. Arya and H. Ramesh. A 2.5 factor approximation algorithm for the k-MST problem.
Information Processing Letters, 65(3):117–118, 1998.

[7] G. Ausiello, S. Leonardi, and A. Marchetti-Spaccamela. On salesmen, repairmen, spiders and
other traveling agents. In Proceedings of the Italian Conference on Algorithms and Complexity,
pages 1–16, 2000.

[8] I. Averbakh and O. Berman. Sales-delivery man problems on treelike networks. Networks,
25:45–58, 1995.

[9] L. Bianco, A. Mingozzi, and S. Ricciardelli. The traveling salesman problem with cumulative
costs. Networks, 23(2):81–91, 1993.

[10] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan. The
minimum latency problem. In Proceedings of the 26th Annual ACM Symposium on Theory of
Computing, pages 163–171, 1994.

[11] F. Chudak, T. Roughgarden, and D. P. Williamson. Approximate k-MSTs and k-Steiner trees
via the primal-dual method and Lagrangean relaxation. In Proceedings of the 8th Conference
on Integer Programming and Combinatorial Optimization, pages 60–70, 2001.

[12] J. Fakcharoenphol, C. Harrelson, and S. Rao. The k-traveling repairman problem. In Proceed-
ings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, 2003.

[13] E. Feuerstein and L. Stougie. On-line single-server dial-a-ride problems. Theoretical Computer
Science, 268(1):91–105, 2001.

13

[14] M. Fischetti, G. Laporte, and S. Martello. The delivery man problem and cumulative matroids.
Operations Research, 41:1065–1064, 1993.

[15] F. V. Fomin and A. Lingas. Approximation algorithms for time-dependent orienteering. In-
formation Processing Letters, 83:57–62, 2002.

[16] H. N. Gabow and S. Pettie. The dynamic vertex minimum problem and its application to
clustering-type approximation algorithms. In 8th Scandinavian Workshop on Algorithm The-
ory, pages 190–199, 2002.

[17] N. Garg. A 3-approximation for the minimum tree spanning k vertices. In Proceedings of the
37th Annual Symposium on Foundations of Computer Science, pages 302–309, 1996.

[18] N. Garg. Personal communication, 1999.

[19] M. Goemans and J. Kleinberg. An improved approximation ratio for the minimum latency
problem. Mathematical Programming, 82:111–124, 1998.

[20] M. X. Goemans and D. P. Williamson. A general approximation technique for constrained
forest problems. SIAM Journal on Computing, 24:296–317, 1995.

[21] E. Koutsoupias, C. H. Papadimitriou, and M. Yannakakis. Searching a fixed graph. In Proceed-
ings of the 23rdInternational Colloquium on Automata, Languages, and Programming, pages
280–289, 1996.

[22] S. O. Krumke, W. E. de Paepe, D. Poensgen, and L. Stougie. News from the online traveling
repairman. In Proceedings of the 26th International Symposium on Mathematical Foundations
of Computer Science, pages 487–499, 2001.

[23] A. Lucena. Time-dependent traveling salesman problem - the deliveryman case. Networks,
20(6):753–763, 1990.

[24] E. Minieka. The delivery man problem on a tree network. Annals of Operations Research,
18:261–266, 1989.

[25] C. H. Papadimitriou and M. Yannakakis. The traveling salesman problem with distances one
and two. Mathematics of Operations Research, 18:1–11, 1993.

[26] J.-C. Picard and M. Queyranne. The time-dependent traveling salesman problem and its
application to the tardiness problem in one-machine scheduling. Operations Research, 26:86–
110, 1978.

[27] S. Sahni and T. Gonzalez. P-complete approximation problems. Journal of the ACM, 23:555–
565, 1976.

[28] D. Simchi-Levi and O. Berman. Minimizing the total flow time of n jobs on a network. IIE
Transactions, 23(3):236–244, September 1991.

[29] R. Sitters. The minimum latency problem is NP-hard for weighted trees. In Proceedings of
the 9th Conference on Integer Programming and Combinatorial Optimization, pages 230–239,
2002.

[30] J. N. Tsitsiklis. Special cases of traveling salesman and repairman problems with time windows.
Networks, 22:263–282, 1992.

14

[31] R. J. Vander Wiel and N. V. Sahinidis. Heuristic bounds and test problem generation for
the time-dependent traveling salesman problem. Transportation Science, 29(2):167–183, May
1995.

[32] R. J. Vander Wiel and N. V. Sahinidis. An exact solution approach for the time-dependent
traveling-salesman problem. Naval Research Logistics, 43:797–820, 1996.

[33] I. R. Webb. Depth-first solutions for the deliveryman problem on tree-like networks: an
evaluation using a permutation model. Transportation Science, 30(2):134–147, May 1996.

[34] B. Wu. Polynomial time algorithms for some minimum latency problems. Information Pro-
cessing Letters, 75:225–229, 2000.

[35] C. Yang. A dynamic programming algorithm for the travelling repairman problem. Asia-
Pacific Journal of Operations Research, 6:192–206, 1989.

15

