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Abstract

Recent studies show that reference or fixed content data
accounts for more than half of all newly created dig-
ital data, and is growing rapidly. Reference data is
characterized by enormous quantities of largely simi-
lar data and very long retention periods. Their secure
retention and eventual destruction are increasingly reg-
ulated by government agencies as more and more crit-
ical data are stored electronically and are vulnerable
to unauthorized destruction and tampering. In this pa-
per, we describe a storage system optimized for refer-
ence data. The system manages unique chunks of data
to reliably and efficiently store large amounts of similar
data, and to allow selected data to be efficiently shred-
ded. We discuss ways to detect duplicate data, describ-
ing a sliding blocking method that greatly outperforms
other methods. We also present practical ways to orga-
nize the metadata for the unique chunks, allowing most
of it to be kept on disk and to be effectively prefetched
when needed. Since electronic mail (email) is an impor-
tant storage-intensive instance of reference data and is
currently the intense focus of regulatory bodies, we use
email as a sample application and analyze its storage
characteristics in detail. We find that more than 30% of
the blocks in an email data set are duplicates and that a
duplicate block is most likely to occur within a few days
of its previous occurrence. Our analysis further indi-
cates that the effects of duplicate block elimination and
compression techniques such as block gzip seem to be

∗Work conducted at IBM Almaden Research Center, San
Jose, CA as a summer intern project in 2003.

relatively independent so that they can be combined to
achieve additive results.

1 Introduction

Reference data, also known as fixed content or
archive data, is data that does not change or that
needs to be frozen at a point in time. Examples of
reference data include electronic mail (email), in-
stant messages, insurance claims processing, drug
development logs, bio-informatics, digitized in-
formation such as check images, medical images,
surveillance video and x-rays. Reference data is
characterized by enormous quantities of largely
similar data (multiple petabytes) and very long re-
tention periods, up to and sometimes even beyond
25 years. According to the research group, En-
terprise Storage Group (ESG), reference data is
growing at 68% annually, and is expected to be a
larger market opportunity than transaction data by
2007 [2]. Another study found that 75% of new
digital data is fixed content [13].

As critical data is increasingly stored in elec-
tronic form, a growing subset of reference data is
subject to regulations governing their long-term re-
tention and availability. Recent high-profiled ac-
countability issues at large public companies have
further caused regulatory bodies such as the Secu-
rities and Exchange Commission (SEC) to tighten
their regulations. For instance, SEC’s new Rule
17a-4, which went into effect in May 2003, spec-
ifies storage requirements for email, attachments,
memos and instant messaging as well as routine



phone conversations. There are generally four key
storage requirements in such rules:

1. Store data reliably on non-erasable, non-
rewriteable media. The reliability is typi-
cally ensured by keeping multiple copies of
the data, which significantly increases the cost
of the system. The non-erasable and non-
rewriteable media used to mean optical me-
dia but has recently been expanded to include
WORM-tape and disk-based storage with a
content-addressable interface [10]. Although
reference data is sometimes described as write
once read rarely (or read-never), there are
many environments where read performance
does matter. Moreover, when discovery re-
quests for data arrive, the data needs to be
readily accessible, in random and sequential
modes depending on the application.

2. Enforce retention policy for data, making sure
that data is not deleted before its retention pe-
riod has expired. As data life cycle lengthens,
total cost of ownership becomes a key consid-
eration.

3. Shred data after its retention period has ex-
pired so that the data cannot be recovered or
discovered by data forensics. This is typically
accomplished by overwriting the data many
times (more than eight in some cases).

4. Maintain an audit trail of who created the
data, who accessed it and when.

With the increasing value of electronic data to
companies and organizations, and the threat of un-
favorable data discovery during litigation, these
storage requirements are increasingly attractive
even for non-regulated data.

In this paper, we outline a storage system that
is geared towards managing the rapidly increasing
amount of reference data. The system manages
unique chunks of data to reliably and efficiently
store large amounts of similar data, and to allow
selected data to be effectively shredded. A key
part of the system is a sliding blocking method for
detecting duplicate data that outperforms previous

methods and that results in predominantly fixed-
size chunks that are much easier to manage. In ad-
dition, we present an age-based approach to orga-
nizing the required metadata, which allows most of
it to be kept on disk and to be effectively prefetched
when needed.

We use email as a sample workload, analyzing
its storage characteristics in detail, because email
is an important and increasingly storage-intensive
instance of reference data. A recent survey of 146
IT managers by Osterman Research [1] shows that
email storage requirements have increased by 36%
in the last 12 months. Moreover, email is the in-
tense focus of regulatory bodies and millions of
dollars in fines have recently been levied by SEC
on Wall Street firms for not properly archiving their
email. We find that more than 32% of the blocks
in an email data set are duplicates. Our analysis
also indicates that attachments constitute as much
as 80% of the email data and that to detect dupli-
cate attachments, it is sufficient to compare attach-
ments with the same name. However, many attach-
ments that are not exact duplicates of another do
share many common blocks. We also discover that
a duplicate block is most likely to occur within a
few days of its previous occurrence.

The rest of this paper is organized as follows. In
the next section, we present our system for manag-
ing unique data. In Section 3, we discuss various
techniques for detecting duplicate data. A com-
parative analysis of the effectiveness of these tech-
niques on real-world data is presented in Section
4. We characterize the email workload in Section
5 and discuss related work in Section 6. Section 7
concludes this paper.

2 Management of Unique Data

Storage systems today manage data storage on the
basis of the containers that store the data (e.g.,
blocks). The exact same data could be in multi-
ple blocks in a system but the system would be
unaware of the fact, and would be unable to ex-
ploit the fact for cost savings, performance im-
provement, reliability enhancement etc. For exam-
ple, when a copy of data is lost due to hardware
problems (e.g., media failure, which is especially
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a problem when low-cost desktop drives are used),
the system may not be able to repair that copy even
though there are many other identical copies of the
data located elsewhere in the system. It simply has
no idea exactly how many copies there are or where
all the copies are located. Solutions today rely on
maintaining redundancy of all the blocks, which is
very costly, rather than controlled redundancy of
the actual data, which is what is really needed.

In this paper, we propose a system that man-
ages data storage based on the information con-
tent across the blocks. The system figures out
which are the unique blocks of data, and stores
some number of copies of such blocks to achieve,
at low cost, the desired levels of performance and
fault-tolerance. As we describe in the next section,
we can additionally perform compression on the
data to further reduce storage usage. In addition,
methods such as that presented in [5] can be used
to delta-compress similar but non-identical blocks.
We note, however, that delta compression results
in small variable-sized chunks of data, which are
difficult to manage and which adds overhead to
the system. Moreover, delta compression requires
keeping a reference copy of the data against which
to perform the deltas, resulting in a complicated ar-
rangement when data has to be shredded.

2.1 Major Components

The major components of the system are as fol-
lows:

1. Object table (OT). The data items in reference
data are commonly referred to as records or
objects. The OT maps an object to the loca-
tions (addresses) of the storage (disk) blocks
that belong to that object.

2. Free space map (FSM). The FSM keeps track
of the unallocated storage blocks, i.e., the
storage blocks that do not belong to any ob-
ject.

3. Occurrence count analyzer. The occurrence
count of a block of data is the number of times
that block of data has been logically stored.
The system determines the occurrence count
of a block of data by hashing the data into

a hash table called the block contents map
(BCM). A cryptographic hash function (e.g.,
SHA-1 [9]) can be used to reduce the chances
for collisions. Each entry in the BCM cor-
responds to a unique block of data, and con-
tains the occurrence count for that block of
data, the location and reference count of the
storage blocks where it is stored, and the IDs
of the objects that contain it. Note that an
object may contain the same block of data
multiple times so the occurrence count can be
larger than the number of objects containing
that block of data.

In order to support the delete and read error
recovery functions, the system also maintains
a reverse BCM (rBCM), which simply maps
the address of a storage block to its BCM
entry. The data contained in the BCM and
rBCM are part of the metadata of the object
system. Ways to keep the metadata consistent
and to bring them back into consistency after
some failure are well-known and include syn-
chronous write of metadata to stable storage,
logging, soft updates [6], etc.

4. Redundancy management. For each unique
block of data (as opposed to block of stor-
age), the system decides how many copies
of the data to maintain based on a combina-
tion of the occurrence count of the data, per-
formance and reliability settings, type of ob-
ject, etc. The system can also use the number
of objects containing the data, instead of or
in addition to the occurrence count, to deter-
mine the number of copies to maintain. Note
that storage blocks may have correlated fail-
ures. For instance, when a disk crashes, all
the storage blocks on the disk fail together. It
is preferred that the underlying physical stor-
age system exports its failure boundaries so
that the copies of a given block of data can be
placed in independent failure domains.

A mapping or virtualization layer is needed to
locate where the multiple copies of a block of
data are. This mapping can be inserted into
the I/O path just above the physical storage
system in which case the system can decide
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dynamically which copy of a block of data to
use. In the system described above, the map-
ping is integrated into the BCM and kept off
the I/O path. It is used only when updating
the OT and therefore has no impact on read
performance.

5. Schedule control. Determining the occur-
rence count and managing the data redun-
dancy can be a costly process. The process of
determining the occurrence count, and man-
aging the desired number of copies of each
unique block of data can be performed in-
line or deferred until the next convenient time.
In the latter case, the system handles the file
write operation as in a traditional file system,
and reads the block back later for processing.

In such a system, the storage blocks are cat-
egorized into three pools - the common pool,
private pool, and unallocated pool. The com-
mon pool contains storage blocks that may
belong to more than one object or to multiple
locations in an object. The private pool con-
tains storage blocks that belong to exactly one
object. The free pool contains storage blocks
that are not allocated. During an object delete
operation, a block in the private pool can be
returned to the free pool right away. A block
in the common pool can be returned to the free
pool only if the block is not used in another
object.

2.2 Operations

When a block of data is written to the object sys-
tem, the system first determines how many copies
of that data already exist logically in the file sys-
tem. Based on this occurrence count, and the per-
formance and reliability settings, the system then
decides how many copies of that data it should
maintain. If it currently has fewer than the desired
number of copies of the data, the system proceeds
to create a new copy of the data. If the system al-
ready has the desired number of copies of the data,
it selects one of the existing copies of the data. In
either case, the OT is updated to include a refer-
ence to the created/selected copy of the data.

On an object delete, the system goes through the
OT to find all the storage blocks belonging to the
object to be deleted. The reference count for each
of these storage blocks is decremented by the num-
ber of references to that block by the current object.
When the count reaches zero, that storage block is
deallocated and the FSM is updated accordingly.
The OT entry corresponding to that file is then re-
moved. As a final step, the system reevaluates the
desired number of copies for each block of data
that has been affected, rebalancing the number of
references to each copy of the block if necessary.

When a read error is encountered for a storage
block, the system consults the rBCM to locate the
BCM entry of the data stored in the error block. If
the BCM entry indicates that there is another copy
of the data somewhere else in the storage system,
the system reads one of the other copies to satisfy
the current read request. It then marks the error
block as bad in the FSM, and proceeds to repair
the system by going through the OT entries for the
files with references to the error copy and changing
these references to point to one of the other copies.
As a final step, it reevaluates the desired number of
copies for that block of data, creating a new copy
and rebalancing the references if necessary.

2.3 Metadata Organization

In addition to the metadata maintained by a stan-
dard object system, the proposed system maintains
a BCM entry for each unique block of data and a
rBCM entry for each block of storage. Given the
large volume and long retention period of reference
data, such metadata will be large and will need to
be paged. The desirable property of hashes, how-
ever, is that there is no locality in the hash values.
In other words, if the BCM entries are stored ac-
cording to their the hash values, each lookup of the
BCM will incur a random I/O.

In many cases, however, similar objects tend to
differ only in a handful of blocks so that long se-
quences of hash values tend to recur. This suggests
that we should index BCM entries based on their
hash values and cluster them based on when they
are created or last updated. With such an approach,
we can effectively sequential prefetch subsequent
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Figure 1: Simple Blocking Method. Each fixed-size file block is hashed. Resulting hash value is compared to
prior values to find duplicate blocks.

BCM entries after an initial random I/O for the first
BCM lookup.

Our second insight is that data usage tends to ex-
hibit temporal locality so that any duplicate blocks
are likely to occur close together in time. In other
words, if we keep the BCM and rBCM entries only
for a short duration (e.g., 2 weeks) after they are
created or last updated, we can drastically reduce
the size of the tables and yet reap most of the ben-
efits discussed here. The BCM and rBCM entries
that are aged out can be archived and brought back
when needed to recover from a read error. Later in
this paper, we will use real email data to validate
this insight.

2.4 Prototype Implementation

We have started to implement a simple prototype
of the system as a stackable file system in Linux
by extending the wrapfs template [14]. In the pro-
totype implementation, an object is stored as one
or more files in the underlying file system. Each
of these files contain a subsequence of the blocks
belonging to an object, and the file is the unit of
sharing among different objects. Since similar ob-
jects tend to differ only in a few blocks, most of the
files are large so that the file overhead is relatively
small.

3 Duplicate Detection Methods

In this section we present three methods for detect-
ing duplicate data in a set of objects: simple block-
ing, content chunking, and sliding blocking.

3.1 Simple Blocking

The simple blocking method illustrated in Figure 1
divides each object into non-overlapping fixed-
sized blocks. The SHA-1 hash of each block is
computed and stored in a table. As subsequent
blocks are examined, their hash values are com-
puted and compared to the stored values in order to
detect duplicates. Extra storage is incurred for the
table of block hash values and the disk addresses
of the associated blocks.

The major problem with this method is that it
may ignore the duplication in two objects that dif-
fer by only a small number of bytes. For exam-
ple, imagine that an existing object is copied and
a small number of bytes are inserted at the begin-
ning of the new object. The inserted bytes cause
a shift in the object contents, and all of the block
boundaries following the insertion will be affected.
An analogous situation occurs if bytes are deleted
from the object. None of the blocks in the new ob-
ject will exactly match those in the source object,
so the remaining similarities between the objects
will not be detected.
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Figure 2: Content Chunking Method. Rabin’s fingerprint is computed over a sliding window. Chunks are ter-
minated when the fingerprint takes on a certain predetermined breakpoint value. Chunks are hashed to find duplicate
data.

3.2 Content Chunking

In order to overcome this problem, the low-
bandwidth network file system [8] divided objects
(files) into variable-sized chunks based on object
content. We will refer to this as the content chunk-
ing method (Figure 2).

Objects are divided into chunks based on their
content using Rabin fingerprints [3, 11] because
they are efficient to compute over a sliding win-
dow. A 48 byte sliding window is used to calcu-
late the fingerprint for each overlapping 48 byte
segment of the object. The fingerprint window
moves along the object identifying chunk break-
points when the low-order bits of the fingerprint
match a constant pre-determined breakpoint value.
The portions of the object between these break-
point values are classified as chunks, and the ex-
pected chunk size is determined by the number of
bits used to compare against the breakpoint value.
In order to avoid pathological cases, LBFS sug-
gests setting limits on the sizes of chunks. We use
minimum and maximum chunk sizes of 512 bytes
and 64 kilobytes, respectively. To calculate the
fingerprint, we use a randomly chosen irreducible
polynomial of degree 384.

The content chunking method is resilient to the
byte insertion problem described above because
the chunk boundaries are based on object content
instead of length. A small number of bytes inserted
into or deleted from a object may or may not affect
a chunk breakpoint region. If the change occurs
outside of a 48 byte breakpoint region, the chunk

boundaries may remain intact, or one chunk may
be split into two if the changed bytes create a new
breakpoint. If the change occurs within a 48 byte
breakpoint region, two chunks may be merged into
one if the breakpoint is destroyed, or the boundary
between two chunks may move if a new breakpoint
is introduced. Most importantly, in each of these
cases, inserting or deleting a small number of bytes
affects only one or two object chunks. The remain-
ing chunks of the object are unaffected. This al-
lows the content chunking method to detect much
more duplication between objects that differ by a
small number of bytes.

As an object is divided into chunks, the SHA-1
hash of each chunk is computed and compared to
the hash values of previously seen chunks to detect
duplicates. Again, extra storage is needed to store
the chunk sizes, hash values, and disk addresses.

3.3 Sliding Blocking

The content chunking method solves the inser-
tion problem but introduces the problem of stor-
ing variable-sized chunks. For a storage system,
it is much less complex and more efficient to store
fixed-sized blocks. To this end, we present the slid-
ing blocking method to combine the benefits of the
previous approaches and solve the insertion prob-
lem while using a fixed block size.

The sliding blocking method (Figure 3) uses
the rsync [12] checksum and a block-sized sliding
window to calculate the checksum of every over-
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Figure 3: Sliding Blocking Method. A sliding window is used to checksum blocks. A checksum match with prior
values leads to a block hash. Hash value is compared to previous values to find duplicate data.

lapping block-sized segment of an object. The
rsync checksum is fast and efficient to compute
over a sliding window. The checksum for each
block-sized segment is compared to previously
stored values. If a match is found, the more ex-
pensive SHA-1 hash of the block is calculated and
compared to stored hash values to detect dupli-
cates.

If a duplicate is found, it is recorded and the slid-
ing window is moved past the duplicate block to
continue the process. Additionally, the fragment
of the object between the end of the previous block
and the newly detected duplicate must be recorded
and stored. When a match for the checksum or
the hash value is not found, the sliding window is
advanced and the process continues. If the slid-
ing window moves past a full block-sized segment
without matching it to a known block, the check-
sum and SHA-1 hash are computed for that block
and stored in their respective tables for comparison
against the values for future blocks. This method
requires extra storage for both the tables of check-
sums and hash values as well as the disk addresses
of the associated blocks.

The sliding blocking method solves the insertion
problem by examining every block-sized segment
of the object. If a small number of bytes are in-
serted into an object, only the surrounding block
will change. The next block following the changes
will still be identified and matched by the algo-
rithm, and an intervening fragment (equal in length
to the inserted bytes) will be created. Similarly,
deleting a number of bytes will create a fragment

sized by the difference of the block size and the
deleted region, but the blocks after the affected re-
gion will still be matched by the algorithm.

3.4 Gzip

Standard compression algorithms such as
LZ77 [15] used by gzip [4] also detect dupli-
cate data, but typically on a more local scope and
at a finer granularity. For example, gzip com-
presses data by searching for repeated strings in a
32 KB sliding window. When a repeat is found,
it is replaced by two numbers: a distance pointer
to the previous occurrence in the window and
the length of the repeated string. The remaining
literals and the pointers are further compressed
using a Huffman tree encoding.

Unfortunately, the use of such compression
means increased access times because we cannot
access the data in an object without decompressing
the object from its beginning. In addition, any data
loss in an object would render the rest of the object
useless. An alternative is to separately compress
the blocks of an object. Such block gzip would
limit the effect of any data loss and allow direct ac-
cess to the data in an object but would reduce the
compression ratio.

In the next section, we will examine the use
of gzip in combination with our other methods in
search of space savings over any single method.
For instance, gzip could be used to compress the
unique blocks that result from duplicate detection.
On the other hand, performing gzip or block gzip
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Data Set Description Files Size

Email-1 Industry Research Email - Lotus Notes format 127 16.51 GB
Email-2 University Research Email - mbox format 5,819 7.97 GB
Email-3 Computer Support Request Email - mh format 322,666 4.37 GB
Email-4 Industry Research Email - Lotus Notes format 1 0.61 GB

Development University Research and Development 399,037 15.36 GB
Users Industry User Data 185,722 6.47 GB

Table 1: Data Sets. This table summarizes the characteristics of each data set used to compare the duplicate
detection methods.

before duplicate detection will eliminate a lot of
the duplicates because any changes in an object
would percolate down to the end of the compressed
object. In this case, a solution is to gzip the ob-
ject in chunks determined by the content chunking
method.

4 Comparison of Methods

We used several real-world data sets to evaluate
the different methods for duplicate detection. Each
of the data sets is summarized in Table 1. The
Email-1 data set consists of email from 127 re-
searchers, managers, and supporting staff at an
IBM research laboratory. The emails are stored
in the Lotus Notes NSF database format. Email-
2 contains email data from 214 members of a uni-
versity computer science department. The email is
stored in the mbox format, which uses one large
file to store the contents of each email folder.

The Email-3 data set consists of emails from the
problem reporting and request system of a large
computer support department. The request sys-
tem uses the mh format, so each email message is
stored in its own file. The Email-4 data set contains
the email of a single industry researcher stored in
the NSF format. It will be used later to analyze
characteristics specific to email messages. Finally,
to compare our methods on other forms of data, we
used the Development data set and the Users data
set. The Development data set consists of source
code repositories and sandboxes, object files, ex-
perimental data, and reports from a university com-
puter science research group. The Users data set
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Figure 4: Duplicates Detected, Email-1. This
graph shows the number of duplicate bytes detected as
a percentage of the total number of bytes using each
method on the Email-1 data set. The block size for the
sliding blocking and simple blocking methods and the
expected chunk size for the content chunking method are
varied along the x-axis.

contains the data of 33 users stored in one partition
of a shared storage system within IBM.

First, we will concentrate in detail on the re-
sults from the Email-1 data set. Figure 4 shows the
amount of duplicate bytes detected by each method
as a percentage of the total number of bytes in
the data set. The block size for the simple and
sliding blocking methods and the expected chunk
size for the content chunking method are varied
along the x-axis. As expected, the number of du-
plicates detected decreases slightly as the block
size increases because of the coarser granularity.
The simple blocking method consistently finds the
fewest number of duplicate bytes and the sliding
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Figure 5: Storage overhead, Email-1. This graph
shows the extra storage required by each method as a
percentage of the total number of bytes for the Email-1
data set. The block size is varied along the x-axis.

blocking method always finds the most duplicates,
which in this case is more than 32%.

Note that Lotus Notes already performs com-
pression on some of the attachments using either
Huffman tree encoding or LZ compression. As dis-
cussed earlier, such compression greatly reduces
the amount of duplicates in the data. Further-
more, our results reflect active and expensive man-
agement of email by the users. In a regulatory-
compliant system where all email is retained for
several years, we would expect the amount of du-
plicate data to be even higher. There is clearly a lot
of potential for cost and reliability improvements
by managing the unique data.

Figure 5 shows the amount of extra storage
needed as a percentage of the total number of bytes
in the data set for tracking the extra information
required by each method. In all cases the amount
of overhead is very small at less than one percent.
Figure 6 combines the data from the previous two
figures to present the total amount of storage that
can be reclaimed by eliminating duplicates with
each method. The sliding blocking method re-
mains the best overall. Additionally, the amount
of storage that can be reclaimed is substantial, up
to 31% in the best case. Note that such savings
are especially significant given the extended life of
reference data, the need to keep multiple copies of
such data to ensure reliable storage, and the fact
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Figure 6: Net Storage Reclaimed, Email-1. This
graph shows the net storage reclaimed (the difference
between the duplicates detected and the storage over-
head) by each method as a percentage of the total num-
ber of bytes for the Email-1 data set. The block size is
varied along the x-axis.

that while raw storage is increasingly inexpensive,
long-term managed storage is not.

The content chunking method performed worse
than expected, and we believe this is due to the
way in which the data is divided into chunks. Be-
cause the data being analyzed is real and not ran-
dom, the resulting chunk size distributions do not
meet expectations. Figure 7 shows the distribution
of chunk sizes for the content chunking method
with an expected chunk size of 4 KB. The average
chunk size turns out to be 6,790 bytes, much larger
than the expected value. Furthermore, 64 KB
chunks make up 3.4% of all chunks and contain
33.5% of the bytes in the data set. These 64 KB
chunks are artificially created due to the maximum
chunk size limit. Since they do not end in a chunk
breakpoint, they are unlikely to be matched to an-
other large chunk in the data set, and the amount
of duplicates that can be detected is reduced. Sim-
ilar chunk size distributions were observed in our
other data sets. Because real data is seldom ran-
dom, such chunk size distributions will tend to oc-
cur in practice, meaning that the content chunking
method is unlikely to perform very well in real life.

Each of the duplicate detection methods was
also run on the other data sets with a block size
or expected chunk size of 4 KB. Figure 8 shows
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Figure 7: Chunk Size Distribution, Email-1. This
graph shows the distribution of chunk sizes for the con-
tent chunking method over the Email-1 data set using
an expected chunk size of 4 KB. The left y-axis corre-
sponds to the histogram of chunk sizes, and the right
y-axis and dotted line show the cumulative distribution
of chunk sizes.

the percent of duplicate bytes detected by the vari-
ous techniques. In each case, the sliding blocking
method detects the most duplicates, strengthening
our previous results for the Email-1 data set alone.
While the sliding blocking method finds 18% du-
plication in the Email-2 data set and 17% in Email-
3, the amounts are much lower than the 32% iden-
tified in the Email-1 data set. These differences are
likely due to the different contents of the data sets,
and possibly the more generous mailbox limits in
an industry setting. They could also be due to the
different storage formats. For example, in the mh
format, storing each email in a separate file may
increase the number of small file fragments and
therefore decrease the chances of finding matching
blocks.

For the Email-1, Email-2, and Development data
sets, Figure 9 shows the differences in the number
of duplicates detected when all of the data is con-
sidered together (the default) and when each user’s
data is examined in isolation. For each data set,
the duplicates within each user’s data accounts for
most (60-80%) of the duplicates detected in the
data set. Nevertheless, the combined results are
significantly greater, indicating a sizeable amount
of sharing between users. This finding suggests
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Figure 8: Duplicates Detected, all Data Sets. This
graph shows the number of duplicate bytes detected as
a percentage of the total number of bytes for each of the
methods over the six data sets using a 4 KB block size.

that duplicate management could achieve higher
cost savings and reliability enhancement when data
from multiple users are consolidated onto the same
server or same cluster of servers. It could also have
implications when assigning users to servers so as
to increase local sharing.

We next consider the additional use of gzip com-
pression on the unique blocks detected by the var-
ious methods. Figure 10 summarizes the results.
The figure shows the results for only two of the
data sets because we no longer have access to the
other data sets to gather this result. As discussed
earlier, the use of gzip to compress objects means
increased access times because the data in an ob-
ject cannot be accessed without first decompress-
ing the object from its beginning. In addition, any
data loss in an object would render the rest of the
object useless. An alternative is to separately com-
press the blocks of an object, a method we term
block gzip.

Our results show that block gzip is able to
achieve greater size reduction than duplicate block
elimination for our data sets. However, in a
regulatory-compliant system where all the email
belonging to many users are retained for several
years, we would expect duplicate block elimina-
tion to perform better. Moreover, block gzip per-
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Figure 9: Duplicates Detected on an Individual
Basis. This graph shows the number of duplicate bytes
detected when all the data was considered in combina-
tion (the default) and when each user’s data was ana-
lyzed for duplicates individually. A 4 KB block size is
used.

formed after duplicate blocks have been eliminated
significantly outperforms block gzip on its own. In
fact, the effects of block gzip and duplicate block
elimination seem to be relatively independent so
that their net effect is additive. Specifically, sup-
pose that duplicate block elimination and block
gzip each acting alone reduces the data set by x%
and y% respectively. We find that when block gzip
is performed on the unique blocks remaining after
duplicate block elimination, the overall reduction
in data size is x + (1 − x

100) × y %.

Table 2 lists the processing rates for our unop-
timized implementations of each of the duplicate
detection methods. Each technique was used to
process in-memory data sets using an Intel Xeon
2.0 GHz processor. The data sets processed include
a synthetic 100 MB file with 25% duplicate data
aligned on block boundaries (4 KB blocks were
used), and the Email-4 data set. The simple block-
ing method is the fastest and is suitable for on-line
processing of file system traffic. The processing
rates of the content chunking and sliding blocking
methods, at a few megabytes per second, are about
an order of magnitude slower. At such rates, these
methods are likely to be better suited to off-line
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Figure 10: Duplicates Detected with Additional
Use of Block Gzip. This graph shows the number of
duplicate bytes detected when the unique blocks result-
ing from each of the methods are compressed with block
gzip. A 4 KB block size is used.

Processing Rate (MB/s)
Method Synthetic Data Set Email-4

Simple Blocking 45.5 45.6
Content Chunking 1.5 1.4
Sliding Blocking 4.5 1.2

Table 2: Processing Rates. This table lists the pro-
cessing rates for our unoptimized implementations of
each duplicate detection method.

processing. We note, however, that we have yet
to optimize our implementations of the methods or
consider hardware acceleration.

5 Email Characteristics

As discussed earlier, email is an important refer-
ence data workload. In this section, we analyze its
characteristics in detail using the Email-4 data set.
In Table 3, we present some simple statistics of the
email. Note that email comes in a wide range of
sizes. On average, the size of an email including
attachment is 40 KB. Most of the email has only
a couple of recipients, and most have no attach-
ments.
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 Avg. Std. Dev. Min. Max. 90%-tile 

Size of Email (B) 40273 291317 215 10602200 24631 

Size of Body (B) 6205 51918 0 2070940 6472 

Size of Attachment (B) 233378 626588 0 7368260 539712 

# To 1.91 7.66 0 501 2 

# CC 0.418 2.78 0 114 1 

# BCC 0.00994 0.178 0 18 0 

# Attachments 0.139 0.633 0 28 0 

 

Table 3: Characteristics of Email. The column marked 90%-tile contains the 90th percentile of the various
measures.

3.9%
15.4%

80.7%

Header

Body

Attachments
(1.5KB)

(6.1KB)

(31.9KB)

Figure 11: Relative Sizes of Email Components.
This chart shows the breakdown of the space occupied
by the Email-4 data set. The numbers in parentheses in-
dicate the space occupied by that component averaged
over each email.

Observe from Figure 11 that the attachments
form by far the largest component of the email data
set, constituting more than 80% of the total data
size. The email bodies are also significant, rep-
resenting about 15% of the total data size. The
email headers, which include the sender, recipi-
ents, dates, subject and delivery information, rep-
resent less than 4% of the data. Such a breakdown
suggests that in optimizing the storage of email, we
should focus primarily on the attachments and, to
a lesser extent, on the email bodies.

In Table 4, we explore the amount of duplicate
data in the various email components. We find
that comparing attachments with the same name
is sufficient to detect most of the duplicate attach-
ments. However, duplicate attachments constitute
only about 13% of the space taken up by the at-
tachments. The sliding blocking method, on the
other hand, detects 33% duplicate data in the at-

tachments. This suggests that although most of the
attachments are not identical, they do share com-
mon blocks.

Earlier in the paper, we advocate managing the
BCM and rBCM metadata based on its age be-
cause any duplicate blocks are likely to occur close
together in time. In Figure 12, we empirically
demonstrate this behavior. Observe that a dupli-
cate block is most likely to occur within a few days
of its previous occurrence. Observe further that
the plot using age since first occurrence is signif-
icantly below that using age since last occurrence.
This suggests that aging the BCM and rBCM en-
tries based on when they were last updated would
be more effective than aging them based on when
they were first created.

6 Related Work

The rsync algorithm [12] uses duplicate detection
to efficiently synchronize a remote copy of a file.
The receiver divides its out-of-date version of the
file into fixed-sized blocks and sends two check-
sums of each block to the sender. The sender ex-
ams its up-to-date version of the file, calculating
the same checksums for every overlapping block-
sized string in the file. After detecting duplicate
blocks based on the two checksums, the sender
transmits data and instructions to the receiver to ef-
ficiently update its version of the file.

The low-bandwidth network file system [8] in-
troduced the content chunking method to help re-
duce the amount of network bandwidth used in a
distributed file system. Instead of transferring en-
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Object 
 

Email Body Attachment Name of 
Attachment 

Duplicate Objects (%) 34.3 32.6 45.3 

Detection Method Compare 
whole body 

Compare 
whole 

attachments 

Compare 
attachments 
with same 

name 

Compare 
blocks in 

attachments 
- 

Duplicate Blocks (%) 18.6 13.2 12.8 32.9 - 

 

Table 4: Duplicate Percentage by Components. The data show that 34% of email bodies are duplicates. Most
of the duplicate email bodies are small so that they constitute only 19% of the space occupied by the email bodies.
About 33% of the attachments are duplicates but again most of these are small so that they represent only 13% of the
space occupied by the attachments. The sliding blocking method, on the other hand, detects 33% duplicate data in the
attachments, suggesting that many attachments are similar but not identical. 45% of the attachments have duplicate
names. Comparing attachments with the same name is sufficient to discover most of the duplicate attachments.
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Figure 12: Age Distribution. This graph shows the
distribution of the age of a data block belonging to the
attachments, where the age is defined as the elapsed
time since the data block was last or first encountered.

tire files across the network, LBFS first divides the
file into chunks and then transfers the SHA-1 hash
of each chunk to the recipient. The recipient com-
pares the hash values it receives to the hash val-
ues of the chunks it is storing in its cache or on
its local disk. If matches are found, the amount
of data that needs to be transmitted between the
sender and receiver is reduced. This scheme has
also been adopted by Pasta [7] to reduce duplica-
tion in a peer-to-peer storage system.

7 Conclusion

In this paper, we present a storage system for man-
aging the rapidly increasing amount of reference
data. The system manages unique chunks of data
to reliably and efficiently store large amounts of
similar data, and to allow selected data to be effec-
tively shredded. A key part of the system is a slid-
ing blocking method for detecting duplicate data
that outperforms previous methods and that results
in predominantly fixed-size chunks that are much
easier to manage. In addition, we present an age-
based approach to organizing the required meta-
data, which allows most of it to be kept on disk
and to be effectively prefetched when needed.

Using real email data as a sample workload, we
find that more than 32% of the data are duplicates.
In a regulatory-compliant system where all email
is retained for several years, we would expect the
amount of duplicate data to be even higher. There
is clearly a lot of potential for cost and reliability
improvements by managing the unique data, espe-
cially given the extended life of reference data, and
the need to keep multiple copies of such data to en-
sure reliable storage. Our analysis further indicates
that the effects of duplicate block elimination and
compression techniques such as block gzip seem to
be relatively independent so that they can be com-
bined to get additive results.

We find that attachments constitute as much as
80% of the email data and that to detect duplicate
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attachments, it is sufficient to compare attachments
with the same name. However, many attachments
that are not exact duplicates of another do share
many common blocks so that duplicate block de-
tection using the sliding blocking method is a lot
more effective at discovering duplicate data than
comparing whole attachments. We also discover
that a duplicate block is most likely to occur within
a few days of its previous occurrence.
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