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Abstract

The generalized semi-Markov process (gsmp) is the usual model for the underlying sto-
chastic process of a complex discrete-event stochastic system. Strong laws of large numbers
(sllns) and functional central limit theorems (fclts) give basic conditions under which such
processes exhibit stable long run behavior. These limit theorems also provide approximations
for cumulative-reward distributions, confidence intervals for statistical estimators, and efficiency
criteria for simulation algorithms. We prove an slln and fclt for finite state gsmps under signif-
icantly weaker conditions on the moments of the clock-setting distributions than have previously
been imposed. As part of our analysis, we use Lyapunov-function arguments to show that finite
moments for new clock readings imply finite moments for the od-regenerative cycles of both the
gsmp and its underlying general state space Markov chain.

1 Introduction

A wide variety of manufacturing, computer, transportation, telecommunication, and work-flow
systems can usefully be viewed as discrete-event stochastic systems. Such systems evolve over con-
tinuous time and make stochastic state transitions when events associated with the occupied state
occur; the state transitions occur only at an increasing sequence of random times. The underlying
stochastic process of a discrete-event system records the state as it evolves over continuous time
and has piecewise-constant sample paths.

The usual model for the underlying process of a complex discrete-event stochastic system is
the generalized semi-Markov process (gsmp); see, for example, [5, 15, 16, 19, 20, 23]. In a gsmp,
events associated with a state compete to trigger the next state transition and each set of trigger
events has its own probability distribution for determining the new state. At each state transition,
new events may be scheduled. For each of these new events, a clock indicating the time until
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the event is scheduled to occur is set according to a probability distribution that depends on the
current state, the new state, and the set of events that trigger the state transition. These clocks,
along with the speeds at which the clocks run down, determine when the next state transition
occurs and which of the scheduled events actually trigger this state transition. A gsmp is formally
defined in terms of a general state space Markov chain { (Sn, Cn) : n ≥ 0 } that records the state
of the system, together with the clock readings, at successive state transitions. The gsmp model
either subsumes or is closely related to a number of important applied probability models such as
continuous time Markov chains, semi-Markov processes, Markovian and non-Markovian multiclass
networks of queues [20], and stochastic Petri nets [14].

Strong laws of large numbers (sllns) and central limit theorems (clts) formalize the notion of
“stability” for the underlying stochastic process {X(t) : t ≥ 0 } of a gsmp. These limit theorems
also provide approximations for cumulative-reward distributions, confidence intervals for statistical
estimators, and efficiency criteria for simulation algorithms. In more detail, an slln asserts the
existence of time-average limits of the form r(f) = limt→∞(1/t)

∫ t
0 f

(
X(u)

)
du, where f is a real-

valued function. If such an slln holds, then the quantity r̂(t) = (1/t)
∫ t
0 f

(
X(u)

)
du is a strongly

consistent estimator for r(f). Viewing R(t) =
∫ t
0 f

(
X(u)

)
du as the cumulative “reward” earned

by the system in the interval [0, t], the slln also asserts that R(t) can be approximated by the
quantity r(f)t when t is large. Central limit theorems (clts) serve to illuminate the rate of
convergence in the slln, to quantify the precision of r̂(t) as an estimator of r(f), and to provide
approximations for the distribution of the cumulative reward R(t) at large values of t. The ordinary
form of the clt asserts that under appropriate regularity conditions, the quantity r̂(f)—suitably
normalized—converges in distribution to a standard normal random variable. An ordinary clt

often can be strengthened to a functional central limit theorem (fclt); see, for example, [3, 4].
Roughly speaking, a stochastic process with time-average limit r obeys an fclt if the associated
cumulative (i.e., time-integrated) process—centered about the deterministic function g(t) = rt and
suitably compressed in space and time—converges in distribution to a standard Brownian motion
as the degree of compression increases. A variety of estimation methods such as the method of
batch means (with a fixed number of batches) are known to yield asymptotically valid confidence
intervals for r(f) when an fclt holds [8]. Moreover, fclt’s can be used to analyze the behavior of
the reward process {R(t) : t ≥ 0 } over finite time intervals. For example, it is possible to identify a
deterministic affine function g such that, with probability approximately equal to a specified value,
we have R(u) ≤ g(u) for 0 ≤ u ≤ t. Also of interest are “discrete time” sllns and fclts for the
processes of the form { f̃(Sn, Cn) : n ≥ 0 }.

Given the central role played by the gsmp model in both theory and applications, it is funda-
mentally important to obtain the “right” conditions underlying basic limit theorems such as the
slln and fclt. Limit theory for semi-Markov processes [7] shows that the right general conditions
involve some form of structural irreducibility, as well as finite first (resp., second) moments on the
holding-time distribution in the case of the slln (resp., of the fclt). Such conditions are “minimal”
in that if we allow them to be violated, then we can easily find models for which the conclusion of the
slln or fclt fails to hold. In this paper, we provide new sllns and fclts for finite-state gsmps
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under an irreducibility assumption and moment conditions that are comparable to the minimal
conditions for semi-Markov processes. The moment conditions are substantially weaker than those
given in [13]. Unlike with semi-Markov processes, we impose a positive-density condition on the
clock-setting distributions. Some such condition is needed in the face of the additional complexity
caused by the presence of multiple clocks; we show that in the absence of such a condition the slln

and fclt can fail to hold. We obtain our limit theorems by using Lyapunov-function arguments to
show that the underlying chain of a gsmp is an od-regenerative process with finite cycle moments.
The desired results then follow from limit theorems for od-regenerative processes.

2 Generalized Semi-Markov Processes

We briefly review the notation for, and definition of, a gsmp. Following [20], let E = {e1, e2, . . . ,

eM} be a finite set of events and S be a finite or countably infinite set of states. For s ∈ S, let
s �→ E(s) be a mapping from S to the nonempty subsets of E; here E(s) denotes the set of all
events that can occur when the process is in state s. An event e ∈ E(s) is said to be active in
state s. When the process is in state s, the occurrence of one or more active events triggers a state
transition. Denote by p(s′; s, E∗) the probability that the new state is s′ given that the events
in the set E∗ (⊆ E(s)) occur simultaneously in state s. A “clock” is associated with each event.
The clock reading for an active event indicates the remaining time until the event is scheduled to
occur. These clocks, along with the speeds at which the clocks run down, determine which of the
active events actually trigger the next state transition. Denote by r(s, e) (≥ 0) the speed (finite,
deterministic rate) at which the clock associated with event e runs down when the state is s; we
assume that, for each s ∈ S, we have r(s, e) > 0 for some e ∈ E(s). Typically in applications,
all speeds for active events are equal to 1; zero speeds can be used to model preemptive-resume
behavior. Let C(s) be the set of possible clock-reading vectors when the state is s:

C(s) =
{

c = (c1, . . . , cM ) : ci ∈ [0,∞) and ci > 0 if and only if ei ∈ E(s)
}
.

The ith component of a clock-reading vector c = (c1, . . . , cM ) is the clock reading associated with
event ei.) Beginning in state s with clock-reading vector c = (c1, . . . , cM ) ∈ C(s), the time t∗(s, c)
to the next state transition is given by

t∗(s, c) = min
{ i : ei∈E(s) }

ci/r(s, ei), (2.1)

where ci/r(s, ei) is taken to be +∞ when r(s, ei) = 0. The set of events E∗(s, c) that trigger the
next state transition is given by

E∗(s, c) = { ei ∈ E(s) : ci − t∗(s, c)r(s, ei) = 0 } .

At a transition from state s to state s′ triggered by the simultaneous occurrence of the events in the
set E∗, a finite clock reading is generated for each new event e′ ∈ N(s′; s, E∗) = E(s′)−(E(s)−E∗).
Denote the clock-setting distribution function (that is, the distribution function of such a new clock

Draft: April 4, 2003 at 18:12 3



reading) by F ( · ; s′, e′, s, E∗). We assume that F (0; s′, e′, s, E∗) = 0, so that new clock readings are
a.s. positive, and that limx→∞ F (x; s′, e′, s, E∗) = 1, so that each new clock reading is a.s. finite. For
each old event e′ ∈ O(s′; s, E∗) = E(s′) ∩ (

E(s) − E∗), the old clock reading is kept after the state
transition. For e′ ∈ (E(s) − E∗) − E(s′), event e′ is cancelled and the clock reading is discarded.
When E∗ is a singleton set of the form E∗ = { e∗ }, we write p(s′; s, e∗) = p(s′; s, { e∗ }), O(s′; s, e∗) =
O(s′; s, { e∗ }), and so forth. The gsmp is a continuous-time stochastic process {X(t) : t ≥ 0 } that
records the state of the system at time t.

Formal definition of the process {X(t) : t ≥ 0 } is in terms of a general state space Markov chain
{ (Sn, Cn) : n ≥ 0 } that describes the process at successive state-transition times. Heuristically, Sn

represents the state and Cn = (Cn,1, . . . , Cn,M ) represents the clock-reading vector just after the
nth state transition; see [20] for a formal definition of the chain. The chain takes values in the set
Σ =

⋃
s∈S

({ s } × C(s)
)
. Denote by µ the initial distribution of the chain; for a subset B ⊆ Σ,

the quantity µ(B) represents the probability that (S0, C0) ∈ B. We use the notations Pµ and Eµ

to denote probabilities and expected values associated with the chain, the idea being to emphasize
the dependence on the initial distribution µ; when the initial state of the underlying chain is equal
to some (s, c) ∈ Σ with probability 1, we write P(s,c) and E(s,c). The symbol Pn denotes the n-step
transition kernel of the chain: Pn

(
(s, c), A

)
= P(s,c) { (Sn, Cn) ∈ A } for (s, c) ∈ Σ and A ⊆ Σ; when

n = 1 we simply write P to denote the 1-step transition kernel.
We construct a continuous time process {X(t) : t ≥ 0} from the chain { (Sn, Cn) : n ≥ 0 } in the

following manner. Let ζn (n ≥ 0) be the (nonnegative, real-valued) time of the nth state transition:
ζ0 = 0 and

ζn =
n−1∑
j=0

t∗(Sj , Cj)

for n ≥ 1. Let ∆ 	∈ S and set

X(t) =




SN(t) if N(t) < ∞;

∆ if N(t) = ∞,
(2.2)

where
N(t) = sup {n ≥ 0: ζn ≤ t } .

The stochastic process {X(t) : t ≥ 0 } defined by (2.2) is the gsmp. By construction, the gsmp

takes values in the set S ∪ {∆ } and has piecewise constant, right-continuous sample paths. We
assume throughout that

Pµ

{
sup
n≥0

ζn = ∞
}

= 1 (2.3)

so that only a finite number of state transitions occur in any finite time interval. An argument as
in Theorem 3.13 of [14, Ch. 3] shows that this condition holds, for example, whenever S is finite.
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3 SLLNs and FCLTs for Generalized Semi-Markov Processes

3.1 Preliminaries

To prepare for the various limit theorems below, we introduce some notation and terminology.
For a gsmp with state space S and event set E and for s, s′ ∈ S and e ∈ E, write s

e→ s′ if
p(s′; s, e)r(s, e) > 0 and write s → s′ if s

e→ s′ for some e ∈ E(s). Also write s � s′ if either s → s′

or there exist states s1, s2, . . . , sn ∈ S (n ≥ 1) such that s → s1 → · · · → sn → s′.

Definition 3.1 A gsmp is irreducible if s � s′ for each s, s′ ∈ S.

Recall that a nonnegative function G is a component of a distribution function F if G is not
identically equal to 0 and G ≤ F . If G is a component of F and G is absolutely continuous, so that
G has a density function g, then we say that g is a density component of F .

Assumption PD(q), defined below, encapsulates the key conditions that we impose on the
building blocks of a gsmp to obtain limit theorems.

Definition 3.2 Assumption PD(q) holds for a specified gsmp and real number q ≥ 0 if

(i) the state space S of the gsmp is finite;

(ii) the gsmp is irreducible;

(iii) all speeds of the gsmp are positive; and

(iv) there exists x̄ ∈ (0,∞) such that each clock-setting distribution function F ( · ; s′, e′, s, E∗) of
the gsmp has finite qth moment and a density component that is positive and continuous on
(0, x̄).

Observe that when Assumption PD(q) holds for some q ≥ 0, the “infinite lifetime” condition in (2.3)
holds and, with probability 1, events never occur simultaneously. Moreover, Assumption PD(r)
holds for 0 ≤ r < q.

Recall that a probability distribution π is invariant with respect to a Markov chain {Zn : n ≥ 0 }
with transition kernel P and (possibly uncountable) state space Γ if and only if

∫
P (z, A) π(dz) =

π(A) for each measurable set A ⊆ Γ. The following result is a consequence of Proposition 3.13 in
[13] and Theorem 4.5 in [13].

Proposition 3.3 Suppose that Assumption PD(1) holds for a gsmp. Then there exists a unique
invariant distribution π for the underlying chain { (Sn, Cn) : n ≥ 0 }.
Given an invariant distribution π for the underlying chain together with a real-valued function f̃

defined on Σ, we often write π(f̃) = Eπ [f̃(S0, C0)].
In the following sections, we denote by C[0, 1] the space of continuous real-valued functions on

[0, 1] and by ⇒ weak convergence on C[0, 1]; see [3, 4]. Weak convergence on C[0, 1] generalizes
to a sequence of random functions—i.e., a sequence of stochastic processes—the usual notion of
convergence in distribution of a sequence of random variables.
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3.2 Main Results: Discrete Time

Consider a gsmp {X(t) : t ≥ 0 } with state space S and underlying chain { (Sn, Cn) : n ≥ 0 } having
state space Σ. Recall the definition of the holding-time function t∗ in (2.1) and denote by G the
set of real-valued functions defined on Σ. For u ≥ 0, set

Hu =
{

h ∈ G : |h(s, c)| ≤ a + b
(
t∗(s, c)

)u for some a, b ≥ 0 and all (s, c) ∈ Σ
}

.

Also write x ∨ y = max(x, y) and, for a real-valued function g, write |g| to denote the function
defined by |g|(x) = |g(x)|. We now state a discrete-time slln and fclt for the underlying chain of
a gsmp; see Section 4 for proofs.

Theorem 3.4 Suppose that Assumption PD(u ∨ 1) holds for some u ≥ 0, so that there exists a
unique invariant distribution π for the underlying chain { (Sn, Cn) : n ≥ 0 }. Then π(|f̃ |) < ∞ and

lim
n→∞

1
n

n−1∑
j=0

f̃(Sn, Cn) = π(f̃) a.s.

for any f̃ ∈ Hu.

Observe that the time-average limit does not depend on the initial distribution µ.
Given a gsmp satisfying Assumption PD(1)—so that there exists a unique invariant distribution

π for the underlying chain { (Sn, Cn) : n ≥ 0 }—along with a measurable function f̃ : Σ �→ 
 such
that π(|f̃ |) < ∞, define a sequence of C[0, 1]-valued random functions U1(f̃), U2(f̃), . . . by setting

Un(f̃)(t) =
1√
n

∫ nt

0

(
f̃(S�u�, C�u�) − π(f̃)

)
du

for 0 ≤ t ≤ 1 and n ≥ 0, where �x� denotes the greatest integer less than or equal to x. Denote by
W = {W (t) : 0 ≤ t ≤ 1 } a standard Brownian motion on [0, 1]; see, e.g., [3].

Theorem 3.5 Let u ≥ 0 and f̃ ∈ Hu. If Assumption PD
(
2(u∨ 1)

)
holds, then there exists a finite

constant σ̃(f̃) ≥ 0 such that Un(f̃) ⇒ σ̃(f̃)W as n → ∞.

A variant of the foregoing result asserts weak convergence to a limiting Brownian motion on
D[0, 1], the space of real-valued functions on [0, 1] that are right-continuous and have limits from
the left. The statement of this theorem is identical to that of Theorem 3.5, except that the sequence
U1(f̃), U2(f̃), . . . is defined by setting

Un(f̃)(t) =
1√
n

�nt�∑
j=0

(
f̃(Sj , Cj) − π(f̃)

)

for 0 ≤ t ≤ 1 and n ≥ 0. The proof is essentially identical to that of Theorem 3.5.
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3.3 Main Results: Continuous Time

We now give limit theorems in continuous time; proofs are provided in Section 4. Given an invariant
distribution π for the underlying chain of a gsmp together with a function f : S �→ 
, set

r(f) =
π(ft∗)
π(t∗)

,

where t∗ is the holding time function and (ft∗)(s, c) = f(s)t∗(s, c) for (s, c) ∈ Σ.

Theorem 3.6 Suppose that Assumption PD(1) holds. Then r(|f |) < ∞ and

lim
t→∞

1
t

∫ t

0
f
(
X(u)

)
du = r(f) a.s.

for any real-valued function f defined on S.

As with the previous slln, the time-average limit does not depend on the initial distribution µ.
Given a gsmp satisfying Assumption PD(1) along with a real-valued function f defined on S

such that r(|f |) < ∞, set

Uν(f)(t) =
1√
ν

∫ νt

0

(
f
(
X(u)

) − r(f)
)

du

for 0 ≤ t ≤ 1 and ν ∈ 
+; each random function Uν(f) is an element of C[0, 1].

Theorem 3.7 Suppose that Assumption PD(2) holds, and let f be a real-valued function defined
on S. Then there exists a finite constant σ(f) ≥ 0 such that Uν(f) ⇒ σ(f)W as ν → ∞.

3.4 Discussion

The conclusions of Theorems 3.4 and 3.5 hold for a function f ∈ Hu (u ≥ 1) under the respective
assumptions PD(u) and PD(2u), and the conclusions of Theorems 3.6 and 3.7 hold under the
respective assumptions PD(1) and PD(2). Versions of the foregoing theorems are proved in [13]
under substantially stronger moment conditions. Specifically, the slln and fclt for the underlying
chain hold for a function f ∈ Hu under the respective assumptions PD(u + 1) and PD(2u + 3),
and the corresponding limit theorems for the process {X(t) : t ≥ 0 } hold under the respective
assumptions PD(2) and PD(5).

The moment conditions in Theorems 3.6 and 3.7 are natural in light of known conditions [7] for
semi-Markov processes and continuous-time Markov chains. The appropriateness of the moment
conditions in Theorems 3.4 and 3.5 may not be quite as apparent. For example, it may not be
clear why Theorem 3.5 requires finite second moments on the clock-setting distributions even when
f̃(s, c) ≡ g(s) for some function g, so that the constant u in the theorem can be taken as 0. The
following example shows that the conclusion of Theorem 3.5 can fail when clock-setting distribution
functions are allowed to have infinite second moments.
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Figure 1: State transition diagram for gsmp of Example 3.8.

Example 3.8 Consider a gsmp with unit speeds, state space S = { 1, 2 }, event set E = { e1, e2 }
and active event sets given by E(1) = { e1 } and E(2) = { e1, e2 }. The state-transition probabilities
are

p(2; 1, e1) = p(2; 2, e1) = p(1; 2, e2) = 1

(see Figure 1). The clock-setting distribution functions have the simple form F ( · ; ei) for i = 1, 2.
Denote by αi and βi the first and second moment of F ( · ; ei). We assume that α1, α2, β1 < ∞ and
β2 = ∞. We also assume that F ( · ; e1) and F ( · ; e2) each have a density function that is positive
on [0,∞).

Set θ(−1) = −1 and θ(n) = inf
{

k > θ(n − 1) : Sθ(n) = 1
}

for n ≥ 0. Because only one
clock is active in state 1, the underlying chain probabilistically restarts whenever it hits the set
{ 1 } ×C(1). Because Assumption PD(1) holds, Proposition 4.8 below implies that the random in-
dexes { θ(n) : n ≥ 0 } form a sequence of classical “regeneration” points for the underlying chain—
see Section 4.1—and that the cycle length η1 = θ(1) − θ(0) has finite mean. It follows from
Glynn and Whitt [10] that a necessary condition for the conclusion of Theorem 3.5 to hold with
f̃(s, c) = s is that η1 have finite second moment. Observe that η1 is distributed as N(T )+1, where
{N(t) : t ≥ 0 } is a renewal counting process with inter-renewal distribution function F ( · ; e1) and
T is an independent sample from F ( · ; e2). Using the Cauchy-Schwartz inequality together with a
standard result for renewal counting processes [1, p. 158], we have E[N2(t)] ≥ E2[N(t)] ≥ t2/α2

1

for t ≥ 0. Thus
E[η2

1] ≥ E[N2(T )] = E
[
E[N2(T ) | T ]

] ≥ E[T 2/α2
1] = ∞,

so that the conclusion of Theorem 3.5 fails to hold.

A slight modification of the foregoing example shows that conclusion of Theorem 3.4 can fail
to hold if we allow clock-setting distributions to have infinite mean.

Our assumption of positive density components for the clock-setting distributions is by no means
necessary—it is easy to construct gsmps that violate this assumption but still satisfy sllns and
fclts. The following example, however, shows that some sort of assumption is needed in order to
ensure that value of a time-average limit does not depend upon the initial distribution.

Example 3.9 (An irreducible gsmp with no unique time-average limit) Consider a gsmp with
unit speeds, state space S = { 1, 2, 3, 4 }, event set E = { e1, e2 } and active event sets given by
E(1) = E(3) = { e1, e2 } and E(2) = E(4) = { e2 }. The state-transition probabilities are

p(1; 3, e1) = p(3; 1, e1) = 1
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Figure 2: State transition diagram for gsmp of Example 3.9.

and
p(1; 2, e2) = p(2; 1, e2) = p(3; 4, e2) = p(4; 3, e2) = 1

(see Figure 2). Observe that this gsmp is irreducible in the sense of Definition 3.1. Suppose that
each successive new clock reading for event ei (i = 1, 2) is uniformly distributed on a specified
interval [ai, bi], and that 0 ≤ a2 < b2 < a1 < b1. Then with probability 1 event e2 always occurs
before event e1 whenever both events simultaneously become active. It follows that if the initial
state is equal to 1 or 2, then the gsmp never hits state 3 or 4; if the initial state is equal to 3
or 4, then the gsmp never hits state 1 or 2. Thus, in general, the value of a limit of the form
limt→∞(1/t)

∫ t
0 f

(
X(u)

)
du depends on the initial distribution. Similar observations hold for the

underlying chain. Of course, this gsmp does not satisfy Assumption PD(q) for any q ≥ 0 since
the clock-setting distribution function for transition e1 does not have a density component that is
positive on an interval of the form (0, x̄).

In the continuous-time setting, the results in this paper focus on rewards that accrue contin-
uously at rate f(s) whenever the gsmp is in state s ∈ S. It is not difficult to extend our results
to handle “impulse rewards,” e.g., a reward of the form g(s′; s, E∗) that accrues whenever the
simultaneous occurrence of the events in E∗ triggers a transition from s to s′. The idea is to
consider the Markov chain { (Sn, Cn, Sn+1, Cn+1) : n ≥ 0 }, which inherits the stability properties
of the underlying chain.

4 Proofs

In this section we establish the results in Sections 3.2 and 3.3. To this end, we first review some
limit theory for od-regenerative processes and then recall some conditions under which a gsmp

both satisfies a drift criterion for recurrence and consequently enjoys od-regenerative structure.

4.1 Limit Theorems for OD-Regenerative Processes

Thorough discussions of od-regenerative and related processes can be found, for example, in [1,
6, 14, 21, 22]. We focus on processes that evolve over continuous time; to obtain corresponding

Draft: April 4, 2003 at 18:12 9



results for a discrete-time process {Xn : n ≥ 0 }, apply the continuous-time theory to the process{
X�t� : t ≥ 0

}
.

For the sequence of random times {Tk : k ≥ 0 } defined below, set τk = Tk − Tk−1 for k ≥ 1.

Definition 4.1 The stochastic process {X(t) : t ≥ 0 } with state space S is an od-regenerative
process in continuous time if there exists an increasing sequence 0 ≤ T0 < T1 < T2 < · · · of a.s.
finite random times such that, for k ≥ 1, the post-Tk process {X(Tk + t) : t ≥ 0; τk+l : l ≥ 1 }

(i) is distributed as the post-T0 process {X(T0 + t) : t ≥ 0; τl : l ≥ 1 }; and

(ii) is independent of the pre-Tk−1 process {X(t) : 0 ≤ t < Tk−1; τ1, . . . , τk−1 }.
The od-regeneration points serve to decompose sample paths of {X(t) : t ≥ 0 } into one-dependent
stationary cycles. The random variable τk defined above is the length of the kth cycle. A classical
regenerative process is a special case of an od-regenerative process in which the cycles are i.i.d..

When T0 = 0 the process {X(t) : t ≥ 0 } is nondelayed; otherwise, it is called delayed. For a
delayed {X(t) : t ≥ 0 }, the “0th cycle” {X(t) : 0 ≤ t < T0 } need not have the same distribution
as the other cycles. Similarly, the length of this cycle—denoted by τ0—need not have the same
distribution as τ1, τ2, and so forth.

We first state an slln for od-regenerative processes. Given such a process {X(t) : t ≥ 0 } with
state space S and od-regeneration points {Tk : k ≥ 0 }, along with a real-valued function f defined
on S, set

Yk(f) =
∫ Tk

Tk−1

f
(
X(u)

)
du

for k ≥ 0. (Take T−1 = 0.) It follows from the definition of an od-regenerative process that the
sequence

{ (
Yk(f), τk

)
: k ≥ 1

}
consists of identically distributed random pairs. Set

r(f) =
E [Y1(f)]

E [τ1]

and observe that r(f) is well defined and finite if and only if r(|f |) < ∞.

Proposition 4.2 Suppose that E [τ1] < ∞. Then r(|f |) < ∞ and

lim
t→∞

1
t

∫ t

0
f
(
X(u)

)
du = r(f) a.s.

for any real-valued function f such that Y0(|f |) < ∞ a.s. and E [Y1(|f |)] < ∞.

The proof of this result is almost identical to the proof of the slln for classical regenerative
processes [1]. The only difference is that the proof rests on the slln for m-dependent random
variables [2, p. 86] rather than the classical slln for i.i.d. random variables.

We now state an fclt for wide sense regenerative processes. Given a wide sense regenerative
process {X(t) : t ≥ 0 } with state space S and a real-valued function f for which r(|f |) < ∞, set

Uν(f)(t) =
1√
ν

∫ νt

0

(
f
(
X(u)

) − r(f)
)

du
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for 0 ≤ t ≤ 1 and ν ∈ 
+. Also set

σ2(f) =
Varµ [Y1(f) − r(f)τ1] + 2Covµ [Y1(f) − r(f)τ1, Y2(f) − r(f)τ2]

Eµ [τ1]
.

Proposition 4.3 Let {X(t) : t ≥ 0 } be an od-regenerative process with state space S and let f be
a real-valued function defined on S. Suppose that Y0(|f |) < ∞ a.s. and Eµ

[
Y 2

1 (|f |) + τ2
1

]
< ∞.

Then Uν(f) ⇒ σ(f)W as ν → ∞.

The proof of Proposition 4.3 rests on the fclt for “mixing” stationary random variables [3, Th. 19.2]
together with a “random time change” result [3, Sec. 14]; see [13] for further details.

4.2 Harris Recurrence and OD-Regenerative Structure in GSMPs

The key to our analysis of gsmps is Proposition 4.6 below, which establishes conditions under
which underlying chain satisfies a “drift” condition for stability. To prepare for this result, we
review some terminology for a Markov chain {Zn : n ≥ 0 } defined on a probability space (Ω,F , P )
and taking values in a (possibly uncountably infinite) state space Γ; see [17] for details. Such
a chain is φ-irreducible if φ is a nontrivial measure on subsets of Γ and, for each z ∈ Γ and
subset A ⊆ Γ with φ(A) > 0, there exists n > 0—possibly depending on both z and A—such that
Pn(z, A) > 0. [Here Pn is the n-step transition kernel for the chain.] A φ-irreducible chain is Harris
recurrent if Pz {Zn ∈ A i.o. } = 1 for all z ∈ Γ and A ⊆ Γ with φ(A) > 0. A Harris recurrent chain
admits an invariant distribution π0 that is unique up to constant multiples. If π0(Γ) < ∞, then
π( · ) = π0( · )/π(Γ) is an invariant probability distribution for the chain. A Harris recurrent chain
that admits an invariant probability distribution is called positive Harris recurrent. A subset B ⊆ Γ
is petite with respect to the chain if there exists a probability distribution q on the nonnegative
integers and a nontrivial measure ψ on subsets of Γ such that

inf
z∈B

∞∑
n=0

q(n)Pn
(
z, A) ≥ ψ(A)

for A ⊆ Γ.
Now consider a gsmp with event set E = { e1, . . . , eM } and underlying chain { (Sn, Cn) : n ≥ 0 }

taking values in Σ. Set
Hb =

(
S × [0, b]M

) ∩ Σ (4.4)

for b > 0 and define the “stochastic Lyapunov function”

hq(s, c) = 1 + max
1≤i≤M

cq
i

for s ∈ S, c = (c1, c2, . . . , cM ) ∈ C(s), and q ≥ 0. Whenever Assumption PD holds, we define φ̄ to
be the unique measure on subsets of Σ such that

φ̄
({ s } × [0, x1] × [0, x2] × · · · × [0, xM ]

)
=

∏
{i : ei∈E(s)}

min(xi, x̄) (4.5)

for all s ∈ S and x1, x2, . . . , xM ≥ 0. If, for example, a set B ⊆ Σ is of the form B = { s }×A with
E(s) = E, then φ̄(B) is equal to the Lebesgue measure of the set A ∩ [0, x̄]M .
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Proposition 4.6 If Assumption PD(0) holds, then

(i) the underlying chain { (Sn, Cn) : n ≥ 0 } is φ̄-irreducible, where φ̄ is defined by (4.5), and

(ii) for each b > 0 the set Hb defined by (4.4) is petite with respect to { (Sn, Cn) : n ≥ 0 }.

If, moreover, Assumption PD(q) holds for some q ≥ 1, then for all sufficiently large b

(iii) sup(s,c)∈Hb
E(s,c) [hq(SM , CM ) − hq(S0, C0)] < ∞, and

(iv) there exists β ∈ (0, 1) such that

E(s,c) [hq(SM , CM ) − hq(S0, C0)] ≤ −βhq(s, c) (4.7)

for (s, c) ∈ Σ − Hb.

See [13] for a proof of this result. Combining Proposition 4.6 with [13, Prop. 3.13], we obtain the
following recurrence result.

Proposition 4.8 If Assumption PD(1) holds, then { (Sn, Cn) : n ≥ 0 } is positive Harris recurrent
with recurrence measure φ̄ defined by (4.5).

The foregoing propositions lead to a sufficient condition for od-regenerative structure in a gsmp.

Proposition 4.9 Let { (Sn, Cn) : n ≥ 0 } be the underlying chain of a gsmp. If Assumption PD(1)
holds, then there exists a sequence { θ(k) : k ≥ 0 } of od-regeneration points for { (Sn, Cn) : n ≥ 0 }.
Moreover, the invariant distribution π of the chain has the representation

π(A) =
Eµ

[∑θ(1)−1
n=θ(0) 1A(Sn, Cn)

]
Eµ [η1]

for A ⊆ Σ, where η1 = θ(1) − θ(0) and 1A is the indicator function of the set A.

The idea of the proof is as follows; see [13] for details. By Proposition 4.8, the underlying chain is
Harris recurrent. By a well known result for Harris chains, there exists a set C ⊆ Σ with φ̄(C) > 0
such that

P r
(
(s, c), · ) = ελ( · ) + (1 − ε)Q

(
(s, c), · ), (s, c) ∈ C (4.10)

for some r ≥ 1, ε ∈ (0, 1], probability distribution λ, and transition kernel Q; see Asmussen [1,
Sec. VI.3], Glynn and L’Ecuyer [9], and Meyn and Tweedie [17, Th. 5.2.3]. Indeed, any subset
A ⊆ Σ with φ̄(A) > 0 contains such a C-set; [17, Th. 5.2.2]. Observe that, since φ̄(C) > 0, it follows
that

Pµ { (Sn, Cn) ∈ C i.o. } = 1.

The decomposition in (4.10) permits construction of a version of the underlying chain together
with a sequence { θ(k) : k ≥ 0 } of random indices that serve as od-regeneration points. The con-
struction uses a sequence { In : n ≥ 0 } of i.i.d. Bernoulli random variables with Pµ { In = 1 } =
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1 − Pµ { In = 0 } = ε. The idea is to generate successive states of the chain according to the
initial distribution µ and one-step transition kernel P until the first time M ≥ 0 such that
(SM , CM ) ∈ C. If IM = 1, then generate (SM+r, CM+r) according to λ; if IM = 0, then
generate (SM+r, CM+r) according to Q

(
(SM , CM ), · ). Next, generate the intermediate states

{ (Sn, Cn) : M + 1 ≤ n < M + r } according to an appropriate conditional distribution (conditioned
on the endpoint values (SM , CM ) and (SM+r, CM+r)). Now iterate this procedure starting from
state (SM+r, CM+r). The successive times θ(0), θ(1), . . . at which the state of the chain is dis-
tributed according to λ form a sequence of od-regeneration points. [Observe that the length of each
cycle is greater than or equal to r. In general, the conditioning on (SM , CM ) and (SM+r, CM+r)
mentioned above results in statistical dependence between (Sθ(n), Cθ(n)) and (Sθ(n)−r, Cθ(n)−r) for
each n ≥ 0, which is why the cycles are one-dependent.] The second assertion of the proposition
follows from Theorem VI.3.2 in [1].

4.3 Proof of the SLLNs and FCLTs

Under Assumption PD(1), Proposition 4.9 guarantees the existence of a sequence { θ(k) : k ≥ 0 } of
od-regeneration points for the underlying chain { (Sn, Cn) : n ≥ 0 } and a corresponding sequence{

ζθ(k) : k ≥ 0
}

of od-regeneration points for the gsmp {X(t) : t ≥ 0 }. For a real-valued function
f̃ defined on Σ, set

Ỹ i(f̃) =
θ(i)−1∑

j=θ(i−1)

f̃(Sn, Cn) (4.11)

for i ≥ 0. [Take θ(−1) = 0.] Theorem 3.6 follows from Proposition 4.2 provided that the cycle
length τ1 = ζθ(1) − ζθ(0) = Ỹ 1(t∗) has finite mean, and Theorem 3.7 follows from Proposition 4.3
provided that τ1 has finite second moment. Similarly, Theorem 3.4 (resp., Theorem 3.5) follows
from the discrete-time version of Proposition 4.2 (resp., Proposition 4.3) provided that the cycle
length η1 = θ(1) − θ(0) and the cycle quantity Ỹ 1(|f̃ |) have finite first (resp., second) moments.
[In this connection, observe that Ỹ 0(|f̃ |) < ∞ a.s. because θ(0) is a.s. finite by Proposition 4.9
and each new clock reading is a.s. finite by definition.] To establish the desired limit theorems, it
therefore suffices to prove the following general result on cycle moments.

Theorem 4.12 Suppose that Assumption PD
(
q(u ∨ 1)

)
holds for some q ∈ { 1, 2, . . . } and u ≥ 0.

Then Eµ [Ỹ q
1(|f̃ |)] < ∞ for any f̃ ∈ Hu, where Y1(|f̃ |) is defined as in (4.11).

We prove the assertion of Theorem 4.12 via a sequence of lemmas. Fix a compact set B ⊆ Σ
and denote by TB the return time to B: TB = inf {n > 0: (Sn, Cn) ∈ B }. Lemma 4.15 below gives
upper bounds on the moments of TB. To prepare for this lemma, first observe that, by an argument
that uses the drift condition (4.7) in Proposition 4.6 together with Dynkin’s formula, we have

E(s,c)

[TB−1∑
n=0

hq−1(Sn, Cn)
]
≤ γqhq(s, c) (4.13)
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for some positive constant γq = γq(B) < ∞ and all (s, c) ∈ Σ; see [17, Th. 14.2.3] for details. Next,
fix finite positive constants a1 = 1, a2, a3, . . . such that

nq+1 ≤ aq+1(1q + 2q + · · · + nq) (4.14)

for n ≥ 1 and q ∈ { 0, 1, 2, . . . }—it is well known that such constants exist. Finally, set bq =∏q
i=1(aiγi) for q ≥ 1.

Lemma 4.15 Suppose that Assumption PD(q) holds for some q ∈ { 1, 2, . . . }. Then

E(s,c)[T
q
B] ≤ bqhq(s, c)

for (s, c) ∈ Σ.

Proof. Our proof is by induction on q. Fix (s, c) ∈ Σ and observe that the desired result holds for
q = 1 by virtue of (4.13). Assume for induction that the lemma holds for some q ≥ 1 and observe
that, by (4.14),

E(s,c)[T
q+1
B ] ≤ aq+1E(s,c)

[TB−1∑
n=0

(TB − n)q

]
= aq+1

∞∑
n=0

E(s,c) [(TB − n)q; TB > n] , (4.16)

where the interchange of sum and expectation is justified by the nonnegativity of the summands.
Using the Markov property together with the induction hypothesis, we find that

E(s,c)[(TB − n)q; TB > n] = E(s,c)

[
E(s,c)[(TB − n)q; TB > n | (Sk, Ck) : 0 ≤ k ≤ n]

]
= E(s,c)

[
I(TB > n)E(Sn,Cn)[T

q
B]

]
≤ E(s,c)

[
I(TB > n)bqhq(Sn, Cn)

]
,

(4.17)

where I(A) is the indicator function for the event A. Substituting (4.17) into (4.16), interchanging
sum and expectation, and applying (4.13), we find that

E(s,c)[T
q+1
B ] ≤ aq+1bqE(s,c)

[TB−1∑
n=0

hq(Sn, Cn)
]
≤ aq+1γq+1bqhq+1(s, c) = bq+1hq+1(s, c),

and the desired result follows.

The next step in the argument is to show that the discrete-time cycle length η1 has finite qth
moment under Assumption PD(q). To this end, we use the following fact: if X1, X2, . . . , Xk (k ≥ 1)
are nonnegative random variables and a1, a2, . . . , ak are positive integers, then

E
[
Xa1

1 Xa2
2 · · ·Xak

k

] ≤ Ea1/q [Xq
1 ] Ea2/q [Xq

2 ] · · ·Eak/q
[
Xq

k

]
, (4.18)

where q = a1 + a2 + · · · + ak. The inequality in (4.18) follows by an easy induction argument on k

that uses Hölder’s inequality.

Lemma 4.19 Suppose that Assumption PD(q) holds for some q ∈ { 1, 2, . . . }. Then Eµ [ηq
1] < ∞.
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Proof. We give the proof under the simplifying assumption that (4.10) holds with r = 1; the
extension to the general case is straightforward as in [18]. Let C ⊂ Σ be as in (4.10), and set

αq = sup
(s,c)∈C

E(s,c)[T
q
C ].

We can assume that C is compact, and it follows from Lemma 4.15 that αq < ∞. Assume for
convenience that the initial state of the chain is an element of C, and that the initial Bernoulli trial
is successful (i.e., I0 = 1), so that θ(0) = 1. Denote by δi the number of state transitions between
the (i − 1)st and ith visit of the underlying chain to C, where the 0th visit occurs at time 0. Also
denote by N the number of returns to C, up to and including the return that corresponds to the
first successful Bernoulli trial after time 0. Observe that

Eµ [ηq
1] = Eµ

[( N∑
i=1

δi

)q
]
.

We can write ( N∑
i=1

δi

)q

≤ b1S1 + b2S2 + · · · + bmSm,

where m and b1, b2, . . . , bm are finite integers and each Sj is a sum of the form

Sj =
N∑

i1=1

N∑
i2=1

· · ·
N∑

ik=1

δa1
i1

δa2
i2

· · · δak
ik

.

Here the integers k, a1, a2, . . . , am are such that k = k(j) ≤ q, al = al(j) ≥ 1 for 1 ≤ l ≤ k, and
a1 + · · ·+ ak = q. It therefore suffices to show that each Sj has finite mean. Consider an arbitrary
fixed value of j, and observe that, using (4.18),

Eµ [Sj ] = Eµ

[ N∑
i1=1

N∑
i2=1

· · ·
N∑

ik=1

δa1
i1

δa2
i2

· · · δak
ik

]

=
∞∑

i1=1

∞∑
i2=1

· · ·
∞∑

ik=1

Eµ

[
δa1
i1

I(N ≥ i1) δa2
i2

I(N ≥ i2) · · · δak
ik

I(N ≥ ik)
]

≤
∞∑

i1=1

∞∑
i2=1

· · ·
∞∑

ik=1

( k∏
l=1

Eal/q
µ

[
δq
il
I(N ≥ il)

])
.

(4.20)

Let F0 = σ〈S0, C0, I0〉, that is, the σ-field generated by (S0, C0, I0), and Fj = σ〈(Sn, Cn, In) : 0 ≤
n ≤ δ1 + · · · + δj〉 for j ≥ 1. For each i ≥ 1, observe that I(N ≥ i) ∈ Fi−1, so that

Eµ[δq
i I(N ≥ i)] = Eµ

[
I(N ≥ i)Eµ[δq

i

∣∣ Fi−1]
] ≤ αqPµ {N ≥ i } .

Using the foregoing inequality together with (4.20), we find that

Eµ [Sj ] ≤ αq

k∏
l=1

( ∞∑
i=1

P al/q
µ {N ≥ i }

)
= αq

k∏
l=1

( ∞∑
i=1

(1 − ε)al(i−1)/q

)
< ∞

as desired.
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To complete the proof of Theorem 4.12, we need the following proposition.

Proposition 4.21 Let SN =
∑N

n=1 Xn, where {Xn : n ≥ 1 } is a sequence of i.i.d. random vari-
ables and N is a stopping time with respect to an increasing sequence {Fn : n ≥ 1 } of σ-fields such
that Xn is measurable with respect to Fn for n ≥ 1 and independent of Fn−1 for n ≥ 2. Then for
r ≥ 0 there exists a finite constant br (depending only on r) such that

E[|SN |r] ≤ brE [|X1|r] E [N r] .

The proof of Proposition 4.21 is contained in the proof of Theorem I.5.2 in Gut [12].

Proof of Theorem 4.12. Fix q, u, and f̃ ∈ Hu. For ease of exposition, we assume that all speeds
for active events are equal to 1 and that F ( · ; s′, e′, s, e∗) ≡ F ( · ; e′) for all s′, e′, s, and e∗. Denote
by Ai,j the value of the jth new clock reading generated for event ei after time ζθ(0), and by Ni the
number of new clock readings generated for event ei in the interval (ζθ(0), ζθ(1)). Observe that

Ỹ 1(|f̃ |) ≤ aη1 + b
M∑
i=1

Cu
θ(0),i + b

M∑
i=1

Ni+r∑
j=1

Au
i,j

for some a, b ≥ 0, where r is as in (4.10). By Lemma 4.19, it therefore suffices to show that

Eµ

[(Ni+r∑
j=1

Au
i,j

)q]
< ∞ (4.22)

and
Eµ

[
Cqu

θ(0),i

]
< ∞ (4.23)

for 1 ≤ i ≤ M—this assertion follows from the elementary inequality

E [(X1 + X2 + · · · + Xk)q] ≤ kq−1
(
E [Xq

1 ] + E [Xq
2 ] + · · · + E

[
Xq

k

])
,

which holds for any nonnegative random variables X1, X2, . . . , Xk (k ≥ 1). To see that (4.22) holds,
fix i and denote by κ(i, j) the random index of the state transition at which Ai,j is generated. Set
Fj = σ〈(Sn, Cn, In) : 0 ≤ n ≤ κ(i, j)〉 for j ≥ 1, and observe that (i) Ai,j ∈ Fj for j ≥ 1, (ii) Ai,j

is independent of Fj−1 for j ≥ 2, and (iii) Ni + r is a stopping time with respect to {Fn : n ≥ 1 }.
Moreover, since Ni ≤ η1, it follows from Lemma 4.19 that Eµ [(Ni + r)q] < ∞. An application of
Proposition 4.21 now establishes (4.22). In light of (4.10), it can be seen that a sufficient condition
for (4.23) to hold is

sup
(s,c)∈C

∫ ∞

0
xqu dGi(x; s, c) < ∞,

where Gi(x; s, c) = P(s,c) {Cr,i ≤ x }. Observe that if Xi is distributed according to Gi(x; s, c), then
Xi is stochastically dominated by Wi(c) = Wi(c1, c2, . . . , cM ) = max(ci, Bi,1, Bi,2, . . . , Bi,r), where
Bi,1, Bi,2, . . . , Bi,r are i.i.d. samples from F ( · ; ei). Because C is assumed compact, there is a finite
constant b such that max1≤j≤M ci ≤ b for all c = (c1, c2, . . . , cM ) such that (s, c) ∈ C. Thus

E [Xqu
i ] ≤ E [W qu

i (c)] ≤ bqu + rE[Bqu
i,1] < ∞,

and the desired result follows.
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As an aside, it follows from the results in Section 4.1 that the limits r(f) and π(f̃) in the slln’s
of Section 3 can be expressed as ratios of the form

r(f) =
Eµ [Y1(f)]

Eµ [τ1]
and π(f̃) =

Eµ [Ỹ 1(f̃)]
Eµ [η1]

,

where Ỹ 1(f̃) =
∑θ(1)−1

j=θ(0) f̃(Sn, Cn) and Y1(f) =
∫ ζθ(1)

ζθ(0)
f
(
X(u)

)
du. Moreover, the variance constants

σ2(f) and σ̃2(f̃) can be expressed as

σ2(f) =
Varµ [Z1(f)] + 2Covµ [Z1(f), Z2(f)]

Eµ [τ1]

and
σ̃2(f̃) =

Varµ [Z̃1(f̃)] + 2Covµ [Z̃1(f̃), Z̃2(f̃)]
Eµ [η1]

,

where Zk(f) = Yk(f) − r(f)τk and Z̃k(f̃) = Ỹ k(f̃) − π(f̃)ηk for k ≥ 1.
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