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ABSTRACT 
Due to the inherent speed-accuracy trade-off constraint in stylus typing, users tend to miss the targeted 
keys, resulting in erroneous words.   We present a pattern matching based error tolerance method for 
stylus keyboards. We view the hit points on a stylus keyboard as a high resolution geometric pattern. 
This pattern can be matched against patterns formed by the letter key positions of legitimate words 
from a lexicon. By finding the closest matching word, erroneous taps can be corrected. We present the 
rationale, a geometrical pattern matching algorithm, and the key aspects of our implementation of an 
Elastic Stylus Keyboard (ESK). 

KEYWORDS: Text input, intelligent user interfaces. 
 
INTRODUCTION 
The movement towards off the desktop computing, including hand-held devices and tablet computers, 
has stimulated a wave of invention, design, and research on text entry methods that do not require a 
physical keyboard. The stylus keyboard (SK), also known as graphical, virtual, soft, or on screen 
keyboard, is one class of them. Commercially SKs are in almost all hand-held and tablet computers. 
Research wise much work has been invested in this topic (See [2, 5, 7, 8, 14] for only a few examples). 

One of the first and most prolonged research efforts has been on the optimization of the SK layout. 
Getschow and colleagues [2] made an early attempt of minimizing the statistical movement distance 
based on character digraph distributions. Lewis and colleagues [5, 6] were probably the first to use the 
well known Fitts’ law and digraph frequencies as bases to model and design stylus keyboard 
performance.   MacKenzie and Zhang [7]  used such a model to manually design their OPTI layout. 
Zhai and colleagues [14] algorithmically optimized their ATOMIK layout based on the atomic 
interactions among all letters as defined by a Fitts-digraph energy function. 

One weakness of the existing stylus keyboards is the verbatim process — the user has to tap letter by 
letter with complete accuracy. It is well known that natural languages have a great deal of regularity 
and redundancy, as Shannon observed in the process of introducing his information theory [10]. From 
an information theory point of view, tapping all letters with 100% accuracy is over-specifying the 
amount of information needed. In contrast, other text input methods, such as the T9 method commonly 
used in mobile phones, exploits language redundancy to resolve ambiguous key strokes. Another 
example is Dasher [12] which uses language regularities to dynamically align the most likely next 
letter near the selection cursor so the user can visually react and steer through the intended characters.  
A tempting use of language regularity is typing prediction [1]. Masui [8] has developed a SK that 
presents a list of the most likely words for the user to select based on previous inputs. However, an 
often overlooked aspect of word prediction with choices, or utilizing language regularity in general, is 
the cognitive and visual reaction time and effort needed to choose from the multiple candidates.  The 
human visual motor reaction is about 200 ms minimum, and increases linearly with the amount of 
information in multiple choices as predicted by Hick’s law  [4]. For reference, typing at the speed of 60 
words per minute (wpm) means inputting each character in only 200 ms.  

Goodman and colleagues [3] proposed a method for SK error correction. Inspired by speech 
recognition technology, they calculated the probability of the intended key based on a character-level 
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language model (letter sequence statistics) and a stylus tapping model derived from observations of 
users’ tapping behavior. A user study indicated that their model reduced the error rate as compared to 
verbatim tapping [3]. 

We propose a novel approach to exploit the language regularity in SKs using elastic geometric pattern 
matching. The idea is inspired by the SHARK shorthand method proposed in [13]. SHARK matches a 
user’s continuous stylus trace pattern on the keyboard with the patterns of all words in a lexicon 
mapped to the center positions of the keys in a SK. The same pattern matching approach could also be 
applied to stylus typing so that a correct word will still be given even if some taps fall outside the 
intended letter keys, spurious taps occur, or some or even all taps miss the keys altogether, as long as 
the user’s tapping pattern is sufficiently close to the pattern of the desired word. We call stylus 
keyboards enhanced with this approach Elastic Stylus Keyboards (ESK). 

ELASTIC STYLUS KEYBOARDS 
Fitts’ law predicts that the mean time T to successfully hit a key of size W  over distance D  on a SK is 

)/)((log2 WWDbaT ++= . This means that relative tapping accuracy imposes a certain speed ceiling. 
If the user attempts to go beyond the ceiling, the landing points of the stylus will tend to fall outside of 
a targeted key, resulting in a letter different from the intended one. In other words, the user will tend to 
break the W  constraints. This adds to the user’s frustration since it takes additional time and effort to 
correct these errors. Accuracy constraints are particularly problematic for users with certain motor 
control disabilities and for expert users who push their text entry speed limit.  In the case of small 
mobile devices,   the accuracy problem will be more acute.  

Our goal is therefore to relax the accuracy requirement of precisely tapping on each letter, effectively 
widening the constraints of W. This is possible based on two observations. One is that not all letter 
combinations are legitimate words, as discussed in the introduction. We can therefore exploit these 
inherent constraints in legitimate words. The simplest implementation of this constraint is a lexicon 
which can easily be customized for each individual user. Other implementations of letter constraints 
may include a collection of n-grams, syllables, phonemes etc. The second observation is that the 
landing point of the stylus on a SK is a continuous variable recorded by the tablet or the touch screen, 
in contrast to a physical typewriter keyboard which can only record discrete key positions. A series of 
these landing points implicitly form a high resolution pattern (a sequence of points) on the SK. The 
center positions of all letter keys needed for inputting a word also form a pattern on the SK. The 
distance between these two patterns can be computed by various algorithms. By analyzing such 
distances to all words in a lexicon the most likely word can be found, even if one or more letters are 
mis-tapped, as long as the match passes a certain threshold. Otherwise the verbatim letter sequence can 
be returned. 

For instance, in Figure 1 the user has tapped on the keys r, j, n and w (hit points indicated as solid 
circles) on a zoomed-in part of the QWERTY layout. Without any error correction “rjnw” would be 
returned as the typed word. However, when looking at the shape formed by r-j-n-w and comparing it 
with the shapes of all words in a lexicon on the SK, “the” is the closest match. A pattern matching 
system should be able to correct the input despite the fact that the user missed all the targeted keys and 
accidentally had one spurious stylus tap. We call such an accuracy relaxation approach to ESK 
“geometrical matching”. 

 

Figure 1. An example of error correction: the user tapped on r-j-n-w, but the intended t-h-e is returned 
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The advantages of an ESK in comparison to a statistical letter sequence approach [3] are numerous. 
ESK’s matching effect works on the word level, and the words explicitly belong to an individual user’s 
lexicon. New words can be added and removed in a customized dictionary; different languages such as 
Chinese pinyin, English and Swedish can be mixed without affecting the performance or behavior of 
the ESK. Depending on the size of the lexicon, the error tolerance of the ESK can be adjusted, either 
by the user or automatically by the system. Note that if the user aims at the correct letters in a word, 
the resulting shape will tend to approximate the ideal word pattern and be correctly matched. A user’s 
input pattern can still be successfully matched to the intended word even if some of the hit points are 
far away from the correct keys, as long as the word patterns in the lexicon are sufficiently separated. 
Furthermore, the intuitive spatial interpretation of the matching method may enable expert users to 
consciously take advantage of the error correction scheme. 

PATTERN RECOGNITION ALGORITHM AND SYSTEM 
There are many pattern recognition methods that can be used for the current problem. We first used a 
simple linear matching algorithm, which computed the sum of all distances between the tapping points 
and their corresponding keys in a word in sequence (First tap to first letter in a word, second tap to 
second letter, and so on). User testing revealed various problems with this approach. For example, it 
could only find words with the same number of letters as the number of taps. If a tap is missed 
(deletion error) or an extra tap is inserted (insertion error), a correct word will never be found. We have 
also observed transposition errors in stylus typing in which the sequence of two letters was reversed.  
The linear matching approach was also poor at correcting this type of error.  

Clearly a certain amount of elasticity is needed in the matching algorithm. We use a pattern matching 
algorithm that has the following properties: 1. Scalable to a lexicon that practically includes all words 
needed by a user. 2. Can match sequences of different lengths and cope with transposition errors. 3. No 
training of the classifier is necessary. The algorithm finds the minimum distance between two patterns 
by searching for the closest corresponding points between them through dynamic programming.  

Similarity measure 
Let X  denote an unknown pattern consisting of an ordered sequence of n  stylus hit points ix  on a 
SK, and let Y  denote a template pattern consisting of m  points iy  that are the centers of the 
corresponding keys for any word { }lexicon in the  worda is : www∈ . 

We define ),( YXD  between X  and Y  as the minimum stretching cost needed to transform X  into 
Y . Let ),(),( mnKYXD =  be the minimum stretching cost of matching nxx K1  against myy K1 . 
Wang and Pavlidis [11] showed that ),( jiK  for the subsequences ixx K1  against jyy K1  can be 
computed using a recurrent equation of the form: 
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where 0)0,0( =K , ),( ii yxp  is the stretching cost ix  to jy , and τ  is an empirically determined 
parameter specifying the cost of either ignoring or inserting a single point. We currently set 0.2=τ . 
To avoid extreme stretching of a single point we currently define ),( yxp  as 
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where r  is the maximum distance a point may be stretched. 

To be able to make fair comparisons between patterns of unequal length we compute a pseudo-
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normalized minimum stretching cost: )/(),(),( mnYXDYXDN += . 

It is well known that the computation of ),( mnK  for matching X  against Y  in equation (1) can be 
solved efficiently using dynamic programming in )(nmO  time [11]. The best matching word is the 
word whose pattern has the lowest normalized stretching cost ND  against the user’s tapping pattern. 

Indexing 
To avoid an exhaustive search of a large ( 000,57≈  words) lexicon we implemented a simple indexing 
technique. Since equation (2) constrains point-to-point distances to be shorter than r , a reasonable 
constraint is to force the point-to-point distances between the first and last points in the patterns to also 
be shorter than r . If r  is sufficiently conservative, e.g. 1.5 times the radius of an alphabetical key on 
the keyboard, it directly leads to a simple yet effective indexing method. 

We construct an ordered k-ary tree data structure of depth 2 where k is the number of alphabetical keys 
on the keyboard layout. Each node at index i  at depth m  represents a circular cluster imC  where the 
i th key center is the cluster center, and r  is the radius of the cluster. At index i , ki <≤1 , 1iC  
represents a start position cluster and 2iC  represent an end position cluster. A pattern Y  of length m  
is indexed by a pointer in a cluster 2jC  on depth 2 iff 11 iCy ∈ , 21 jm Cy ∈−  and 2jC  is a child node of 

1iC . Set membership here is used to denote that a point is contained in the circular cluster. When 
querying the index with an unknown pattern X  we walk the tree in breadth-first order and collect the 
set of all patterns in the lexicon indexed to the same depth 2 clusters as X . This set is then searched 
exhaustively.  

If r  is too large or all words in the lexicon have patterns mapped to the same start and end point 
clusters, this procedure would still result in an exhaustive search. In practice the character frequencies 
are distributed unevenly but with enough spread for this indexing procedure to significantly reduce an 
exhaustive search. For our 57,000 words large lexicon the largest possible set that needs to be searched 
exhaustively is about 4,000 words large when 5.1=r  in keyboard key radius units. 

Threshold 
After pattern classification we obtain a subset consisting of the words in the lexicon with a similarity 
distance ND  to the user’s tapping pattern below a set threshold T . These words are then returned to 
the system as a ranked list. The system outputs the word with the shortest ND . 

The threshold T  can be a fixed, e.g. to the diameter of a key on the keyboard layout, or a more 
adaptive value, e.g. by looking at the distribution of the point-to-point distances. We currently set 

0.1=T  in keyboard key radius units. 

Lexicon 
The lexicon used can be constructed with various methods. It can be a preloaded standard dictionary, 
or a list of words extracted from the user’s previously written documents, including emails and articles, 
or words added by the user to the list, or a combination of all. We have tested our system with a 
lexicon containing about 57,000 words created for handwriting recognition applications [9], as well as 
with a custom lexicon extracted from a user’s 7 years of emails sent and received (about 7,000 words). 

Using indexing an ESK can handle large lexicons, however it is important that the lexicon is just large 
enough (but not larger than necessary) to include all words a particular user needs so the probability of 
unwanted corrections is minimized and the capacity of correct mapping for “sloppy” stylus typing is 
maximized.  

Delimiter 
In the process of developing the elastic stylus keyboard, we conducted various user studies, some 
formal and other informal. The user studies results were fed back to the next iteration of design and 
development.  Delimitation between different words was one of the most critical issues found in our 
user studies.  
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 We first used the most obvious choice of a delimiter — the space key tap. This was proven 
problematic, because the user was just as likely to mis-tap the space key as any other key, even if we 
doubled the height of the space key in a QWERTY stylus keyboard. If the stylus fell outside of the 
space key while aiming for it, two words would not be delimited and an unintended word that was 
close to the combination of the two would most likely be given. Conversely, if the user hit the space 
key while aiming for some other key, an unintended delimitation might cause the system to map a half 
finished word to a different word.  

There are a number of possible solutions. One is to use a special-purpose physical button. Its drawback 
is that the user either has to use two hands, with the non-dominant hand dedicated to entering a space 
(and hence delimitation), or switch between tapping with a stylus and pressing a button. 

We eventually decided to use a pen gesture as a way of entering space (and delimitation). Although 
many other gestures could be used alternatively or concurrently, we decided to use a left-to-right pen 
stroke anywhere on or near the ESK as a word delimiter. This novel method proves to be quite 
effective — gesturing is distinctly different from a tapping action and yet easy to evoke between 
tapping actions. 

DISCUSSION AND CONCLUSIONS 
The current ESK system (written in Java) can search a lexicon containing about 57,000 words in real 
time with no perceptible delay on a Tablet PC with a 1 GHz processor. Informal testing shows that one 
could type faster with less effort on an ESK than on a regular stylus keyboard, due to the reduced need 
of correcting frequent errors and the more relaxed requirement for precision tapping. We also observed 
that it is important to choose an appropriate correction threshold and a suitable lexicon, so that neither 
too many errors are left uncorrected nor many input strings are changed to unintended words. In 
general we observed that users were more unforgiving for receiving unintended words than 
appreciating correct error corrections. It is hence necessary to be conservative. 

An ESK works with any stylus layout, either QWERTY or an optimized layout. An ESK is a practical 
and easy-to-implement solution to improve the verbatim and error-prone input method of today’s 
stylus keyboards; requiring little, if any, training from the end-user’s part. 
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