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ABSTRACT
Web Service protocols are a key component in enabling busi-
nesses to link applications together within and across en-
terprise networks. However, the extensibility of the proto-
cols and the use of XML as a high-level data format create
formidable challenges in terms of application performance.
Also, system availability is bound to deteriorate as the use of
Web Services over wide area networks expands. As a result
of the increasing interdependence of applications, the con-
cept of a \weakest link" becomes that much more apparent.

One approach to mitigating these performance and avail-
ability problems is to cache responses from Web Service re-
quests. In this paper we discuss requirements for Web Ser-
vice caching and outline a plan for adding caching support
to a database system. The paper focuses on the semantics
of caching{what data can be cached, what can be reused,
and how Web Service protocols can be extended to better
support caching.

1. INTRODUCTION
Web Service protocols are a key component in enabling
businesses to link applications together within and across
enterprise networks. Not only do Web Services make ap-
plication integration and collaboration easier by leveraging
a platform-neutral protocol and agreed-upon XML format,
they ease application development by o�ering greater free-
dom in the choice of tools and platforms. Web Services
also help mitigate system evolution problems such as those
caused by changing APIs and version upgrades.

The concept of Web Services may mean di�erent things to
di�erent people|ranging from a software development and
tooling paradigm, to an open platform for multi-vendor ap-
plication collaboration, to user-oriented services (e.g. Web
calendaring) o�ered by Internet service providers. A com-
mon view of Web Services, also adopted in our work, is that
of an extensible, open protocol that enables applications to
talk to each other and exchange business data, e.g. in a

supply chain across enterprise networks. In essence, Web
Services enable integration of business processes.

The extensibility of Web Service protocols and the use of
XML as a high-level data format create formidable chal-
lenges in terms of application performance. The perfor-
mance problem is partly due to the high latency of wide-
area network connections [22] (e.g. HTTP) and partly due
to the high cost of XML parsing and schema validation.

At the same time, system availability deteriorates as the
number of participating systems and layers (network routers,
gateways, application servers, etc.) grows. In the end, the
overall availability of the system can only be as good as that
of the \weakest link."

One approach to mitigating performance and availability
problems is to cache as much of the wide-area network com-
munication as possible. In the case of Web Services and
SOAP [16] in particular, this translates to caching responses
from SOAP requests. Given that SOAP requests typically
use HTTP as the transport protocol and that HTTP caching
is already done on the Internet, a natural approach is to
try to extend the existing HTTP caching mechanism (proxy
caches and HTTP headers) with SOAP support. However,
since SOAP requests are POSTed over HTTP, not all request
data is visible to an HTTP proxy, for instance SOAPmethod
call parameters and message headers containing expiration
information [18]. As a result, existing HTTP proxy caching
mechanisms are not adequate for Web Service caching.

Relational database products, including IBM DB2 [9, 7], Or-
acle [11], and Microsoft SQL Server 2000 [12], have adopted
Web Services in two ways: by exposing database function-
ality (e.g. stored procedures and user-de�ned functions) as
Web Services (provider) and by integrating external Web
Services into federated databases (consumer).

Our work extends these e�orts by integrating caching into
a Web Service-aware database system at a very low level,
thereby providing business applications built on top of the
database with a high-performance Web Service interface. In
this paper we discuss requirements for e�ective and practical
Web Service caching and outline a plan for adding caching
support to a database system. Our discussion focuses on the
semantics of caching|what data can be cached, what can
be reused, and how Web Service protocols can be extended
to better support caching.



The paper is organized as follows. In Section 2, we review
existing work on Web caching and coherence models. We
discuss requirements for Web Service caching in Section 3
and present an outline of database-supported Web Service
caching in Section 4. Results of a performance study on a
prototype implementation of a Web Service cache are pre-
sented in Section 5. Extending the cache with an invali-
dation protocol is described in Section 6. A summary and
directions for future work appear in Section 7.

2. RELATED WORK
An extensive body of work exists on cache coherence models
and cooperative caches, generally arising from the database
and distributed systems �elds. Research on Web caching
and consistency has also seen interest, whereas Web Services
caching is only now starting to gain attraction.

2.1 Cache Coherence
Cache coherence models are typically based on one of three
mechanisms: expiration times, polling, and invalidations. In
each category, several possibilities exist. For instance, many
di�erent methods exist for estimating a document's time-
to-live (TTL) or time-to-refresh (TTR). TTL may be �xed
if the data has that inherent characteristic and the value is
known. Some dynamic and semi-dynamic TTL schemes are
based on the speed at which changes occur and the most
recent TTL values [21], as old values may be workable pre-
dictors for future values. An adaptive TTR value may also
be subject to static upper/lower bounds and the highest fre-
quency of changes observed so far.

In polling, a client contacts the server periodically, at docu-
ment expiration time, or on every request (poll-every-time)
to determine if a refresh is needed. Some protocols, e.g.
HTTP with its If-Modi�ed-Since request modi�er, have ex-
plicit support for making polling cheaper than a full re-
trieval. More frequent polling translates to less stale data
and stronger coherence. Combinations of client pull and
server push have also been studied [3]. For instance, if a
server knows the TTR value of a client, it can preemptively
push data updates to the client before the next refresh.

Invalidation aims to eliminate staleness by requiring that a
server inform all clients that cache its data whenever some of
the data has changed and must be refreshed or invalidated.
Leases are a hybrid of TTL and invalidation schemes [5]. A
client acquires a lease for a speci�c amount of time, during
which the cache can read the data and the server must re-
quest permission before attempting to change it. However,
once the lease expires, the server regains control of the data
with no further client-server communication required.

A major drawback of invalidations and leases is the extra
bookkeeping a server must do and the extra cost of client-
server communication. An opportunistic lease renewal scheme
[1] reduces the communication cost of lease renewal and, as a
result, can reduce the length of leases. The authors suggest
reductions in lease length by a factor of 50 with only a 1%
network overhead. The reduction is primarily due to using
one lease per client computer, not per data object cached,
as \computers or networks are expected to fail, not individ-
ual data objects." [1] To ensure coherence, however, leases
must be supplemented by explicit data locks.

A survey of cache consistency mechanisms in use on the In-
ternet [6] found that weak consistency (allowing staleness)
reduced network tra�c more than either TTL or invalida-
tion and can be tuned to return stale data less than 5% of
the time. They also found that �les tended to have bimodal
lifetimes|either they were modi�ed very frequently or very
infrequently.

A qualitative comparison of caching strategies for Web ap-
plication servers is shown in [14]. The author notes that the
advantage of push mechanisms is the reduced response time
for �rst hit and lower cost of updating data. In contrast,
pull methods use cache space more e�ectively, as data isn't
retrieved into the cache until it is accessed, which also helps
ensure that only the hottest data stays in the cache.

2.2 Cooperative Caches
Harvest [2] is hierarchical Internet cache typically con�gured
as a tree. A server with a cache miss can request data from
its siblings and parent using unicast messages. The authors
note that OS and DBMS caching is very di�erent from In-
ternet caching in that in the former a cache miss may cost
several orders of magnitude more than a cache hit, but in
the latter only one order of magnitude more.

The need to minimize not only cache hit cost but also cache
miss cost is highlighted in [22] where three design principles
for large-scale distributed caches are discussed: minimize the
number of hops to access data on both hits and misses, share
data among many users and scale to many caches, and cache
data close to clients. We note that our approach for caching
Web Service responses is aligned with these requirements|
data is cached inside the database where it is close to data-
base applications and shared by many of them.

Realizing that coordination and communication e�ort in-
creases as a function of the number of caches and may actu-
ally decrease the overall e�ectiveness of caching, an optimal
degree of cooperation and topology for disseminating up-
dates has been studied [20]. A hierarchical topology closely
resembling that of the DNS structure has also been proposed
[8]. Each DNS domain maps to a cache neighborhood con-
taining at most one copy of a �le. A multicast-based adap-
tive caching scheme [23] delivers the same data to multiple
receivers and also acts as an information discovery vehicle.
A directory of the locations of cached data is replaced by a
multicast query to nearby caches.

In a large-scale content distribution network (CDN), none
of the existing coherence mechanisms (TTL, client polling,
invalidation, adaptive refresh, and leases) may be su�cient
[15]. The authors propose a cooperative lease mechanism
and �-consistency semantics and allow multiple proxies to
share a single lease. Multicast is used to propagate server
noti�cations to caches, which reduces server overhead.

2.3 Consistency of Web Data
A large Web proxy log is analyzed in [13] and it is discov-
ered that 38% of Web server responses contain an impossible
(future) Date �eld and 0.3% contain an impossible Last-
Modi�ed value. In a small fraction of cases, returned date
�elds are completely wrong, o� by several hours and even
months.



A study of Web caching e�ectiveness [4] suggests that most
proxy caches access a document only once but that they
access many di�erent documents on the same server (e.g.
a news article and associated graphics �les). Also, since
updates are mostly concentrated on few, popular documents
(e.g. headline news), the authors claim that a server-based
invalidation scheme would provide strong consistency with
a minimal impact on network bandwidth.

As a �rst step toward Web Service caching, the Response
Cache scheme [17] proposes adding a ResponseCache ele-
ment to SOAP headers. The header speci�es how to com-
pute a unique cache key for a given SOAP message and what
the associated expiration time (DeltaFreshness) is. A pair
of XPath expression is used in calculating the cache key.
A Service Expression determines the Service Key for a ser-
vice endpoint URI and identi�es the particular Web Service
being invoked. A Message Expression, determined by the
Service Key, is used to compute the Message Key (cache
key) for a given Web Service response.

Enabling Web Service caching in Microsoft ASP.NET is
described in [18]. Several methods exist, including using
explicit HTTP header values, specifying a CacheDuration
modi�er for the ASP.NET output cache in the programming
language, and using an explicit caching API for application
caching.

3. REQUIREMENTS FOR PRACTICAL
WEB SERVICE CACHING

As described in the Introduction, our focus is on using Web
Service protocols for application and business process inte-
gration, an example of which is supply chain management.
Participants of such a collaboration may be at a great dis-
tance of each other, but they also maintain continuous net-
work activity and are closely coupled due to business agree-
ments that are in place. This means that network disrup-
tions have an immediate impact on system availability on
both sides of the collaboration. But it also means that
coherence protocol messages (invalidations) can be piggy-
backed to existing data messages (SOAP responses) with
little additional cost.

It is expected that, at a minimum, caches support a time-
to-live (TTL) protocol because business data may very well
have an inherent expiration characteristic due to a periodic
business process, for instance end-of-month bill processing.
Given the weight of business collaborations, the number of
such couplings does not preclude explicit server-based in-
validations. Leases provide a natural mechanism to further
reduce the number of invalidation callbacks needed.

Invalidation calls are best viewed as Web Services them-
selves. In other words, the cache should make itself avail-
able as a Web Service, thereby making the communication
between a cache and server symmetric. This is also required
to maintain platform-independence.

Network outages are disastrous to business processes, yet
unavoidable. It is imperative that business processes be al-
lowed to continue in degraded mode using stale data, as long
as appropriate controls are in place to limit the damage stal-
eness might cause. For some applications, e.g. forecasting

<soap:Envelope>
<soap:Body>
<GetTrackingInfo xmlns="http://fedex.com/">
<TrackingNumber>...</TrackingNumber>
<LicenseKey>...</LicenseKey>

</GetTrackingInfo>
</soap:Body>

</soap:Envelope>

Figure 1: Sample SOAP Request.

and mining, it may be entirely acceptable to use moderately
out-of-date data.

Transparency is important|the existence of a cache should
not be visible to an application developer, except perhaps
via con�guration options that let the developer specify data
freshness requirements for his or her application. Caching
should be done \under the cover" with no special APIs to
bother the developer with.

As suggested in the Response Cache proposal [17], exibility
in the coherence protocol is maximized when the Web Ser-
vice provider is allowed to specify what constitutes a cache
key. Since Web Service data is likely to be XML-formatted,
the use of XPath expressions to specify cache keys is a nat-
ural choice. Similarly, coherence protocol information such
as invalidations are conveniently relayed as SOAP header
elements. Both decisions also very much supported by the
current trend to add native XML storage, indexing, and
query capabilities to database engines. As a result, a Web
Service cache becomes a large repository of XML messages
(documents) accessed via XQuery and XPath expressions.

Piggybacking invalidation information to regular data mes-
sages from server to cache involves adding a SOAP header
element that speci�es the cache keys of expired items. Since
the actual item that is expiring is not transmitted in the
invalidation message, the cache key cannot be an XPath ex-
pression but rather needs to be a literal value.

As with HTTP proxy caches, which do not cache data that is
private and requires authentication, Web Services responses
containing private data must not be cached.

4. DATABASE SUPPORT FOR WEB SER-
VICE CACHING

4.1 Database Web Service Consumer
Database systems provide a reliable and scalable solution
for integrating and processing data from multiple, heteroge-
neous data sources. A natural way to extend the reach of
a database engine to heterogeneous data sources is to add
a generic Web Service consumer function. The consumer
function can be invoked through SQL functions to interact
with any Web Service provider. Close integration with the
database engine permits e�cient coupling of database data
(relational and XML) with Web Services and appropriate
query planning, optimization, parallelization, and execution
just like with any other SQL query.

The following query retrieves package tracking information



<soap:Envelope>
<soap:Body>
<GetTrackingInfoResponse xmlns="http://fedex.com/">
<GetTrackingInfoResult>
<TrackingNumber>...</TrackingNumber>
<ReferenceNumber>...</ReferenceNumber>
<DeliveredTo>...</DeliveredTo>
<DeliveryLocation>...</DeliveryLocation>
<DeliveryDateTime>...</DeliveryDateTime>
<SignedBy>...</SignedBy>
... other data ...

</GetTrackingInfoResult>
</GetTrackingInfoResponse>

</soap:Body>
</soap:Envelope>

Figure 2: Sample SOAP Response.
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Figure 3: Components of Web Service Caching.

for all overdue orders. The GetTrackingInfo function in the
query invokes an external Web Service that returns package
tracking information for each package.

SELECT orderid, GetTrackingInfo (trackingid)
FROM Order

WHERE order_status = 'overdue';

The consumer function generates a SOAP request envelope
and sends it to a service provider (Figure 1). The service
provider acts upon the request and sends back a SOAP re-
sponse envelope (Figure 2).

4.2 Persistent Cache
The architecture of the Web Service caching scheme is illus-
trated in Figure 3. The cache is stored in database tables
whose schema is shown in Figure 4. Four tables are used:
current cache (CC), historical cache (HC), service expres-
sions (SE), and message expressions (ME). CC stores the
most recent response from a Web Service for a given cache
key. HC is a temporal dataset where some number of old
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Response (XML)

Historical Cache

PK Cache Key
PK Timestamp
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PK Service URI
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PK Service Key
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Figure 4: Schema for Persistent Cache.

responses is stored, with associated timestamps. The his-
torical dataset is separated from the current cache so that
queries requiring the most recent cache value can be ex-
ecuted e�ciently. The three-headed cache lookup queries
described in Section 4.4 are an example of this. The SE and
ME tables store instructions for how to compute a globally
unique key for a given Web Service request and are described
in the next section.

Having the database system store Web Service responses in
a historical cache enables analysis and mining of that data,
which|given that our focus is on business data|is an im-
portant reason for the database system to listen to ongo-
ing business processes. We expect the database to provide
the scalability needed for large caches and to make it possi-
ble to handle multiple versions of data, which enables time
travel and monitoring and resolution of problems in busi-
ness processes (dashboarding). Replication of cache tables
across sites enables multiple cooperative caches [10], further
increasing the availability and performance of Web Services
data.

The cache is populated by a modi�ed Web Service consumer
function that forwards received Web Service responses, as
well as piggybacked invalidations, to a Cache Manager via
a local, high-performance message queue. In order not to
add overhead to the original transaction, the actual inser-
tion of a cache record into cache tables occurs in a separate
transaction in the Cache Manager.

4.3 Cache Key Computation
The cache key for CC and HC is computed using two XPath
expressions as proposed in [17] and illustrated in Figure 5.
Briey, a Service Expression determines the Service Key for
a particular service endpoint URI and uniquely identi�es
the particular Web Service being invoked. Note that the
service endpoint URI itself is not a globally unique Service
Key, as each service endpoint URI may provide multiple
Web Services. The Service Expression is stored in the SE
table and is not likely to change frequently.

The Service Key is used to lookup a corresponding Message
Expression in the ME table. The Message Expression is used
to compute a Message Key for a given Web Service request.



<ResponseCache>
<serviceKey>
concat(namespace-uri(/*/*[local-name()='Body']/*),

local-name(/*/*[local-name()='Body']/*))
</serviceKey>
<messageKey>//TrackingNumber/text()</messageKey>
<coherence>
<delta-freshness>300</delta-freshness>

</coherence>
</ResponseCache>

Figure 5: Sample Service and Message Keys.

A globally unique cache key is obtained by concatenating a
Service Key and a Message Key.

As an example, consider the expressions one might use for a
package tracking Web Service (Figure 5). The Service Ex-
pression speci�es that the Service Key consists of the names-
pace and name of the XML element immediately below the
SOAP Body element. For RPC-style requests, this is the
name of the SOAP method being called. For a package
tracking service, the expression might evaluate to http://-

fedex.com/GetTrackingInfo and is a reasonable de�nition
of a Service Key for that service. The Message Key is
the value of the text node immediately below the \Track-
ingNumber" element and contains the package tracking num-
ber, for instance 285982392432. Combining the Service Key
with the Message Key, we get a globally unique cache key
http://fedex.com/GetTrackingInfo285982392432.

A range of alternatives exist for computing a cache key
based on the SOAP request envelope. The simplest option
is to treat the entire request as a cache key. This is overly
conservative, however, as minor variations in XML syntax,
such as extra whitespace or a di�erent order of attributes,
would produce a di�erent cache key. This problem is solved
by standardizing the format of request envelopes via XML
canonicalization [19]. However, the cache key is still overly
conservative because not every part of the request is impor-
tant for guaranteeing the uniqueness of the key. For exam-
ple, the package tracking service takes an additional param-
eter \LicenseKey" which authorizes the consumer to invoke
the service. The response does not functionally depend on
the license key, and, hence, the license key parameter should
not be part of the cache key. The suggested method is there-
fore to ask the service provider to tell the consumer (via the
Service Expression and Message Expression) what part of
the request does functionally determine the response.

4.4 Query Processing
Invocation and rewriting ofWeb Service queries is illustrated
in Figure 6. A database application invokes a Web Service
consumer function de�ned in the database, providing the
necessary service parameters such as service provider URI,
method name, and method arguments. For document-style
services, a service provider URI is complemented by an XML
document. The database engine rewrites the function invo-
cation as three subqueries tied together by a \switch." The
switch employs the semantics of a COALESCE function and
attempts to invoke the subqueries in order until one succeeds
(returns a non-null value). The value of the successful sub-
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Figure 6: Rewriting of Three-Headed Query.

query is then returned as the value of the switch.

The �rst subquery queries the current cache table CC and
retrieves active (non-expired) data. If no match is found
in the cache, the Web Service is invoked. If the Web Ser-
vice fails due to a network outage or other reason, a third
subquery is invoked to get stale data from the cache. Note
that query rewriting is analogous to URL rewriting and DNS
redirection in Content Delivery Networks (CDN) [15].

Once the query is rewritten to take advantage of the cache, it
can be further improved to exploit query parallelism, which
is a natural �t for deployments in Grid environments.

4.5 Cache Manager
The Cache Manager component of the system implements
the cache coherence logic, as illustrated in Figure 7. The
Cache Manager receives a cache record or invalidation mes-
sage (command) from the database engine through a local
message queue. An invalidation message may also be re-
ceived from the Web Service provider directly, in case it
has no regular data messages to piggyback the invalidation
message onto. The Cache Manager inserts/updates the cur-
rent cache table CC with the cache record or removes cache
records based on invalidation information. If a burst of
cache records is received, the records are inserted/updated
in batches, not one-by-one. Cache records are also inserted
to the historical cache table HC if the Cache Manager is con-
�gured to keep multiple versions of Web Service responses.
Extraneous copies are removed from the historical cache ta-
ble HC at regular intervals during inserts/updates.

The Cache Manager can also receive meta-level commands
such as Pause, Continue, and Set Variable (e.g. insert batch
size). At regular intervals during idle periods, the Cache
Manager deletes expired cache records if con�gured not to
keep stale data. Automatic refresh/prefetch causes the Cache
Manager to simply re-invoke the original Web Service re-
quest with the parameters stored in the cache record. The
Web Service consumer function of the database retrieves the
new data and forwards the data back to the Cache Manager
via its message queue.



Rcvd
Msg

Yes

No

No Msg

Timeout

Rcvd
MsgReceive Msg

with Timeout
Is it a Cache

Record?
Insert Cache

Record

Process
Command

Commit Inserts
Periodically

Delete expired and
extraneous cache

records periodically

Receive Msg
No Timeout

Delete expired
cache records

Commit
Uncommitted

Inserts

Delete expired and
extraneous cache

records

Submit
prefetch
requests

Figure 7: Cache Manager Event Processing.

Allowing explicit invalidation callbacks from the Web Ser-
vice provider to the Cache Manager requires that the Cache
Manager expose its queue as a Web Service. A small Web
Service manager (Web server plus servlet) is required to han-
dle these incoming cache invalidations.

4.6 Prototype Implementation
A prototype of the query processing logic described in this
paper has been implemented in the query compiler of DB2.
Query rewriting is done by directly modifying the Query
Graph Model (QGM), the internal representation of queries
in DB2. The modi�cation is done by adding a new rewrite
rule to an early phase in query compilation. This permits
subsequent planning and optimization in later phases of
query compilation.

The prototype exploits the Web Service consumer function
provided as part of DB2 V8.1 [7]. In addition to returning a
Web Service response to the query runtime component, the
consumer function is modi�ed to also route the response to
the Cache Manager via IBM MQSeries message queues. The
Cache Manager is an external DB2 agent and is exposed as a
Web Service for invalidation callbacks via DB2 Web Object
Runtime Framework (WORF).

5. PERFORMANCE STUDY
A series of performance tests were conducted using the Web
Service consumer function in both cached and non-cached
con�gurations. Our goal was three-fold: con�rm that adding
the cache lookup logic did not increase the cost of a non-
cached access (cache miss), measure the cost of a success-
ful cache retrieval (cache hit), and measure the speed-up

achieved in Web Service calls as a function of the degree of
parallelism.

values db2xml.soaphttpc (
'http://localhost/TestServices/servlet/rpcrouter',
'',
xml2clob (
XMLElement (
NAME "ns:getTime",
XMLAttributes ('http://tempuri.org/GetTime'

as "xmlns:ns" )
)

)
)

Figure 8: Sample Web Service invocation.

Four Web Services were exercised in the study (Table 1).
The services di�ered in terms of the location of the server
relative to the consumer: GetTime and GetSleep invoked
a local Web Service running on the same machine as the
consumer, while GetProc invoked a service on another server
on the local network. GetTemp invoked a service hosted on
the Internet at servicemethods.com.

Four cache con�gurations were tested (Table 2). No Cache
refers to the non-caching consumer function shipping in DB2
V8.1, while the other three con�gurations are prototypes
and provide improvements over the product version. Dis-
abled Cache adds caching logic to the consumer function
but the feature is disabled (a runtime ag is used to check
if the feature is enabled or not). Cache Miss performs a
cache lookup using SQL and DB2 CLI but is con�gured not
to �nd valid data in the cache. Instead, it invokes the Web
Service and then inserts the response into the cache. Cache
Hit performs a cache lookup, �nds valid data in the cache
and returns it. All four Web Services were run using all four
cache con�gurations. In addition, the services were run in
the No Cache con�guration with di�erent degrees of paral-
lelism to measure their speed-up.

The consumer function was invoked in DB2 V8.1 running
on Windows 2000 with a 933 MHz Pentium 4 CPU and
512 MB of memory. Web Service calls were initiated by
entering a SQL statement in DB2 that constructed the re-
quest envelope in XML using SQL/XML publishing func-
tions and then invoked the Web Service consumer function
(Figure 8). GetTime and GetSleep were implemented in
Java and hosted in the WebSphere Studio Application De-
veloper (WSAD) V5.0 environment running on the same
machine as DB2. GetProc was implemented in Java and
hosted in WSAD V5.0 on a 2.2 GHz Pentium 4 machine with
512 MB of memory and running Windows 2000. The imple-
mentation details and hardware con�guration of GetTemp are
unknown to the authors.

Figure 9 shows the overhead added by the caching logic in
a cache miss situation and the bene�t of caching in a cache
hit. For each of the four Web Services, the chart shows the
elapsed time of di�erent cache con�gurations relative to the
cost of a non-cached invocation. Therefore, for all services
the cost of No Cache is 1. The cost of Disabled Cache and
Cache Miss was expected to be close to 1 and perhaps even a



Table 1: Web Services exercised in the study.

Web Service Description Typical response time
GetTime Get current time from local machine 10 ms
GetProc Get workow process data from server on LAN 200 ms
GetTemp Get weather information from server on Internet 400 ms
GetSleep Do nothing for 1 second on server on LAN 1000 ms

Table 2: Web Service cache con�gurations compared in the study.

Name Description Code status
No Cache Non-caching consumer function Ships in DB2 V8.1
Disabled Cache Caching function with cache feature disabled Prototype
Cache Miss Cache lookup (miss) + Web Service invocation + cache insert Prototype
Cache Hit Cache lookup (hit) Prototype
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Figure 9: Cache overhead/bene�t of Web
Service invocations

bit lower because of minor performance improvements (not
related to caching) made to the prototype code over the
shipping product code.

Indeed, both Disabled Cache and Cache Miss ran slightly
faster than No Cache, except for the GetTime service where
Cache Miss was about 60% more expensive than No Cache.
Recall that in absolute terms GetTime is the fastest of the
Web Services, having a typical response time of only 10 ms,
therefore an extra cost of a few milliseconds in cache lookup
time shows up as a dramatic increase in relative terms.

Parallel UDF Performance

0

1

2

3

4

5

6

7

8

GetTime GetProc GetTemp GetSleep

S
p

ee
d

-U
p

 F
ac

to
r

Degree 1 Degree 2 Degree 4 Degree 8

Figure 10: Parallelizability of Web Service
invocations

Cache Hit cost appears very small compared to all other
con�gurations. GetTime is an exception again due to its
short overall elapsed time. Instead of a 10 ms Web Service
response time, the consumer function spends about 40% or
4 ms in performing a cache lookup and returning the result.
The 4 ms cache lookup cost translates to small or negligible
relative costs for the more expensive Web Services.

Because Web Services are expected to involve lengthy net-
work latencies and overall service times (perhaps ranging to
hours or days), it is important to be able to parallelize these
calls. Figure 10 shows the speed-up of the four Web Ser-



vices as a function of N , the degree of parallelism. GetTime
involves very little CPU and is mostly network bound. In-
creasing N yields no performance bene�ts, as the requests
merely queue up either in the networking layer or at the web
service provider.

A small increase in speed-up is seen with GetProc. The
di�erence between N = 4 and N = 8 is very small and indi-
cates that the network and/or CPU at the service provider
is saturating. For GetTemp, the initial speed-up from N = 1
to N = 2 is signi�cant, almost linear, but the improvement
levels o� after N = 2, indicating saturation.

As an extreme example of parallelizability, GetSleep shows
almost linear speed-up with N . The sleep function requires
little or no CPU cycles and many callers can be supported
without saturation. AtN = 8, the speed-up appears to level
o�, indicating the onset of network contention.

6. CACHE INVALIDATION
When communicating with a Web Service provider (server)
that is capable of providing invalidation callbacks, the data-
base (client) needs to inform the server that its response
was cached and must be invalidated when the server data
changes. The server records these invalidation subscriptions
in a list and makes invalidation callbacks if and when the
data does change.

A subscription has an associated expiration time, typically
the same value that was provided by the server in the �rst
place to indicate the freshness of the data. When the ex-
piration time passes, the server knows that the client no
longer has a valid copy of the data, and therefore no longer
requires invalidation callbacks. This scheme is very simi-
lar to the concept of leases except that strict leases give
the caching client exclusive write access to the data. Our
database cache is read only so exclusive access remains with
the server.

As mentioned previously, invalidation callbacks are best im-
plemented using Web Services for reasons of symmetry. In
order for the server to make such Web Service callbacks,
it needs to know the Web Service information (subscrip-
tion) of the client. The client provides its service endpoint,
SOAP action, and message to be delivered in a SOAP header
element InvalidationSubscription, as illustrated in Fig-
ure 11. As with invalidation callbacks, the information is
piggybacked to existing data messages and incurs only a
small incremental cost.

When the server wants to invalidate a cached data item, it
piggybacks an invalidation request to an outgoing data mes-
sage whose destination is the same as that of the invalida-
tion request. The content of the invalidation request is the
message element. Figure 12 illustrates the invalidation re-
quest sent to service endpoint http://host.com/servlet/-
rpcrouter with SOAP action invalidate. If no data mes-
sage is scheduled to go out, the server will invoke the invali-
dation Web Service of the client explicitly. The name of the
method to invoke and all its parameters are contained in the
message element (Figure 11).

<InvalidationSubscription>
<expires>2003-03-15-09.00.30</expires>
<serviceURI>
http://host.com/servlet/rpcrouter

</serviceURI>
<action>invalidate</action>
<message>
<ns:invalidate xmlns:ns="http://tempuri.org/">
<serviceKey>...</serviceKey>
<messageKey>...</messageKey>

</ns:invalidate>
</message>

</InvalidationSubscription>

Figure 11: Cache Invalidation Subscription.

<InvalidationRequest>
<ns:invalidate xmlns:ns="http://tempuri.org/">
<serviceKey>...</serviceKey>
<messageKey>...</messageKey>

</ns:invalidate>
</InvalidationRequest>

Figure 12: Cache Invalidation Request.

7. CONCLUSION
We have discussed the role of Web Service protocols in en-
abling businesses to link applications together within and
across enterprise networks. The extensibility of the proto-
cols and the use of XML as a high-level data format make
integration possible, but they also create formidable chal-
lenges in terms of application performance and availability.

We have described an approach to mitigating performance
and availability problems by caching responses from Web
Service requests. We discussed the requirements for Web
Service caching and outlined a plan for incorporating sup-
port for it into a database engine. Existing research on
cache coherence models (e.g. expiration times and invali-
dation callbacks) and cooperative caches apply directly to
Web Service caching. Since Web Service protocols build on
existing Web protocols, such as HTTP, it is attractive to
reuse as much of existing Web caching techniques as possi-
ble. We note, however, that Web Service protocol messages
are usually POSTed and the body of posted messages con-
tains key information (e.g. SOAP method name and argu-
ments) which HTTP proxy caches are not able to exploit.
Therefore, existing HTTP proxy caching mechanisms are
not adequate for Web Service caching.

Our scheme involves a persistent database cache of Web Ser-
vice responses, which gets utilized in Web Service queries au-
tomatically rewritten by the database. The rewritten query
�rst looks for active (non-expired) data in the cache before
attempting to invoke the Web Service. Should the invoca-
tion fail due to a network or other reason, another lookup
to the cache to �nd stale data is performed. We note that
allowing for a limited degree of staleness is important to in-
crease the availability of the database and any applications
built on top of it. A Cache Manager maintains the persistent
cache and removes expired data when necessary or when ex-
plicitly requested by a Web Service provider via invalidation



callbacks.

Our future work focuses on further improvements to the
caching protocol in support of business process integration.
Policies also need to be developed for declaring what to
keep in the cache and what can be removed. These policies
may be a�ected by business processes that are explicitly de-
clared using Business Process Execution Language (BPEL)
and other speci�cations. Our plan is also to conduct ex-
tensive performance experiments, validating the e�cacy of
the caching and invalidation scheme with real business pro-
cesses.
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